comparison src/share/vm/opto/gcm.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 6152cbb08ce9
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 // Optimization - Graph Style
28
29 #include "incls/_precompiled.incl"
30 #include "incls/_gcm.cpp.incl"
31
32 //----------------------------schedule_node_into_block-------------------------
33 // Insert node n into block b. Look for projections of n and make sure they
34 // are in b also.
35 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
36 // Set basic block of n, Add n to b,
37 _bbs.map(n->_idx, b);
38 b->add_inst(n);
39
40 // After Matching, nearly any old Node may have projections trailing it.
41 // These are usually machine-dependent flags. In any case, they might
42 // float to another block below this one. Move them up.
43 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
44 Node* use = n->fast_out(i);
45 if (use->is_Proj()) {
46 Block* buse = _bbs[use->_idx];
47 if (buse != b) { // In wrong block?
48 if (buse != NULL)
49 buse->find_remove(use); // Remove from wrong block
50 _bbs.map(use->_idx, b); // Re-insert in this block
51 b->add_inst(use);
52 }
53 }
54 }
55 }
56
57
58 //------------------------------schedule_pinned_nodes--------------------------
59 // Set the basic block for Nodes pinned into blocks
60 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
61 // Allocate node stack of size C->unique()+8 to avoid frequent realloc
62 GrowableArray <Node *> spstack(C->unique()+8);
63 spstack.push(_root);
64 while ( spstack.is_nonempty() ) {
65 Node *n = spstack.pop();
66 if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
67 if( n->pinned() && !_bbs.lookup(n->_idx) ) { // Pinned? Nail it down!
68 Node *input = n->in(0);
69 assert( input, "pinned Node must have Control" );
70 while( !input->is_block_start() )
71 input = input->in(0);
72 Block *b = _bbs[input->_idx]; // Basic block of controlling input
73 schedule_node_into_block(n, b);
74 }
75 for( int i = n->req() - 1; i >= 0; --i ) { // For all inputs
76 if( n->in(i) != NULL )
77 spstack.push(n->in(i));
78 }
79 }
80 }
81 }
82
83 #ifdef ASSERT
84 // Assert that new input b2 is dominated by all previous inputs.
85 // Check this by by seeing that it is dominated by b1, the deepest
86 // input observed until b2.
87 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
88 if (b1 == NULL) return;
89 assert(b1->_dom_depth < b2->_dom_depth, "sanity");
90 Block* tmp = b2;
91 while (tmp != b1 && tmp != NULL) {
92 tmp = tmp->_idom;
93 }
94 if (tmp != b1) {
95 // Detected an unschedulable graph. Print some nice stuff and die.
96 tty->print_cr("!!! Unschedulable graph !!!");
97 for (uint j=0; j<n->len(); j++) { // For all inputs
98 Node* inn = n->in(j); // Get input
99 if (inn == NULL) continue; // Ignore NULL, missing inputs
100 Block* inb = bbs[inn->_idx];
101 tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
102 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
103 inn->dump();
104 }
105 tty->print("Failing node: ");
106 n->dump();
107 assert(false, "unscheduable graph");
108 }
109 }
110 #endif
111
112 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
113 // Find the last input dominated by all other inputs.
114 Block* deepb = NULL; // Deepest block so far
115 int deepb_dom_depth = 0;
116 for (uint k = 0; k < n->len(); k++) { // For all inputs
117 Node* inn = n->in(k); // Get input
118 if (inn == NULL) continue; // Ignore NULL, missing inputs
119 Block* inb = bbs[inn->_idx];
120 assert(inb != NULL, "must already have scheduled this input");
121 if (deepb_dom_depth < (int) inb->_dom_depth) {
122 // The new inb must be dominated by the previous deepb.
123 // The various inputs must be linearly ordered in the dom
124 // tree, or else there will not be a unique deepest block.
125 DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
126 deepb = inb; // Save deepest block
127 deepb_dom_depth = deepb->_dom_depth;
128 }
129 }
130 assert(deepb != NULL, "must be at least one input to n");
131 return deepb;
132 }
133
134
135 //------------------------------schedule_early---------------------------------
136 // Find the earliest Block any instruction can be placed in. Some instructions
137 // are pinned into Blocks. Unpinned instructions can appear in last block in
138 // which all their inputs occur.
139 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
140 // Allocate stack with enough space to avoid frequent realloc
141 Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
142 // roots.push(_root); _root will be processed among C->top() inputs
143 roots.push(C->top());
144 visited.set(C->top()->_idx);
145
146 while (roots.size() != 0) {
147 // Use local variables nstack_top_n & nstack_top_i to cache values
148 // on stack's top.
149 Node *nstack_top_n = roots.pop();
150 uint nstack_top_i = 0;
151 //while_nstack_nonempty:
152 while (true) {
153 // Get parent node and next input's index from stack's top.
154 Node *n = nstack_top_n;
155 uint i = nstack_top_i;
156
157 if (i == 0) {
158 // Special control input processing.
159 // While I am here, go ahead and look for Nodes which are taking control
160 // from a is_block_proj Node. After I inserted RegionNodes to make proper
161 // blocks, the control at a is_block_proj more properly comes from the
162 // Region being controlled by the block_proj Node.
163 const Node *in0 = n->in(0);
164 if (in0 != NULL) { // Control-dependent?
165 const Node *p = in0->is_block_proj();
166 if (p != NULL && p != n) { // Control from a block projection?
167 // Find trailing Region
168 Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
169 uint j = 0;
170 if (pb->_num_succs != 1) { // More then 1 successor?
171 // Search for successor
172 uint max = pb->_nodes.size();
173 assert( max > 1, "" );
174 uint start = max - pb->_num_succs;
175 // Find which output path belongs to projection
176 for (j = start; j < max; j++) {
177 if( pb->_nodes[j] == in0 )
178 break;
179 }
180 assert( j < max, "must find" );
181 // Change control to match head of successor basic block
182 j -= start;
183 }
184 n->set_req(0, pb->_succs[j]->head());
185 }
186 } else { // n->in(0) == NULL
187 if (n->req() == 1) { // This guy is a constant with NO inputs?
188 n->set_req(0, _root);
189 }
190 }
191 }
192
193 // First, visit all inputs and force them to get a block. If an
194 // input is already in a block we quit following inputs (to avoid
195 // cycles). Instead we put that Node on a worklist to be handled
196 // later (since IT'S inputs may not have a block yet).
197 bool done = true; // Assume all n's inputs will be processed
198 while (i < n->len()) { // For all inputs
199 Node *in = n->in(i); // Get input
200 ++i;
201 if (in == NULL) continue; // Ignore NULL, missing inputs
202 int is_visited = visited.test_set(in->_idx);
203 if (!_bbs.lookup(in->_idx)) { // Missing block selection?
204 if (is_visited) {
205 // assert( !visited.test(in->_idx), "did not schedule early" );
206 return false;
207 }
208 nstack.push(n, i); // Save parent node and next input's index.
209 nstack_top_n = in; // Process current input now.
210 nstack_top_i = 0;
211 done = false; // Not all n's inputs processed.
212 break; // continue while_nstack_nonempty;
213 } else if (!is_visited) { // Input not yet visited?
214 roots.push(in); // Visit this guy later, using worklist
215 }
216 }
217 if (done) {
218 // All of n's inputs have been processed, complete post-processing.
219
220 // Some instructions are pinned into a block. These include Region,
221 // Phi, Start, Return, and other control-dependent instructions and
222 // any projections which depend on them.
223 if (!n->pinned()) {
224 // Set earliest legal block.
225 _bbs.map(n->_idx, find_deepest_input(n, _bbs));
226 }
227
228 if (nstack.is_empty()) {
229 // Finished all nodes on stack.
230 // Process next node on the worklist 'roots'.
231 break;
232 }
233 // Get saved parent node and next input's index.
234 nstack_top_n = nstack.node();
235 nstack_top_i = nstack.index();
236 nstack.pop();
237 } // if (done)
238 } // while (true)
239 } // while (roots.size() != 0)
240 return true;
241 }
242
243 //------------------------------dom_lca----------------------------------------
244 // Find least common ancestor in dominator tree
245 // LCA is a current notion of LCA, to be raised above 'this'.
246 // As a convenient boundary condition, return 'this' if LCA is NULL.
247 // Find the LCA of those two nodes.
248 Block* Block::dom_lca(Block* LCA) {
249 if (LCA == NULL || LCA == this) return this;
250
251 Block* anc = this;
252 while (anc->_dom_depth > LCA->_dom_depth)
253 anc = anc->_idom; // Walk up till anc is as high as LCA
254
255 while (LCA->_dom_depth > anc->_dom_depth)
256 LCA = LCA->_idom; // Walk up till LCA is as high as anc
257
258 while (LCA != anc) { // Walk both up till they are the same
259 LCA = LCA->_idom;
260 anc = anc->_idom;
261 }
262
263 return LCA;
264 }
265
266 //--------------------------raise_LCA_above_use--------------------------------
267 // We are placing a definition, and have been given a def->use edge.
268 // The definition must dominate the use, so move the LCA upward in the
269 // dominator tree to dominate the use. If the use is a phi, adjust
270 // the LCA only with the phi input paths which actually use this def.
271 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
272 Block* buse = bbs[use->_idx];
273 if (buse == NULL) return LCA; // Unused killing Projs have no use block
274 if (!use->is_Phi()) return buse->dom_lca(LCA);
275 uint pmax = use->req(); // Number of Phi inputs
276 // Why does not this loop just break after finding the matching input to
277 // the Phi? Well...it's like this. I do not have true def-use/use-def
278 // chains. Means I cannot distinguish, from the def-use direction, which
279 // of many use-defs lead from the same use to the same def. That is, this
280 // Phi might have several uses of the same def. Each use appears in a
281 // different predecessor block. But when I enter here, I cannot distinguish
282 // which use-def edge I should find the predecessor block for. So I find
283 // them all. Means I do a little extra work if a Phi uses the same value
284 // more than once.
285 for (uint j=1; j<pmax; j++) { // For all inputs
286 if (use->in(j) == def) { // Found matching input?
287 Block* pred = bbs[buse->pred(j)->_idx];
288 LCA = pred->dom_lca(LCA);
289 }
290 }
291 return LCA;
292 }
293
294 //----------------------------raise_LCA_above_marks----------------------------
295 // Return a new LCA that dominates LCA and any of its marked predecessors.
296 // Search all my parents up to 'early' (exclusive), looking for predecessors
297 // which are marked with the given index. Return the LCA (in the dom tree)
298 // of all marked blocks. If there are none marked, return the original
299 // LCA.
300 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
301 Block* early, Block_Array &bbs) {
302 Block_List worklist;
303 worklist.push(LCA);
304 while (worklist.size() > 0) {
305 Block* mid = worklist.pop();
306 if (mid == early) continue; // stop searching here
307
308 // Test and set the visited bit.
309 if (mid->raise_LCA_visited() == mark) continue; // already visited
310 mid->set_raise_LCA_visited(mark);
311
312 // Don't process the current LCA, otherwise the search may terminate early
313 if (mid != LCA && mid->raise_LCA_mark() == mark) {
314 // Raise the LCA.
315 LCA = mid->dom_lca(LCA);
316 if (LCA == early) break; // stop searching everywhere
317 assert(early->dominates(LCA), "early is high enough");
318 // Resume searching at that point, skipping intermediate levels.
319 worklist.push(LCA);
320 } else {
321 // Keep searching through this block's predecessors.
322 for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
323 Block* mid_parent = bbs[ mid->pred(j)->_idx ];
324 worklist.push(mid_parent);
325 }
326 }
327 }
328 return LCA;
329 }
330
331 //--------------------------memory_early_block--------------------------------
332 // This is a variation of find_deepest_input, the heart of schedule_early.
333 // Find the "early" block for a load, if we considered only memory and
334 // address inputs, that is, if other data inputs were ignored.
335 //
336 // Because a subset of edges are considered, the resulting block will
337 // be earlier (at a shallower dom_depth) than the true schedule_early
338 // point of the node. We compute this earlier block as a more permissive
339 // site for anti-dependency insertion, but only if subsume_loads is enabled.
340 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
341 Node* base;
342 Node* index;
343 Node* store = load->in(MemNode::Memory);
344 load->as_Mach()->memory_inputs(base, index);
345
346 assert(base != NodeSentinel && index != NodeSentinel,
347 "unexpected base/index inputs");
348
349 Node* mem_inputs[4];
350 int mem_inputs_length = 0;
351 if (base != NULL) mem_inputs[mem_inputs_length++] = base;
352 if (index != NULL) mem_inputs[mem_inputs_length++] = index;
353 if (store != NULL) mem_inputs[mem_inputs_length++] = store;
354
355 // In the comparision below, add one to account for the control input,
356 // which may be null, but always takes up a spot in the in array.
357 if (mem_inputs_length + 1 < (int) load->req()) {
358 // This "load" has more inputs than just the memory, base and index inputs.
359 // For purposes of checking anti-dependences, we need to start
360 // from the early block of only the address portion of the instruction,
361 // and ignore other blocks that may have factored into the wider
362 // schedule_early calculation.
363 if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
364
365 Block* deepb = NULL; // Deepest block so far
366 int deepb_dom_depth = 0;
367 for (int i = 0; i < mem_inputs_length; i++) {
368 Block* inb = bbs[mem_inputs[i]->_idx];
369 if (deepb_dom_depth < (int) inb->_dom_depth) {
370 // The new inb must be dominated by the previous deepb.
371 // The various inputs must be linearly ordered in the dom
372 // tree, or else there will not be a unique deepest block.
373 DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
374 deepb = inb; // Save deepest block
375 deepb_dom_depth = deepb->_dom_depth;
376 }
377 }
378 early = deepb;
379 }
380
381 return early;
382 }
383
384 //--------------------------insert_anti_dependences---------------------------
385 // A load may need to witness memory that nearby stores can overwrite.
386 // For each nearby store, either insert an "anti-dependence" edge
387 // from the load to the store, or else move LCA upward to force the
388 // load to (eventually) be scheduled in a block above the store.
389 //
390 // Do not add edges to stores on distinct control-flow paths;
391 // only add edges to stores which might interfere.
392 //
393 // Return the (updated) LCA. There will not be any possibly interfering
394 // store between the load's "early block" and the updated LCA.
395 // Any stores in the updated LCA will have new precedence edges
396 // back to the load. The caller is expected to schedule the load
397 // in the LCA, in which case the precedence edges will make LCM
398 // preserve anti-dependences. The caller may also hoist the load
399 // above the LCA, if it is not the early block.
400 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
401 assert(load->needs_anti_dependence_check(), "must be a load of some sort");
402 assert(LCA != NULL, "");
403 DEBUG_ONLY(Block* LCA_orig = LCA);
404
405 // Compute the alias index. Loads and stores with different alias indices
406 // do not need anti-dependence edges.
407 uint load_alias_idx = C->get_alias_index(load->adr_type());
408 #ifdef ASSERT
409 if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
410 (PrintOpto || VerifyAliases ||
411 PrintMiscellaneous && (WizardMode || Verbose))) {
412 // Load nodes should not consume all of memory.
413 // Reporting a bottom type indicates a bug in adlc.
414 // If some particular type of node validly consumes all of memory,
415 // sharpen the preceding "if" to exclude it, so we can catch bugs here.
416 tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory.");
417 load->dump(2);
418 if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, "");
419 }
420 #endif
421 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
422 "String compare is only known 'load' that does not conflict with any stores");
423
424 if (!C->alias_type(load_alias_idx)->is_rewritable()) {
425 // It is impossible to spoil this load by putting stores before it,
426 // because we know that the stores will never update the value
427 // which 'load' must witness.
428 return LCA;
429 }
430
431 node_idx_t load_index = load->_idx;
432
433 // Note the earliest legal placement of 'load', as determined by
434 // by the unique point in the dom tree where all memory effects
435 // and other inputs are first available. (Computed by schedule_early.)
436 // For normal loads, 'early' is the shallowest place (dom graph wise)
437 // to look for anti-deps between this load and any store.
438 Block* early = _bbs[load_index];
439
440 // If we are subsuming loads, compute an "early" block that only considers
441 // memory or address inputs. This block may be different than the
442 // schedule_early block in that it could be at an even shallower depth in the
443 // dominator tree, and allow for a broader discovery of anti-dependences.
444 if (C->subsume_loads()) {
445 early = memory_early_block(load, early, _bbs);
446 }
447
448 ResourceArea *area = Thread::current()->resource_area();
449 Node_List worklist_mem(area); // prior memory state to store
450 Node_List worklist_store(area); // possible-def to explore
451 Node_List non_early_stores(area); // all relevant stores outside of early
452 bool must_raise_LCA = false;
453 DEBUG_ONLY(VectorSet should_not_repeat(area));
454
455 #ifdef TRACK_PHI_INPUTS
456 // %%% This extra checking fails because MergeMem nodes are not GVNed.
457 // Provide "phi_inputs" to check if every input to a PhiNode is from the
458 // original memory state. This indicates a PhiNode for which should not
459 // prevent the load from sinking. For such a block, set_raise_LCA_mark
460 // may be overly conservative.
461 // Mechanism: count inputs seen for each Phi encountered in worklist_store.
462 DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
463 #endif
464
465 // 'load' uses some memory state; look for users of the same state.
466 // Recurse through MergeMem nodes to the stores that use them.
467
468 // Each of these stores is a possible definition of memory
469 // that 'load' needs to use. We need to force 'load'
470 // to occur before each such store. When the store is in
471 // the same block as 'load', we insert an anti-dependence
472 // edge load->store.
473
474 // The relevant stores "nearby" the load consist of a tree rooted
475 // at initial_mem, with internal nodes of type MergeMem.
476 // Therefore, the branches visited by the worklist are of this form:
477 // initial_mem -> (MergeMem ->)* store
478 // The anti-dependence constraints apply only to the fringe of this tree.
479
480 Node* initial_mem = load->in(MemNode::Memory);
481 worklist_store.push(initial_mem);
482 worklist_mem.push(NULL);
483 DEBUG_ONLY(should_not_repeat.test_set(initial_mem->_idx));
484 while (worklist_store.size() > 0) {
485 // Examine a nearby store to see if it might interfere with our load.
486 Node* mem = worklist_mem.pop();
487 Node* store = worklist_store.pop();
488 uint op = store->Opcode();
489
490 // MergeMems do not directly have anti-deps.
491 // Treat them as internal nodes in a forward tree of memory states,
492 // the leaves of which are each a 'possible-def'.
493 if (store == initial_mem // root (exclusive) of tree we are searching
494 || op == Op_MergeMem // internal node of tree we are searching
495 ) {
496 mem = store; // It's not a possibly interfering store.
497 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
498 store = mem->fast_out(i);
499 if (store->is_MergeMem()) {
500 // Be sure we don't get into combinatorial problems.
501 // (Allow phis to be repeated; they can merge two relevant states.)
502 uint i = worklist_store.size();
503 for (; i > 0; i--) {
504 if (worklist_store.at(i-1) == store) break;
505 }
506 if (i > 0) continue; // already on work list; do not repeat
507 DEBUG_ONLY(int repeated = should_not_repeat.test_set(store->_idx));
508 assert(!repeated, "do not walk merges twice");
509 }
510 worklist_mem.push(mem);
511 worklist_store.push(store);
512 }
513 continue;
514 }
515
516 if (op == Op_MachProj || op == Op_Catch) continue;
517 if (store->needs_anti_dependence_check()) continue; // not really a store
518
519 // Compute the alias index. Loads and stores with different alias
520 // indices do not need anti-dependence edges. Wide MemBar's are
521 // anti-dependent on everything (except immutable memories).
522 const TypePtr* adr_type = store->adr_type();
523 if (!C->can_alias(adr_type, load_alias_idx)) continue;
524
525 // Most slow-path runtime calls do NOT modify Java memory, but
526 // they can block and so write Raw memory.
527 if (store->is_Mach()) {
528 MachNode* mstore = store->as_Mach();
529 if (load_alias_idx != Compile::AliasIdxRaw) {
530 // Check for call into the runtime using the Java calling
531 // convention (and from there into a wrapper); it has no
532 // _method. Can't do this optimization for Native calls because
533 // they CAN write to Java memory.
534 if (mstore->ideal_Opcode() == Op_CallStaticJava) {
535 assert(mstore->is_MachSafePoint(), "");
536 MachSafePointNode* ms = (MachSafePointNode*) mstore;
537 assert(ms->is_MachCallJava(), "");
538 MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
539 if (mcj->_method == NULL) {
540 // These runtime calls do not write to Java visible memory
541 // (other than Raw) and so do not require anti-dependence edges.
542 continue;
543 }
544 }
545 // Same for SafePoints: they read/write Raw but only read otherwise.
546 // This is basically a workaround for SafePoints only defining control
547 // instead of control + memory.
548 if (mstore->ideal_Opcode() == Op_SafePoint)
549 continue;
550 } else {
551 // Some raw memory, such as the load of "top" at an allocation,
552 // can be control dependent on the previous safepoint. See
553 // comments in GraphKit::allocate_heap() about control input.
554 // Inserting an anti-dep between such a safepoint and a use
555 // creates a cycle, and will cause a subsequent failure in
556 // local scheduling. (BugId 4919904)
557 // (%%% How can a control input be a safepoint and not a projection??)
558 if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
559 continue;
560 }
561 }
562
563 // Identify a block that the current load must be above,
564 // or else observe that 'store' is all the way up in the
565 // earliest legal block for 'load'. In the latter case,
566 // immediately insert an anti-dependence edge.
567 Block* store_block = _bbs[store->_idx];
568 assert(store_block != NULL, "unused killing projections skipped above");
569
570 if (store->is_Phi()) {
571 // 'load' uses memory which is one (or more) of the Phi's inputs.
572 // It must be scheduled not before the Phi, but rather before
573 // each of the relevant Phi inputs.
574 //
575 // Instead of finding the LCA of all inputs to a Phi that match 'mem',
576 // we mark each corresponding predecessor block and do a combined
577 // hoisting operation later (raise_LCA_above_marks).
578 //
579 // Do not assert(store_block != early, "Phi merging memory after access")
580 // PhiNode may be at start of block 'early' with backedge to 'early'
581 DEBUG_ONLY(bool found_match = false);
582 for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
583 if (store->in(j) == mem) { // Found matching input?
584 DEBUG_ONLY(found_match = true);
585 Block* pred_block = _bbs[store_block->pred(j)->_idx];
586 if (pred_block != early) {
587 // If any predecessor of the Phi matches the load's "early block",
588 // we do not need a precedence edge between the Phi and 'load'
589 // since the load will be forced into a block preceeding the Phi.
590 pred_block->set_raise_LCA_mark(load_index);
591 assert(!LCA_orig->dominates(pred_block) ||
592 early->dominates(pred_block), "early is high enough");
593 must_raise_LCA = true;
594 }
595 }
596 }
597 assert(found_match, "no worklist bug");
598 #ifdef TRACK_PHI_INPUTS
599 #ifdef ASSERT
600 // This assert asks about correct handling of PhiNodes, which may not
601 // have all input edges directly from 'mem'. See BugId 4621264
602 int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
603 // Increment by exactly one even if there are multiple copies of 'mem'
604 // coming into the phi, because we will run this block several times
605 // if there are several copies of 'mem'. (That's how DU iterators work.)
606 phi_inputs.at_put(store->_idx, num_mem_inputs);
607 assert(PhiNode::Input + num_mem_inputs < store->req(),
608 "Expect at least one phi input will not be from original memory state");
609 #endif //ASSERT
610 #endif //TRACK_PHI_INPUTS
611 } else if (store_block != early) {
612 // 'store' is between the current LCA and earliest possible block.
613 // Label its block, and decide later on how to raise the LCA
614 // to include the effect on LCA of this store.
615 // If this store's block gets chosen as the raised LCA, we
616 // will find him on the non_early_stores list and stick him
617 // with a precedence edge.
618 // (But, don't bother if LCA is already raised all the way.)
619 if (LCA != early) {
620 store_block->set_raise_LCA_mark(load_index);
621 must_raise_LCA = true;
622 non_early_stores.push(store);
623 }
624 } else {
625 // Found a possibly-interfering store in the load's 'early' block.
626 // This means 'load' cannot sink at all in the dominator tree.
627 // Add an anti-dep edge, and squeeze 'load' into the highest block.
628 assert(store != load->in(0), "dependence cycle found");
629 if (verify) {
630 assert(store->find_edge(load) != -1, "missing precedence edge");
631 } else {
632 store->add_prec(load);
633 }
634 LCA = early;
635 // This turns off the process of gathering non_early_stores.
636 }
637 }
638 // (Worklist is now empty; all nearby stores have been visited.)
639
640 // Finished if 'load' must be scheduled in its 'early' block.
641 // If we found any stores there, they have already been given
642 // precedence edges.
643 if (LCA == early) return LCA;
644
645 // We get here only if there are no possibly-interfering stores
646 // in the load's 'early' block. Move LCA up above all predecessors
647 // which contain stores we have noted.
648 //
649 // The raised LCA block can be a home to such interfering stores,
650 // but its predecessors must not contain any such stores.
651 //
652 // The raised LCA will be a lower bound for placing the load,
653 // preventing the load from sinking past any block containing
654 // a store that may invalidate the memory state required by 'load'.
655 if (must_raise_LCA)
656 LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
657 if (LCA == early) return LCA;
658
659 // Insert anti-dependence edges from 'load' to each store
660 // in the non-early LCA block.
661 // Mine the non_early_stores list for such stores.
662 if (LCA->raise_LCA_mark() == load_index) {
663 while (non_early_stores.size() > 0) {
664 Node* store = non_early_stores.pop();
665 Block* store_block = _bbs[store->_idx];
666 if (store_block == LCA) {
667 // add anti_dependence from store to load in its own block
668 assert(store != load->in(0), "dependence cycle found");
669 if (verify) {
670 assert(store->find_edge(load) != -1, "missing precedence edge");
671 } else {
672 store->add_prec(load);
673 }
674 } else {
675 assert(store_block->raise_LCA_mark() == load_index, "block was marked");
676 // Any other stores we found must be either inside the new LCA
677 // or else outside the original LCA. In the latter case, they
678 // did not interfere with any use of 'load'.
679 assert(LCA->dominates(store_block)
680 || !LCA_orig->dominates(store_block), "no stray stores");
681 }
682 }
683 }
684
685 // Return the highest block containing stores; any stores
686 // within that block have been given anti-dependence edges.
687 return LCA;
688 }
689
690 // This class is used to iterate backwards over the nodes in the graph.
691
692 class Node_Backward_Iterator {
693
694 private:
695 Node_Backward_Iterator();
696
697 public:
698 // Constructor for the iterator
699 Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
700
701 // Postincrement operator to iterate over the nodes
702 Node *next();
703
704 private:
705 VectorSet &_visited;
706 Node_List &_stack;
707 Block_Array &_bbs;
708 };
709
710 // Constructor for the Node_Backward_Iterator
711 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
712 : _visited(visited), _stack(stack), _bbs(bbs) {
713 // The stack should contain exactly the root
714 stack.clear();
715 stack.push(root);
716
717 // Clear the visited bits
718 visited.Clear();
719 }
720
721 // Iterator for the Node_Backward_Iterator
722 Node *Node_Backward_Iterator::next() {
723
724 // If the _stack is empty, then just return NULL: finished.
725 if ( !_stack.size() )
726 return NULL;
727
728 // '_stack' is emulating a real _stack. The 'visit-all-users' loop has been
729 // made stateless, so I do not need to record the index 'i' on my _stack.
730 // Instead I visit all users each time, scanning for unvisited users.
731 // I visit unvisited not-anti-dependence users first, then anti-dependent
732 // children next.
733 Node *self = _stack.pop();
734
735 // I cycle here when I am entering a deeper level of recursion.
736 // The key variable 'self' was set prior to jumping here.
737 while( 1 ) {
738
739 _visited.set(self->_idx);
740
741 // Now schedule all uses as late as possible.
742 uint src = self->is_Proj() ? self->in(0)->_idx : self->_idx;
743 uint src_rpo = _bbs[src]->_rpo;
744
745 // Schedule all nodes in a post-order visit
746 Node *unvisited = NULL; // Unvisited anti-dependent Node, if any
747
748 // Scan for unvisited nodes
749 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
750 // For all uses, schedule late
751 Node* n = self->fast_out(i); // Use
752
753 // Skip already visited children
754 if ( _visited.test(n->_idx) )
755 continue;
756
757 // do not traverse backward control edges
758 Node *use = n->is_Proj() ? n->in(0) : n;
759 uint use_rpo = _bbs[use->_idx]->_rpo;
760
761 if ( use_rpo < src_rpo )
762 continue;
763
764 // Phi nodes always precede uses in a basic block
765 if ( use_rpo == src_rpo && use->is_Phi() )
766 continue;
767
768 unvisited = n; // Found unvisited
769
770 // Check for possible-anti-dependent
771 if( !n->needs_anti_dependence_check() )
772 break; // Not visited, not anti-dep; schedule it NOW
773 }
774
775 // Did I find an unvisited not-anti-dependent Node?
776 if ( !unvisited )
777 break; // All done with children; post-visit 'self'
778
779 // Visit the unvisited Node. Contains the obvious push to
780 // indicate I'm entering a deeper level of recursion. I push the
781 // old state onto the _stack and set a new state and loop (recurse).
782 _stack.push(self);
783 self = unvisited;
784 } // End recursion loop
785
786 return self;
787 }
788
789 //------------------------------ComputeLatenciesBackwards----------------------
790 // Compute the latency of all the instructions.
791 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
792 #ifndef PRODUCT
793 if (trace_opto_pipelining())
794 tty->print("\n#---- ComputeLatenciesBackwards ----\n");
795 #endif
796
797 Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
798 Node *n;
799
800 // Walk over all the nodes from last to first
801 while (n = iter.next()) {
802 // Set the latency for the definitions of this instruction
803 partial_latency_of_defs(n);
804 }
805 } // end ComputeLatenciesBackwards
806
807 //------------------------------partial_latency_of_defs------------------------
808 // Compute the latency impact of this node on all defs. This computes
809 // a number that increases as we approach the beginning of the routine.
810 void PhaseCFG::partial_latency_of_defs(Node *n) {
811 // Set the latency for this instruction
812 #ifndef PRODUCT
813 if (trace_opto_pipelining()) {
814 tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
815 n->_idx, _node_latency.at_grow(n->_idx));
816 dump();
817 }
818 #endif
819
820 if (n->is_Proj())
821 n = n->in(0);
822
823 if (n->is_Root())
824 return;
825
826 uint nlen = n->len();
827 uint use_latency = _node_latency.at_grow(n->_idx);
828 uint use_pre_order = _bbs[n->_idx]->_pre_order;
829
830 for ( uint j=0; j<nlen; j++ ) {
831 Node *def = n->in(j);
832
833 if (!def || def == n)
834 continue;
835
836 // Walk backwards thru projections
837 if (def->is_Proj())
838 def = def->in(0);
839
840 #ifndef PRODUCT
841 if (trace_opto_pipelining()) {
842 tty->print("# in(%2d): ", j);
843 def->dump();
844 }
845 #endif
846
847 // If the defining block is not known, assume it is ok
848 Block *def_block = _bbs[def->_idx];
849 uint def_pre_order = def_block ? def_block->_pre_order : 0;
850
851 if ( (use_pre_order < def_pre_order) ||
852 (use_pre_order == def_pre_order && n->is_Phi()) )
853 continue;
854
855 uint delta_latency = n->latency(j);
856 uint current_latency = delta_latency + use_latency;
857
858 if (_node_latency.at_grow(def->_idx) < current_latency) {
859 _node_latency.at_put_grow(def->_idx, current_latency);
860 }
861
862 #ifndef PRODUCT
863 if (trace_opto_pipelining()) {
864 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
865 use_latency, j, delta_latency, current_latency, def->_idx,
866 _node_latency.at_grow(def->_idx));
867 }
868 #endif
869 }
870 }
871
872 //------------------------------latency_from_use-------------------------------
873 // Compute the latency of a specific use
874 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
875 // If self-reference, return no latency
876 if (use == n || use->is_Root())
877 return 0;
878
879 uint def_pre_order = _bbs[def->_idx]->_pre_order;
880 uint latency = 0;
881
882 // If the use is not a projection, then it is simple...
883 if (!use->is_Proj()) {
884 #ifndef PRODUCT
885 if (trace_opto_pipelining()) {
886 tty->print("# out(): ");
887 use->dump();
888 }
889 #endif
890
891 uint use_pre_order = _bbs[use->_idx]->_pre_order;
892
893 if (use_pre_order < def_pre_order)
894 return 0;
895
896 if (use_pre_order == def_pre_order && use->is_Phi())
897 return 0;
898
899 uint nlen = use->len();
900 uint nl = _node_latency.at_grow(use->_idx);
901
902 for ( uint j=0; j<nlen; j++ ) {
903 if (use->in(j) == n) {
904 // Change this if we want local latencies
905 uint ul = use->latency(j);
906 uint l = ul + nl;
907 if (latency < l) latency = l;
908 #ifndef PRODUCT
909 if (trace_opto_pipelining()) {
910 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d",
911 nl, j, ul, l, latency);
912 }
913 #endif
914 }
915 }
916 } else {
917 // This is a projection, just grab the latency of the use(s)
918 for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
919 uint l = latency_from_use(use, def, use->fast_out(j));
920 if (latency < l) latency = l;
921 }
922 }
923
924 return latency;
925 }
926
927 //------------------------------latency_from_uses------------------------------
928 // Compute the latency of this instruction relative to all of it's uses.
929 // This computes a number that increases as we approach the beginning of the
930 // routine.
931 void PhaseCFG::latency_from_uses(Node *n) {
932 // Set the latency for this instruction
933 #ifndef PRODUCT
934 if (trace_opto_pipelining()) {
935 tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
936 n->_idx, _node_latency.at_grow(n->_idx));
937 dump();
938 }
939 #endif
940 uint latency=0;
941 const Node *def = n->is_Proj() ? n->in(0): n;
942
943 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
944 uint l = latency_from_use(n, def, n->fast_out(i));
945
946 if (latency < l) latency = l;
947 }
948
949 _node_latency.at_put_grow(n->_idx, latency);
950 }
951
952 //------------------------------hoist_to_cheaper_block-------------------------
953 // Pick a block for node self, between early and LCA, that is a cheaper
954 // alternative to LCA.
955 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
956 const double delta = 1+PROB_UNLIKELY_MAG(4);
957 Block* least = LCA;
958 double least_freq = least->_freq;
959 uint target = _node_latency.at_grow(self->_idx);
960 uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
961 uint end_latency = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
962 bool in_latency = (target <= start_latency);
963 const Block* root_block = _bbs[_root->_idx];
964
965 // Turn off latency scheduling if scheduling is just plain off
966 if (!C->do_scheduling())
967 in_latency = true;
968
969 // Do not hoist (to cover latency) instructions which target a
970 // single register. Hoisting stretches the live range of the
971 // single register and may force spilling.
972 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
973 if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
974 in_latency = true;
975
976 #ifndef PRODUCT
977 if (trace_opto_pipelining()) {
978 tty->print("# Find cheaper block for latency %d: ",
979 _node_latency.at_grow(self->_idx));
980 self->dump();
981 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
982 LCA->_pre_order,
983 LCA->_nodes[0]->_idx,
984 start_latency,
985 LCA->_nodes[LCA->end_idx()]->_idx,
986 end_latency,
987 least_freq);
988 }
989 #endif
990
991 // Walk up the dominator tree from LCA (Lowest common ancestor) to
992 // the earliest legal location. Capture the least execution frequency.
993 while (LCA != early) {
994 LCA = LCA->_idom; // Follow up the dominator tree
995
996 if (LCA == NULL) {
997 // Bailout without retry
998 C->record_method_not_compilable("late schedule failed: LCA == NULL");
999 return least;
1000 }
1001
1002 // Don't hoist machine instructions to the root basic block
1003 if (mach && LCA == root_block)
1004 break;
1005
1006 uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
1007 uint end_idx = LCA->end_idx();
1008 uint end_lat = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
1009 double LCA_freq = LCA->_freq;
1010 #ifndef PRODUCT
1011 if (trace_opto_pipelining()) {
1012 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1013 LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1014 }
1015 #endif
1016 if (LCA_freq < least_freq || // Better Frequency
1017 ( !in_latency && // No block containing latency
1018 LCA_freq < least_freq * delta && // No worse frequency
1019 target >= end_lat && // within latency range
1020 !self->is_iteratively_computed() ) // But don't hoist IV increments
1021 // because they may end up above other uses of their phi forcing
1022 // their result register to be different from their input.
1023 ) {
1024 least = LCA; // Found cheaper block
1025 least_freq = LCA_freq;
1026 start_latency = start_lat;
1027 end_latency = end_lat;
1028 if (target <= start_lat)
1029 in_latency = true;
1030 }
1031 }
1032
1033 #ifndef PRODUCT
1034 if (trace_opto_pipelining()) {
1035 tty->print_cr("# Choose block B%d with start latency=%d and freq=%g",
1036 least->_pre_order, start_latency, least_freq);
1037 }
1038 #endif
1039
1040 // See if the latency needs to be updated
1041 if (target < end_latency) {
1042 #ifndef PRODUCT
1043 if (trace_opto_pipelining()) {
1044 tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1045 }
1046 #endif
1047 _node_latency.at_put_grow(self->_idx, end_latency);
1048 partial_latency_of_defs(self);
1049 }
1050
1051 return least;
1052 }
1053
1054
1055 //------------------------------schedule_late-----------------------------------
1056 // Now schedule all codes as LATE as possible. This is the LCA in the
1057 // dominator tree of all USES of a value. Pick the block with the least
1058 // loop nesting depth that is lowest in the dominator tree.
1059 extern const char must_clone[];
1060 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1061 #ifndef PRODUCT
1062 if (trace_opto_pipelining())
1063 tty->print("\n#---- schedule_late ----\n");
1064 #endif
1065
1066 Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1067 Node *self;
1068
1069 // Walk over all the nodes from last to first
1070 while (self = iter.next()) {
1071 Block* early = _bbs[self->_idx]; // Earliest legal placement
1072
1073 if (self->is_top()) {
1074 // Top node goes in bb #2 with other constants.
1075 // It must be special-cased, because it has no out edges.
1076 early->add_inst(self);
1077 continue;
1078 }
1079
1080 // No uses, just terminate
1081 if (self->outcnt() == 0) {
1082 assert(self->Opcode() == Op_MachProj, "sanity");
1083 continue; // Must be a dead machine projection
1084 }
1085
1086 // If node is pinned in the block, then no scheduling can be done.
1087 if( self->pinned() ) // Pinned in block?
1088 continue;
1089
1090 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1091 if (mach) {
1092 switch (mach->ideal_Opcode()) {
1093 case Op_CreateEx:
1094 // Don't move exception creation
1095 early->add_inst(self);
1096 continue;
1097 break;
1098 case Op_CheckCastPP:
1099 // Don't move CheckCastPP nodes away from their input, if the input
1100 // is a rawptr (5071820).
1101 Node *def = self->in(1);
1102 if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1103 early->add_inst(self);
1104 continue;
1105 }
1106 break;
1107 }
1108 }
1109
1110 // Gather LCA of all uses
1111 Block *LCA = NULL;
1112 {
1113 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1114 // For all uses, find LCA
1115 Node* use = self->fast_out(i);
1116 LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1117 }
1118 } // (Hide defs of imax, i from rest of block.)
1119
1120 // Place temps in the block of their use. This isn't a
1121 // requirement for correctness but it reduces useless
1122 // interference between temps and other nodes.
1123 if (mach != NULL && mach->is_MachTemp()) {
1124 _bbs.map(self->_idx, LCA);
1125 LCA->add_inst(self);
1126 continue;
1127 }
1128
1129 // Check if 'self' could be anti-dependent on memory
1130 if (self->needs_anti_dependence_check()) {
1131 // Hoist LCA above possible-defs and insert anti-dependences to
1132 // defs in new LCA block.
1133 LCA = insert_anti_dependences(LCA, self);
1134 }
1135
1136 if (early->_dom_depth > LCA->_dom_depth) {
1137 // Somehow the LCA has moved above the earliest legal point.
1138 // (One way this can happen is via memory_early_block.)
1139 if (C->subsume_loads() == true && !C->failing()) {
1140 // Retry with subsume_loads == false
1141 // If this is the first failure, the sentinel string will "stick"
1142 // to the Compile object, and the C2Compiler will see it and retry.
1143 C->record_failure(C2Compiler::retry_no_subsuming_loads());
1144 } else {
1145 // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1146 C->record_method_not_compilable("late schedule failed: incorrect graph");
1147 }
1148 return;
1149 }
1150
1151 // If there is no opportunity to hoist, then we're done.
1152 bool try_to_hoist = (LCA != early);
1153
1154 // Must clone guys stay next to use; no hoisting allowed.
1155 // Also cannot hoist guys that alter memory or are otherwise not
1156 // allocatable (hoisting can make a value live longer, leading to
1157 // anti and output dependency problems which are normally resolved
1158 // by the register allocator giving everyone a different register).
1159 if (mach != NULL && must_clone[mach->ideal_Opcode()])
1160 try_to_hoist = false;
1161
1162 Block* late = NULL;
1163 if (try_to_hoist) {
1164 // Now find the block with the least execution frequency.
1165 // Start at the latest schedule and work up to the earliest schedule
1166 // in the dominator tree. Thus the Node will dominate all its uses.
1167 late = hoist_to_cheaper_block(LCA, early, self);
1168 } else {
1169 // Just use the LCA of the uses.
1170 late = LCA;
1171 }
1172
1173 // Put the node into target block
1174 schedule_node_into_block(self, late);
1175
1176 #ifdef ASSERT
1177 if (self->needs_anti_dependence_check()) {
1178 // since precedence edges are only inserted when we're sure they
1179 // are needed make sure that after placement in a block we don't
1180 // need any new precedence edges.
1181 verify_anti_dependences(late, self);
1182 }
1183 #endif
1184 } // Loop until all nodes have been visited
1185
1186 } // end ScheduleLate
1187
1188 //------------------------------GlobalCodeMotion-------------------------------
1189 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1190 ResourceMark rm;
1191
1192 #ifndef PRODUCT
1193 if (trace_opto_pipelining()) {
1194 tty->print("\n---- Start GlobalCodeMotion ----\n");
1195 }
1196 #endif
1197
1198 // Initialize the bbs.map for things on the proj_list
1199 uint i;
1200 for( i=0; i < proj_list.size(); i++ )
1201 _bbs.map(proj_list[i]->_idx, NULL);
1202
1203 // Set the basic block for Nodes pinned into blocks
1204 Arena *a = Thread::current()->resource_area();
1205 VectorSet visited(a);
1206 schedule_pinned_nodes( visited );
1207
1208 // Find the earliest Block any instruction can be placed in. Some
1209 // instructions are pinned into Blocks. Unpinned instructions can
1210 // appear in last block in which all their inputs occur.
1211 visited.Clear();
1212 Node_List stack(a);
1213 stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1214 if (!schedule_early(visited, stack)) {
1215 // Bailout without retry
1216 C->record_method_not_compilable("early schedule failed");
1217 return;
1218 }
1219
1220 // Build Def-Use edges.
1221 proj_list.push(_root); // Add real root as another root
1222 proj_list.pop();
1223
1224 // Compute the latency information (via backwards walk) for all the
1225 // instructions in the graph
1226 GrowableArray<uint> node_latency;
1227 _node_latency = node_latency;
1228
1229 if( C->do_scheduling() )
1230 ComputeLatenciesBackwards(visited, stack);
1231
1232 // Now schedule all codes as LATE as possible. This is the LCA in the
1233 // dominator tree of all USES of a value. Pick the block with the least
1234 // loop nesting depth that is lowest in the dominator tree.
1235 // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1236 schedule_late(visited, stack);
1237 if( C->failing() ) {
1238 // schedule_late fails only when graph is incorrect.
1239 assert(!VerifyGraphEdges, "verification should have failed");
1240 return;
1241 }
1242
1243 unique = C->unique();
1244
1245 #ifndef PRODUCT
1246 if (trace_opto_pipelining()) {
1247 tty->print("\n---- Detect implicit null checks ----\n");
1248 }
1249 #endif
1250
1251 // Detect implicit-null-check opportunities. Basically, find NULL checks
1252 // with suitable memory ops nearby. Use the memory op to do the NULL check.
1253 // I can generate a memory op if there is not one nearby.
1254 if (C->is_method_compilation()) {
1255 // Don't do it for natives, adapters, or runtime stubs
1256 int allowed_reasons = 0;
1257 // ...and don't do it when there have been too many traps, globally.
1258 for (int reason = (int)Deoptimization::Reason_none+1;
1259 reason < Compile::trapHistLength; reason++) {
1260 assert(reason < BitsPerInt, "recode bit map");
1261 if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1262 allowed_reasons |= nth_bit(reason);
1263 }
1264 // By reversing the loop direction we get a very minor gain on mpegaudio.
1265 // Feel free to revert to a forward loop for clarity.
1266 // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1267 for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1268 Node *proj = matcher._null_check_tests[i ];
1269 Node *val = matcher._null_check_tests[i+1];
1270 _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1271 // The implicit_null_check will only perform the transformation
1272 // if the null branch is truly uncommon, *and* it leads to an
1273 // uncommon trap. Combined with the too_many_traps guards
1274 // above, this prevents SEGV storms reported in 6366351,
1275 // by recompiling offending methods without this optimization.
1276 }
1277 }
1278
1279 #ifndef PRODUCT
1280 if (trace_opto_pipelining()) {
1281 tty->print("\n---- Start Local Scheduling ----\n");
1282 }
1283 #endif
1284
1285 // Schedule locally. Right now a simple topological sort.
1286 // Later, do a real latency aware scheduler.
1287 int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1288 memset( ready_cnt, -1, C->unique() * sizeof(int) );
1289 visited.Clear();
1290 for (i = 0; i < _num_blocks; i++) {
1291 if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1292 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1293 C->record_method_not_compilable("local schedule failed");
1294 }
1295 return;
1296 }
1297 }
1298
1299 // If we inserted any instructions between a Call and his CatchNode,
1300 // clone the instructions on all paths below the Catch.
1301 for( i=0; i < _num_blocks; i++ )
1302 _blocks[i]->call_catch_cleanup(_bbs);
1303
1304 #ifndef PRODUCT
1305 if (trace_opto_pipelining()) {
1306 tty->print("\n---- After GlobalCodeMotion ----\n");
1307 for (uint i = 0; i < _num_blocks; i++) {
1308 _blocks[i]->dump();
1309 }
1310 }
1311 #endif
1312 }
1313
1314
1315 //------------------------------Estimate_Block_Frequency-----------------------
1316 // Estimate block frequencies based on IfNode probabilities.
1317 void PhaseCFG::Estimate_Block_Frequency() {
1318 int cnts = C->method() ? C->method()->interpreter_invocation_count() : 1;
1319 // Most of our algorithms will die horribly if frequency can become
1320 // negative so make sure cnts is a sane value.
1321 if( cnts <= 0 ) cnts = 1;
1322 float f = (float)cnts/(float)FreqCountInvocations;
1323
1324 // Create the loop tree and calculate loop depth.
1325 _root_loop = create_loop_tree();
1326 _root_loop->compute_loop_depth(0);
1327
1328 // Compute block frequency of each block, relative to a single loop entry.
1329 _root_loop->compute_freq();
1330
1331 // Adjust all frequencies to be relative to a single method entry
1332 _root_loop->_freq = f * 1.0;
1333 _root_loop->scale_freq();
1334
1335 // force paths ending at uncommon traps to be infrequent
1336 Block_List worklist;
1337 Block* root_blk = _blocks[0];
1338 for (uint i = 0; i < root_blk->num_preds(); i++) {
1339 Block *pb = _bbs[root_blk->pred(i)->_idx];
1340 if (pb->has_uncommon_code()) {
1341 worklist.push(pb);
1342 }
1343 }
1344 while (worklist.size() > 0) {
1345 Block* uct = worklist.pop();
1346 uct->_freq = PROB_MIN;
1347 for (uint i = 0; i < uct->num_preds(); i++) {
1348 Block *pb = _bbs[uct->pred(i)->_idx];
1349 if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1350 worklist.push(pb);
1351 }
1352 }
1353 }
1354
1355 #ifndef PRODUCT
1356 if (PrintCFGBlockFreq) {
1357 tty->print_cr("CFG Block Frequencies");
1358 _root_loop->dump_tree();
1359 if (Verbose) {
1360 tty->print_cr("PhaseCFG dump");
1361 dump();
1362 tty->print_cr("Node dump");
1363 _root->dump(99999);
1364 }
1365 }
1366 #endif
1367 }
1368
1369 //----------------------------create_loop_tree--------------------------------
1370 // Create a loop tree from the CFG
1371 CFGLoop* PhaseCFG::create_loop_tree() {
1372
1373 #ifdef ASSERT
1374 assert( _blocks[0] == _broot, "" );
1375 for (uint i = 0; i < _num_blocks; i++ ) {
1376 Block *b = _blocks[i];
1377 // Check that _loop field are clear...we could clear them if not.
1378 assert(b->_loop == NULL, "clear _loop expected");
1379 // Sanity check that the RPO numbering is reflected in the _blocks array.
1380 // It doesn't have to be for the loop tree to be built, but if it is not,
1381 // then the blocks have been reordered since dom graph building...which
1382 // may question the RPO numbering
1383 assert(b->_rpo == i, "unexpected reverse post order number");
1384 }
1385 #endif
1386
1387 int idct = 0;
1388 CFGLoop* root_loop = new CFGLoop(idct++);
1389
1390 Block_List worklist;
1391
1392 // Assign blocks to loops
1393 for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1394 Block *b = _blocks[i];
1395
1396 if (b->head()->is_Loop()) {
1397 Block* loop_head = b;
1398 assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1399 Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1400 Block* tail = _bbs[tail_n->_idx];
1401
1402 // Defensively filter out Loop nodes for non-single-entry loops.
1403 // For all reasonable loops, the head occurs before the tail in RPO.
1404 if (i <= tail->_rpo) {
1405
1406 // The tail and (recursive) predecessors of the tail
1407 // are made members of a new loop.
1408
1409 assert(worklist.size() == 0, "nonempty worklist");
1410 CFGLoop* nloop = new CFGLoop(idct++);
1411 assert(loop_head->_loop == NULL, "just checking");
1412 loop_head->_loop = nloop;
1413 // Add to nloop so push_pred() will skip over inner loops
1414 nloop->add_member(loop_head);
1415 nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1416
1417 while (worklist.size() > 0) {
1418 Block* member = worklist.pop();
1419 if (member != loop_head) {
1420 for (uint j = 1; j < member->num_preds(); j++) {
1421 nloop->push_pred(member, j, worklist, _bbs);
1422 }
1423 }
1424 }
1425 }
1426 }
1427 }
1428
1429 // Create a member list for each loop consisting
1430 // of both blocks and (immediate child) loops.
1431 for (uint i = 0; i < _num_blocks; i++) {
1432 Block *b = _blocks[i];
1433 CFGLoop* lp = b->_loop;
1434 if (lp == NULL) {
1435 // Not assigned to a loop. Add it to the method's pseudo loop.
1436 b->_loop = root_loop;
1437 lp = root_loop;
1438 }
1439 if (lp == root_loop || b != lp->head()) { // loop heads are already members
1440 lp->add_member(b);
1441 }
1442 if (lp != root_loop) {
1443 if (lp->parent() == NULL) {
1444 // Not a nested loop. Make it a child of the method's pseudo loop.
1445 root_loop->add_nested_loop(lp);
1446 }
1447 if (b == lp->head()) {
1448 // Add nested loop to member list of parent loop.
1449 lp->parent()->add_member(lp);
1450 }
1451 }
1452 }
1453
1454 return root_loop;
1455 }
1456
1457 //------------------------------push_pred--------------------------------------
1458 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1459 Node* pred_n = blk->pred(i);
1460 Block* pred = node_to_blk[pred_n->_idx];
1461 CFGLoop *pred_loop = pred->_loop;
1462 if (pred_loop == NULL) {
1463 // Filter out blocks for non-single-entry loops.
1464 // For all reasonable loops, the head occurs before the tail in RPO.
1465 if (pred->_rpo > head()->_rpo) {
1466 pred->_loop = this;
1467 worklist.push(pred);
1468 }
1469 } else if (pred_loop != this) {
1470 // Nested loop.
1471 while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1472 pred_loop = pred_loop->_parent;
1473 }
1474 // Make pred's loop be a child
1475 if (pred_loop->_parent == NULL) {
1476 add_nested_loop(pred_loop);
1477 // Continue with loop entry predecessor.
1478 Block* pred_head = pred_loop->head();
1479 assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1480 assert(pred_head != head(), "loop head in only one loop");
1481 push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1482 } else {
1483 assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1484 }
1485 }
1486 }
1487
1488 //------------------------------add_nested_loop--------------------------------
1489 // Make cl a child of the current loop in the loop tree.
1490 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1491 assert(_parent == NULL, "no parent yet");
1492 assert(cl != this, "not my own parent");
1493 cl->_parent = this;
1494 CFGLoop* ch = _child;
1495 if (ch == NULL) {
1496 _child = cl;
1497 } else {
1498 while (ch->_sibling != NULL) { ch = ch->_sibling; }
1499 ch->_sibling = cl;
1500 }
1501 }
1502
1503 //------------------------------compute_loop_depth-----------------------------
1504 // Store the loop depth in each CFGLoop object.
1505 // Recursively walk the children to do the same for them.
1506 void CFGLoop::compute_loop_depth(int depth) {
1507 _depth = depth;
1508 CFGLoop* ch = _child;
1509 while (ch != NULL) {
1510 ch->compute_loop_depth(depth + 1);
1511 ch = ch->_sibling;
1512 }
1513 }
1514
1515 //------------------------------compute_freq-----------------------------------
1516 // Compute the frequency of each block and loop, relative to a single entry
1517 // into the dominating loop head.
1518 void CFGLoop::compute_freq() {
1519 // Bottom up traversal of loop tree (visit inner loops first.)
1520 // Set loop head frequency to 1.0, then transitively
1521 // compute frequency for all successors in the loop,
1522 // as well as for each exit edge. Inner loops are
1523 // treated as single blocks with loop exit targets
1524 // as the successor blocks.
1525
1526 // Nested loops first
1527 CFGLoop* ch = _child;
1528 while (ch != NULL) {
1529 ch->compute_freq();
1530 ch = ch->_sibling;
1531 }
1532 assert (_members.length() > 0, "no empty loops");
1533 Block* hd = head();
1534 hd->_freq = 1.0f;
1535 for (int i = 0; i < _members.length(); i++) {
1536 CFGElement* s = _members.at(i);
1537 float freq = s->_freq;
1538 if (s->is_block()) {
1539 Block* b = s->as_Block();
1540 for (uint j = 0; j < b->_num_succs; j++) {
1541 Block* sb = b->_succs[j];
1542 update_succ_freq(sb, freq * b->succ_prob(j));
1543 }
1544 } else {
1545 CFGLoop* lp = s->as_CFGLoop();
1546 assert(lp->_parent == this, "immediate child");
1547 for (int k = 0; k < lp->_exits.length(); k++) {
1548 Block* eb = lp->_exits.at(k).get_target();
1549 float prob = lp->_exits.at(k).get_prob();
1550 update_succ_freq(eb, freq * prob);
1551 }
1552 }
1553 }
1554
1555 #if 0
1556 // Raise frequency of the loop backedge block, in an effort
1557 // to keep it empty. Skip the method level "loop".
1558 if (_parent != NULL) {
1559 CFGElement* s = _members.at(_members.length() - 1);
1560 if (s->is_block()) {
1561 Block* bk = s->as_Block();
1562 if (bk->_num_succs == 1 && bk->_succs[0] == hd) {
1563 // almost any value >= 1.0f works
1564 // FIXME: raw constant
1565 bk->_freq = 1.05f;
1566 }
1567 }
1568 }
1569 #endif
1570
1571 // For all loops other than the outer, "method" loop,
1572 // sum and normalize the exit probability. The "method" loop
1573 // should keep the initial exit probability of 1, so that
1574 // inner blocks do not get erroneously scaled.
1575 if (_depth != 0) {
1576 // Total the exit probabilities for this loop.
1577 float exits_sum = 0.0f;
1578 for (int i = 0; i < _exits.length(); i++) {
1579 exits_sum += _exits.at(i).get_prob();
1580 }
1581
1582 // Normalize the exit probabilities. Until now, the
1583 // probabilities estimate the possibility of exit per
1584 // a single loop iteration; afterward, they estimate
1585 // the probability of exit per loop entry.
1586 for (int i = 0; i < _exits.length(); i++) {
1587 Block* et = _exits.at(i).get_target();
1588 float new_prob = _exits.at(i).get_prob() / exits_sum;
1589 BlockProbPair bpp(et, new_prob);
1590 _exits.at_put(i, bpp);
1591 }
1592
1593 // Save the total, but guard against unreasoable probability,
1594 // as the value is used to estimate the loop trip count.
1595 // An infinite trip count would blur relative block
1596 // frequencies.
1597 if (exits_sum > 1.0f) exits_sum = 1.0;
1598 if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1599 _exit_prob = exits_sum;
1600 }
1601 }
1602
1603 //------------------------------succ_prob-------------------------------------
1604 // Determine the probability of reaching successor 'i' from the receiver block.
1605 float Block::succ_prob(uint i) {
1606 int eidx = end_idx();
1607 Node *n = _nodes[eidx]; // Get ending Node
1608 int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
1609
1610 // Switch on branch type
1611 switch( op ) {
1612 case Op_CountedLoopEnd:
1613 case Op_If: {
1614 assert (i < 2, "just checking");
1615 // Conditionals pass on only part of their frequency
1616 float prob = n->as_MachIf()->_prob;
1617 assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1618 // If succ[i] is the FALSE branch, invert path info
1619 if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1620 return 1.0f - prob; // not taken
1621 } else {
1622 return prob; // taken
1623 }
1624 }
1625
1626 case Op_Jump:
1627 // Divide the frequency between all successors evenly
1628 return 1.0f/_num_succs;
1629
1630 case Op_Catch: {
1631 const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1632 if (ci->_con == CatchProjNode::fall_through_index) {
1633 // Fall-thru path gets the lion's share.
1634 return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1635 } else {
1636 // Presume exceptional paths are equally unlikely
1637 return PROB_UNLIKELY_MAG(5);
1638 }
1639 }
1640
1641 case Op_Root:
1642 case Op_Goto:
1643 // Pass frequency straight thru to target
1644 return 1.0f;
1645
1646 case Op_NeverBranch:
1647 return 0.0f;
1648
1649 case Op_TailCall:
1650 case Op_TailJump:
1651 case Op_Return:
1652 case Op_Halt:
1653 case Op_Rethrow:
1654 // Do not push out freq to root block
1655 return 0.0f;
1656
1657 default:
1658 ShouldNotReachHere();
1659 }
1660
1661 return 0.0f;
1662 }
1663
1664 //------------------------------update_succ_freq-------------------------------
1665 // Update the appropriate frequency associated with block 'b', a succesor of
1666 // a block in this loop.
1667 void CFGLoop::update_succ_freq(Block* b, float freq) {
1668 if (b->_loop == this) {
1669 if (b == head()) {
1670 // back branch within the loop
1671 // Do nothing now, the loop carried frequency will be
1672 // adjust later in scale_freq().
1673 } else {
1674 // simple branch within the loop
1675 b->_freq += freq;
1676 }
1677 } else if (!in_loop_nest(b)) {
1678 // branch is exit from this loop
1679 BlockProbPair bpp(b, freq);
1680 _exits.append(bpp);
1681 } else {
1682 // branch into nested loop
1683 CFGLoop* ch = b->_loop;
1684 ch->_freq += freq;
1685 }
1686 }
1687
1688 //------------------------------in_loop_nest-----------------------------------
1689 // Determine if block b is in the receiver's loop nest.
1690 bool CFGLoop::in_loop_nest(Block* b) {
1691 int depth = _depth;
1692 CFGLoop* b_loop = b->_loop;
1693 int b_depth = b_loop->_depth;
1694 if (depth == b_depth) {
1695 return true;
1696 }
1697 while (b_depth > depth) {
1698 b_loop = b_loop->_parent;
1699 b_depth = b_loop->_depth;
1700 }
1701 return b_loop == this;
1702 }
1703
1704 //------------------------------scale_freq-------------------------------------
1705 // Scale frequency of loops and blocks by trip counts from outer loops
1706 // Do a top down traversal of loop tree (visit outer loops first.)
1707 void CFGLoop::scale_freq() {
1708 float loop_freq = _freq * trip_count();
1709 for (int i = 0; i < _members.length(); i++) {
1710 CFGElement* s = _members.at(i);
1711 s->_freq *= loop_freq;
1712 }
1713 CFGLoop* ch = _child;
1714 while (ch != NULL) {
1715 ch->scale_freq();
1716 ch = ch->_sibling;
1717 }
1718 }
1719
1720 #ifndef PRODUCT
1721 //------------------------------dump_tree--------------------------------------
1722 void CFGLoop::dump_tree() const {
1723 dump();
1724 if (_child != NULL) _child->dump_tree();
1725 if (_sibling != NULL) _sibling->dump_tree();
1726 }
1727
1728 //------------------------------dump-------------------------------------------
1729 void CFGLoop::dump() const {
1730 for (int i = 0; i < _depth; i++) tty->print(" ");
1731 tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n",
1732 _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1733 for (int i = 0; i < _depth; i++) tty->print(" ");
1734 tty->print(" members:", _id);
1735 int k = 0;
1736 for (int i = 0; i < _members.length(); i++) {
1737 if (k++ >= 6) {
1738 tty->print("\n ");
1739 for (int j = 0; j < _depth+1; j++) tty->print(" ");
1740 k = 0;
1741 }
1742 CFGElement *s = _members.at(i);
1743 if (s->is_block()) {
1744 Block *b = s->as_Block();
1745 tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1746 } else {
1747 CFGLoop* lp = s->as_CFGLoop();
1748 tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1749 }
1750 }
1751 tty->print("\n");
1752 for (int i = 0; i < _depth; i++) tty->print(" ");
1753 tty->print(" exits: ");
1754 k = 0;
1755 for (int i = 0; i < _exits.length(); i++) {
1756 if (k++ >= 7) {
1757 tty->print("\n ");
1758 for (int j = 0; j < _depth+1; j++) tty->print(" ");
1759 k = 0;
1760 }
1761 Block *blk = _exits.at(i).get_target();
1762 float prob = _exits.at(i).get_prob();
1763 tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
1764 }
1765 tty->print("\n");
1766 }
1767 #endif