view src/share/vm/runtime/timer.cpp @ 3979:4dfb2df418f2

6484982: G1: process references during evacuation pauses Summary: G1 now uses two reference processors - one is used by concurrent marking and the other is used by STW GCs (both full and incremental evacuation pauses). In an evacuation pause, the reference processor is embedded into the closures used to scan objects. Doing so causes causes reference objects to be 'discovered' by the reference processor. At the end of the evacuation pause, these discovered reference objects are processed - preserving (and copying) referent objects (and their reachable graphs) as appropriate. Reviewed-by: ysr, jwilhelm, brutisso, stefank, tonyp
author johnc
date Thu, 22 Sep 2011 10:57:37 -0700
parents f95d63e2154a
children f08d439fab8c
line wrap: on
line source

/*
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/timer.hpp"
#include "utilities/ostream.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "os_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "os_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "os_windows.inline.hpp"
#endif


void elapsedTimer::add(elapsedTimer t) {
  _counter += t._counter;
}

void elapsedTimer::start() {
  if (!_active) {
    _active = true;
    _start_counter = os::elapsed_counter();
  }
}

void elapsedTimer::stop() {
  if (_active) {
    _counter += os::elapsed_counter() - _start_counter;
    _active = false;
  }
}

double elapsedTimer::seconds() const {
  double count = (double) _counter;
  double freq  = (double) os::elapsed_frequency();
  return count/freq;
}

jlong elapsedTimer::milliseconds() const {
  jlong ticks_per_ms = os::elapsed_frequency() / 1000;
  return _counter / ticks_per_ms;
}

jlong elapsedTimer::active_ticks() const {
  if (!_active) {
    return ticks();
  }
  jlong counter = _counter + os::elapsed_counter() - _start_counter;
  return counter;
}

void TimeStamp::update_to(jlong ticks) {
  _counter = ticks;
  if (_counter == 0)  _counter = 1;
  assert(is_updated(), "must not look clear");
}

void TimeStamp::update() {
  update_to(os::elapsed_counter());
}

double TimeStamp::seconds() const {
  assert(is_updated(), "must not be clear");
  jlong new_count = os::elapsed_counter();
  double count = (double) new_count - _counter;
  double freq  = (double) os::elapsed_frequency();
  return count/freq;
}

jlong TimeStamp::milliseconds() const {
  assert(is_updated(), "must not be clear");

  jlong new_count = os::elapsed_counter();
  jlong count = new_count - _counter;
  jlong ticks_per_ms = os::elapsed_frequency() / 1000;
  return count / ticks_per_ms;
}

jlong TimeStamp::ticks_since_update() const {
  assert(is_updated(), "must not be clear");
  return os::elapsed_counter() - _counter;
}

TraceTime::TraceTime(const char* title,
                     bool doit,
                     bool print_cr,
                     outputStream* logfile) {
  _active   = doit;
  _verbose  = true;
  _print_cr = print_cr;
  _logfile = (logfile != NULL) ? logfile : tty;

  if (_active) {
    _accum = NULL;
    if (PrintGCTimeStamps) {
      _logfile->stamp();
      _logfile->print(": ");
    }
    _logfile->print("[%s", title);
    _logfile->flush();
    _t.start();
  }
}

TraceTime::TraceTime(const char* title,
                     elapsedTimer* accumulator,
                     bool doit,
                     bool verbose,
                     outputStream* logfile) {
  _active = doit;
  _verbose = verbose;
  _print_cr = true;
  _logfile = (logfile != NULL) ? logfile : tty;
  if (_active) {
    if (_verbose) {
      if (PrintGCTimeStamps) {
        _logfile->stamp();
        _logfile->print(": ");
      }
      _logfile->print("[%s", title);
      _logfile->flush();
    }
    _accum = accumulator;
    _t.start();
  }
}

TraceTime::~TraceTime() {
  if (_active) {
    _t.stop();
    if (_accum!=NULL) _accum->add(_t);
    if (_verbose) {
      if (_print_cr) {
        _logfile->print_cr(", %3.7f secs]", _t.seconds());
      } else {
        _logfile->print(", %3.7f secs]", _t.seconds());
      }
      _logfile->flush();
    }
  }
}

TraceCPUTime::TraceCPUTime(bool doit,
               bool print_cr,
               outputStream *logfile) :
  _active(doit),
  _print_cr(print_cr),
  _starting_user_time(0.0),
  _starting_system_time(0.0),
  _starting_real_time(0.0),
  _logfile(logfile),
  _error(false) {
  if (_active) {
    if (logfile != NULL) {
      _logfile = logfile;
    } else {
      _logfile = tty;
    }

    _error = !os::getTimesSecs(&_starting_real_time,
                               &_starting_user_time,
                               &_starting_system_time);
  }
}

TraceCPUTime::~TraceCPUTime() {
  if (_active) {
    bool valid = false;
    if (!_error) {
      double real_secs;                 // walk clock time
      double system_secs;               // system time
      double user_secs;                 // user time for all threads

      double real_time, user_time, system_time;
      valid = os::getTimesSecs(&real_time, &user_time, &system_time);
      if (valid) {

        user_secs = user_time - _starting_user_time;
        system_secs = system_time - _starting_system_time;
        real_secs = real_time - _starting_real_time;

        _logfile->print(" [Times: user=%3.2f sys=%3.2f, real=%3.2f secs] ",
          user_secs, system_secs, real_secs);

      } else {
        _logfile->print("[Invalid result in TraceCPUTime]");
      }
    } else {
      _logfile->print("[Error in TraceCPUTime]");
    }
     if (_print_cr) {
      _logfile->print_cr("");
    }
  }
}