view src/share/vm/runtime/stackValueCollection.cpp @ 3979:4dfb2df418f2

6484982: G1: process references during evacuation pauses Summary: G1 now uses two reference processors - one is used by concurrent marking and the other is used by STW GCs (both full and incremental evacuation pauses). In an evacuation pause, the reference processor is embedded into the closures used to scan objects. Doing so causes causes reference objects to be 'discovered' by the reference processor. At the end of the evacuation pause, these discovered reference objects are processed - preserving (and copying) referent objects (and their reachable graphs) as appropriate. Reviewed-by: ysr, jwilhelm, brutisso, stefank, tonyp
author johnc
date Thu, 22 Sep 2011 10:57:37 -0700
parents 1d1603768966
children 78bbf4d43a14
line wrap: on
line source

/*
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "runtime/stackValueCollection.hpp"
#ifdef TARGET_ARCH_x86
# include "jniTypes_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "jniTypes_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "jniTypes_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "jniTypes_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "jniTypes_ppc.hpp"
#endif

jint StackValueCollection::int_at(int slot) const {
  intptr_t val =  at(slot)->get_int();
  jint ival = *((jint*) (&val));
  return ival;
}

jlong StackValueCollection::long_at(int slot) const {
#ifdef _LP64
  return at(slot+1)->get_int();
#else
  union {
    jlong jl;
    jint  array[2];
  } value;
  // Interpreter stack is reversed in memory:
  // low memory location is in higher java local slot.
  value.array[0] = at(slot+1)->get_int();
  value.array[1] = at(slot  )->get_int();
  return value.jl;
#endif
}

Handle StackValueCollection::obj_at(int slot) const {
  return at(slot)->get_obj();
}

jfloat StackValueCollection::float_at(int slot) const {
  intptr_t res = at(slot)->get_int();
  return *((jfloat*) (&res));
}

jdouble StackValueCollection::double_at(int slot) const {
#ifdef _LP64
  intptr_t res = at(slot+1)->get_int();
  return *((jdouble*) (&res));
#else
  union {
    jdouble jd;
    jint    array[2];
  } value;
  // Interpreter stack is reversed in memory:
  // low memory location is in higher java local slot.
  value.array[0] = at(slot+1)->get_int();
  value.array[1] = at(slot  )->get_int();
  return value.jd;
#endif
}

void StackValueCollection::set_int_at(int slot, jint value) {
  intptr_t val;
  *((jint*) (&val)) = value;
  at(slot)->set_int(val);
}

void StackValueCollection::set_long_at(int slot, jlong value) {
#ifdef _LP64
  at(slot+1)->set_int(value);
#else
  union {
    jlong jl;
    jint  array[2];
  } x;
  // Interpreter stack is reversed in memory:
  // low memory location is in higher java local slot.
  x.jl = value;
  at(slot+1)->set_int(x.array[0]);
  at(slot+0)->set_int(x.array[1]);
#endif
}

void StackValueCollection::set_obj_at(int slot, Handle value) {
  at(slot)->set_obj(value);
}

void StackValueCollection::set_float_at(int slot, jfloat value) {
#ifdef _LP64
  union {
    intptr_t jd;
    jint    array[2];
  } val;
  // Interpreter stores 32 bit floats in first half of 64 bit word.
  val.array[0] = *(jint*)(&value);
  val.array[1] = 0;
  at(slot)->set_int(val.jd);
#else
  at(slot)->set_int(*(jint*)(&value));
#endif
}

void StackValueCollection::set_double_at(int slot, jdouble value) {
#ifdef _LP64
  at(slot+1)->set_int(*(intptr_t*)(&value));
#else
  union {
    jdouble jd;
    jint    array[2];
  } x;
  // Interpreter stack is reversed in memory:
  // low memory location is in higher java local slot.
  x.jd = value;
  at(slot+1)->set_int(x.array[0]);
  at(slot+0)->set_int(x.array[1]);
#endif
}

#ifndef PRODUCT
void StackValueCollection::print() {
  for(int index = 0; index < size(); index++) {
    tty->print("\t  %2d ", index);
    at(index)->print_on(tty);
    if( at(index  )->type() == T_INT &&
        index+1 < size() &&
        at(index+1)->type() == T_INT ) {
      tty->print("  " INT64_FORMAT " (long)", long_at(index));
      tty->cr();
      tty->print("\t     %.15e (double)", double_at(index));
      tty->print("  " PTR64_FORMAT " (longhex)", long_at(index));
    }
    tty->cr();
  }
}
#endif