comparison src/share/vm/services/memoryPool.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children c18cbe5936b8
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2003-2005 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_memoryPool.cpp.incl"
27
28 MemoryPool::MemoryPool(const char* name,
29 PoolType type,
30 size_t init_size,
31 size_t max_size,
32 bool support_usage_threshold,
33 bool support_gc_threshold) {
34 _name = name;
35 _initial_size = init_size;
36 _max_size = max_size;
37 _memory_pool_obj = NULL;
38 _available_for_allocation = true;
39 _num_managers = 0;
40 _type = type;
41
42 // initialize the max and init size of collection usage
43 _after_gc_usage = MemoryUsage(_initial_size, 0, 0, _max_size);
44
45 _usage_sensor = NULL;
46 _gc_usage_sensor = NULL;
47 // usage threshold supports both high and low threshold
48 _usage_threshold = new ThresholdSupport(support_usage_threshold, support_usage_threshold);
49 // gc usage threshold supports only high threshold
50 _gc_usage_threshold = new ThresholdSupport(support_gc_threshold, support_gc_threshold);
51 }
52
53 void MemoryPool::add_manager(MemoryManager* mgr) {
54 assert(_num_managers < MemoryPool::max_num_managers, "_num_managers exceeds the max");
55 if (_num_managers < MemoryPool::max_num_managers) {
56 _managers[_num_managers] = mgr;
57 _num_managers++;
58 }
59 }
60
61
62 // Returns an instanceHandle of a MemoryPool object.
63 // It creates a MemoryPool instance when the first time
64 // this function is called.
65 instanceOop MemoryPool::get_memory_pool_instance(TRAPS) {
66 // Must do an acquire so as to force ordering of subsequent
67 // loads from anything _memory_pool_obj points to or implies.
68 instanceOop pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
69 if (pool_obj == NULL) {
70 // It's ok for more than one thread to execute the code up to the locked region.
71 // Extra pool instances will just be gc'ed.
72 klassOop k = Management::sun_management_ManagementFactory_klass(CHECK_NULL);
73 instanceKlassHandle ik(THREAD, k);
74
75 Handle pool_name = java_lang_String::create_from_str(_name, CHECK_NULL);
76 jlong usage_threshold_value = (_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
77 jlong gc_usage_threshold_value = (_gc_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
78
79 JavaValue result(T_OBJECT);
80 JavaCallArguments args;
81 args.push_oop(pool_name); // Argument 1
82 args.push_int((int) is_heap()); // Argument 2
83
84 symbolHandle method_name = vmSymbolHandles::createMemoryPool_name();
85 symbolHandle signature = vmSymbolHandles::createMemoryPool_signature();
86
87 args.push_long(usage_threshold_value); // Argument 3
88 args.push_long(gc_usage_threshold_value); // Argument 4
89
90 JavaCalls::call_static(&result,
91 ik,
92 method_name,
93 signature,
94 &args,
95 CHECK_NULL);
96
97 instanceOop p = (instanceOop) result.get_jobject();
98 instanceHandle pool(THREAD, p);
99
100 {
101 // Get lock since another thread may have create the instance
102 MutexLocker ml(Management_lock);
103
104 // Check if another thread has created the pool. We reload
105 // _memory_pool_obj here because some other thread may have
106 // initialized it while we were executing the code before the lock.
107 //
108 // The lock has done an acquire, so the load can't float above it,
109 // but we need to do a load_acquire as above.
110 pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
111 if (pool_obj != NULL) {
112 return pool_obj;
113 }
114
115 // Get the address of the object we created via call_special.
116 pool_obj = pool();
117
118 // Use store barrier to make sure the memory accesses associated
119 // with creating the pool are visible before publishing its address.
120 // The unlock will publish the store to _memory_pool_obj because
121 // it does a release first.
122 OrderAccess::release_store_ptr(&_memory_pool_obj, pool_obj);
123 }
124 }
125
126 return pool_obj;
127 }
128
129 inline static size_t get_max_value(size_t val1, size_t val2) {
130 return (val1 > val2 ? val1 : val2);
131 }
132
133 void MemoryPool::record_peak_memory_usage() {
134 // Caller in JDK is responsible for synchronization -
135 // acquire the lock for this memory pool before calling VM
136 MemoryUsage usage = get_memory_usage();
137 size_t peak_used = get_max_value(usage.used(), _peak_usage.used());
138 size_t peak_committed = get_max_value(usage.committed(), _peak_usage.committed());
139 size_t peak_max_size = get_max_value(usage.max_size(), _peak_usage.max_size());
140
141 _peak_usage = MemoryUsage(initial_size(), peak_used, peak_committed, peak_max_size);
142 }
143
144 static void set_sensor_obj_at(SensorInfo** sensor_ptr, instanceHandle sh) {
145 assert(*sensor_ptr == NULL, "Should be called only once");
146 SensorInfo* sensor = new SensorInfo();
147 sensor->set_sensor(sh());
148 *sensor_ptr = sensor;
149 }
150
151 void MemoryPool::set_usage_sensor_obj(instanceHandle sh) {
152 set_sensor_obj_at(&_usage_sensor, sh);
153 }
154
155 void MemoryPool::set_gc_usage_sensor_obj(instanceHandle sh) {
156 set_sensor_obj_at(&_gc_usage_sensor, sh);
157 }
158
159 void MemoryPool::oops_do(OopClosure* f) {
160 f->do_oop((oop*) &_memory_pool_obj);
161 if (_usage_sensor != NULL) {
162 _usage_sensor->oops_do(f);
163 }
164 if (_gc_usage_sensor != NULL) {
165 _gc_usage_sensor->oops_do(f);
166 }
167 }
168
169 ContiguousSpacePool::ContiguousSpacePool(ContiguousSpace* space,
170 const char* name,
171 PoolType type,
172 size_t max_size,
173 bool support_usage_threshold) :
174 CollectedMemoryPool(name, type, space->capacity(), max_size,
175 support_usage_threshold), _space(space) {
176 }
177
178 MemoryUsage ContiguousSpacePool::get_memory_usage() {
179 size_t maxSize = (available_for_allocation() ? max_size() : 0);
180 size_t used = used_in_bytes();
181 size_t committed = _space->capacity();
182
183 return MemoryUsage(initial_size(), used, committed, maxSize);
184 }
185
186 SurvivorContiguousSpacePool::SurvivorContiguousSpacePool(DefNewGeneration* gen,
187 const char* name,
188 PoolType type,
189 size_t max_size,
190 bool support_usage_threshold) :
191 CollectedMemoryPool(name, type, gen->from()->capacity(), max_size,
192 support_usage_threshold), _gen(gen) {
193 }
194
195 MemoryUsage SurvivorContiguousSpacePool::get_memory_usage() {
196 size_t maxSize = (available_for_allocation() ? max_size() : 0);
197 size_t used = used_in_bytes();
198 size_t committed = committed_in_bytes();
199
200 return MemoryUsage(initial_size(), used, committed, maxSize);
201 }
202
203 #ifndef SERIALGC
204 CompactibleFreeListSpacePool::CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
205 const char* name,
206 PoolType type,
207 size_t max_size,
208 bool support_usage_threshold) :
209 CollectedMemoryPool(name, type, space->capacity(), max_size,
210 support_usage_threshold), _space(space) {
211 }
212
213 MemoryUsage CompactibleFreeListSpacePool::get_memory_usage() {
214 size_t maxSize = (available_for_allocation() ? max_size() : 0);
215 size_t used = used_in_bytes();
216 size_t committed = _space->capacity();
217
218 return MemoryUsage(initial_size(), used, committed, maxSize);
219 }
220 #endif // SERIALGC
221
222 GenerationPool::GenerationPool(Generation* gen,
223 const char* name,
224 PoolType type,
225 bool support_usage_threshold) :
226 CollectedMemoryPool(name, type, gen->capacity(), gen->max_capacity(),
227 support_usage_threshold), _gen(gen) {
228 }
229
230 MemoryUsage GenerationPool::get_memory_usage() {
231 size_t used = used_in_bytes();
232 size_t committed = _gen->capacity();
233 size_t maxSize = (available_for_allocation() ? max_size() : 0);
234
235 return MemoryUsage(initial_size(), used, committed, maxSize);
236 }
237
238 CodeHeapPool::CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold) :
239 MemoryPool(name, NonHeap, codeHeap->capacity(), codeHeap->max_capacity(),
240 support_usage_threshold, false), _codeHeap(codeHeap) {
241 }
242
243 MemoryUsage CodeHeapPool::get_memory_usage() {
244 size_t used = used_in_bytes();
245 size_t committed = _codeHeap->capacity();
246 size_t maxSize = (available_for_allocation() ? max_size() : 0);
247
248 return MemoryUsage(initial_size(), used, committed, maxSize);
249 }