comparison src/cpu/ppc/vm/assembler_ppc.hpp @ 14408:ec28f9c041ff

8019972: PPC64 (part 9): platform files for interpreter only VM. Summary: With this change the HotSpot core build works on Linux/PPC64. The VM succesfully executes simple test programs. Reviewed-by: kvn
author goetz
date Fri, 02 Aug 2013 16:46:45 +0200
parents
children 67fa91961822
comparison
equal deleted inserted replaced
14407:94c202aa2646 14408:ec28f9c041ff
1 /*
2 * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2013 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
28
29 #include "asm/register.hpp"
30
31 // Address is an abstraction used to represent a memory location
32 // as used in assembler instructions.
33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
34 // So far we do not use this as simplification by this class is low
35 // on PPC with its simple addressing mode. Use RegisterOrConstant to
36 // represent an offset.
37 class Address VALUE_OBJ_CLASS_SPEC {
38 };
39
40 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
41 private:
42 address _address;
43 RelocationHolder _rspec;
44
45 RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
46 switch (rtype) {
47 case relocInfo::external_word_type:
48 return external_word_Relocation::spec(addr);
49 case relocInfo::internal_word_type:
50 return internal_word_Relocation::spec(addr);
51 case relocInfo::opt_virtual_call_type:
52 return opt_virtual_call_Relocation::spec();
53 case relocInfo::static_call_type:
54 return static_call_Relocation::spec();
55 case relocInfo::runtime_call_type:
56 return runtime_call_Relocation::spec();
57 case relocInfo::none:
58 return RelocationHolder();
59 default:
60 ShouldNotReachHere();
61 return RelocationHolder();
62 }
63 }
64
65 protected:
66 // creation
67 AddressLiteral() : _address(NULL), _rspec(NULL) {}
68
69 public:
70 AddressLiteral(address addr, RelocationHolder const& rspec)
71 : _address(addr),
72 _rspec(rspec) {}
73
74 AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
75 : _address((address) addr),
76 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
77
78 AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
79 : _address((address) addr),
80 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
81
82 intptr_t value() const { return (intptr_t) _address; }
83
84 const RelocationHolder& rspec() const { return _rspec; }
85 };
86
87 // Argument is an abstraction used to represent an outgoing
88 // actual argument or an incoming formal parameter, whether
89 // it resides in memory or in a register, in a manner consistent
90 // with the PPC Application Binary Interface, or ABI. This is
91 // often referred to as the native or C calling convention.
92
93 class Argument VALUE_OBJ_CLASS_SPEC {
94 private:
95 int _number; // The number of the argument.
96 public:
97 enum {
98 // Only 8 registers may contain integer parameters.
99 n_register_parameters = 8,
100 // Can have up to 8 floating registers.
101 n_float_register_parameters = 8
102 };
103 // creation
104 Argument(int number) : _number(number) {}
105
106 int number() const { return _number; }
107
108 // Locating register-based arguments:
109 bool is_register() const { return _number < n_register_parameters; }
110
111 Register as_register() const {
112 assert(is_register(), "must be a register argument");
113 return as_Register(number() + R3_ARG1->encoding());
114 }
115 };
116
117 // A ppc64 function descriptor.
118 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
119 private:
120 address _entry;
121 address _toc;
122 address _env;
123
124 public:
125 inline address entry() const { return _entry; }
126 inline address toc() const { return _toc; }
127 inline address env() const { return _env; }
128
129 inline void set_entry(address entry) { _entry = entry; }
130 inline void set_toc( address toc) { _toc = toc; }
131 inline void set_env( address env) { _env = env; }
132
133 inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
134 inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); }
135 inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); }
136
137 // Friend functions can be called without loading toc and env.
138 enum {
139 friend_toc = 0xcafe,
140 friend_env = 0xc0de
141 };
142
143 inline bool is_friend_function() const {
144 return (toc() == (address) friend_toc) && (env() == (address) friend_env);
145 }
146
147 // Constructor for stack-allocated instances.
148 FunctionDescriptor() {
149 _entry = (address) 0xbad;
150 _toc = (address) 0xbad;
151 _env = (address) 0xbad;
152 }
153 };
154
155 class Assembler : public AbstractAssembler {
156 protected:
157 // Displacement routines
158 static void print_instruction(int inst);
159 static int patched_branch(int dest_pos, int inst, int inst_pos);
160 static int branch_destination(int inst, int pos);
161
162 friend class AbstractAssembler;
163
164 // Code patchers need various routines like inv_wdisp()
165 friend class NativeInstruction;
166 friend class NativeGeneralJump;
167 friend class Relocation;
168
169 public:
170
171 enum shifts {
172 XO_21_29_SHIFT = 2,
173 XO_21_30_SHIFT = 1,
174 XO_27_29_SHIFT = 2,
175 XO_30_31_SHIFT = 0,
176 SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15
177 SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20
178 RS_SHIFT = 21u, // RS field in bits 21 -- 25
179 OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31
180 };
181
182 enum opcdxos_masks {
183 XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
184 ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
185 ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
186 BXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
187 BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
188 // trap instructions
189 TDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
190 TWI_OPCODE_MASK = (63u << OPCODE_SHIFT),
191 TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
192 TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
193 LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
194 STD_OPCODE_MASK = LD_OPCODE_MASK,
195 STDU_OPCODE_MASK = STD_OPCODE_MASK,
196 STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
197 STDUX_OPCODE_MASK = STDX_OPCODE_MASK,
198 STW_OPCODE_MASK = (63u << OPCODE_SHIFT),
199 STWU_OPCODE_MASK = STW_OPCODE_MASK,
200 STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
201 STWUX_OPCODE_MASK = STWX_OPCODE_MASK,
202 MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT),
203 ORI_OPCODE_MASK = (63u << OPCODE_SHIFT),
204 ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
205 RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
206 };
207
208 enum opcdxos {
209 ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1),
210 ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1),
211 ADDI_OPCODE = (14u << OPCODE_SHIFT),
212 ADDIS_OPCODE = (15u << OPCODE_SHIFT),
213 ADDIC__OPCODE = (13u << OPCODE_SHIFT),
214 ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1),
215 SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1),
216 SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1),
217 SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1),
218 SUBFIC_OPCODE = (8u << OPCODE_SHIFT),
219 SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
220 DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1),
221 MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1),
222 MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1),
223 MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1),
224 MULLI_OPCODE = (7u << OPCODE_SHIFT),
225 AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1),
226 ANDI_OPCODE = (28u << OPCODE_SHIFT),
227 ANDIS_OPCODE = (29u << OPCODE_SHIFT),
228 ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1),
229 ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1),
230 OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1),
231 ORI_OPCODE = (24u << OPCODE_SHIFT),
232 ORIS_OPCODE = (25u << OPCODE_SHIFT),
233 XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1),
234 XORI_OPCODE = (26u << OPCODE_SHIFT),
235 XORIS_OPCODE = (27u << OPCODE_SHIFT),
236
237 NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1),
238
239 RLWINM_OPCODE = (21u << OPCODE_SHIFT),
240 CLRRWI_OPCODE = RLWINM_OPCODE,
241 CLRLWI_OPCODE = RLWINM_OPCODE,
242
243 RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
244
245 SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1),
246 SLWI_OPCODE = RLWINM_OPCODE,
247 SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1),
248 SRWI_OPCODE = RLWINM_OPCODE,
249 SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1),
250 SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1),
251
252 CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1),
253 CMPI_OPCODE = (11u << OPCODE_SHIFT),
254 CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1),
255 CMPLI_OPCODE = (10u << OPCODE_SHIFT),
256
257 ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1),
258
259 MTLR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1 | 8 << SPR_0_4_SHIFT),
260 MFLR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1 | 8 << SPR_0_4_SHIFT),
261
262 MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1),
263 MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1),
264 MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1),
265
266 // condition register logic instructions
267 CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1),
268 CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
269 CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1),
270 CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1),
271 CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1),
272 CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1),
273 CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
274 CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1),
275
276 BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1),
277 BXX_OPCODE = (18u << OPCODE_SHIFT),
278 BCXX_OPCODE = (16u << OPCODE_SHIFT),
279
280 // CTR-related opcodes
281 BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1),
282 MTCTR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1 | 9 << SPR_0_4_SHIFT),
283 MFCTR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1 | 9 << SPR_0_4_SHIFT),
284
285
286 LWZ_OPCODE = (32u << OPCODE_SHIFT),
287 LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1),
288 LWZU_OPCODE = (33u << OPCODE_SHIFT),
289
290 LHA_OPCODE = (42u << OPCODE_SHIFT),
291 LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1),
292 LHAU_OPCODE = (43u << OPCODE_SHIFT),
293
294 LHZ_OPCODE = (40u << OPCODE_SHIFT),
295 LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1),
296 LHZU_OPCODE = (41u << OPCODE_SHIFT),
297
298 LBZ_OPCODE = (34u << OPCODE_SHIFT),
299 LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1),
300 LBZU_OPCODE = (35u << OPCODE_SHIFT),
301
302 STW_OPCODE = (36u << OPCODE_SHIFT),
303 STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1),
304 STWU_OPCODE = (37u << OPCODE_SHIFT),
305 STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
306
307 STH_OPCODE = (44u << OPCODE_SHIFT),
308 STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1),
309 STHU_OPCODE = (45u << OPCODE_SHIFT),
310
311 STB_OPCODE = (38u << OPCODE_SHIFT),
312 STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1),
313 STBU_OPCODE = (39u << OPCODE_SHIFT),
314
315 EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
316 EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
317 EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM
318
319 // 32 bit opcode encodings
320
321 LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM
322 LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
323
324 CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM
325
326 // 64 bit opcode encodings
327
328 LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
329 LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
330 LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM
331
332 STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
333 STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
334 STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM
335 STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
336
337 RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM
338 RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM
339 RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM
340 RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM
341
342 SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
343
344 SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM
345 SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM
346 SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM
347
348 MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM
349 MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM
350 MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM
351 DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM
352
353 CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM
354 NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
355 NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
356
357
358 // opcodes only used for floating arithmetic
359 FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1),
360 FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1),
361 FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1),
362 FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1),
363 FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1),
364 FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1),
365 // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
366 // on Power7. Do not use.
367 // MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1),
368 // MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1),
369 CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1),
370 POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1),
371 POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1),
372 POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1),
373 FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1),
374 FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1),
375 FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1),
376 FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1),
377 FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1),
378 FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1),
379 FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1),
380
381 // PPC64-internal FPU conversion opcodes
382 FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1),
383 FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1),
384 FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1),
385 FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1),
386 FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1),
387 FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1),
388 FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1),
389
390 // WARNING: using fmadd results in a non-compliant vm. Some floating
391 // point tck tests will fail.
392 FMADD_OPCODE = (59u << OPCODE_SHIFT | 29u << 1),
393 DMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1),
394 FMSUB_OPCODE = (59u << OPCODE_SHIFT | 28u << 1),
395 DMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1),
396 FNMADD_OPCODE = (59u << OPCODE_SHIFT | 31u << 1),
397 DNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1),
398 FNMSUB_OPCODE = (59u << OPCODE_SHIFT | 30u << 1),
399 DNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1),
400
401 LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1),
402 LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1),
403 LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1),
404 LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1),
405 LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1),
406 LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1),
407
408 STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1),
409 STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1),
410 STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1),
411 STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1),
412 STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1),
413 STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1),
414
415 FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM
416 FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM
417
418 // Vector instruction support for >= Power6
419 // Vector Storage Access
420 LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1),
421 LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1),
422 LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1),
423 LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1),
424 LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1),
425 STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1),
426 STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1),
427 STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1),
428 STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1),
429 STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1),
430 LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1),
431 LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1),
432
433 // Vector Permute and Formatting
434 VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
435 VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
436 VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ),
437 VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ),
438 VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ),
439 VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ),
440 VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ),
441 VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ),
442 VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ),
443 VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ),
444 VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ),
445 VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ),
446 VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ),
447 VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ),
448 VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ),
449
450 VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ),
451 VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ),
452 VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ),
453 VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ),
454 VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ),
455 VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ),
456
457 VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ),
458 VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ),
459 VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ),
460 VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ),
461 VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ),
462 VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ),
463
464 VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ),
465 VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ),
466
467 VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ),
468 VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ),
469 VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ),
470 VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ),
471 VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ),
472
473 // Vector Integer
474 VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ),
475 VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ),
476 VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ),
477 VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ),
478 VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ),
479 VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ),
480 VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ),
481 VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ),
482 VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ),
483 VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ),
484 VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ),
485 VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ),
486 VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ),
487 VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ),
488 VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ),
489 VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ),
490 VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ),
491 VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ),
492 VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ),
493 VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ),
494
495 VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ),
496 VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ),
497 VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ),
498 VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ),
499 VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ),
500 VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ),
501 VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ),
502 VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ),
503 VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ),
504 VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ),
505 VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ),
506 VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ),
507 VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ),
508 VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ),
509 VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ),
510 VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ),
511 VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ),
512
513 VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ),
514 VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ),
515 VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ),
516 VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ),
517 VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ),
518
519 VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ),
520 VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ),
521 VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ),
522 VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ),
523 VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ),
524 VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ),
525
526 VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ),
527 VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ),
528 VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ),
529 VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ),
530 VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ),
531 VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ),
532 VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ),
533 VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ),
534 VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ),
535 VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ),
536 VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ),
537 VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ),
538
539 VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ),
540 VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ),
541 VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ),
542 VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ),
543 VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ),
544 VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ),
545 VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ),
546 VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ),
547 VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ),
548
549 VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ),
550 VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ),
551 VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
552 VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
553 VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
554 VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
555 VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
556 VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
557 VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ),
558 VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ),
559 VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ),
560 VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ),
561 VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ),
562 VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ),
563 VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ),
564 VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ),
565 VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ),
566
567 // Vector Floating-Point
568 // not implemented yet
569
570 // Vector Status and Control
571 MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ),
572 MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ),
573
574 // Icache and dcache related instructions
575 DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1),
576 DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1),
577 DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1),
578 DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1),
579
580 DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1),
581 DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1),
582 ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1),
583
584 // Instruction synchronization
585 ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1),
586 // Memory barriers
587 SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1),
588 EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1),
589
590 // Trap instructions
591 TDI_OPCODE = (2u << OPCODE_SHIFT),
592 TWI_OPCODE = (3u << OPCODE_SHIFT),
593 TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1),
594 TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1),
595
596 // Atomics.
597 LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1),
598 LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1),
599 STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1),
600 STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1)
601
602 };
603
604 // Trap instructions TO bits
605 enum trap_to_bits {
606 // single bits
607 traptoLessThanSigned = 1 << 4, // 0, left end
608 traptoGreaterThanSigned = 1 << 3,
609 traptoEqual = 1 << 2,
610 traptoLessThanUnsigned = 1 << 1,
611 traptoGreaterThanUnsigned = 1 << 0, // 4, right end
612
613 // compound ones
614 traptoUnconditional = (traptoLessThanSigned |
615 traptoGreaterThanSigned |
616 traptoEqual |
617 traptoLessThanUnsigned |
618 traptoGreaterThanUnsigned)
619 };
620
621 // Branch hints BH field
622 enum branch_hint_bh {
623 // bclr cases:
624 bhintbhBCLRisReturn = 0,
625 bhintbhBCLRisNotReturnButSame = 1,
626 bhintbhBCLRisNotPredictable = 3,
627
628 // bcctr cases:
629 bhintbhBCCTRisNotReturnButSame = 0,
630 bhintbhBCCTRisNotPredictable = 3
631 };
632
633 // Branch prediction hints AT field
634 enum branch_hint_at {
635 bhintatNoHint = 0, // at=00
636 bhintatIsNotTaken = 2, // at=10
637 bhintatIsTaken = 3 // at=11
638 };
639
640 // Branch prediction hints
641 enum branch_hint_concept {
642 // Use the same encoding as branch_hint_at to simply code.
643 bhintNoHint = bhintatNoHint,
644 bhintIsNotTaken = bhintatIsNotTaken,
645 bhintIsTaken = bhintatIsTaken
646 };
647
648 // Used in BO field of branch instruction.
649 enum branch_condition {
650 bcondCRbiIs0 = 4, // bo=001at
651 bcondCRbiIs1 = 12, // bo=011at
652 bcondAlways = 20 // bo=10100
653 };
654
655 // Branch condition with combined prediction hints.
656 enum branch_condition_with_hint {
657 bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint,
658 bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
659 bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken,
660 bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint,
661 bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
662 bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken,
663 };
664
665 // Branch prediction hints.
666 inline static int add_bhint_to_boint(const int bhint, const int boint) {
667 switch (boint) {
668 case bcondCRbiIs0:
669 case bcondCRbiIs1:
670 // branch_hint and branch_hint_at have same encodings
671 assert( (int)bhintNoHint == (int)bhintatNoHint
672 && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
673 && (int)bhintIsTaken == (int)bhintatIsTaken,
674 "wrong encodings");
675 assert((bhint & 0x03) == bhint, "wrong encodings");
676 return (boint & ~0x03) | bhint;
677 case bcondAlways:
678 // no branch_hint
679 return boint;
680 default:
681 ShouldNotReachHere();
682 return 0;
683 }
684 }
685
686 // Extract bcond from boint.
687 inline static int inv_boint_bcond(const int boint) {
688 int r_bcond = boint & ~0x03;
689 assert(r_bcond == bcondCRbiIs0 ||
690 r_bcond == bcondCRbiIs1 ||
691 r_bcond == bcondAlways,
692 "bad branch condition");
693 return r_bcond;
694 }
695
696 // Extract bhint from boint.
697 inline static int inv_boint_bhint(const int boint) {
698 int r_bhint = boint & 0x03;
699 assert(r_bhint == bhintatNoHint ||
700 r_bhint == bhintatIsNotTaken ||
701 r_bhint == bhintatIsTaken,
702 "bad branch hint");
703 return r_bhint;
704 }
705
706 // Calculate opposite of given bcond.
707 inline static int opposite_bcond(const int bcond) {
708 switch (bcond) {
709 case bcondCRbiIs0:
710 return bcondCRbiIs1;
711 case bcondCRbiIs1:
712 return bcondCRbiIs0;
713 default:
714 ShouldNotReachHere();
715 return 0;
716 }
717 }
718
719 // Calculate opposite of given bhint.
720 inline static int opposite_bhint(const int bhint) {
721 switch (bhint) {
722 case bhintatNoHint:
723 return bhintatNoHint;
724 case bhintatIsNotTaken:
725 return bhintatIsTaken;
726 case bhintatIsTaken:
727 return bhintatIsNotTaken;
728 default:
729 ShouldNotReachHere();
730 return 0;
731 }
732 }
733
734 // PPC branch instructions
735 enum ppcops {
736 b_op = 18,
737 bc_op = 16,
738 bcr_op = 19
739 };
740
741 enum Condition {
742 negative = 0,
743 less = 0,
744 positive = 1,
745 greater = 1,
746 zero = 2,
747 equal = 2,
748 summary_overflow = 3,
749 };
750
751 public:
752 // Helper functions for groups of instructions
753
754 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
755
756 enum Membar_mask_bits { // page 184, v9
757 StoreStore = 1 << 3,
758 LoadStore = 1 << 2,
759 StoreLoad = 1 << 1,
760 LoadLoad = 1 << 0,
761
762 Sync = 1 << 6,
763 MemIssue = 1 << 5,
764 Lookaside = 1 << 4
765 };
766
767 // instruction must start at passed address
768 static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
769
770 // instruction must be left-justified in argument
771 static int instr_len(unsigned long instr) { return BytesPerInstWord; }
772
773 // longest instructions
774 static int instr_maxlen() { return BytesPerInstWord; }
775
776 // Test if x is within signed immediate range for nbits.
777 static bool is_simm(int x, unsigned int nbits) {
778 assert(0 < nbits && nbits < 32, "out of bounds");
779 const int min = -( ((int)1) << nbits-1 );
780 const int maxplus1 = ( ((int)1) << nbits-1 );
781 return min <= x && x < maxplus1;
782 }
783
784 static bool is_simm(jlong x, unsigned int nbits) {
785 assert(0 < nbits && nbits < 64, "out of bounds");
786 const jlong min = -( ((jlong)1) << nbits-1 );
787 const jlong maxplus1 = ( ((jlong)1) << nbits-1 );
788 return min <= x && x < maxplus1;
789 }
790
791 // Test if x is within unsigned immediate range for nbits
792 static bool is_uimm(int x, unsigned int nbits) {
793 assert(0 < nbits && nbits < 32, "out of bounds");
794 const int maxplus1 = ( ((int)1) << nbits );
795 return 0 <= x && x < maxplus1;
796 }
797
798 static bool is_uimm(jlong x, unsigned int nbits) {
799 assert(0 < nbits && nbits < 64, "out of bounds");
800 const jlong maxplus1 = ( ((jlong)1) << nbits );
801 return 0 <= x && x < maxplus1;
802 }
803
804 protected:
805 // helpers
806
807 // X is supposed to fit in a field "nbits" wide
808 // and be sign-extended. Check the range.
809 static void assert_signed_range(intptr_t x, int nbits) {
810 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
811 "value out of range");
812 }
813
814 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
815 assert((x & 3) == 0, "not word aligned");
816 assert_signed_range(x, nbits + 2);
817 }
818
819 static void assert_unsigned_const(int x, int nbits) {
820 assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
821 }
822
823 static int fmask(juint hi_bit, juint lo_bit) {
824 assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
825 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
826 }
827
828 // inverse of u_field
829 static int inv_u_field(int x, int hi_bit, int lo_bit) {
830 juint r = juint(x) >> lo_bit;
831 r &= fmask(hi_bit, lo_bit);
832 return int(r);
833 }
834
835 // signed version: extract from field and sign-extend
836 static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
837 x = x << (31-hi_bit);
838 x = x >> (31-hi_bit+lo_bit);
839 return x;
840 }
841
842 static int u_field(int x, int hi_bit, int lo_bit) {
843 assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
844 int r = x << lo_bit;
845 assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
846 return r;
847 }
848
849 // Same as u_field for signed values
850 static int s_field(int x, int hi_bit, int lo_bit) {
851 int nbits = hi_bit - lo_bit + 1;
852 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
853 "value out of range");
854 x &= fmask(hi_bit, lo_bit);
855 int r = x << lo_bit;
856 return r;
857 }
858
859 // inv_op for ppc instructions
860 static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
861
862 // Determine target address from li, bd field of branch instruction.
863 static intptr_t inv_li_field(int x) {
864 intptr_t r = inv_s_field_ppc(x, 25, 2);
865 r = (r << 2);
866 return r;
867 }
868 static intptr_t inv_bd_field(int x, intptr_t pos) {
869 intptr_t r = inv_s_field_ppc(x, 15, 2);
870 r = (r << 2) + pos;
871 return r;
872 }
873
874 #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
875 #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
876 // Extract instruction fields from instruction words.
877 public:
878 static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
879 static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
880 static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); }
881 static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); }
882 // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
883 // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
884 static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
885 static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
886 static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
887 static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); }
888 static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
889 static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); }
890 static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
891
892 #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
893 #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
894
895 // instruction fields
896 static int aa( int x) { return opp_u_field(x, 30, 30); }
897 static int ba( int x) { return opp_u_field(x, 15, 11); }
898 static int bb( int x) { return opp_u_field(x, 20, 16); }
899 static int bc( int x) { return opp_u_field(x, 25, 21); }
900 static int bd( int x) { return opp_s_field(x, 29, 16); }
901 static int bf( ConditionRegister cr) { return bf(cr->encoding()); }
902 static int bf( int x) { return opp_u_field(x, 8, 6); }
903 static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); }
904 static int bfa( int x) { return opp_u_field(x, 13, 11); }
905 static int bh( int x) { return opp_u_field(x, 20, 19); }
906 static int bi( int x) { return opp_u_field(x, 15, 11); }
907 static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
908 static int bo( int x) { return opp_u_field(x, 10, 6); }
909 static int bt( int x) { return opp_u_field(x, 10, 6); }
910 static int d1( int x) { return opp_s_field(x, 31, 16); }
911 static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
912 static int eh( int x) { return opp_u_field(x, 31, 31); }
913 static int flm( int x) { return opp_u_field(x, 14, 7); }
914 static int fra( FloatRegister r) { return fra(r->encoding());}
915 static int frb( FloatRegister r) { return frb(r->encoding());}
916 static int frc( FloatRegister r) { return frc(r->encoding());}
917 static int frs( FloatRegister r) { return frs(r->encoding());}
918 static int frt( FloatRegister r) { return frt(r->encoding());}
919 static int fra( int x) { return opp_u_field(x, 15, 11); }
920 static int frb( int x) { return opp_u_field(x, 20, 16); }
921 static int frc( int x) { return opp_u_field(x, 25, 21); }
922 static int frs( int x) { return opp_u_field(x, 10, 6); }
923 static int frt( int x) { return opp_u_field(x, 10, 6); }
924 static int fxm( int x) { return opp_u_field(x, 19, 12); }
925 static int l10( int x) { return opp_u_field(x, 10, 10); }
926 static int l15( int x) { return opp_u_field(x, 15, 15); }
927 static int l910( int x) { return opp_u_field(x, 10, 9); }
928 static int lev( int x) { return opp_u_field(x, 26, 20); }
929 static int li( int x) { return opp_s_field(x, 29, 6); }
930 static int lk( int x) { return opp_u_field(x, 31, 31); }
931 static int mb2125( int x) { return opp_u_field(x, 25, 21); }
932 static int me2630( int x) { return opp_u_field(x, 30, 26); }
933 static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
934 static int me2126( int x) { return mb2126(x); }
935 static int nb( int x) { return opp_u_field(x, 20, 16); }
936 //static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes
937 static int oe( int x) { return opp_u_field(x, 21, 21); }
938 static int ra( Register r) { return ra(r->encoding()); }
939 static int ra( int x) { return opp_u_field(x, 15, 11); }
940 static int rb( Register r) { return rb(r->encoding()); }
941 static int rb( int x) { return opp_u_field(x, 20, 16); }
942 static int rc( int x) { return opp_u_field(x, 31, 31); }
943 static int rs( Register r) { return rs(r->encoding()); }
944 static int rs( int x) { return opp_u_field(x, 10, 6); }
945 // we don't want to use R0 in memory accesses, because it has value `0' then
946 static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
947 static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); }
948
949 // register r is target
950 static int rt( Register r) { return rs(r); }
951 static int rt( int x) { return rs(x); }
952 static int rta( Register r) { return ra(r); }
953 static int rta0mem( Register r) { rta(r); return ra0mem(r); }
954
955 static int sh1620( int x) { return opp_u_field(x, 20, 16); }
956 static int sh30( int x) { return opp_u_field(x, 30, 30); }
957 static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
958 static int si( int x) { return opp_s_field(x, 31, 16); }
959 static int spr( int x) { return opp_u_field(x, 20, 11); }
960 static int sr( int x) { return opp_u_field(x, 15, 12); }
961 static int tbr( int x) { return opp_u_field(x, 20, 11); }
962 static int th( int x) { return opp_u_field(x, 10, 7); }
963 static int thct( int x) { assert((x&8)==0, "must be valid cache specification"); return th(x); }
964 static int thds( int x) { assert((x&8)==8, "must be valid stream specification"); return th(x); }
965 static int to( int x) { return opp_u_field(x, 10, 6); }
966 static int u( int x) { return opp_u_field(x, 19, 16); }
967 static int ui( int x) { return opp_u_field(x, 31, 16); }
968
969 // support vector instructions for >= Power6
970 static int vra( int x) { return opp_u_field(x, 15, 11); }
971 static int vrb( int x) { return opp_u_field(x, 20, 16); }
972 static int vrc( int x) { return opp_u_field(x, 25, 21); }
973 static int vrs( int x) { return opp_u_field(x, 10, 6); }
974 static int vrt( int x) { return opp_u_field(x, 10, 6); }
975
976 static int vra( VectorRegister r) { return vra(r->encoding());}
977 static int vrb( VectorRegister r) { return vrb(r->encoding());}
978 static int vrc( VectorRegister r) { return vrc(r->encoding());}
979 static int vrs( VectorRegister r) { return vrs(r->encoding());}
980 static int vrt( VectorRegister r) { return vrt(r->encoding());}
981
982 static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions
983 static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions
984 static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction
985 static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions
986
987 //static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes
988 //static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes
989 //static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes
990 //static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes
991 //static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes
992 //static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes
993 //static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes
994
995 protected:
996 // Compute relative address for branch.
997 static intptr_t disp(intptr_t x, intptr_t off) {
998 int xx = x - off;
999 xx = xx >> 2;
1000 return xx;
1001 }
1002
1003 public:
1004 // signed immediate, in low bits, nbits long
1005 static int simm(int x, int nbits) {
1006 assert_signed_range(x, nbits);
1007 return x & ((1 << nbits) - 1);
1008 }
1009
1010 // unsigned immediate, in low bits, nbits long
1011 static int uimm(int x, int nbits) {
1012 assert_unsigned_const(x, nbits);
1013 return x & ((1 << nbits) - 1);
1014 }
1015
1016 static void set_imm(int* instr, short s) {
1017 short* p = ((short *)instr) + 1;
1018 *p = s;
1019 }
1020
1021 static int get_imm(address a, int instruction_number) {
1022 short imm;
1023 short *p =((short *)a)+2*instruction_number+1;
1024 imm = *p;
1025 return (int)imm;
1026 }
1027
1028 static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); }
1029 static inline int lo16_unsigned(int x) { return x & 0xffff; }
1030
1031 protected:
1032
1033 // Extract the top 32 bits in a 64 bit word.
1034 static int32_t hi32(int64_t x) {
1035 int32_t r = int32_t((uint64_t)x >> 32);
1036 return r;
1037 }
1038
1039 public:
1040
1041 static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1042 return ((addr + (a - 1)) & ~(a - 1));
1043 }
1044
1045 static inline bool is_aligned(unsigned int addr, unsigned int a) {
1046 return (0 == addr % a);
1047 }
1048
1049 void flush() {
1050 AbstractAssembler::flush();
1051 }
1052
1053 inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
1054 inline void emit_data(int);
1055 inline void emit_data(int, RelocationHolder const&);
1056 inline void emit_data(int, relocInfo::relocType rtype);
1057
1058 // Emit an address.
1059 inline address emit_addr(const address addr = NULL);
1060
1061 // Emit a function descriptor with the specified entry point, TOC,
1062 // and ENV. If the entry point is NULL, the descriptor will point
1063 // just past the descriptor.
1064 // Use values from friend functions as defaults.
1065 inline address emit_fd(address entry = NULL,
1066 address toc = (address) FunctionDescriptor::friend_toc,
1067 address env = (address) FunctionDescriptor::friend_env);
1068
1069 /////////////////////////////////////////////////////////////////////////////////////
1070 // PPC instructions
1071 /////////////////////////////////////////////////////////////////////////////////////
1072
1073 // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1074 // immediates. The normal instruction encoders enforce that r0 is not
1075 // passed to them. Use either extended mnemonics encoders or the special ra0
1076 // versions.
1077
1078 // Issue an illegal instruction.
1079 inline void illtrap();
1080 static inline bool is_illtrap(int x);
1081
1082 // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1083 inline void addi( Register d, Register a, int si16);
1084 inline void addis(Register d, Register a, int si16);
1085 private:
1086 inline void addi_r0ok( Register d, Register a, int si16);
1087 inline void addis_r0ok(Register d, Register a, int si16);
1088 public:
1089 inline void addic_( Register d, Register a, int si16);
1090 inline void subfic( Register d, Register a, int si16);
1091 inline void add( Register d, Register a, Register b);
1092 inline void add_( Register d, Register a, Register b);
1093 inline void subf( Register d, Register a, Register b);
1094 inline void sub( Register d, Register a, Register b);
1095 inline void subf_( Register d, Register a, Register b);
1096 inline void addc( Register d, Register a, Register b);
1097 inline void addc_( Register d, Register a, Register b);
1098 inline void subfc( Register d, Register a, Register b);
1099 inline void subfc_( Register d, Register a, Register b);
1100 inline void adde( Register d, Register a, Register b);
1101 inline void adde_( Register d, Register a, Register b);
1102 inline void subfe( Register d, Register a, Register b);
1103 inline void subfe_( Register d, Register a, Register b);
1104 inline void neg( Register d, Register a);
1105 inline void neg_( Register d, Register a);
1106 inline void mulli( Register d, Register a, int si16);
1107 inline void mulld( Register d, Register a, Register b);
1108 inline void mulld_( Register d, Register a, Register b);
1109 inline void mullw( Register d, Register a, Register b);
1110 inline void mullw_( Register d, Register a, Register b);
1111 inline void mulhw( Register d, Register a, Register b);
1112 inline void mulhw_( Register d, Register a, Register b);
1113 inline void mulhd( Register d, Register a, Register b);
1114 inline void mulhd_( Register d, Register a, Register b);
1115 inline void mulhdu( Register d, Register a, Register b);
1116 inline void mulhdu_(Register d, Register a, Register b);
1117 inline void divd( Register d, Register a, Register b);
1118 inline void divd_( Register d, Register a, Register b);
1119 inline void divw( Register d, Register a, Register b);
1120 inline void divw_( Register d, Register a, Register b);
1121
1122 // extended mnemonics
1123 inline void li( Register d, int si16);
1124 inline void lis( Register d, int si16);
1125 inline void addir(Register d, int si16, Register a);
1126
1127 static bool is_addi(int x) {
1128 return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1129 }
1130 static bool is_addis(int x) {
1131 return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1132 }
1133 static bool is_bxx(int x) {
1134 return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1135 }
1136 static bool is_b(int x) {
1137 return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1138 }
1139 static bool is_bl(int x) {
1140 return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1141 }
1142 static bool is_bcxx(int x) {
1143 return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1144 }
1145 static bool is_bxx_or_bcxx(int x) {
1146 return is_bxx(x) || is_bcxx(x);
1147 }
1148 static bool is_bctrl(int x) {
1149 return x == 0x4e800421;
1150 }
1151 static bool is_bctr(int x) {
1152 return x == 0x4e800420;
1153 }
1154 static bool is_bclr(int x) {
1155 return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1156 }
1157 static bool is_li(int x) {
1158 return is_addi(x) && inv_ra_field(x)==0;
1159 }
1160 static bool is_lis(int x) {
1161 return is_addis(x) && inv_ra_field(x)==0;
1162 }
1163 static bool is_mtctr(int x) {
1164 return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1165 }
1166 static bool is_ld(int x) {
1167 return LD_OPCODE == (x & LD_OPCODE_MASK);
1168 }
1169 static bool is_std(int x) {
1170 return STD_OPCODE == (x & STD_OPCODE_MASK);
1171 }
1172 static bool is_stdu(int x) {
1173 return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1174 }
1175 static bool is_stdx(int x) {
1176 return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1177 }
1178 static bool is_stdux(int x) {
1179 return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1180 }
1181 static bool is_stwx(int x) {
1182 return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1183 }
1184 static bool is_stwux(int x) {
1185 return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1186 }
1187 static bool is_stw(int x) {
1188 return STW_OPCODE == (x & STW_OPCODE_MASK);
1189 }
1190 static bool is_stwu(int x) {
1191 return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1192 }
1193 static bool is_ori(int x) {
1194 return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1195 };
1196 static bool is_oris(int x) {
1197 return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1198 };
1199 static bool is_rldicr(int x) {
1200 return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1201 };
1202 static bool is_nop(int x) {
1203 return x == 0x60000000;
1204 }
1205 // endgroup opcode for Power6
1206 static bool is_endgroup(int x) {
1207 return is_ori(x) && inv_ra_field(x)==1 && inv_rs_field(x)==1 && inv_d1_field(x)==0;
1208 }
1209
1210
1211 private:
1212 // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1213 inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1214 inline void cmp( ConditionRegister bf, int l, Register a, Register b);
1215 inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1216 inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1217
1218 public:
1219 // extended mnemonics of Compare Instructions
1220 inline void cmpwi( ConditionRegister crx, Register a, int si16);
1221 inline void cmpdi( ConditionRegister crx, Register a, int si16);
1222 inline void cmpw( ConditionRegister crx, Register a, Register b);
1223 inline void cmpd( ConditionRegister crx, Register a, Register b);
1224 inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1225 inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1226 inline void cmplw( ConditionRegister crx, Register a, Register b);
1227 inline void cmpld( ConditionRegister crx, Register a, Register b);
1228
1229 inline void isel( Register d, Register a, Register b, int bc);
1230
1231 // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1232 void andi( Register a, Register s, int ui16); // optimized version
1233 inline void andi_( Register a, Register s, int ui16);
1234 inline void andis_( Register a, Register s, int ui16);
1235 inline void ori( Register a, Register s, int ui16);
1236 inline void oris( Register a, Register s, int ui16);
1237 inline void xori( Register a, Register s, int ui16);
1238 inline void xoris( Register a, Register s, int ui16);
1239 inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword
1240 inline void and_( Register a, Register s, Register b);
1241 // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
1242 // SMT-priority change instruction (see SMT instructions below).
1243 inline void or_unchecked(Register a, Register s, Register b);
1244 inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword
1245 inline void or_( Register a, Register s, Register b);
1246 inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword
1247 inline void xor_( Register a, Register s, Register b);
1248 inline void nand( Register a, Register s, Register b);
1249 inline void nand_( Register a, Register s, Register b);
1250 inline void nor( Register a, Register s, Register b);
1251 inline void nor_( Register a, Register s, Register b);
1252 inline void andc( Register a, Register s, Register b);
1253 inline void andc_( Register a, Register s, Register b);
1254 inline void orc( Register a, Register s, Register b);
1255 inline void orc_( Register a, Register s, Register b);
1256 inline void extsb( Register a, Register s);
1257 inline void extsh( Register a, Register s);
1258 inline void extsw( Register a, Register s);
1259
1260 // extended mnemonics
1261 inline void nop();
1262 // NOP for FP and BR units (different versions to allow them to be in one group)
1263 inline void fpnop0();
1264 inline void fpnop1();
1265 inline void brnop0();
1266 inline void brnop1();
1267 inline void brnop2();
1268
1269 inline void mr( Register d, Register s);
1270 inline void ori_opt( Register d, int ui16);
1271 inline void oris_opt(Register d, int ui16);
1272
1273 // endgroup opcode for Power6
1274 inline void endgroup();
1275
1276 // count instructions
1277 inline void cntlzw( Register a, Register s);
1278 inline void cntlzw_( Register a, Register s);
1279 inline void cntlzd( Register a, Register s);
1280 inline void cntlzd_( Register a, Register s);
1281
1282 // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1283 inline void sld( Register a, Register s, Register b);
1284 inline void sld_( Register a, Register s, Register b);
1285 inline void slw( Register a, Register s, Register b);
1286 inline void slw_( Register a, Register s, Register b);
1287 inline void srd( Register a, Register s, Register b);
1288 inline void srd_( Register a, Register s, Register b);
1289 inline void srw( Register a, Register s, Register b);
1290 inline void srw_( Register a, Register s, Register b);
1291 inline void srad( Register a, Register s, Register b);
1292 inline void srad_( Register a, Register s, Register b);
1293 inline void sraw( Register a, Register s, Register b);
1294 inline void sraw_( Register a, Register s, Register b);
1295 inline void sradi( Register a, Register s, int sh6);
1296 inline void sradi_( Register a, Register s, int sh6);
1297 inline void srawi( Register a, Register s, int sh5);
1298 inline void srawi_( Register a, Register s, int sh5);
1299
1300 // extended mnemonics for Shift Instructions
1301 inline void sldi( Register a, Register s, int sh6);
1302 inline void sldi_( Register a, Register s, int sh6);
1303 inline void slwi( Register a, Register s, int sh5);
1304 inline void slwi_( Register a, Register s, int sh5);
1305 inline void srdi( Register a, Register s, int sh6);
1306 inline void srdi_( Register a, Register s, int sh6);
1307 inline void srwi( Register a, Register s, int sh5);
1308 inline void srwi_( Register a, Register s, int sh5);
1309
1310 inline void clrrdi( Register a, Register s, int ui6);
1311 inline void clrrdi_( Register a, Register s, int ui6);
1312 inline void clrldi( Register a, Register s, int ui6);
1313 inline void clrldi_( Register a, Register s, int ui6);
1314 inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1315 inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1316 inline void extrdi( Register a, Register s, int n, int b);
1317 // testbit with condition register
1318 inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1319
1320 // rotate instructions
1321 inline void rotldi( Register a, Register s, int n);
1322 inline void rotrdi( Register a, Register s, int n);
1323 inline void rotlwi( Register a, Register s, int n);
1324 inline void rotrwi( Register a, Register s, int n);
1325
1326 // Rotate Instructions
1327 inline void rldic( Register a, Register s, int sh6, int mb6);
1328 inline void rldic_( Register a, Register s, int sh6, int mb6);
1329 inline void rldicr( Register a, Register s, int sh6, int mb6);
1330 inline void rldicr_( Register a, Register s, int sh6, int mb6);
1331 inline void rldicl( Register a, Register s, int sh6, int mb6);
1332 inline void rldicl_( Register a, Register s, int sh6, int mb6);
1333 inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5);
1334 inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1335 inline void rldimi( Register a, Register s, int sh6, int mb6);
1336 inline void rldimi_( Register a, Register s, int sh6, int mb6);
1337 inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5);
1338 inline void insrdi( Register a, Register s, int n, int b);
1339 inline void insrwi( Register a, Register s, int n, int b);
1340
1341 // PPC 1, section 3.3.2 Fixed-Point Load Instructions
1342 // 4 bytes
1343 inline void lwzx( Register d, Register s1, Register s2);
1344 inline void lwz( Register d, int si16, Register s1);
1345 inline void lwzu( Register d, int si16, Register s1);
1346
1347 // 4 bytes
1348 inline void lwax( Register d, Register s1, Register s2);
1349 inline void lwa( Register d, int si16, Register s1);
1350
1351 // 2 bytes
1352 inline void lhzx( Register d, Register s1, Register s2);
1353 inline void lhz( Register d, int si16, Register s1);
1354 inline void lhzu( Register d, int si16, Register s1);
1355
1356 // 2 bytes
1357 inline void lhax( Register d, Register s1, Register s2);
1358 inline void lha( Register d, int si16, Register s1);
1359 inline void lhau( Register d, int si16, Register s1);
1360
1361 // 1 byte
1362 inline void lbzx( Register d, Register s1, Register s2);
1363 inline void lbz( Register d, int si16, Register s1);
1364 inline void lbzu( Register d, int si16, Register s1);
1365
1366 // 8 bytes
1367 inline void ldx( Register d, Register s1, Register s2);
1368 inline void ld( Register d, int si16, Register s1);
1369 inline void ldu( Register d, int si16, Register s1);
1370
1371 // PPC 1, section 3.3.3 Fixed-Point Store Instructions
1372 inline void stwx( Register d, Register s1, Register s2);
1373 inline void stw( Register d, int si16, Register s1);
1374 inline void stwu( Register d, int si16, Register s1);
1375
1376 inline void sthx( Register d, Register s1, Register s2);
1377 inline void sth( Register d, int si16, Register s1);
1378 inline void sthu( Register d, int si16, Register s1);
1379
1380 inline void stbx( Register d, Register s1, Register s2);
1381 inline void stb( Register d, int si16, Register s1);
1382 inline void stbu( Register d, int si16, Register s1);
1383
1384 inline void stdx( Register d, Register s1, Register s2);
1385 inline void std( Register d, int si16, Register s1);
1386 inline void stdu( Register d, int si16, Register s1);
1387 inline void stdux(Register s, Register a, Register b);
1388
1389 // PPC 1, section 3.3.13 Move To/From System Register Instructions
1390 inline void mtlr( Register s1);
1391 inline void mflr( Register d);
1392 inline void mtctr(Register s1);
1393 inline void mfctr(Register d);
1394 inline void mtcrf(int fxm, Register s);
1395 inline void mfcr( Register d);
1396 inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1397 inline void mtcr( Register s);
1398
1399 // PPC 1, section 2.4.1 Branch Instructions
1400 inline void b( address a, relocInfo::relocType rt = relocInfo::none);
1401 inline void b( Label& L);
1402 inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1403 inline void bl( Label& L);
1404 inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1405 inline void bc( int boint, int biint, Label& L);
1406 inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1407 inline void bcl(int boint, int biint, Label& L);
1408
1409 inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1410 inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1411 inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1412 relocInfo::relocType rt = relocInfo::none);
1413 inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1414 relocInfo::relocType rt = relocInfo::none);
1415
1416 // helper function for b, bcxx
1417 inline bool is_within_range_of_b(address a, address pc);
1418 inline bool is_within_range_of_bcxx(address a, address pc);
1419
1420 // get the destination of a bxx branch (b, bl, ba, bla)
1421 static inline address bxx_destination(address baddr);
1422 static inline address bxx_destination(int instr, address pc);
1423 static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1424
1425 // extended mnemonics for branch instructions
1426 inline void blt(ConditionRegister crx, Label& L);
1427 inline void bgt(ConditionRegister crx, Label& L);
1428 inline void beq(ConditionRegister crx, Label& L);
1429 inline void bso(ConditionRegister crx, Label& L);
1430 inline void bge(ConditionRegister crx, Label& L);
1431 inline void ble(ConditionRegister crx, Label& L);
1432 inline void bne(ConditionRegister crx, Label& L);
1433 inline void bns(ConditionRegister crx, Label& L);
1434
1435 // Branch instructions with static prediction hints.
1436 inline void blt_predict_taken( ConditionRegister crx, Label& L);
1437 inline void bgt_predict_taken( ConditionRegister crx, Label& L);
1438 inline void beq_predict_taken( ConditionRegister crx, Label& L);
1439 inline void bso_predict_taken( ConditionRegister crx, Label& L);
1440 inline void bge_predict_taken( ConditionRegister crx, Label& L);
1441 inline void ble_predict_taken( ConditionRegister crx, Label& L);
1442 inline void bne_predict_taken( ConditionRegister crx, Label& L);
1443 inline void bns_predict_taken( ConditionRegister crx, Label& L);
1444 inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1445 inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1446 inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1447 inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1448 inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1449 inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1450 inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1451 inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1452
1453 // for use in conjunction with testbitdi:
1454 inline void btrue( ConditionRegister crx, Label& L);
1455 inline void bfalse(ConditionRegister crx, Label& L);
1456
1457 inline void bltl(ConditionRegister crx, Label& L);
1458 inline void bgtl(ConditionRegister crx, Label& L);
1459 inline void beql(ConditionRegister crx, Label& L);
1460 inline void bsol(ConditionRegister crx, Label& L);
1461 inline void bgel(ConditionRegister crx, Label& L);
1462 inline void blel(ConditionRegister crx, Label& L);
1463 inline void bnel(ConditionRegister crx, Label& L);
1464 inline void bnsl(ConditionRegister crx, Label& L);
1465
1466 // extended mnemonics for Branch Instructions via LR
1467 // We use `blr' for returns.
1468 inline void blr(relocInfo::relocType rt = relocInfo::none);
1469
1470 // extended mnemonics for Branch Instructions with CTR
1471 // bdnz means `decrement CTR and jump to L if CTR is not zero'
1472 inline void bdnz(Label& L);
1473 // Decrement and branch if result is zero.
1474 inline void bdz(Label& L);
1475 // we use `bctr[l]' for jumps/calls in function descriptor glue
1476 // code, e.g. calls to runtime functions
1477 inline void bctr( relocInfo::relocType rt = relocInfo::none);
1478 inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1479 // conditional jumps/branches via CTR
1480 inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1481 inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1482 inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1483 inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1484
1485 // condition register logic instructions
1486 inline void crand( int d, int s1, int s2);
1487 inline void crnand(int d, int s1, int s2);
1488 inline void cror( int d, int s1, int s2);
1489 inline void crxor( int d, int s1, int s2);
1490 inline void crnor( int d, int s1, int s2);
1491 inline void creqv( int d, int s1, int s2);
1492 inline void crandc(int d, int s1, int s2);
1493 inline void crorc( int d, int s1, int s2);
1494
1495 // icache and dcache related instructions
1496 inline void icbi( Register s1, Register s2);
1497 //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1498 inline void dcbz( Register s1, Register s2);
1499 inline void dcbst( Register s1, Register s2);
1500 inline void dcbf( Register s1, Register s2);
1501
1502 enum ct_cache_specification {
1503 ct_primary_cache = 0,
1504 ct_secondary_cache = 2
1505 };
1506 // dcache read hint
1507 inline void dcbt( Register s1, Register s2);
1508 inline void dcbtct( Register s1, Register s2, int ct);
1509 inline void dcbtds( Register s1, Register s2, int ds);
1510 // dcache write hint
1511 inline void dcbtst( Register s1, Register s2);
1512 inline void dcbtstct(Register s1, Register s2, int ct);
1513
1514 // machine barrier instructions:
1515 //
1516 // - sync two-way memory barrier, aka fence
1517 // - lwsync orders Store|Store,
1518 // Load|Store,
1519 // Load|Load,
1520 // but not Store|Load
1521 // - eieio orders memory accesses for device memory (only)
1522 // - isync invalidates speculatively executed instructions
1523 // From the Power ISA 2.06 documentation:
1524 // "[...] an isync instruction prevents the execution of
1525 // instructions following the isync until instructions
1526 // preceding the isync have completed, [...]"
1527 // From IBM's AIX assembler reference:
1528 // "The isync [...] instructions causes the processor to
1529 // refetch any instructions that might have been fetched
1530 // prior to the isync instruction. The instruction isync
1531 // causes the processor to wait for all previous instructions
1532 // to complete. Then any instructions already fetched are
1533 // discarded and instruction processing continues in the
1534 // environment established by the previous instructions."
1535 //
1536 // semantic barrier instructions:
1537 // (as defined in orderAccess.hpp)
1538 //
1539 // - release orders Store|Store, (maps to lwsync)
1540 // Load|Store
1541 // - acquire orders Load|Store, (maps to lwsync)
1542 // Load|Load
1543 // - fence orders Store|Store, (maps to sync)
1544 // Load|Store,
1545 // Load|Load,
1546 // Store|Load
1547 //
1548 private:
1549 inline void sync(int l);
1550 public:
1551 inline void sync();
1552 inline void lwsync();
1553 inline void ptesync();
1554 inline void eieio();
1555 inline void isync();
1556
1557 inline void release();
1558 inline void acquire();
1559 inline void fence();
1560
1561 // atomics
1562 inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1563 inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1564 inline bool lxarx_hint_exclusive_access();
1565 inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1566 inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1567 inline void stwcx_( Register s, Register a, Register b);
1568 inline void stdcx_( Register s, Register a, Register b);
1569
1570 // Instructions for adjusting thread priority for simultaneous
1571 // multithreading (SMT) on Power5.
1572 private:
1573 inline void smt_prio_very_low();
1574 inline void smt_prio_medium_high();
1575 inline void smt_prio_high();
1576
1577 public:
1578 inline void smt_prio_low();
1579 inline void smt_prio_medium_low();
1580 inline void smt_prio_medium();
1581
1582 // trap instructions
1583 inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
1584 // NOT FOR DIRECT USE!!
1585 protected:
1586 inline void tdi_unchecked(int tobits, Register a, int si16);
1587 inline void twi_unchecked(int tobits, Register a, int si16);
1588 inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP
1589 inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP
1590 inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP
1591 inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP
1592
1593 static bool is_tdi(int x, int tobits, int ra, int si16) {
1594 return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
1595 && (tobits == inv_to_field(x))
1596 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1597 && (si16 == inv_si_field(x));
1598 }
1599
1600 static bool is_twi(int x, int tobits, int ra, int si16) {
1601 return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1602 && (tobits == inv_to_field(x))
1603 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1604 && (si16 == inv_si_field(x));
1605 }
1606
1607 static bool is_twi(int x, int tobits, int ra) {
1608 return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1609 && (tobits == inv_to_field(x))
1610 && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
1611 }
1612
1613 static bool is_td(int x, int tobits, int ra, int rb) {
1614 return (TD_OPCODE == (x & TD_OPCODE_MASK))
1615 && (tobits == inv_to_field(x))
1616 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1617 && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1618 }
1619
1620 static bool is_tw(int x, int tobits, int ra, int rb) {
1621 return (TW_OPCODE == (x & TW_OPCODE_MASK))
1622 && (tobits == inv_to_field(x))
1623 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1624 && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1625 }
1626
1627 public:
1628 // PPC floating point instructions
1629 // PPC 1, section 4.6.2 Floating-Point Load Instructions
1630 inline void lfs( FloatRegister d, int si16, Register a);
1631 inline void lfsu( FloatRegister d, int si16, Register a);
1632 inline void lfsx( FloatRegister d, Register a, Register b);
1633 inline void lfd( FloatRegister d, int si16, Register a);
1634 inline void lfdu( FloatRegister d, int si16, Register a);
1635 inline void lfdx( FloatRegister d, Register a, Register b);
1636
1637 // PPC 1, section 4.6.3 Floating-Point Store Instructions
1638 inline void stfs( FloatRegister s, int si16, Register a);
1639 inline void stfsu( FloatRegister s, int si16, Register a);
1640 inline void stfsx( FloatRegister s, Register a, Register b);
1641 inline void stfd( FloatRegister s, int si16, Register a);
1642 inline void stfdu( FloatRegister s, int si16, Register a);
1643 inline void stfdx( FloatRegister s, Register a, Register b);
1644
1645 // PPC 1, section 4.6.4 Floating-Point Move Instructions
1646 inline void fmr( FloatRegister d, FloatRegister b);
1647 inline void fmr_( FloatRegister d, FloatRegister b);
1648
1649 // inline void mffgpr( FloatRegister d, Register b);
1650 // inline void mftgpr( Register d, FloatRegister b);
1651 inline void cmpb( Register a, Register s, Register b);
1652 inline void popcntb(Register a, Register s);
1653 inline void popcntw(Register a, Register s);
1654 inline void popcntd(Register a, Register s);
1655
1656 inline void fneg( FloatRegister d, FloatRegister b);
1657 inline void fneg_( FloatRegister d, FloatRegister b);
1658 inline void fabs( FloatRegister d, FloatRegister b);
1659 inline void fabs_( FloatRegister d, FloatRegister b);
1660 inline void fnabs( FloatRegister d, FloatRegister b);
1661 inline void fnabs_(FloatRegister d, FloatRegister b);
1662
1663 // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
1664 inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b);
1665 inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
1666 inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
1667 inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
1668 inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b);
1669 inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
1670 inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
1671 inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
1672 inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c);
1673 inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
1674 inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
1675 inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
1676 inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b);
1677 inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
1678 inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
1679 inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
1680
1681 // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
1682 inline void frsp( FloatRegister d, FloatRegister b);
1683 inline void fctid( FloatRegister d, FloatRegister b);
1684 inline void fctidz(FloatRegister d, FloatRegister b);
1685 inline void fctiw( FloatRegister d, FloatRegister b);
1686 inline void fctiwz(FloatRegister d, FloatRegister b);
1687 inline void fcfid( FloatRegister d, FloatRegister b);
1688 inline void fcfids(FloatRegister d, FloatRegister b);
1689
1690 // PPC 1, section 4.6.7 Floating-Point Compare Instructions
1691 inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
1692
1693 inline void fsqrt( FloatRegister d, FloatRegister b);
1694 inline void fsqrts(FloatRegister d, FloatRegister b);
1695
1696 // Vector instructions for >= Power6.
1697 inline void lvebx( VectorRegister d, Register s1, Register s2);
1698 inline void lvehx( VectorRegister d, Register s1, Register s2);
1699 inline void lvewx( VectorRegister d, Register s1, Register s2);
1700 inline void lvx( VectorRegister d, Register s1, Register s2);
1701 inline void lvxl( VectorRegister d, Register s1, Register s2);
1702 inline void stvebx( VectorRegister d, Register s1, Register s2);
1703 inline void stvehx( VectorRegister d, Register s1, Register s2);
1704 inline void stvewx( VectorRegister d, Register s1, Register s2);
1705 inline void stvx( VectorRegister d, Register s1, Register s2);
1706 inline void stvxl( VectorRegister d, Register s1, Register s2);
1707 inline void lvsl( VectorRegister d, Register s1, Register s2);
1708 inline void lvsr( VectorRegister d, Register s1, Register s2);
1709 inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b);
1710 inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b);
1711 inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b);
1712 inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b);
1713 inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b);
1714 inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b);
1715 inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b);
1716 inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b);
1717 inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b);
1718 inline void vupkhpx( VectorRegister d, VectorRegister b);
1719 inline void vupkhsb( VectorRegister d, VectorRegister b);
1720 inline void vupkhsh( VectorRegister d, VectorRegister b);
1721 inline void vupklpx( VectorRegister d, VectorRegister b);
1722 inline void vupklsb( VectorRegister d, VectorRegister b);
1723 inline void vupklsh( VectorRegister d, VectorRegister b);
1724 inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b);
1725 inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b);
1726 inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b);
1727 inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b);
1728 inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b);
1729 inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b);
1730 inline void vsplt( VectorRegister d, int ui4, VectorRegister b);
1731 inline void vsplth( VectorRegister d, int ui3, VectorRegister b);
1732 inline void vspltw( VectorRegister d, int ui2, VectorRegister b);
1733 inline void vspltisb( VectorRegister d, int si5);
1734 inline void vspltish( VectorRegister d, int si5);
1735 inline void vspltisw( VectorRegister d, int si5);
1736 inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1737 inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1738 inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b);
1739 inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int si4);
1740 inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b);
1741 inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b);
1742 inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b);
1743 inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b);
1744 inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b);
1745 inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b);
1746 inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b);
1747 inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b);
1748 inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b);
1749 inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b);
1750 inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b);
1751 inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b);
1752 inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b);
1753 inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b);
1754 inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b);
1755 inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b);
1756 inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b);
1757 inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b);
1758 inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b);
1759 inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b);
1760 inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b);
1761 inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b);
1762 inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b);
1763 inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b);
1764 inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b);
1765 inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b);
1766 inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b);
1767 inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b);
1768 inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b);
1769 inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b);
1770 inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b);
1771 inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1772 inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
1773 inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1774 inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1775 inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1776 inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1777 inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1778 inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1779 inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1780 inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b);
1781 inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
1782 inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
1783 inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
1784 inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
1785 inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b);
1786 inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b);
1787 inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b);
1788 inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b);
1789 inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b);
1790 inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b);
1791 inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b);
1792 inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b);
1793 inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b);
1794 inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b);
1795 inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b);
1796 inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b);
1797 inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b);
1798 inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b);
1799 inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b);
1800 inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b);
1801 inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b);
1802 inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b);
1803 inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
1804 inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
1805 inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
1806 inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
1807 inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
1808 inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
1809 inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
1810 inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
1811 inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
1812 inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
1813 inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
1814 inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
1815 inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
1816 inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
1817 inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
1818 inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
1819 inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
1820 inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
1821 inline void vand( VectorRegister d, VectorRegister a, VectorRegister b);
1822 inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b);
1823 inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
1824 inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
1825 inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
1826 inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
1827 inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
1828 inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);
1829 inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b);
1830 inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b);
1831 inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b);
1832 inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b);
1833 inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b);
1834 inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b);
1835 inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b);
1836 inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b);
1837 inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b);
1838 // Vector Floating-Point not implemented yet
1839 inline void mtvscr( VectorRegister b);
1840 inline void mfvscr( VectorRegister d);
1841
1842 // The following encoders use r0 as second operand. These instructions
1843 // read r0 as '0'.
1844 inline void lwzx( Register d, Register s2);
1845 inline void lwz( Register d, int si16);
1846 inline void lwax( Register d, Register s2);
1847 inline void lwa( Register d, int si16);
1848 inline void lhzx( Register d, Register s2);
1849 inline void lhz( Register d, int si16);
1850 inline void lhax( Register d, Register s2);
1851 inline void lha( Register d, int si16);
1852 inline void lbzx( Register d, Register s2);
1853 inline void lbz( Register d, int si16);
1854 inline void ldx( Register d, Register s2);
1855 inline void ld( Register d, int si16);
1856 inline void stwx( Register d, Register s2);
1857 inline void stw( Register d, int si16);
1858 inline void sthx( Register d, Register s2);
1859 inline void sth( Register d, int si16);
1860 inline void stbx( Register d, Register s2);
1861 inline void stb( Register d, int si16);
1862 inline void stdx( Register d, Register s2);
1863 inline void std( Register d, int si16);
1864
1865 // PPC 2, section 3.2.1 Instruction Cache Instructions
1866 inline void icbi( Register s2);
1867 // PPC 2, section 3.2.2 Data Cache Instructions
1868 //inlinevoid dcba( Register s2); // Instruction for embedded processor only.
1869 inline void dcbz( Register s2);
1870 inline void dcbst( Register s2);
1871 inline void dcbf( Register s2);
1872 // dcache read hint
1873 inline void dcbt( Register s2);
1874 inline void dcbtct( Register s2, int ct);
1875 inline void dcbtds( Register s2, int ds);
1876 // dcache write hint
1877 inline void dcbtst( Register s2);
1878 inline void dcbtstct(Register s2, int ct);
1879
1880 // Atomics: use ra0mem to disallow R0 as base.
1881 inline void lwarx_unchecked(Register d, Register b, int eh1);
1882 inline void ldarx_unchecked(Register d, Register b, int eh1);
1883 inline void lwarx( Register d, Register b, bool hint_exclusive_access);
1884 inline void ldarx( Register d, Register b, bool hint_exclusive_access);
1885 inline void stwcx_(Register s, Register b);
1886 inline void stdcx_(Register s, Register b);
1887 inline void lfs( FloatRegister d, int si16);
1888 inline void lfsx( FloatRegister d, Register b);
1889 inline void lfd( FloatRegister d, int si16);
1890 inline void lfdx( FloatRegister d, Register b);
1891 inline void stfs( FloatRegister s, int si16);
1892 inline void stfsx( FloatRegister s, Register b);
1893 inline void stfd( FloatRegister s, int si16);
1894 inline void stfdx( FloatRegister s, Register b);
1895 inline void lvebx( VectorRegister d, Register s2);
1896 inline void lvehx( VectorRegister d, Register s2);
1897 inline void lvewx( VectorRegister d, Register s2);
1898 inline void lvx( VectorRegister d, Register s2);
1899 inline void lvxl( VectorRegister d, Register s2);
1900 inline void stvebx(VectorRegister d, Register s2);
1901 inline void stvehx(VectorRegister d, Register s2);
1902 inline void stvewx(VectorRegister d, Register s2);
1903 inline void stvx( VectorRegister d, Register s2);
1904 inline void stvxl( VectorRegister d, Register s2);
1905 inline void lvsl( VectorRegister d, Register s2);
1906 inline void lvsr( VectorRegister d, Register s2);
1907
1908 // RegisterOrConstant versions.
1909 // These emitters choose between the versions using two registers and
1910 // those with register and immediate, depending on the content of roc.
1911 // If the constant is not encodable as immediate, instructions to
1912 // load the constant are emitted beforehand. Store instructions need a
1913 // tmp reg if the constant is not encodable as immediate.
1914 // Size unpredictable.
1915 void ld( Register d, RegisterOrConstant roc, Register s1 = noreg);
1916 void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
1917 void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
1918 void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
1919 void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
1920 void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
1921 void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1922 void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1923 void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1924 void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1925 void add( Register d, RegisterOrConstant roc, Register s1);
1926 void subf(Register d, RegisterOrConstant roc, Register s1);
1927 void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
1928
1929
1930 // Emit several instructions to load a 64 bit constant. This issues a fixed
1931 // instruction pattern so that the constant can be patched later on.
1932 enum {
1933 load_const_size = 5 * BytesPerInstWord
1934 };
1935 void load_const(Register d, long a, Register tmp = noreg);
1936 inline void load_const(Register d, void* a, Register tmp = noreg);
1937 inline void load_const(Register d, Label& L, Register tmp = noreg);
1938 inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
1939
1940 // Load a 64 bit constant, optimized, not identifyable.
1941 // Tmp can be used to increase ILP. Set return_simm16_rest=true to get a
1942 // 16 bit immediate offset. This is useful if the offset can be encoded in
1943 // a succeeding instruction.
1944 int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false);
1945 inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
1946 return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
1947 }
1948
1949 // Creation
1950 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1951 #ifdef CHECK_DELAY
1952 delay_state = no_delay;
1953 #endif
1954 }
1955
1956 // Testing
1957 #ifndef PRODUCT
1958 void test_asm();
1959 #endif
1960 };
1961
1962
1963 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP