comparison src/cpu/sparc/vm/assembler_sparc.inline.hpp @ 7204:f0c2369fda5a

8003250: SPARC: move MacroAssembler into separate file Reviewed-by: jrose, kvn
author twisti
date Thu, 06 Dec 2012 09:57:41 -0800
parents 7eca5de9e0b6
children ffa87474d7a4
comparison
equal deleted inserted replaced
7201:c5d414e98fd4 7204:f0c2369fda5a
23 */ 23 */
24 24
25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
27 27
28 #include "asm/assembler.inline.hpp" 28 #include "asm/assembler.hpp"
29 #include "asm/codeBuffer.hpp"
30 #include "code/codeCache.hpp"
31 #include "runtime/handles.inline.hpp"
32 29
33 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
34 jint& stub_inst = *(jint*) branch;
35 stub_inst = patched_branch(target - branch, stub_inst, 0);
36 }
37
38 #ifndef PRODUCT
39 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
40 jint stub_inst = *(jint*) branch;
41 print_instruction(stub_inst);
42 ::tty->print("%s", " (unresolved)");
43 }
44 #endif // PRODUCT
45
46 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
47
48
49 inline int AddressLiteral::low10() const {
50 return Assembler::low10(value());
51 }
52
53
54 // inlines for SPARC assembler -- dmu 5/97
55 30
56 inline void Assembler::check_delay() { 31 inline void Assembler::check_delay() {
57 # ifdef CHECK_DELAY 32 # ifdef CHECK_DELAY
58 guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot"); 33 guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
59 delay_state = no_delay; 34 delay_state = no_delay;
74 relocate(rspec); 49 relocate(rspec);
75 emit_long(x); 50 emit_long(x);
76 } 51 }
77 52
78 53
79 inline void Assembler::add(Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); } 54 inline void Assembler::add(Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
80 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); } 55 inline void Assembler::add(Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
81 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
82 56
83 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only(); cti(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt); has_delay_slot(); } 57 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only(); cti(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt); has_delay_slot(); }
84 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); } 58 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
85 59
86 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep(); cti(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); } 60 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep(); cti(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); }
109 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 83 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
110 84
111 inline void Assembler::jmpl( Register s1, Register s2, Register d ) { cti(); emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); } 85 inline void Assembler::jmpl( Register s1, Register s2, Register d ) { cti(); emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); }
112 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { cti(); emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); has_delay_slot(); } 86 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { cti(); emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); has_delay_slot(); }
113 87
114 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
115 if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
116 else ldf(w, s1, s2.as_constant(), d);
117 }
118
119 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); } 88 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
120 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); } 89 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
121
122 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
123 90
124 inline void Assembler::ldfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); } 91 inline void Assembler::ldfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
125 inline void Assembler::ldfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 92 inline void Assembler::ldfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
126 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); } 93 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
127 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 94 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
150 inline void Assembler::ldx( Register s1, Register s2, Register d) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); } 117 inline void Assembler::ldx( Register s1, Register s2, Register d) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
151 inline void Assembler::ldx( Register s1, int simm13a, Register d) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 118 inline void Assembler::ldx( Register s1, int simm13a, Register d) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
152 inline void Assembler::ldd( Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); } 119 inline void Assembler::ldd( Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
153 inline void Assembler::ldd( Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 120 inline void Assembler::ldd( Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
154 121
155 #ifdef _LP64
156 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
157 inline void Assembler::ld( Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
158 inline void Assembler::ld( Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
159 #else
160 inline void Assembler::ld( Register s1, Register s2, Register d) { lduw( s1, s2, d); }
161 inline void Assembler::ld( Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
162 #endif
163
164 #ifdef ASSERT
165 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
166 # ifdef _LP64
167 inline void Assembler::ld( Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
168 # else
169 inline void Assembler::ld( Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
170 # endif
171 #endif
172
173 inline void Assembler::ld( const Address& a, Register d, int offset) {
174 if (a.has_index()) { assert(offset == 0, ""); ld( a.base(), a.index(), d); }
175 else { ld( a.base(), a.disp() + offset, d); }
176 }
177 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
178 if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(), d); }
179 else { ldsb(a.base(), a.disp() + offset, d); }
180 }
181 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
182 if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(), d); }
183 else { ldsh(a.base(), a.disp() + offset, d); }
184 }
185 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
186 if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(), d); }
187 else { ldsw(a.base(), a.disp() + offset, d); }
188 }
189 inline void Assembler::ldub(const Address& a, Register d, int offset) {
190 if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(), d); }
191 else { ldub(a.base(), a.disp() + offset, d); }
192 }
193 inline void Assembler::lduh(const Address& a, Register d, int offset) {
194 if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(), d); }
195 else { lduh(a.base(), a.disp() + offset, d); }
196 }
197 inline void Assembler::lduw(const Address& a, Register d, int offset) {
198 if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(), d); }
199 else { lduw(a.base(), a.disp() + offset, d); }
200 }
201 inline void Assembler::ldd( const Address& a, Register d, int offset) {
202 if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(), d); }
203 else { ldd( a.base(), a.disp() + offset, d); }
204 }
205 inline void Assembler::ldx( const Address& a, Register d, int offset) {
206 if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(), d); }
207 else { ldx( a.base(), a.disp() + offset, d); }
208 }
209
210 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
211 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
212 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
213 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
214 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
215 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
216 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
217 inline void Assembler::ld( Register s1, RegisterOrConstant s2, Register d) { ld( Address(s1, s2), d); }
218 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
219
220 // form effective addresses this way:
221 inline void Assembler::add(const Address& a, Register d, int offset) {
222 if (a.has_index()) add(a.base(), a.index(), d);
223 else { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
224 if (offset != 0) add(d, offset, d);
225 }
226 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
227 if (s2.is_register()) add(s1, s2.as_register(), d);
228 else { add(s1, s2.as_constant() + offset, d); offset = 0; }
229 if (offset != 0) add(d, offset, d);
230 }
231
232 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
233 if (s2.is_register()) andn(s1, s2.as_register(), d);
234 else andn(s1, s2.as_constant(), d);
235 }
236
237 inline void Assembler::ldstub( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); } 122 inline void Assembler::ldstub( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
238 inline void Assembler::ldstub( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 123 inline void Assembler::ldstub( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
239
240
241 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
242 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
243
244 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
245
246 124
247 inline void Assembler::rett( Register s1, Register s2 ) { cti(); emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); } 125 inline void Assembler::rett( Register s1, Register s2 ) { cti(); emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); }
248 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { cti(); emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt); has_delay_slot(); } 126 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { cti(); emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt); has_delay_slot(); }
249 127
250 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); } 128 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
251 129
252 // pp 222 130 // pp 222
253 131
254 inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
255 if (s2.is_register()) stf(w, d, s1, s2.as_register());
256 else stf(w, d, s1, s2.as_constant());
257 }
258
259 inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); } 132 inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
260 inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 133 inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
261
262 inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
263 relocate(a.rspec(offset));
264 if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index() ); }
265 else { stf(w, d, a.base(), a.disp() + offset); }
266 }
267 134
268 inline void Assembler::stfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); } 135 inline void Assembler::stfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
269 inline void Assembler::stfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 136 inline void Assembler::stfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
270 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); } 137 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
271 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 138 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
283 inline void Assembler::stx( Register d, Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); } 150 inline void Assembler::stx( Register d, Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
284 inline void Assembler::stx( Register d, Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 151 inline void Assembler::stx( Register d, Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
285 inline void Assembler::std( Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); } 152 inline void Assembler::std( Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
286 inline void Assembler::std( Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 153 inline void Assembler::std( Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
287 154
288 inline void Assembler::st( Register d, Register s1, Register s2) { stw(d, s1, s2); }
289 inline void Assembler::st( Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }
290
291 #ifdef ASSERT
292 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
293 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
294 #endif
295
296 inline void Assembler::stb(Register d, const Address& a, int offset) {
297 if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index() ); }
298 else { stb(d, a.base(), a.disp() + offset); }
299 }
300 inline void Assembler::sth(Register d, const Address& a, int offset) {
301 if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index() ); }
302 else { sth(d, a.base(), a.disp() + offset); }
303 }
304 inline void Assembler::stw(Register d, const Address& a, int offset) {
305 if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index() ); }
306 else { stw(d, a.base(), a.disp() + offset); }
307 }
308 inline void Assembler::st( Register d, const Address& a, int offset) {
309 if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index() ); }
310 else { st( d, a.base(), a.disp() + offset); }
311 }
312 inline void Assembler::std(Register d, const Address& a, int offset) {
313 if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index() ); }
314 else { std(d, a.base(), a.disp() + offset); }
315 }
316 inline void Assembler::stx(Register d, const Address& a, int offset) {
317 if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index() ); }
318 else { stx(d, a.base(), a.disp() + offset); }
319 }
320
321 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
322 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
323 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
324 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
325 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
326 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
327
328 // v8 p 99 155 // v8 p 99
329 156
330 inline void Assembler::stc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); } 157 inline void Assembler::stc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
331 inline void Assembler::stc( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 158 inline void Assembler::stc( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
332 inline void Assembler::stdc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); } 159 inline void Assembler::stdc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
334 inline void Assembler::stcsr( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); } 161 inline void Assembler::stcsr( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
335 inline void Assembler::stcsr( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 162 inline void Assembler::stcsr( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
336 inline void Assembler::stdcq( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); } 163 inline void Assembler::stdcq( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
337 inline void Assembler::stdcq( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 164 inline void Assembler::stdcq( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
338 165
339 inline void Assembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
340 if (s2.is_register()) sub(s1, s2.as_register(), d);
341 else { sub(s1, s2.as_constant() + offset, d); offset = 0; }
342 if (offset != 0) sub(d, offset, d);
343 }
344
345 // pp 231 166 // pp 231
346 167
347 inline void Assembler::swap( Register s1, Register s2, Register d) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); } 168 inline void Assembler::swap( Register s1, Register s2, Register d) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
348 inline void Assembler::swap( Register s1, int simm13a, Register d) { v9_dep(); emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } 169 inline void Assembler::swap( Register s1, int simm13a, Register d) { v9_dep(); emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
349 170
350 inline void Assembler::swap( Address& a, Register d, int offset ) {
351 relocate(a.rspec(offset));
352 if (a.has_index()) { assert(offset == 0, ""); swap( a.base(), a.index(), d ); }
353 else { swap( a.base(), a.disp() + offset, d ); }
354 }
355
356
357 // Use the right loads/stores for the platform
358 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
359 #ifdef _LP64
360 Assembler::ldx(s1, s2, d);
361 #else
362 Assembler::ld( s1, s2, d);
363 #endif
364 }
365
366 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
367 #ifdef _LP64
368 Assembler::ldx(s1, simm13a, d);
369 #else
370 Assembler::ld( s1, simm13a, d);
371 #endif
372 }
373
374 #ifdef ASSERT
375 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
376 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
377 ld_ptr(s1, in_bytes(simm13a), d);
378 }
379 #endif
380
381 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
382 #ifdef _LP64
383 Assembler::ldx(s1, s2, d);
384 #else
385 Assembler::ld( s1, s2, d);
386 #endif
387 }
388
389 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
390 #ifdef _LP64
391 Assembler::ldx(a, d, offset);
392 #else
393 Assembler::ld( a, d, offset);
394 #endif
395 }
396
397 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
398 #ifdef _LP64
399 Assembler::stx(d, s1, s2);
400 #else
401 Assembler::st( d, s1, s2);
402 #endif
403 }
404
405 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
406 #ifdef _LP64
407 Assembler::stx(d, s1, simm13a);
408 #else
409 Assembler::st( d, s1, simm13a);
410 #endif
411 }
412
413 #ifdef ASSERT
414 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
415 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
416 st_ptr(d, s1, in_bytes(simm13a));
417 }
418 #endif
419
420 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
421 #ifdef _LP64
422 Assembler::stx(d, s1, s2);
423 #else
424 Assembler::st( d, s1, s2);
425 #endif
426 }
427
428 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
429 #ifdef _LP64
430 Assembler::stx(d, a, offset);
431 #else
432 Assembler::st( d, a, offset);
433 #endif
434 }
435
436 // Use the right loads/stores for the platform
437 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
438 #ifdef _LP64
439 Assembler::ldx(s1, s2, d);
440 #else
441 Assembler::ldd(s1, s2, d);
442 #endif
443 }
444
445 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
446 #ifdef _LP64
447 Assembler::ldx(s1, simm13a, d);
448 #else
449 Assembler::ldd(s1, simm13a, d);
450 #endif
451 }
452
453 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
454 #ifdef _LP64
455 Assembler::ldx(s1, s2, d);
456 #else
457 Assembler::ldd(s1, s2, d);
458 #endif
459 }
460
461 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
462 #ifdef _LP64
463 Assembler::ldx(a, d, offset);
464 #else
465 Assembler::ldd(a, d, offset);
466 #endif
467 }
468
469 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
470 #ifdef _LP64
471 Assembler::stx(d, s1, s2);
472 #else
473 Assembler::std(d, s1, s2);
474 #endif
475 }
476
477 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
478 #ifdef _LP64
479 Assembler::stx(d, s1, simm13a);
480 #else
481 Assembler::std(d, s1, simm13a);
482 #endif
483 }
484
485 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
486 #ifdef _LP64
487 Assembler::stx(d, s1, s2);
488 #else
489 Assembler::std(d, s1, s2);
490 #endif
491 }
492
493 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
494 #ifdef _LP64
495 Assembler::stx(d, a, offset);
496 #else
497 Assembler::std(d, a, offset);
498 #endif
499 }
500
501 // Functions for isolating 64 bit shifts for LP64
502
503 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
504 #ifdef _LP64
505 Assembler::sllx(s1, s2, d);
506 #else
507 Assembler::sll( s1, s2, d);
508 #endif
509 }
510
511 inline void MacroAssembler::sll_ptr( Register s1, int imm6a, Register d ) {
512 #ifdef _LP64
513 Assembler::sllx(s1, imm6a, d);
514 #else
515 Assembler::sll( s1, imm6a, d);
516 #endif
517 }
518
519 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
520 #ifdef _LP64
521 Assembler::srlx(s1, s2, d);
522 #else
523 Assembler::srl( s1, s2, d);
524 #endif
525 }
526
527 inline void MacroAssembler::srl_ptr( Register s1, int imm6a, Register d ) {
528 #ifdef _LP64
529 Assembler::srlx(s1, imm6a, d);
530 #else
531 Assembler::srl( s1, imm6a, d);
532 #endif
533 }
534
535 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
536 if (s2.is_register()) sll_ptr(s1, s2.as_register(), d);
537 else sll_ptr(s1, s2.as_constant(), d);
538 }
539
540 // Use the right branch for the platform
541
542 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
543 if (VM_Version::v9_instructions_work())
544 Assembler::bp(c, a, icc, p, d, rt);
545 else
546 Assembler::br(c, a, d, rt);
547 }
548
549 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
550 br(c, a, p, target(L));
551 }
552
553
554 // Branch that tests either xcc or icc depending on the
555 // architecture compiled (LP64 or not)
556 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
557 #ifdef _LP64
558 Assembler::bp(c, a, xcc, p, d, rt);
559 #else
560 MacroAssembler::br(c, a, p, d, rt);
561 #endif
562 }
563
564 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
565 brx(c, a, p, target(L));
566 }
567
568 inline void MacroAssembler::ba( Label& L ) {
569 br(always, false, pt, L);
570 }
571
572 // Warning: V9 only functions
573 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
574 Assembler::bp(c, a, cc, p, d, rt);
575 }
576
577 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
578 Assembler::bp(c, a, cc, p, L);
579 }
580
581 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
582 if (VM_Version::v9_instructions_work())
583 fbp(c, a, fcc0, p, d, rt);
584 else
585 Assembler::fb(c, a, d, rt);
586 }
587
588 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
589 fb(c, a, p, target(L));
590 }
591
592 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
593 Assembler::fbp(c, a, cc, p, d, rt);
594 }
595
596 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
597 Assembler::fbp(c, a, cc, p, L);
598 }
599
600 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
601 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
602
603 inline bool MacroAssembler::is_far_target(address d) {
604 if (ForceUnreachable) {
605 // References outside the code cache should be treated as far
606 return d < CodeCache::low_bound() || d > CodeCache::high_bound();
607 }
608 return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
609 }
610
611 // Call with a check to see if we need to deal with the added
612 // expense of relocation and if we overflow the displacement
613 // of the quick call instruction.
614 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
615 #ifdef _LP64
616 intptr_t disp;
617 // NULL is ok because it will be relocated later.
618 // Must change NULL to a reachable address in order to
619 // pass asserts here and in wdisp.
620 if ( d == NULL )
621 d = pc();
622
623 // Is this address within range of the call instruction?
624 // If not, use the expensive instruction sequence
625 if (is_far_target(d)) {
626 relocate(rt);
627 AddressLiteral dest(d);
628 jumpl_to(dest, O7, O7);
629 } else {
630 Assembler::call(d, rt);
631 }
632 #else
633 Assembler::call( d, rt );
634 #endif
635 }
636
637 inline void MacroAssembler::call( Label& L, relocInfo::relocType rt ) {
638 MacroAssembler::call( target(L), rt);
639 }
640
641
642
643 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
644 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
645
646 // prefetch instruction
647 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
648 if (VM_Version::v9_instructions_work())
649 Assembler::bp( never, true, xcc, pt, d, rt );
650 }
651 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
652
653
654 // clobbers o7 on V8!!
655 // returns delta from gotten pc to addr after
656 inline int MacroAssembler::get_pc( Register d ) {
657 int x = offset();
658 if (VM_Version::v9_instructions_work())
659 rdpc(d);
660 else {
661 Label lbl;
662 Assembler::call(lbl, relocInfo::none); // No relocation as this is call to pc+0x8
663 if (d == O7) delayed()->nop();
664 else delayed()->mov(O7, d);
665 bind(lbl);
666 }
667 return offset() - x;
668 }
669
670
671 // Note: All MacroAssembler::set_foo functions are defined out-of-line.
672
673
674 // Loads the current PC of the following instruction as an immediate value in
675 // 2 instructions. All PCs in the CodeCache are within 2 Gig of each other.
676 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
677 intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
678 #ifdef _LP64
679 Unimplemented();
680 #else
681 Assembler::sethi( thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
682 Assembler::add(reg,thepc & 0x3ff, reg, internal_word_Relocation::spec((address)thepc));
683 #endif
684 return thepc;
685 }
686
687
688 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
689 assert_not_delayed();
690 if (ForceUnreachable) {
691 patchable_sethi(addrlit, d);
692 } else {
693 sethi(addrlit, d);
694 }
695 ld(d, addrlit.low10() + offset, d);
696 }
697
698
699 inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) {
700 assert_not_delayed();
701 if (ForceUnreachable) {
702 patchable_sethi(addrlit, d);
703 } else {
704 sethi(addrlit, d);
705 }
706 ldub(d, addrlit.low10() + offset, d);
707 }
708
709
710 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
711 assert_not_delayed();
712 if (ForceUnreachable) {
713 patchable_sethi(addrlit, d);
714 } else {
715 sethi(addrlit, d);
716 }
717 ld_ptr(d, addrlit.low10() + offset, d);
718 }
719
720
721 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
722 assert_not_delayed();
723 if (ForceUnreachable) {
724 patchable_sethi(addrlit, temp);
725 } else {
726 sethi(addrlit, temp);
727 }
728 st(s, temp, addrlit.low10() + offset);
729 }
730
731
732 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
733 assert_not_delayed();
734 if (ForceUnreachable) {
735 patchable_sethi(addrlit, temp);
736 } else {
737 sethi(addrlit, temp);
738 }
739 st_ptr(s, temp, addrlit.low10() + offset);
740 }
741
742
743 // This code sequence is relocatable to any address, even on LP64.
744 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
745 assert_not_delayed();
746 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
747 // variable length instruction streams.
748 patchable_sethi(addrlit, temp);
749 jmpl(temp, addrlit.low10() + offset, d);
750 }
751
752
753 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
754 jumpl_to(addrlit, temp, G0, offset);
755 }
756
757
758 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
759 int ld_offset, int jmp_offset) {
760 assert_not_delayed();
761 //sethi(al); // sethi is caller responsibility for this one
762 ld_ptr(a, temp, ld_offset);
763 jmp(temp, jmp_offset);
764 }
765
766
767 inline void MacroAssembler::set_metadata(Metadata* obj, Register d) {
768 set_metadata(allocate_metadata_address(obj), d);
769 }
770
771 inline void MacroAssembler::set_metadata_constant(Metadata* obj, Register d) {
772 set_metadata(constant_metadata_address(obj), d);
773 }
774
775 inline void MacroAssembler::set_metadata(const AddressLiteral& obj_addr, Register d) {
776 assert(obj_addr.rspec().type() == relocInfo::metadata_type, "must be a metadata reloc");
777 set(obj_addr, d);
778 }
779
780 inline void MacroAssembler::set_oop(jobject obj, Register d) {
781 set_oop(allocate_oop_address(obj), d);
782 }
783
784
785 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
786 set_oop(constant_oop_address(obj), d);
787 }
788
789
790 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
791 assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
792 set(obj_addr, d);
793 }
794
795
796 inline void MacroAssembler::load_argument( Argument& a, Register d ) {
797 if (a.is_register())
798 mov(a.as_register(), d);
799 else
800 ld (a.as_address(), d);
801 }
802
803 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
804 if (a.is_register())
805 mov(s, a.as_register());
806 else
807 st_ptr (s, a.as_address()); // ABI says everything is right justified.
808 }
809
810 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
811 if (a.is_register())
812 mov(s, a.as_register());
813 else
814 st_ptr (s, a.as_address());
815 }
816
817
818 #ifdef _LP64
819 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
820 if (a.is_float_register())
821 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
822 fmov(FloatRegisterImpl::S, s, a.as_float_register() );
823 else
824 // Floats are stored in the high half of the stack entry
825 // The low half is undefined per the ABI.
826 stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
827 }
828
829 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
830 if (a.is_float_register())
831 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
832 fmov(FloatRegisterImpl::D, s, a.as_double_register() );
833 else
834 stf(FloatRegisterImpl::D, s, a.as_address());
835 }
836
837 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
838 if (a.is_register())
839 mov(s, a.as_register());
840 else
841 stx(s, a.as_address());
842 }
843 #endif
844
845 inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); }
846 inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); }
847 inline void MacroAssembler::clr( Register s1, Register s2) { stw( G0, s1, s2 ); }
848 inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); }
849
850 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
851 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
852 inline void MacroAssembler::clr( Register s1, int simm13a) { stw( G0, s1, simm13a); }
853 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
854
855 // returns if membar generates anything, obviously this code should mirror
856 // membar below.
857 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
858 if( !os::is_MP() ) return false; // Not needed on single CPU
859 if( VM_Version::v9_instructions_work() ) {
860 const Membar_mask_bits effective_mask =
861 Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
862 return (effective_mask != 0);
863 } else {
864 return true;
865 }
866 }
867
868 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
869 // Uniprocessors do not need memory barriers
870 if (!os::is_MP()) return;
871 // Weakened for current Sparcs and TSO. See the v9 manual, sections 8.4.3,
872 // 8.4.4.3, a.31 and a.50.
873 if( VM_Version::v9_instructions_work() ) {
874 // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
875 // of the mmask subfield of const7a that does anything that isn't done
876 // implicitly is StoreLoad.
877 const Membar_mask_bits effective_mask =
878 Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
879 if ( effective_mask != 0 ) {
880 Assembler::membar( effective_mask );
881 }
882 } else {
883 // stbar is the closest there is on v8. Equivalent to membar(StoreStore). We
884 // do not issue the stbar because to my knowledge all v8 machines implement TSO,
885 // which guarantees that all stores behave as if an stbar were issued just after
886 // each one of them. On these machines, stbar ought to be a nop. There doesn't
887 // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
888 // it can't be specified by stbar, nor have I come up with a way to simulate it.
889 //
890 // Addendum. Dave says that ldstub guarantees a write buffer flush to coherent
891 // space. Put one here to be on the safe side.
892 Assembler::ldstub(SP, 0, G0);
893 }
894 }
895
896 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP 171 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP