comparison src/share/vm/utilities/globalDefinitions.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // This file holds all globally used constants & types, class (forward)
26 // declarations and a few frequently used utility functions.
27
28 //----------------------------------------------------------------------------------------------------
29 // Constants
30
31 const int LogBytesPerShort = 1;
32 const int LogBytesPerInt = 2;
33 #ifdef _LP64
34 const int LogBytesPerWord = 3;
35 #else
36 const int LogBytesPerWord = 2;
37 #endif
38 const int LogBytesPerLong = 3;
39
40 const int BytesPerShort = 1 << LogBytesPerShort;
41 const int BytesPerInt = 1 << LogBytesPerInt;
42 const int BytesPerWord = 1 << LogBytesPerWord;
43 const int BytesPerLong = 1 << LogBytesPerLong;
44
45 const int LogBitsPerByte = 3;
46 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
47 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
48 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
49 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
50
51 const int BitsPerByte = 1 << LogBitsPerByte;
52 const int BitsPerShort = 1 << LogBitsPerShort;
53 const int BitsPerInt = 1 << LogBitsPerInt;
54 const int BitsPerWord = 1 << LogBitsPerWord;
55 const int BitsPerLong = 1 << LogBitsPerLong;
56
57 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
58 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
59
60 const int WordsPerLong = 2; // Number of stack entries for longs
61
62 const int oopSize = sizeof(char*);
63 const int wordSize = sizeof(char*);
64 const int longSize = sizeof(jlong);
65 const int jintSize = sizeof(jint);
66 const int size_tSize = sizeof(size_t);
67
68 // Size of a char[] needed to represent a jint as a string in decimal.
69 const int jintAsStringSize = 12;
70
71 const int LogBytesPerOop = LogBytesPerWord;
72 const int LogBitsPerOop = LogBitsPerWord;
73 const int BytesPerOop = 1 << LogBytesPerOop;
74 const int BitsPerOop = 1 << LogBitsPerOop;
75
76 const int BitsPerJavaInteger = 32;
77 const int BitsPerSize_t = size_tSize * BitsPerByte;
78
79 // In fact this should be
80 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
81 // see os::set_memory_serialize_page()
82 #ifdef _LP64
83 const int SerializePageShiftCount = 4;
84 #else
85 const int SerializePageShiftCount = 3;
86 #endif
87
88 // An opaque struct of heap-word width, so that HeapWord* can be a generic
89 // pointer into the heap. We require that object sizes be measured in
90 // units of heap words, so that that
91 // HeapWord* hw;
92 // hw += oop(hw)->foo();
93 // works, where foo is a method (like size or scavenge) that returns the
94 // object size.
95 class HeapWord {
96 friend class VMStructs;
97 private:
98 char* i;
99 };
100
101 // HeapWordSize must be 2^LogHeapWordSize.
102 const int HeapWordSize = sizeof(HeapWord);
103 #ifdef _LP64
104 const int LogHeapWordSize = 3;
105 #else
106 const int LogHeapWordSize = 2;
107 #endif
108 const int HeapWordsPerOop = oopSize / HeapWordSize;
109 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
110
111 // The larger HeapWordSize for 64bit requires larger heaps
112 // for the same application running in 64bit. See bug 4967770.
113 // The minimum alignment to a heap word size is done. Other
114 // parts of the memory system may required additional alignment
115 // and are responsible for those alignments.
116 #ifdef _LP64
117 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
118 #else
119 #define ScaleForWordSize(x) (x)
120 #endif
121
122 // The minimum number of native machine words necessary to contain "byte_size"
123 // bytes.
124 inline size_t heap_word_size(size_t byte_size) {
125 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
126 }
127
128
129 const size_t K = 1024;
130 const size_t M = K*K;
131 const size_t G = M*K;
132 const size_t HWperKB = K / sizeof(HeapWord);
133
134 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
135 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
136
137 // Constants for converting from a base unit to milli-base units. For
138 // example from seconds to milliseconds and microseconds
139
140 const int MILLIUNITS = 1000; // milli units per base unit
141 const int MICROUNITS = 1000000; // micro units per base unit
142 const int NANOUNITS = 1000000000; // nano units per base unit
143
144 inline const char* proper_unit_for_byte_size(size_t s) {
145 if (s >= 10*M) {
146 return "M";
147 } else if (s >= 10*K) {
148 return "K";
149 } else {
150 return "B";
151 }
152 }
153
154 inline size_t byte_size_in_proper_unit(size_t s) {
155 if (s >= 10*M) {
156 return s/M;
157 } else if (s >= 10*K) {
158 return s/K;
159 } else {
160 return s;
161 }
162 }
163
164
165 //----------------------------------------------------------------------------------------------------
166 // VM type definitions
167
168 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
169 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
170
171 typedef intptr_t intx;
172 typedef uintptr_t uintx;
173
174 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
175 const intx max_intx = (uintx)min_intx - 1;
176 const uintx max_uintx = (uintx)-1;
177
178 // Table of values:
179 // sizeof intx 4 8
180 // min_intx 0x80000000 0x8000000000000000
181 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
182 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
183
184 typedef unsigned int uint; NEEDS_CLEANUP
185
186
187 //----------------------------------------------------------------------------------------------------
188 // Java type definitions
189
190 // All kinds of 'plain' byte addresses
191 typedef signed char s_char;
192 typedef unsigned char u_char;
193 typedef u_char* address;
194 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
195 // except for some implementations of a C++
196 // linkage pointer to function. Should never
197 // need one of those to be placed in this
198 // type anyway.
199
200 // Utility functions to "portably" (?) bit twiddle pointers
201 // Where portable means keep ANSI C++ compilers quiet
202
203 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
204 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
205
206 // Utility functions to "portably" make cast to/from function pointers.
207
208 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
209 inline address_word castable_address(address x) { return address_word(x) ; }
210 inline address_word castable_address(void* x) { return address_word(x) ; }
211
212 // Pointer subtraction.
213 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
214 // the range we might need to find differences from one end of the heap
215 // to the other.
216 // A typical use might be:
217 // if (pointer_delta(end(), top()) >= size) {
218 // // enough room for an object of size
219 // ...
220 // and then additions like
221 // ... top() + size ...
222 // are safe because we know that top() is at least size below end().
223 inline size_t pointer_delta(const void* left,
224 const void* right,
225 size_t element_size) {
226 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
227 }
228 // A version specialized for HeapWord*'s.
229 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
230 return pointer_delta(left, right, sizeof(HeapWord));
231 }
232
233 //
234 // ANSI C++ does not allow casting from one pointer type to a function pointer
235 // directly without at best a warning. This macro accomplishes it silently
236 // In every case that is present at this point the value be cast is a pointer
237 // to a C linkage function. In somecase the type used for the cast reflects
238 // that linkage and a picky compiler would not complain. In other cases because
239 // there is no convenient place to place a typedef with extern C linkage (i.e
240 // a platform dependent header file) it doesn't. At this point no compiler seems
241 // picky enough to catch these instances (which are few). It is possible that
242 // using templates could fix these for all cases. This use of templates is likely
243 // so far from the middle of the road that it is likely to be problematic in
244 // many C++ compilers.
245 //
246 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
247 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
248
249 // Unsigned byte types for os and stream.hpp
250
251 // Unsigned one, two, four and eigth byte quantities used for describing
252 // the .class file format. See JVM book chapter 4.
253
254 typedef jubyte u1;
255 typedef jushort u2;
256 typedef juint u4;
257 typedef julong u8;
258
259 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
260 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
261 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
262 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
263
264 //----------------------------------------------------------------------------------------------------
265 // JVM spec restrictions
266
267 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
268
269
270 //----------------------------------------------------------------------------------------------------
271 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
272 //
273 // Determines whether on-the-fly class replacement and frame popping are enabled.
274
275 #define HOTSWAP
276
277 //----------------------------------------------------------------------------------------------------
278 // Object alignment, in units of HeapWords.
279 //
280 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
281 // reference fields can be naturally aligned.
282
283 const int MinObjAlignment = HeapWordsPerLong;
284 const int MinObjAlignmentInBytes = MinObjAlignment * HeapWordSize;
285 const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
286
287 // Machine dependent stuff
288
289 #include "incls/_globalDefinitions_pd.hpp.incl"
290
291 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
292 // Note: this value must be a power of 2
293
294 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
295
296 // Signed variants of alignment helpers. There are two versions of each, a macro
297 // for use in places like enum definitions that require compile-time constant
298 // expressions and a function for all other places so as to get type checking.
299
300 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
301
302 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
303 return align_size_up_(size, alignment);
304 }
305
306 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
307
308 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
309 return align_size_down_(size, alignment);
310 }
311
312 // Align objects by rounding up their size, in HeapWord units.
313
314 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
315
316 inline intptr_t align_object_size(intptr_t size) {
317 return align_size_up(size, MinObjAlignment);
318 }
319
320 // Pad out certain offsets to jlong alignment, in HeapWord units.
321
322 #define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
323
324 inline intptr_t align_object_offset(intptr_t offset) {
325 return align_size_up(offset, HeapWordsPerLong);
326 }
327
328 inline bool is_object_aligned(intptr_t offset) {
329 return offset == align_object_offset(offset);
330 }
331
332
333 //----------------------------------------------------------------------------------------------------
334 // Utility macros for compilers
335 // used to silence compiler warnings
336
337 #define Unused_Variable(var) var
338
339
340 //----------------------------------------------------------------------------------------------------
341 // Miscellaneous
342
343 // 6302670 Eliminate Hotspot __fabsf dependency
344 // All fabs() callers should call this function instead, which will implicitly
345 // convert the operand to double, avoiding a dependency on __fabsf which
346 // doesn't exist in early versions of Solaris 8.
347 inline double fabsd(double value) {
348 return fabs(value);
349 }
350
351 inline jint low (jlong value) { return jint(value); }
352 inline jint high(jlong value) { return jint(value >> 32); }
353
354 // the fancy casts are a hopefully portable way
355 // to do unsigned 32 to 64 bit type conversion
356 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
357 *value |= (jlong)(julong)(juint)low; }
358
359 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
360 *value |= (jlong)high << 32; }
361
362 inline jlong jlong_from(jint h, jint l) {
363 jlong result = 0; // initialization to avoid warning
364 set_high(&result, h);
365 set_low(&result, l);
366 return result;
367 }
368
369 union jlong_accessor {
370 jint words[2];
371 jlong long_value;
372 };
373
374 void check_basic_types(); // cannot define here; uses assert
375
376
377 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
378 enum BasicType {
379 T_BOOLEAN = 4,
380 T_CHAR = 5,
381 T_FLOAT = 6,
382 T_DOUBLE = 7,
383 T_BYTE = 8,
384 T_SHORT = 9,
385 T_INT = 10,
386 T_LONG = 11,
387 T_OBJECT = 12,
388 T_ARRAY = 13,
389 T_VOID = 14,
390 T_ADDRESS = 15,
391 T_CONFLICT = 16, // for stack value type with conflicting contents
392 T_ILLEGAL = 99
393 };
394
395 // Convert a char from a classfile signature to a BasicType
396 inline BasicType char2type(char c) {
397 switch( c ) {
398 case 'B': return T_BYTE;
399 case 'C': return T_CHAR;
400 case 'D': return T_DOUBLE;
401 case 'F': return T_FLOAT;
402 case 'I': return T_INT;
403 case 'J': return T_LONG;
404 case 'S': return T_SHORT;
405 case 'Z': return T_BOOLEAN;
406 case 'V': return T_VOID;
407 case 'L': return T_OBJECT;
408 case '[': return T_ARRAY;
409 }
410 return T_ILLEGAL;
411 }
412
413 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
414 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
415 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
416 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
417 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
418 extern BasicType name2type(const char* name);
419
420 // Auxilary math routines
421 // least common multiple
422 extern size_t lcm(size_t a, size_t b);
423
424
425 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
426 enum BasicTypeSize {
427 T_BOOLEAN_size = 1,
428 T_CHAR_size = 1,
429 T_FLOAT_size = 1,
430 T_DOUBLE_size = 2,
431 T_BYTE_size = 1,
432 T_SHORT_size = 1,
433 T_INT_size = 1,
434 T_LONG_size = 2,
435 T_OBJECT_size = 1,
436 T_ARRAY_size = 1,
437 T_VOID_size = 0
438 };
439
440
441 // maps a BasicType to its instance field storage type:
442 // all sub-word integral types are widened to T_INT
443 extern BasicType type2field[T_CONFLICT+1];
444 extern BasicType type2wfield[T_CONFLICT+1];
445
446
447 // size in bytes
448 enum ArrayElementSize {
449 T_BOOLEAN_aelem_bytes = 1,
450 T_CHAR_aelem_bytes = 2,
451 T_FLOAT_aelem_bytes = 4,
452 T_DOUBLE_aelem_bytes = 8,
453 T_BYTE_aelem_bytes = 1,
454 T_SHORT_aelem_bytes = 2,
455 T_INT_aelem_bytes = 4,
456 T_LONG_aelem_bytes = 8,
457 #ifdef _LP64
458 T_OBJECT_aelem_bytes = 8,
459 T_ARRAY_aelem_bytes = 8,
460 #else
461 T_OBJECT_aelem_bytes = 4,
462 T_ARRAY_aelem_bytes = 4,
463 #endif
464 T_VOID_aelem_bytes = 0
465 };
466
467 extern int type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
468
469
470 // JavaValue serves as a container for arbitrary Java values.
471
472 class JavaValue {
473
474 public:
475 typedef union JavaCallValue {
476 jfloat f;
477 jdouble d;
478 jint i;
479 jlong l;
480 jobject h;
481 } JavaCallValue;
482
483 private:
484 BasicType _type;
485 JavaCallValue _value;
486
487 public:
488 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
489
490 JavaValue(jfloat value) {
491 _type = T_FLOAT;
492 _value.f = value;
493 }
494
495 JavaValue(jdouble value) {
496 _type = T_DOUBLE;
497 _value.d = value;
498 }
499
500 jfloat get_jfloat() const { return _value.f; }
501 jdouble get_jdouble() const { return _value.d; }
502 jint get_jint() const { return _value.i; }
503 jlong get_jlong() const { return _value.l; }
504 jobject get_jobject() const { return _value.h; }
505 JavaCallValue* get_value_addr() { return &_value; }
506 BasicType get_type() const { return _type; }
507
508 void set_jfloat(jfloat f) { _value.f = f;}
509 void set_jdouble(jdouble d) { _value.d = d;}
510 void set_jint(jint i) { _value.i = i;}
511 void set_jlong(jlong l) { _value.l = l;}
512 void set_jobject(jobject h) { _value.h = h;}
513 void set_type(BasicType t) { _type = t; }
514
515 jboolean get_jboolean() const { return (jboolean) (_value.i);}
516 jbyte get_jbyte() const { return (jbyte) (_value.i);}
517 jchar get_jchar() const { return (jchar) (_value.i);}
518 jshort get_jshort() const { return (jshort) (_value.i);}
519
520 };
521
522
523 #define STACK_BIAS 0
524 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
525 // in order to extend the reach of the stack pointer.
526 #if defined(SPARC) && defined(_LP64)
527 #undef STACK_BIAS
528 #define STACK_BIAS 0x7ff
529 #endif
530
531
532 // TosState describes the top-of-stack state before and after the execution of
533 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
534 // registers. The TosState corresponds to the 'machine represention' of this cached
535 // value. There's 4 states corresponding to the JAVA types int, long, float & double
536 // as well as a 5th state in case the top-of-stack value is actually on the top
537 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
538 // state when it comes to machine representation but is used separately for (oop)
539 // type specific operations (e.g. verification code).
540
541 enum TosState { // describes the tos cache contents
542 btos = 0, // byte, bool tos cached
543 ctos = 1, // short, char tos cached
544 stos = 2, // short, char tos cached
545 itos = 3, // int tos cached
546 ltos = 4, // long tos cached
547 ftos = 5, // float tos cached
548 dtos = 6, // double tos cached
549 atos = 7, // object cached
550 vtos = 8, // tos not cached
551 number_of_states,
552 ilgl // illegal state: should not occur
553 };
554
555
556 inline TosState as_TosState(BasicType type) {
557 switch (type) {
558 case T_BYTE : return btos;
559 case T_BOOLEAN: return btos;
560 case T_CHAR : return ctos;
561 case T_SHORT : return stos;
562 case T_INT : return itos;
563 case T_LONG : return ltos;
564 case T_FLOAT : return ftos;
565 case T_DOUBLE : return dtos;
566 case T_VOID : return vtos;
567 case T_ARRAY : // fall through
568 case T_OBJECT : return atos;
569 }
570 return ilgl;
571 }
572
573
574 // Helper function to convert BasicType info into TosState
575 // Note: Cannot define here as it uses global constant at the time being.
576 TosState as_TosState(BasicType type);
577
578
579 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
580
581 enum ReferenceType {
582 REF_NONE, // Regular class
583 REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
584 REF_SOFT, // Subclass of java/lang/ref/SoftReference
585 REF_WEAK, // Subclass of java/lang/ref/WeakReference
586 REF_FINAL, // Subclass of java/lang/ref/FinalReference
587 REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
588 };
589
590
591 // JavaThreadState keeps track of which part of the code a thread is executing in. This
592 // information is needed by the safepoint code.
593 //
594 // There are 4 essential states:
595 //
596 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
597 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
598 // _thread_in_vm : Executing in the vm
599 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
600 //
601 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
602 // a transition from one state to another. These extra states makes it possible for the safepoint code to
603 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
604 //
605 // Given a state, the xxx_trans state can always be found by adding 1.
606 //
607 enum JavaThreadState {
608 _thread_uninitialized = 0, // should never happen (missing initialization)
609 _thread_new = 2, // just starting up, i.e., in process of being initialized
610 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
611 _thread_in_native = 4, // running in native code
612 _thread_in_native_trans = 5, // corresponding transition state
613 _thread_in_vm = 6, // running in VM
614 _thread_in_vm_trans = 7, // corresponding transition state
615 _thread_in_Java = 8, // running in Java or in stub code
616 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
617 _thread_blocked = 10, // blocked in vm
618 _thread_blocked_trans = 11, // corresponding transition state
619 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
620 };
621
622
623 // Handy constants for deciding which compiler mode to use.
624 enum MethodCompilation {
625 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
626 InvalidOSREntryBci = -2
627 };
628
629 // Enumeration to distinguish tiers of compilation
630 enum CompLevel {
631 CompLevel_none = 0,
632 CompLevel_fast_compile = 1,
633 CompLevel_full_optimization = 2,
634
635 CompLevel_highest_tier = CompLevel_full_optimization,
636 #ifdef TIERED
637 CompLevel_initial_compile = CompLevel_fast_compile
638 #else
639 CompLevel_initial_compile = CompLevel_full_optimization
640 #endif // TIERED
641 };
642
643 inline bool is_tier1_compile(int comp_level) {
644 return comp_level == CompLevel_fast_compile;
645 }
646 inline bool is_tier2_compile(int comp_level) {
647 return comp_level == CompLevel_full_optimization;
648 }
649 inline bool is_highest_tier_compile(int comp_level) {
650 return comp_level == CompLevel_highest_tier;
651 }
652
653 //----------------------------------------------------------------------------------------------------
654 // 'Forward' declarations of frequently used classes
655 // (in order to reduce interface dependencies & reduce
656 // number of unnecessary compilations after changes)
657
658 class symbolTable;
659 class ClassFileStream;
660
661 class Event;
662
663 class Thread;
664 class VMThread;
665 class JavaThread;
666 class Threads;
667
668 class VM_Operation;
669 class VMOperationQueue;
670
671 class CodeBlob;
672 class nmethod;
673 class OSRAdapter;
674 class I2CAdapter;
675 class C2IAdapter;
676 class CompiledIC;
677 class relocInfo;
678 class ScopeDesc;
679 class PcDesc;
680
681 class Recompiler;
682 class Recompilee;
683 class RecompilationPolicy;
684 class RFrame;
685 class CompiledRFrame;
686 class InterpretedRFrame;
687
688 class frame;
689
690 class vframe;
691 class javaVFrame;
692 class interpretedVFrame;
693 class compiledVFrame;
694 class deoptimizedVFrame;
695 class externalVFrame;
696 class entryVFrame;
697
698 class RegisterMap;
699
700 class Mutex;
701 class Monitor;
702 class BasicLock;
703 class BasicObjectLock;
704
705 class PeriodicTask;
706
707 class JavaCallWrapper;
708
709 class oopDesc;
710
711 class NativeCall;
712
713 class zone;
714
715 class StubQueue;
716
717 class outputStream;
718
719 class ResourceArea;
720
721 class DebugInformationRecorder;
722 class ScopeValue;
723 class CompressedStream;
724 class DebugInfoReadStream;
725 class DebugInfoWriteStream;
726 class LocationValue;
727 class ConstantValue;
728 class IllegalValue;
729
730 class PrivilegedElement;
731 class MonitorArray;
732
733 class MonitorInfo;
734
735 class OffsetClosure;
736 class OopMapCache;
737 class InterpreterOopMap;
738 class OopMapCacheEntry;
739 class OSThread;
740
741 typedef int (*OSThreadStartFunc)(void*);
742
743 class Space;
744
745 class JavaValue;
746 class methodHandle;
747 class JavaCallArguments;
748
749 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
750
751 extern void basic_fatal(const char* msg);
752
753
754 //----------------------------------------------------------------------------------------------------
755 // Special constants for debugging
756
757 const jint badInt = -3; // generic "bad int" value
758 const long badAddressVal = -2; // generic "bad address" value
759 const long badOopVal = -1; // generic "bad oop" value
760 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
761 const int badHandleValue = 0xBC; // value used to zap vm handle area
762 const int badResourceValue = 0xAB; // value used to zap resource area
763 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
764 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
765 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
766 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
767 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
768 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
769
770
771 // (These must be implemented as #defines because C++ compilers are
772 // not obligated to inline non-integral constants!)
773 #define badAddress ((address)::badAddressVal)
774 #define badOop ((oop)::badOopVal)
775 #define badHeapWord (::badHeapWordVal)
776 #define badJNIHandle ((oop)::badJNIHandleVal)
777
778
779 //----------------------------------------------------------------------------------------------------
780 // Utility functions for bitfield manipulations
781
782 const intptr_t AllBits = ~0; // all bits set in a word
783 const intptr_t NoBits = 0; // no bits set in a word
784 const jlong NoLongBits = 0; // no bits set in a long
785 const intptr_t OneBit = 1; // only right_most bit set in a word
786
787 // get a word with the n.th or the right-most or left-most n bits set
788 // (note: #define used only so that they can be used in enum constant definitions)
789 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
790 #define right_n_bits(n) (nth_bit(n) - 1)
791 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
792
793 // bit-operations using a mask m
794 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
795 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
796 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
797 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
798 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
799
800 // bit-operations using the n.th bit
801 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
802 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
803 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
804
805 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
806 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
807 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
808 }
809
810
811 //----------------------------------------------------------------------------------------------------
812 // Utility functions for integers
813
814 // Avoid use of global min/max macros which may cause unwanted double
815 // evaluation of arguments.
816 #ifdef max
817 #undef max
818 #endif
819
820 #ifdef min
821 #undef min
822 #endif
823
824 #define max(a,b) Do_not_use_max_use_MAX2_instead
825 #define min(a,b) Do_not_use_min_use_MIN2_instead
826
827 // It is necessary to use templates here. Having normal overloaded
828 // functions does not work because it is necessary to provide both 32-
829 // and 64-bit overloaded functions, which does not work, and having
830 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
831 // will be even more error-prone than macros.
832 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
833 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
834 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
835 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
836 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
837 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
838
839 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
840
841 // true if x is a power of 2, false otherwise
842 inline bool is_power_of_2(intptr_t x) {
843 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
844 }
845
846 // long version of is_power_of_2
847 inline bool is_power_of_2_long(jlong x) {
848 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
849 }
850
851 //* largest i such that 2^i <= x
852 // A negative value of 'x' will return '31'
853 inline int log2_intptr(intptr_t x) {
854 int i = -1;
855 uintptr_t p = 1;
856 while (p != 0 && p <= (uintptr_t)x) {
857 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
858 i++; p *= 2;
859 }
860 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
861 // (if p = 0 then overflow occured and i = 31)
862 return i;
863 }
864
865 //* largest i such that 2^i <= x
866 // A negative value of 'x' will return '63'
867 inline int log2_long(jlong x) {
868 int i = -1;
869 julong p = 1;
870 while (p != 0 && p <= (julong)x) {
871 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
872 i++; p *= 2;
873 }
874 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
875 // (if p = 0 then overflow occured and i = 31)
876 return i;
877 }
878
879 //* the argument must be exactly a power of 2
880 inline int exact_log2(intptr_t x) {
881 #ifdef ASSERT
882 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
883 #endif
884 return log2_intptr(x);
885 }
886
887
888 // returns integer round-up to the nearest multiple of s (s must be a power of two)
889 inline intptr_t round_to(intptr_t x, uintx s) {
890 #ifdef ASSERT
891 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
892 #endif
893 const uintx m = s - 1;
894 return mask_bits(x + m, ~m);
895 }
896
897 // returns integer round-down to the nearest multiple of s (s must be a power of two)
898 inline intptr_t round_down(intptr_t x, uintx s) {
899 #ifdef ASSERT
900 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
901 #endif
902 const uintx m = s - 1;
903 return mask_bits(x, ~m);
904 }
905
906
907 inline bool is_odd (intx x) { return x & 1; }
908 inline bool is_even(intx x) { return !is_odd(x); }
909
910 // "to" should be greater than "from."
911 inline intx byte_size(void* from, void* to) {
912 return (address)to - (address)from;
913 }
914
915 //----------------------------------------------------------------------------------------------------
916 // Avoid non-portable casts with these routines (DEPRECATED)
917
918 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
919 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
920
921 // Given sequence of four bytes, build into a 32-bit word
922 // following the conventions used in class files.
923 // On the 386, this could be realized with a simple address cast.
924 //
925
926 // This routine takes eight bytes:
927 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
928 return ( u8(c1) << 56 ) & ( u8(0xff) << 56 )
929 | ( u8(c2) << 48 ) & ( u8(0xff) << 48 )
930 | ( u8(c3) << 40 ) & ( u8(0xff) << 40 )
931 | ( u8(c4) << 32 ) & ( u8(0xff) << 32 )
932 | ( u8(c5) << 24 ) & ( u8(0xff) << 24 )
933 | ( u8(c6) << 16 ) & ( u8(0xff) << 16 )
934 | ( u8(c7) << 8 ) & ( u8(0xff) << 8 )
935 | ( u8(c8) << 0 ) & ( u8(0xff) << 0 );
936 }
937
938 // This routine takes four bytes:
939 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
940 return ( u4(c1) << 24 ) & 0xff000000
941 | ( u4(c2) << 16 ) & 0x00ff0000
942 | ( u4(c3) << 8 ) & 0x0000ff00
943 | ( u4(c4) << 0 ) & 0x000000ff;
944 }
945
946 // And this one works if the four bytes are contiguous in memory:
947 inline u4 build_u4_from( u1* p ) {
948 return build_u4_from( p[0], p[1], p[2], p[3] );
949 }
950
951 // Ditto for two-byte ints:
952 inline u2 build_u2_from( u1 c1, u1 c2 ) {
953 return u2(( u2(c1) << 8 ) & 0xff00
954 | ( u2(c2) << 0 ) & 0x00ff);
955 }
956
957 // And this one works if the two bytes are contiguous in memory:
958 inline u2 build_u2_from( u1* p ) {
959 return build_u2_from( p[0], p[1] );
960 }
961
962 // Ditto for floats:
963 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
964 u4 u = build_u4_from( c1, c2, c3, c4 );
965 return *(jfloat*)&u;
966 }
967
968 inline jfloat build_float_from( u1* p ) {
969 u4 u = build_u4_from( p );
970 return *(jfloat*)&u;
971 }
972
973
974 // now (64-bit) longs
975
976 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
977 return ( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )
978 | ( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )
979 | ( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )
980 | ( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )
981 | ( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )
982 | ( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )
983 | ( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )
984 | ( jlong(c8) << 0 ) & ( jlong(0xff) << 0 );
985 }
986
987 inline jlong build_long_from( u1* p ) {
988 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
989 }
990
991
992 // Doubles, too!
993 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
994 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
995 return *(jdouble*)&u;
996 }
997
998 inline jdouble build_double_from( u1* p ) {
999 jlong u = build_long_from( p );
1000 return *(jdouble*)&u;
1001 }
1002
1003
1004 // Portable routines to go the other way:
1005
1006 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1007 c1 = u1(x >> 8);
1008 c2 = u1(x);
1009 }
1010
1011 inline void explode_short_to( u2 x, u1* p ) {
1012 explode_short_to( x, p[0], p[1]);
1013 }
1014
1015 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1016 c1 = u1(x >> 24);
1017 c2 = u1(x >> 16);
1018 c3 = u1(x >> 8);
1019 c4 = u1(x);
1020 }
1021
1022 inline void explode_int_to( u4 x, u1* p ) {
1023 explode_int_to( x, p[0], p[1], p[2], p[3]);
1024 }
1025
1026
1027 // Pack and extract shorts to/from ints:
1028
1029 inline int extract_low_short_from_int(jint x) {
1030 return x & 0xffff;
1031 }
1032
1033 inline int extract_high_short_from_int(jint x) {
1034 return (x >> 16) & 0xffff;
1035 }
1036
1037 inline int build_int_from_shorts( jushort low, jushort high ) {
1038 return ((int)((unsigned int)high << 16) | (unsigned int)low);
1039 }
1040
1041 // Printf-style formatters for fixed- and variable-width types as pointers and
1042 // integers.
1043 //
1044 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1045 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
1046 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
1047 // (in ILP32).
1048
1049 // Format 32-bit quantities.
1050 #define INT32_FORMAT "%d"
1051 #define UINT32_FORMAT "%u"
1052 #define INT32_FORMAT_W(width) "%" #width "d"
1053 #define UINT32_FORMAT_W(width) "%" #width "u"
1054
1055 #define PTR32_FORMAT "0x%08x"
1056
1057 // Format 64-bit quantities.
1058 #define INT64_FORMAT "%" FORMAT64_MODIFIER "d"
1059 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
1060 #define PTR64_FORMAT "0x%016" FORMAT64_MODIFIER "x"
1061
1062 #define INT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "d"
1063 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
1064
1065 // Format macros that allow the field width to be specified. The width must be
1066 // a string literal (e.g., "8") or a macro that evaluates to one.
1067 #ifdef _LP64
1068 #define SSIZE_FORMAT_W(width) INT64_FORMAT_W(width)
1069 #define SIZE_FORMAT_W(width) UINT64_FORMAT_W(width)
1070 #else
1071 #define SSIZE_FORMAT_W(width) INT32_FORMAT_W(width)
1072 #define SIZE_FORMAT_W(width) UINT32_FORMAT_W(width)
1073 #endif // _LP64
1074
1075 // Format pointers and size_t (or size_t-like integer types) which change size
1076 // between 32- and 64-bit.
1077 #ifdef _LP64
1078 #define PTR_FORMAT PTR64_FORMAT
1079 #define UINTX_FORMAT UINT64_FORMAT
1080 #define INTX_FORMAT INT64_FORMAT
1081 #define SIZE_FORMAT UINT64_FORMAT
1082 #define SSIZE_FORMAT INT64_FORMAT
1083 #else // !_LP64
1084 #define PTR_FORMAT PTR32_FORMAT
1085 #define UINTX_FORMAT UINT32_FORMAT
1086 #define INTX_FORMAT INT32_FORMAT
1087 #define SIZE_FORMAT UINT32_FORMAT
1088 #define SSIZE_FORMAT INT32_FORMAT
1089 #endif // _LP64
1090
1091 #define INTPTR_FORMAT PTR_FORMAT
1092
1093 // Enable zap-a-lot if in debug version.
1094
1095 # ifdef ASSERT
1096 # ifdef COMPILER2
1097 # define ENABLE_ZAP_DEAD_LOCALS
1098 #endif /* COMPILER2 */
1099 # endif /* ASSERT */
1100
1101 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))