view src/share/vm/memory/metaspaceCounters.cpp @ 12233:40136aa2cdb1

8010722: assert: failed: heap size is too big for compressed oops Summary: Use conservative assumptions of required alignment for the various garbage collector components into account when determining the maximum heap size that supports compressed oops. Using this conservative value avoids several circular dependencies in the calculation. Reviewed-by: stefank, dholmes
author tschatzl
date Wed, 11 Sep 2013 16:25:02 +0200
parents 7944aba7ba41
children d6c266999345
line wrap: on
line source

/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "memory/metaspaceCounters.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/globals.hpp"
#include "runtime/perfData.hpp"
#include "utilities/exceptions.hpp"

class MetaspacePerfCounters: public CHeapObj<mtInternal> {
  friend class VMStructs;
  PerfVariable*      _capacity;
  PerfVariable*      _used;
  PerfVariable*      _max_capacity;

  PerfVariable* create_variable(const char *ns, const char *name, size_t value, TRAPS) {
    const char *path = PerfDataManager::counter_name(ns, name);
    return PerfDataManager::create_variable(SUN_GC, path, PerfData::U_Bytes, value, THREAD);
  }

  void create_constant(const char *ns, const char *name, size_t value, TRAPS) {
    const char *path = PerfDataManager::counter_name(ns, name);
    PerfDataManager::create_constant(SUN_GC, path, PerfData::U_Bytes, value, THREAD);
  }

 public:
  MetaspacePerfCounters(const char* ns, size_t min_capacity, size_t curr_capacity, size_t max_capacity, size_t used) {
    EXCEPTION_MARK;
    ResourceMark rm;

    create_constant(ns, "minCapacity", min_capacity, THREAD);
    _capacity = create_variable(ns, "capacity", curr_capacity, THREAD);
    _max_capacity = create_variable(ns, "maxCapacity", max_capacity, THREAD);
    _used = create_variable(ns, "used", used, THREAD);
  }

  void update(size_t capacity, size_t max_capacity, size_t used) {
    _capacity->set_value(capacity);
    _max_capacity->set_value(max_capacity);
    _used->set_value(used);
  }
};

MetaspacePerfCounters* MetaspaceCounters::_perf_counters = NULL;

size_t MetaspaceCounters::calculate_capacity() {
  // The total capacity is the sum of
  //   1) capacity of Metachunks in use by all Metaspaces
  //   2) unused space at the end of each Metachunk
  //   3) space in the freelist
  size_t total_capacity = MetaspaceAux::allocated_capacity_bytes()
    + MetaspaceAux::free_bytes() + MetaspaceAux::free_chunks_total_in_bytes();
  return total_capacity;
}

void MetaspaceCounters::initialize_performance_counters() {
  if (UsePerfData) {
    assert(_perf_counters == NULL, "Should only be initialized once");

    size_t min_capacity = MetaspaceAux::min_chunk_size();
    size_t capacity = calculate_capacity();
    size_t max_capacity = MetaspaceAux::reserved_in_bytes();
    size_t used = MetaspaceAux::allocated_used_bytes();

    _perf_counters = new MetaspacePerfCounters("metaspace", min_capacity, capacity, max_capacity, used);
  }
}

void MetaspaceCounters::update_performance_counters() {
  if (UsePerfData) {
    assert(_perf_counters != NULL, "Should be initialized");

    size_t capacity = calculate_capacity();
    size_t max_capacity = MetaspaceAux::reserved_in_bytes();
    size_t used = MetaspaceAux::allocated_used_bytes();

    _perf_counters->update(capacity, max_capacity, used);
  }
}

MetaspacePerfCounters* CompressedClassSpaceCounters::_perf_counters = NULL;

size_t CompressedClassSpaceCounters::calculate_capacity() {
    return MetaspaceAux::allocated_capacity_bytes(_class_type) +
           MetaspaceAux::free_bytes(_class_type) +
           MetaspaceAux::free_chunks_total_in_bytes(_class_type);
}

void CompressedClassSpaceCounters::update_performance_counters() {
  if (UsePerfData && UseCompressedClassPointers) {
    assert(_perf_counters != NULL, "Should be initialized");

    size_t capacity = calculate_capacity();
    size_t max_capacity = MetaspaceAux::reserved_in_bytes(_class_type);
    size_t used = MetaspaceAux::allocated_used_bytes(_class_type);

    _perf_counters->update(capacity, max_capacity, used);
  }
}

void CompressedClassSpaceCounters::initialize_performance_counters() {
  if (UsePerfData) {
    assert(_perf_counters == NULL, "Should only be initialized once");
    const char* ns = "compressedclassspace";

    if (UseCompressedClassPointers) {
      size_t min_capacity = MetaspaceAux::min_chunk_size();
      size_t capacity = calculate_capacity();
      size_t max_capacity = MetaspaceAux::reserved_in_bytes(_class_type);
      size_t used = MetaspaceAux::allocated_used_bytes(_class_type);

      _perf_counters = new MetaspacePerfCounters(ns, min_capacity, capacity, max_capacity, used);
    } else {
      _perf_counters = new MetaspacePerfCounters(ns, 0, 0, 0, 0);
    }
  }
}