diff src/share/vm/runtime/sharedRuntimeTrig.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children fb57d4cf76c2
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/runtime/sharedRuntimeTrig.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,957 @@
+/*
+ * Copyright 2001-2005 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_sharedRuntimeTrig.cpp.incl"
+
+// This file contains copies of the fdlibm routines used by
+// StrictMath. It turns out that it is almost always required to use
+// these runtime routines; the Intel CPU doesn't meet the Java
+// specification for sin/cos outside a certain limited argument range,
+// and the SPARC CPU doesn't appear to have sin/cos instructions. It
+// also turns out that avoiding the indirect call through function
+// pointer out to libjava.so in SharedRuntime speeds these routines up
+// by roughly 15% on both Win32/x86 and Solaris/SPARC.
+
+// Enabling optimizations in this file causes incorrect code to be
+// generated; can not figure out how to turn down optimization for one
+// file in the IDE on Windows
+#ifdef WIN32
+# pragma optimize ( "", off )
+#endif
+
+#include <math.h>
+
+// VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
+// [jk] this is not 100% correct because the float word order may different
+// from the byte order (e.g. on ARM)
+#ifdef VM_LITTLE_ENDIAN
+# define __HI(x) *(1+(int*)&x)
+# define __LO(x) *(int*)&x
+#else
+# define __HI(x) *(int*)&x
+# define __LO(x) *(1+(int*)&x)
+#endif
+
+static double copysignA(double x, double y) {
+  __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
+  return x;
+}
+
+/*
+ * scalbn (double x, int n)
+ * scalbn(x,n) returns x* 2**n  computed by  exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+static const double
+two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
+hugeX  = 1.0e+300,
+tiny   = 1.0e-300;
+
+static double scalbnA (double x, int n) {
+  int  k,hx,lx;
+  hx = __HI(x);
+  lx = __LO(x);
+  k = (hx&0x7ff00000)>>20;              /* extract exponent */
+  if (k==0) {                           /* 0 or subnormal x */
+    if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+    x *= two54;
+    hx = __HI(x);
+    k = ((hx&0x7ff00000)>>20) - 54;
+    if (n< -50000) return tiny*x;       /*underflow*/
+  }
+  if (k==0x7ff) return x+x;             /* NaN or Inf */
+  k = k+n;
+  if (k >  0x7fe) return hugeX*copysignA(hugeX,x); /* overflow  */
+  if (k > 0)                            /* normal result */
+    {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
+  if (k <= -54) {
+    if (n > 50000)      /* in case integer overflow in n+k */
+      return hugeX*copysignA(hugeX,x);  /*overflow*/
+    else return tiny*copysignA(tiny,x); /*underflow*/
+  }
+  k += 54;                              /* subnormal result */
+  __HI(x) = (hx&0x800fffff)|(k<<20);
+  return x*twom54;
+}
+
+/*
+ * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ * double x[],y[]; int e0,nx,prec; int ipio2[];
+ *
+ * __kernel_rem_pio2 return the last three digits of N with
+ *              y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ *      x[]     The input value (must be positive) is broken into nx
+ *              pieces of 24-bit integers in double precision format.
+ *              x[i] will be the i-th 24 bit of x. The scaled exponent
+ *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ *              match x's up to 24 bits.
+ *
+ *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ *                      e0 = ilogb(z)-23
+ *                      z  = scalbn(z,-e0)
+ *              for i = 0,1,2
+ *                      x[i] = floor(z)
+ *                      z    = (z-x[i])*2**24
+ *
+ *
+ *      y[]     ouput result in an array of double precision numbers.
+ *              The dimension of y[] is:
+ *                      24-bit  precision       1
+ *                      53-bit  precision       2
+ *                      64-bit  precision       2
+ *                      113-bit precision       3
+ *              The actual value is the sum of them. Thus for 113-bit
+ *              precsion, one may have to do something like:
+ *
+ *              long double t,w,r_head, r_tail;
+ *              t = (long double)y[2] + (long double)y[1];
+ *              w = (long double)y[0];
+ *              r_head = t+w;
+ *              r_tail = w - (r_head - t);
+ *
+ *      e0      The exponent of x[0]
+ *
+ *      nx      dimension of x[]
+ *
+ *      prec    an interger indicating the precision:
+ *                      0       24  bits (single)
+ *                      1       53  bits (double)
+ *                      2       64  bits (extended)
+ *                      3       113 bits (quad)
+ *
+ *      ipio2[]
+ *              integer array, contains the (24*i)-th to (24*i+23)-th
+ *              bit of 2/pi after binary point. The corresponding
+ *              floating value is
+ *
+ *                      ipio2[i] * 2^(-24(i+1)).
+ *
+ * External function:
+ *      double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ *      jk      jk+1 is the initial number of terms of ipio2[] needed
+ *              in the computation. The recommended value is 2,3,4,
+ *              6 for single, double, extended,and quad.
+ *
+ *      jz      local integer variable indicating the number of
+ *              terms of ipio2[] used.
+ *
+ *      jx      nx - 1
+ *
+ *      jv      index for pointing to the suitable ipio2[] for the
+ *              computation. In general, we want
+ *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ *              is an integer. Thus
+ *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ *              Hence jv = max(0,(e0-3)/24).
+ *
+ *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ *      q[]     double array with integral value, representing the
+ *              24-bits chunk of the product of x and 2/pi.
+ *
+ *      q0      the corresponding exponent of q[0]. Note that the
+ *              exponent for q[i] would be q0-24*i.
+ *
+ *      PIo2[]  double precision array, obtained by cutting pi/2
+ *              into 24 bits chunks.
+ *
+ *      f[]     ipio2[] in floating point
+ *
+ *      iq[]    integer array by breaking up q[] in 24-bits chunk.
+ *
+ *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ *      ih      integer. If >0 it indicats q[] is >= 0.5, hence
+ *              it also indicates the *sign* of the result.
+ *
+ */
+
+
+/*
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+
+static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
+
+static const double PIo2[] = {
+  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+};
+
+static const double
+zeroB   = 0.0,
+one     = 1.0,
+two24B  = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+twon24  = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
+
+static int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) {
+  int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+  double z,fw,f[20],fq[20],q[20];
+
+  /* initialize jk*/
+  jk = init_jk[prec];
+  jp = jk;
+
+  /* determine jx,jv,q0, note that 3>q0 */
+  jx =  nx-1;
+  jv = (e0-3)/24; if(jv<0) jv=0;
+  q0 =  e0-24*(jv+1);
+
+  /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+  j = jv-jx; m = jx+jk;
+  for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j];
+
+  /* compute q[0],q[1],...q[jk] */
+  for (i=0;i<=jk;i++) {
+    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
+  }
+
+  jz = jk;
+recompute:
+  /* distill q[] into iq[] reversingly */
+  for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
+    fw    =  (double)((int)(twon24* z));
+    iq[i] =  (int)(z-two24B*fw);
+    z     =  q[j-1]+fw;
+  }
+
+  /* compute n */
+  z  = scalbnA(z,q0);           /* actual value of z */
+  z -= 8.0*floor(z*0.125);              /* trim off integer >= 8 */
+  n  = (int) z;
+  z -= (double)n;
+  ih = 0;
+  if(q0>0) {    /* need iq[jz-1] to determine n */
+    i  = (iq[jz-1]>>(24-q0)); n += i;
+    iq[jz-1] -= i<<(24-q0);
+    ih = iq[jz-1]>>(23-q0);
+  }
+  else if(q0==0) ih = iq[jz-1]>>23;
+  else if(z>=0.5) ih=2;
+
+  if(ih>0) {    /* q > 0.5 */
+    n += 1; carry = 0;
+    for(i=0;i<jz ;i++) {        /* compute 1-q */
+      j = iq[i];
+      if(carry==0) {
+        if(j!=0) {
+          carry = 1; iq[i] = 0x1000000- j;
+        }
+      } else  iq[i] = 0xffffff - j;
+    }
+    if(q0>0) {          /* rare case: chance is 1 in 12 */
+      switch(q0) {
+      case 1:
+        iq[jz-1] &= 0x7fffff; break;
+      case 2:
+        iq[jz-1] &= 0x3fffff; break;
+      }
+    }
+    if(ih==2) {
+      z = one - z;
+      if(carry!=0) z -= scalbnA(one,q0);
+    }
+  }
+
+  /* check if recomputation is needed */
+  if(z==zeroB) {
+    j = 0;
+    for (i=jz-1;i>=jk;i--) j |= iq[i];
+    if(j==0) { /* need recomputation */
+      for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
+
+      for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
+        f[jx+i] = (double) ipio2[jv+i];
+        for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
+        q[i] = fw;
+      }
+      jz += k;
+      goto recompute;
+    }
+  }
+
+  /* chop off zero terms */
+  if(z==0.0) {
+    jz -= 1; q0 -= 24;
+    while(iq[jz]==0) { jz--; q0-=24;}
+  } else { /* break z into 24-bit if neccessary */
+    z = scalbnA(z,-q0);
+    if(z>=two24B) {
+      fw = (double)((int)(twon24*z));
+      iq[jz] = (int)(z-two24B*fw);
+      jz += 1; q0 += 24;
+      iq[jz] = (int) fw;
+    } else iq[jz] = (int) z ;
+  }
+
+  /* convert integer "bit" chunk to floating-point value */
+  fw = scalbnA(one,q0);
+  for(i=jz;i>=0;i--) {
+    q[i] = fw*(double)iq[i]; fw*=twon24;
+  }
+
+  /* compute PIo2[0,...,jp]*q[jz,...,0] */
+  for(i=jz;i>=0;i--) {
+    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
+    fq[jz-i] = fw;
+  }
+
+  /* compress fq[] into y[] */
+  switch(prec) {
+  case 0:
+    fw = 0.0;
+    for (i=jz;i>=0;i--) fw += fq[i];
+    y[0] = (ih==0)? fw: -fw;
+    break;
+  case 1:
+  case 2:
+    fw = 0.0;
+    for (i=jz;i>=0;i--) fw += fq[i];
+    y[0] = (ih==0)? fw: -fw;
+    fw = fq[0]-fw;
+    for (i=1;i<=jz;i++) fw += fq[i];
+    y[1] = (ih==0)? fw: -fw;
+    break;
+  case 3:       /* painful */
+    for (i=jz;i>0;i--) {
+      fw      = fq[i-1]+fq[i];
+      fq[i]  += fq[i-1]-fw;
+      fq[i-1] = fw;
+    }
+    for (i=jz;i>1;i--) {
+      fw      = fq[i-1]+fq[i];
+      fq[i]  += fq[i-1]-fw;
+      fq[i-1] = fw;
+    }
+    for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
+    if(ih==0) {
+      y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
+    } else {
+      y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+    }
+  }
+  return n&7;
+}
+
+
+/*
+ * ====================================================
+ * Copyright 13 Dec 1993 Sun Microsystems, Inc.  All Rights Reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+
+/* __ieee754_rem_pio2(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __kernel_rem_pio2()
+ */
+
+/*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ */
+static const int two_over_pi[] = {
+  0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
+  0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
+  0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+  0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
+  0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
+  0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+  0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+  0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
+  0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+  0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
+  0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
+};
+
+static const int npio2_hw[] = {
+  0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
+  0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
+  0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
+  0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
+  0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
+  0x404858EB, 0x404921FB,
+};
+
+/*
+ * invpio2:  53 bits of 2/pi
+ * pio2_1:   first  33 bit of pi/2
+ * pio2_1t:  pi/2 - pio2_1
+ * pio2_2:   second 33 bit of pi/2
+ * pio2_2t:  pi/2 - (pio2_1+pio2_2)
+ * pio2_3:   third  33 bit of pi/2
+ * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+
+static const double
+zeroA =  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+half =  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+two24A =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+invpio2 =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+pio2_1  =  1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
+pio2_1t =  6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
+pio2_2  =  6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
+pio2_2t =  2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
+pio2_3  =  2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
+pio2_3t =  8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+static int __ieee754_rem_pio2(double x, double *y) {
+  double z,w,t,r,fn;
+  double tx[3];
+  int e0,i,j,nx,n,ix,hx,i0;
+
+  i0 = ((*(int*)&two24A)>>30)^1;        /* high word index */
+  hx = *(i0+(int*)&x);          /* high word of x */
+  ix = hx&0x7fffffff;
+  if(ix<=0x3fe921fb)   /* |x| ~<= pi/4 , no need for reduction */
+    {y[0] = x; y[1] = 0; return 0;}
+  if(ix<0x4002d97c) {  /* |x| < 3pi/4, special case with n=+-1 */
+    if(hx>0) {
+      z = x - pio2_1;
+      if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
+        y[0] = z - pio2_1t;
+        y[1] = (z-y[0])-pio2_1t;
+      } else {                /* near pi/2, use 33+33+53 bit pi */
+        z -= pio2_2;
+        y[0] = z - pio2_2t;
+        y[1] = (z-y[0])-pio2_2t;
+      }
+      return 1;
+    } else {    /* negative x */
+      z = x + pio2_1;
+      if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
+        y[0] = z + pio2_1t;
+        y[1] = (z-y[0])+pio2_1t;
+      } else {                /* near pi/2, use 33+33+53 bit pi */
+        z += pio2_2;
+        y[0] = z + pio2_2t;
+        y[1] = (z-y[0])+pio2_2t;
+      }
+      return -1;
+    }
+  }
+  if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
+    t  = fabsd(x);
+    n  = (int) (t*invpio2+half);
+    fn = (double)n;
+    r  = t-fn*pio2_1;
+    w  = fn*pio2_1t;    /* 1st round good to 85 bit */
+    if(n<32&&ix!=npio2_hw[n-1]) {
+      y[0] = r-w;       /* quick check no cancellation */
+    } else {
+      j  = ix>>20;
+      y[0] = r-w;
+      i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
+      if(i>16) {  /* 2nd iteration needed, good to 118 */
+        t  = r;
+        w  = fn*pio2_2;
+        r  = t-w;
+        w  = fn*pio2_2t-((t-r)-w);
+        y[0] = r-w;
+        i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
+        if(i>49)  {     /* 3rd iteration need, 151 bits acc */
+          t  = r;       /* will cover all possible cases */
+          w  = fn*pio2_3;
+          r  = t-w;
+          w  = fn*pio2_3t-((t-r)-w);
+          y[0] = r-w;
+        }
+      }
+    }
+    y[1] = (r-y[0])-w;
+    if(hx<0)    {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+    else         return n;
+  }
+  /*
+   * all other (large) arguments
+   */
+  if(ix>=0x7ff00000) {          /* x is inf or NaN */
+    y[0]=y[1]=x-x; return 0;
+  }
+  /* set z = scalbn(|x|,ilogb(x)-23) */
+  *(1-i0+(int*)&z) = *(1-i0+(int*)&x);
+  e0    = (ix>>20)-1046;        /* e0 = ilogb(z)-23; */
+  *(i0+(int*)&z) = ix - (e0<<20);
+  for(i=0;i<2;i++) {
+    tx[i] = (double)((int)(z));
+    z     = (z-tx[i])*two24A;
+  }
+  tx[2] = z;
+  nx = 3;
+  while(tx[nx-1]==zeroA) nx--;  /* skip zero term */
+  n  =  __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
+  if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+  return n;
+}
+
+
+/* __kernel_sin( x, y, iy)
+ * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ *
+ * Algorithm
+ *      1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ *      2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
+ *      3. sin(x) is approximated by a polynomial of degree 13 on
+ *         [0,pi/4]
+ *                               3            13
+ *              sin(x) ~ x + S1*x + ... + S6*x
+ *         where
+ *
+ *      |sin(x)         2     4     6     8     10     12  |     -58
+ *      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
+ *      |  x                                               |
+ *
+ *      4. sin(x+y) = sin(x) + sin'(x')*y
+ *                  ~ sin(x) + (1-x*x/2)*y
+ *         For better accuracy, let
+ *                   3      2      2      2      2
+ *              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+ *         then                   3    2
+ *              sin(x) = x + (S1*x + (x *(r-y/2)+y))
+ */
+
+static const double
+S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
+S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
+S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+
+static double __kernel_sin(double x, double y, int iy)
+{
+        double z,r,v;
+        int ix;
+        ix = __HI(x)&0x7fffffff;        /* high word of x */
+        if(ix<0x3e400000)                       /* |x| < 2**-27 */
+           {if((int)x==0) return x;}            /* generate inexact */
+        z       =  x*x;
+        v       =  z*x;
+        r       =  S2+z*(S3+z*(S4+z*(S5+z*S6)));
+        if(iy==0) return x+v*(S1+z*r);
+        else      return x-((z*(half*y-v*r)-y)-v*S1);
+}
+
+/*
+ * __kernel_cos( x,  y )
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ *
+ * Algorithm
+ *      1. Since cos(-x) = cos(x), we need only to consider positive x.
+ *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+ *      3. cos(x) is approximated by a polynomial of degree 14 on
+ *         [0,pi/4]
+ *                                       4            14
+ *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+ *         where the remez error is
+ *
+ *      |              2     4     6     8     10    12     14 |     -58
+ *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
+ *      |                                                      |
+ *
+ *                     4     6     8     10    12     14
+ *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
+ *             cos(x) = 1 - x*x/2 + r
+ *         since cos(x+y) ~ cos(x) - sin(x)*y
+ *                        ~ cos(x) - x*y,
+ *         a correction term is necessary in cos(x) and hence
+ *              cos(x+y) = 1 - (x*x/2 - (r - x*y))
+ *         For better accuracy when x > 0.3, let qx = |x|/4 with
+ *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+ *         Then
+ *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
+ *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
+ *         magnitude of the latter is at least a quarter of x*x/2,
+ *         thus, reducing the rounding error in the subtraction.
+ */
+
+static const double
+C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
+C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
+C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
+C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
+C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+static double __kernel_cos(double x, double y)
+{
+  double a,hz,z,r,qx;
+  int ix;
+  ix = __HI(x)&0x7fffffff;      /* ix = |x|'s high word*/
+  if(ix<0x3e400000) {                   /* if x < 2**27 */
+    if(((int)x)==0) return one;         /* generate inexact */
+  }
+  z  = x*x;
+  r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
+  if(ix < 0x3FD33333)                   /* if |x| < 0.3 */
+    return one - (0.5*z - (z*r - x*y));
+  else {
+    if(ix > 0x3fe90000) {               /* x > 0.78125 */
+      qx = 0.28125;
+    } else {
+      __HI(qx) = ix-0x00200000; /* x/4 */
+      __LO(qx) = 0;
+    }
+    hz = 0.5*z-qx;
+    a  = one-qx;
+    return a - (hz - (z*r-x*y));
+  }
+}
+
+/* __kernel_tan( x, y, k )
+ * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input k indicates whether tan (if k=1) or
+ * -1/tan (if k= -1) is returned.
+ *
+ * Algorithm
+ *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
+ *      3. tan(x) is approximated by a odd polynomial of degree 27 on
+ *         [0,0.67434]
+ *                               3             27
+ *              tan(x) ~ x + T1*x + ... + T13*x
+ *         where
+ *
+ *              |tan(x)         2     4            26   |     -59.2
+ *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
+ *              |  x                                    |
+ *
+ *         Note: tan(x+y) = tan(x) + tan'(x)*y
+ *                        ~ tan(x) + (1+x*x)*y
+ *         Therefore, for better accuracy in computing tan(x+y), let
+ *                   3      2      2       2       2
+ *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+ *         then
+ *                                  3    2
+ *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
+ *
+ *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
+ *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+ *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+ */
+
+static const double
+pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
+pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
+T[] =  {
+  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
+  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
+  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
+  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
+  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
+  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
+  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
+  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
+  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
+  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
+  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
+ -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
+  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
+};
+
+static double __kernel_tan(double x, double y, int iy)
+{
+  double z,r,v,w,s;
+  int ix,hx;
+  hx = __HI(x);   /* high word of x */
+  ix = hx&0x7fffffff;     /* high word of |x| */
+  if(ix<0x3e300000) {                     /* x < 2**-28 */
+    if((int)x==0) {                       /* generate inexact */
+      if (((ix | __LO(x)) | (iy + 1)) == 0)
+        return one / fabsd(x);
+      else {
+        if (iy == 1)
+          return x;
+        else {    /* compute -1 / (x+y) carefully */
+          double a, t;
+
+          z = w = x + y;
+          __LO(z) = 0;
+          v = y - (z - x);
+          t = a = -one / w;
+          __LO(t) = 0;
+          s = one + t * z;
+          return t + a * (s + t * v);
+        }
+      }
+    }
+  }
+  if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */
+    if(hx<0) {x = -x; y = -y;}
+    z = pio4-x;
+    w = pio4lo-y;
+    x = z+w; y = 0.0;
+  }
+  z       =  x*x;
+  w       =  z*z;
+  /* Break x^5*(T[1]+x^2*T[2]+...) into
+   *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+   *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+   */
+  r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
+  v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
+  s = z*x;
+  r = y + z*(s*(r+v)+y);
+  r += T[0]*s;
+  w = x+r;
+  if(ix>=0x3FE59428) {
+    v = (double)iy;
+    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
+  }
+  if(iy==1) return w;
+  else {          /* if allow error up to 2 ulp,
+                     simply return -1.0/(x+r) here */
+    /*  compute -1.0/(x+r) accurately */
+    double a,t;
+    z  = w;
+    __LO(z) = 0;
+    v  = r-(z - x);     /* z+v = r+x */
+    t = a  = -1.0/w;    /* a = -1.0/w */
+    __LO(t) = 0;
+    s  = 1.0+t*z;
+    return t+a*(s+t*v);
+  }
+}
+
+
+//----------------------------------------------------------------------
+//
+// Routines for new sin/cos implementation
+//
+//----------------------------------------------------------------------
+
+/* sin(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ *      __kernel_sin            ... sine function on [-pi/4,pi/4]
+ *      __kernel_cos            ... cose function on [-pi/4,pi/4]
+ *      __ieee754_rem_pio2      ... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *      in [-pi/4 , +pi/4], and let n = k mod 4.
+ *      We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *          0          S           C             T
+ *          1          C          -S            -1/T
+ *          2         -S          -C             T
+ *          3         -C           S            -1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *      TRIG(x) returns trig(x) nearly rounded
+ */
+
+JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x))
+  double y[2],z=0.0;
+  int n, ix;
+
+  /* High word of x. */
+  ix = __HI(x);
+
+  /* |x| ~< pi/4 */
+  ix &= 0x7fffffff;
+  if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
+
+  /* sin(Inf or NaN) is NaN */
+  else if (ix>=0x7ff00000) return x-x;
+
+  /* argument reduction needed */
+  else {
+    n = __ieee754_rem_pio2(x,y);
+    switch(n&3) {
+    case 0: return  __kernel_sin(y[0],y[1],1);
+    case 1: return  __kernel_cos(y[0],y[1]);
+    case 2: return -__kernel_sin(y[0],y[1],1);
+    default:
+      return -__kernel_cos(y[0],y[1]);
+    }
+  }
+JRT_END
+
+/* cos(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ *      __kernel_sin            ... sine function on [-pi/4,pi/4]
+ *      __kernel_cos            ... cosine function on [-pi/4,pi/4]
+ *      __ieee754_rem_pio2      ... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *      in [-pi/4 , +pi/4], and let n = k mod 4.
+ *      We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *          0          S           C             T
+ *          1          C          -S            -1/T
+ *          2         -S          -C             T
+ *          3         -C           S            -1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *      TRIG(x) returns trig(x) nearly rounded
+ */
+
+JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x))
+  double y[2],z=0.0;
+  int n, ix;
+
+  /* High word of x. */
+  ix = __HI(x);
+
+  /* |x| ~< pi/4 */
+  ix &= 0x7fffffff;
+  if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
+
+  /* cos(Inf or NaN) is NaN */
+  else if (ix>=0x7ff00000) return x-x;
+
+  /* argument reduction needed */
+  else {
+    n = __ieee754_rem_pio2(x,y);
+    switch(n&3) {
+    case 0: return  __kernel_cos(y[0],y[1]);
+    case 1: return -__kernel_sin(y[0],y[1],1);
+    case 2: return -__kernel_cos(y[0],y[1]);
+    default:
+      return  __kernel_sin(y[0],y[1],1);
+    }
+  }
+JRT_END
+
+/* tan(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ *      __kernel_tan            ... tangent function on [-pi/4,pi/4]
+ *      __ieee754_rem_pio2      ... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *      in [-pi/4 , +pi/4], and let n = k mod 4.
+ *      We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *          0          S           C             T
+ *          1          C          -S            -1/T
+ *          2         -S          -C             T
+ *          3         -C           S            -1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *      TRIG(x) returns trig(x) nearly rounded
+ */
+
+JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x))
+  double y[2],z=0.0;
+  int n, ix;
+
+  /* High word of x. */
+  ix = __HI(x);
+
+  /* |x| ~< pi/4 */
+  ix &= 0x7fffffff;
+  if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
+
+  /* tan(Inf or NaN) is NaN */
+  else if (ix>=0x7ff00000) return x-x;            /* NaN */
+
+  /* argument reduction needed */
+  else {
+    n = __ieee754_rem_pio2(x,y);
+    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
+                                                     -1 -- n odd */
+  }
+JRT_END
+
+
+#ifdef WIN32
+# pragma optimize ( "", on )
+#endif