comparison src/share/vm/runtime/vframeArray.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children b109e761e927
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_vframeArray.cpp.incl"
27
28
29 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
30
31 void vframeArrayElement::free_monitors(JavaThread* jt) {
32 if (_monitors != NULL) {
33 MonitorChunk* chunk = _monitors;
34 _monitors = NULL;
35 jt->remove_monitor_chunk(chunk);
36 delete chunk;
37 }
38 }
39
40 void vframeArrayElement::fill_in(compiledVFrame* vf) {
41
42 // Copy the information from the compiled vframe to the
43 // interpreter frame we will be creating to replace vf
44
45 _method = vf->method();
46 _bci = vf->raw_bci();
47
48 int index;
49
50 // Get the monitors off-stack
51
52 GrowableArray<MonitorInfo*>* list = vf->monitors();
53 if (list->is_empty()) {
54 _monitors = NULL;
55 } else {
56
57 // Allocate monitor chunk
58 _monitors = new MonitorChunk(list->length());
59 vf->thread()->add_monitor_chunk(_monitors);
60
61 // Migrate the BasicLocks from the stack to the monitor chunk
62 for (index = 0; index < list->length(); index++) {
63 MonitorInfo* monitor = list->at(index);
64 assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
65 BasicObjectLock* dest = _monitors->at(index);
66 dest->set_obj(monitor->owner());
67 monitor->lock()->move_to(monitor->owner(), dest->lock());
68 }
69 }
70
71 // Convert the vframe locals and expressions to off stack
72 // values. Because we will not gc all oops can be converted to
73 // intptr_t (i.e. a stack slot) and we are fine. This is
74 // good since we are inside a HandleMark and the oops in our
75 // collection would go away between packing them here and
76 // unpacking them in unpack_on_stack.
77
78 // First the locals go off-stack
79
80 // FIXME this seems silly it creates a StackValueCollection
81 // in order to get the size to then copy them and
82 // convert the types to intptr_t size slots. Seems like it
83 // could do it in place... Still uses less memory than the
84 // old way though
85
86 StackValueCollection *locs = vf->locals();
87 _locals = new StackValueCollection(locs->size());
88 for(index = 0; index < locs->size(); index++) {
89 StackValue* value = locs->at(index);
90 switch(value->type()) {
91 case T_OBJECT:
92 // preserve object type
93 _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
94 break;
95 case T_CONFLICT:
96 // A dead local. Will be initialized to null/zero.
97 _locals->add( new StackValue());
98 break;
99 case T_INT:
100 _locals->add( new StackValue(value->get_int()));
101 break;
102 default:
103 ShouldNotReachHere();
104 }
105 }
106
107 // Now the expressions off-stack
108 // Same silliness as above
109
110 StackValueCollection *exprs = vf->expressions();
111 _expressions = new StackValueCollection(exprs->size());
112 for(index = 0; index < exprs->size(); index++) {
113 StackValue* value = exprs->at(index);
114 switch(value->type()) {
115 case T_OBJECT:
116 // preserve object type
117 _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
118 break;
119 case T_CONFLICT:
120 // A dead stack element. Will be initialized to null/zero.
121 // This can occur when the compiler emits a state in which stack
122 // elements are known to be dead (because of an imminent exception).
123 _expressions->add( new StackValue());
124 break;
125 case T_INT:
126 _expressions->add( new StackValue(value->get_int()));
127 break;
128 default:
129 ShouldNotReachHere();
130 }
131 }
132 }
133
134 int unpack_counter = 0;
135
136 void vframeArrayElement::unpack_on_stack(int callee_parameters,
137 int callee_locals,
138 frame* caller,
139 bool is_top_frame,
140 int exec_mode) {
141 JavaThread* thread = (JavaThread*) Thread::current();
142
143 // Look at bci and decide on bcp and continuation pc
144 address bcp;
145 // C++ interpreter doesn't need a pc since it will figure out what to do when it
146 // begins execution
147 address pc;
148 bool use_next_mdp; // true if we should use the mdp associated with the next bci
149 // rather than the one associated with bcp
150 if (raw_bci() == SynchronizationEntryBCI) {
151 // We are deoptimizing while hanging in prologue code for synchronized method
152 bcp = method()->bcp_from(0); // first byte code
153 pc = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
154 use_next_mdp = false;
155 } else {
156 bcp = method()->bcp_from(bci());
157 pc = Interpreter::continuation_for(method(), bcp, callee_parameters, is_top_frame, use_next_mdp);
158 }
159 assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
160
161 // Monitorenter and pending exceptions:
162 //
163 // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
164 // because there is no safepoint at the null pointer check (it is either handled explicitly
165 // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
166 // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER). If an asynchronous
167 // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
168 // the monitorenter to place it in the proper exception range.
169 //
170 // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
171 // in which case bcp should point to the monitorenter since it is within the exception's range.
172
173 assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
174 // TIERED Must know the compiler of the deoptee QQQ
175 COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
176 "shouldn't get exception during monitorenter");)
177
178 int popframe_preserved_args_size_in_bytes = 0;
179 int popframe_preserved_args_size_in_words = 0;
180 if (is_top_frame) {
181 JvmtiThreadState *state = thread->jvmti_thread_state();
182 if (JvmtiExport::can_pop_frame() &&
183 (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
184 if (thread->has_pending_popframe()) {
185 // Pop top frame after deoptimization
186 #ifndef CC_INTERP
187 pc = Interpreter::remove_activation_preserving_args_entry();
188 #else
189 // Do an uncommon trap type entry. c++ interpreter will know
190 // to pop frame and preserve the args
191 pc = Interpreter::deopt_entry(vtos, 0);
192 use_next_mdp = false;
193 #endif
194 } else {
195 // Reexecute invoke in top frame
196 pc = Interpreter::deopt_entry(vtos, 0);
197 use_next_mdp = false;
198 popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
199 // Note: the PopFrame-related extension of the expression stack size is done in
200 // Deoptimization::fetch_unroll_info_helper
201 popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
202 }
203 } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
204 // Force early return from top frame after deoptimization
205 #ifndef CC_INTERP
206 pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
207 #else
208 // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
209 #endif
210 } else {
211 // Possibly override the previous pc computation of the top (youngest) frame
212 switch (exec_mode) {
213 case Deoptimization::Unpack_deopt:
214 // use what we've got
215 break;
216 case Deoptimization::Unpack_exception:
217 // exception is pending
218 pc = SharedRuntime::raw_exception_handler_for_return_address(pc);
219 // [phh] We're going to end up in some handler or other, so it doesn't
220 // matter what mdp we point to. See exception_handler_for_exception()
221 // in interpreterRuntime.cpp.
222 break;
223 case Deoptimization::Unpack_uncommon_trap:
224 case Deoptimization::Unpack_reexecute:
225 // redo last byte code
226 pc = Interpreter::deopt_entry(vtos, 0);
227 use_next_mdp = false;
228 break;
229 default:
230 ShouldNotReachHere();
231 }
232 }
233 }
234
235 // Setup the interpreter frame
236
237 assert(method() != NULL, "method must exist");
238 int temps = expressions()->size();
239
240 int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
241
242 Interpreter::layout_activation(method(),
243 temps + callee_parameters,
244 popframe_preserved_args_size_in_words,
245 locks,
246 callee_parameters,
247 callee_locals,
248 caller,
249 iframe(),
250 is_top_frame);
251
252 // Update the pc in the frame object and overwrite the temporary pc
253 // we placed in the skeletal frame now that we finally know the
254 // exact interpreter address we should use.
255
256 _frame.patch_pc(thread, pc);
257
258 assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
259
260 BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
261 for (int index = 0; index < locks; index++) {
262 top = iframe()->previous_monitor_in_interpreter_frame(top);
263 BasicObjectLock* src = _monitors->at(index);
264 top->set_obj(src->obj());
265 src->lock()->move_to(src->obj(), top->lock());
266 }
267 if (ProfileInterpreter) {
268 iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
269 }
270 iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
271 if (ProfileInterpreter) {
272 methodDataOop mdo = method()->method_data();
273 if (mdo != NULL) {
274 int bci = iframe()->interpreter_frame_bci();
275 if (use_next_mdp) ++bci;
276 address mdp = mdo->bci_to_dp(bci);
277 iframe()->interpreter_frame_set_mdp(mdp);
278 }
279 }
280
281 // Unpack expression stack
282 // If this is an intermediate frame (i.e. not top frame) then this
283 // only unpacks the part of the expression stack not used by callee
284 // as parameters. The callee parameters are unpacked as part of the
285 // callee locals.
286 int i;
287 for(i = 0; i < expressions()->size(); i++) {
288 StackValue *value = expressions()->at(i);
289 intptr_t* addr = iframe()->interpreter_frame_expression_stack_at(i);
290 switch(value->type()) {
291 case T_INT:
292 *addr = value->get_int();
293 break;
294 case T_OBJECT:
295 *addr = value->get_int(T_OBJECT);
296 break;
297 case T_CONFLICT:
298 // A dead stack slot. Initialize to null in case it is an oop.
299 *addr = NULL_WORD;
300 break;
301 default:
302 ShouldNotReachHere();
303 }
304 if (TaggedStackInterpreter) {
305 // Write tag to the stack
306 iframe()->interpreter_frame_set_expression_stack_tag(i,
307 frame::tag_for_basic_type(value->type()));
308 }
309 }
310
311
312 // Unpack the locals
313 for(i = 0; i < locals()->size(); i++) {
314 StackValue *value = locals()->at(i);
315 intptr_t* addr = iframe()->interpreter_frame_local_at(i);
316 switch(value->type()) {
317 case T_INT:
318 *addr = value->get_int();
319 break;
320 case T_OBJECT:
321 *addr = value->get_int(T_OBJECT);
322 break;
323 case T_CONFLICT:
324 // A dead location. If it is an oop then we need a NULL to prevent GC from following it
325 *addr = NULL_WORD;
326 break;
327 default:
328 ShouldNotReachHere();
329 }
330 if (TaggedStackInterpreter) {
331 // Write tag to stack
332 iframe()->interpreter_frame_set_local_tag(i,
333 frame::tag_for_basic_type(value->type()));
334 }
335 }
336
337 if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
338 // An interpreted frame was popped but it returns to a deoptimized
339 // frame. The incoming arguments to the interpreted activation
340 // were preserved in thread-local storage by the
341 // remove_activation_preserving_args_entry in the interpreter; now
342 // we put them back into the just-unpacked interpreter frame.
343 // Note that this assumes that the locals arena grows toward lower
344 // addresses.
345 if (popframe_preserved_args_size_in_words != 0) {
346 void* saved_args = thread->popframe_preserved_args();
347 assert(saved_args != NULL, "must have been saved by interpreter");
348 #ifdef ASSERT
349 int stack_words = Interpreter::stackElementWords();
350 assert(popframe_preserved_args_size_in_words <=
351 iframe()->interpreter_frame_expression_stack_size()*stack_words,
352 "expression stack size should have been extended");
353 #endif // ASSERT
354 int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
355 intptr_t* base;
356 if (frame::interpreter_frame_expression_stack_direction() < 0) {
357 base = iframe()->interpreter_frame_expression_stack_at(top_element);
358 } else {
359 base = iframe()->interpreter_frame_expression_stack();
360 }
361 Copy::conjoint_bytes(saved_args,
362 base,
363 popframe_preserved_args_size_in_bytes);
364 thread->popframe_free_preserved_args();
365 }
366 }
367
368 #ifndef PRODUCT
369 if (TraceDeoptimization && Verbose) {
370 ttyLocker ttyl;
371 tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
372 iframe()->print_on(tty);
373 RegisterMap map(thread);
374 vframe* f = vframe::new_vframe(iframe(), &map, thread);
375 f->print();
376 iframe()->interpreter_frame_print_on(tty);
377
378 tty->print_cr("locals size %d", locals()->size());
379 tty->print_cr("expression size %d", expressions()->size());
380
381 method()->print_value();
382 tty->cr();
383 // method()->print_codes();
384 } else if (TraceDeoptimization) {
385 tty->print(" ");
386 method()->print_value();
387 Bytecodes::Code code = Bytecodes::java_code_at(bcp);
388 int bci = method()->bci_from(bcp);
389 tty->print(" - %s", Bytecodes::name(code));
390 tty->print(" @ bci %d ", bci);
391 tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
392 }
393 #endif // PRODUCT
394
395 // The expression stack and locals are in the resource area don't leave
396 // a dangling pointer in the vframeArray we leave around for debug
397 // purposes
398
399 _locals = _expressions = NULL;
400
401 }
402
403 int vframeArrayElement::on_stack_size(int callee_parameters,
404 int callee_locals,
405 bool is_top_frame,
406 int popframe_extra_stack_expression_els) const {
407 assert(method()->max_locals() == locals()->size(), "just checking");
408 int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
409 int temps = expressions()->size();
410 return Interpreter::size_activation(method(),
411 temps + callee_parameters,
412 popframe_extra_stack_expression_els,
413 locks,
414 callee_parameters,
415 callee_locals,
416 is_top_frame);
417 }
418
419
420
421 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
422 RegisterMap *reg_map, frame sender, frame caller, frame self) {
423
424 // Allocate the vframeArray
425 vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
426 sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
427 "vframeArray::allocate");
428 result->_frames = chunk->length();
429 result->_owner_thread = thread;
430 result->_sender = sender;
431 result->_caller = caller;
432 result->_original = self;
433 result->set_unroll_block(NULL); // initialize it
434 result->fill_in(thread, frame_size, chunk, reg_map);
435 return result;
436 }
437
438 void vframeArray::fill_in(JavaThread* thread,
439 int frame_size,
440 GrowableArray<compiledVFrame*>* chunk,
441 const RegisterMap *reg_map) {
442 // Set owner first, it is used when adding monitor chunks
443
444 _frame_size = frame_size;
445 for(int i = 0; i < chunk->length(); i++) {
446 element(i)->fill_in(chunk->at(i));
447 }
448
449 // Copy registers for callee-saved registers
450 if (reg_map != NULL) {
451 for(int i = 0; i < RegisterMap::reg_count; i++) {
452 #ifdef AMD64
453 // The register map has one entry for every int (32-bit value), so
454 // 64-bit physical registers have two entries in the map, one for
455 // each half. Ignore the high halves of 64-bit registers, just like
456 // frame::oopmapreg_to_location does.
457 //
458 // [phh] FIXME: this is a temporary hack! This code *should* work
459 // correctly w/o this hack, possibly by changing RegisterMap::pd_location
460 // in frame_amd64.cpp and the values of the phantom high half registers
461 // in amd64.ad.
462 // if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
463 intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
464 _callee_registers[i] = src != NULL ? *src : NULL_WORD;
465 // } else {
466 // jint* src = (jint*) reg_map->location(VMReg::Name(i));
467 // _callee_registers[i] = src != NULL ? *src : NULL_WORD;
468 // }
469 #else
470 jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
471 _callee_registers[i] = src != NULL ? *src : NULL_WORD;
472 #endif
473 if (src == NULL) {
474 set_location_valid(i, false);
475 } else {
476 set_location_valid(i, true);
477 jint* dst = (jint*) register_location(i);
478 *dst = *src;
479 }
480 }
481 }
482 }
483
484 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
485 // stack picture
486 // unpack_frame
487 // [new interpreter frames ] (frames are skeletal but walkable)
488 // caller_frame
489 //
490 // This routine fills in the missing data for the skeletal interpreter frames
491 // in the above picture.
492
493 // Find the skeletal interpreter frames to unpack into
494 RegisterMap map(JavaThread::current(), false);
495 // Get the youngest frame we will unpack (last to be unpacked)
496 frame me = unpack_frame.sender(&map);
497 int index;
498 for (index = 0; index < frames(); index++ ) {
499 *element(index)->iframe() = me;
500 // Get the caller frame (possibly skeletal)
501 me = me.sender(&map);
502 }
503
504 frame caller_frame = me;
505
506 // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
507
508 // Unpack the frames from the oldest (frames() -1) to the youngest (0)
509
510 for (index = frames() - 1; index >= 0 ; index--) {
511 int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
512 int callee_locals = index == 0 ? 0 : element(index-1)->method()->max_locals();
513 element(index)->unpack_on_stack(callee_parameters,
514 callee_locals,
515 &caller_frame,
516 index == 0,
517 exec_mode);
518 if (index == frames() - 1) {
519 Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
520 }
521 caller_frame = *element(index)->iframe();
522 }
523
524
525 deallocate_monitor_chunks();
526 }
527
528 void vframeArray::deallocate_monitor_chunks() {
529 JavaThread* jt = JavaThread::current();
530 for (int index = 0; index < frames(); index++ ) {
531 element(index)->free_monitors(jt);
532 }
533 }
534
535 #ifndef PRODUCT
536
537 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
538 if (owner_thread() != thread) return false;
539 int index = 0;
540 #if 0 // FIXME can't do this comparison
541
542 // Compare only within vframe array.
543 for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
544 if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
545 index++;
546 }
547 if (index != chunk->length()) return false;
548 #endif
549
550 return true;
551 }
552
553 #endif
554
555 address vframeArray::register_location(int i) const {
556 assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
557 return (address) & _callee_registers[i];
558 }
559
560
561 #ifndef PRODUCT
562
563 // Printing
564
565 // Note: we cannot have print_on as const, as we allocate inside the method
566 void vframeArray::print_on_2(outputStream* st) {
567 st->print_cr(" - sp: " INTPTR_FORMAT, sp());
568 st->print(" - thread: ");
569 Thread::current()->print();
570 st->print_cr(" - frame size: %d", frame_size());
571 for (int index = 0; index < frames() ; index++ ) {
572 element(index)->print(st);
573 }
574 }
575
576 void vframeArrayElement::print(outputStream* st) {
577 st->print_cr(" - interpreter_frame -> sp: ", INTPTR_FORMAT, iframe()->sp());
578 }
579
580 void vframeArray::print_value_on(outputStream* st) const {
581 st->print_cr("vframeArray [%d] ", frames());
582 }
583
584
585 #endif