view src/cpu/sparc/vm/methodHandles_sparc.cpp @ 2368:dde920245681

6896099: Integrate CMS heap ergo with default heap sizing ergo 6627787: CMS: JVM refuses to start up with -Xms16m -Xmx16m 7000125: CMS: Anti-monotone young gen sizing with respect to maximum whole heap size specification 7027529: CMS: retire CMSUseOldDefaults flag Summary: Simplify CMS heap sizing code, relying on ergonomic initial sizing consistent with other collectors for the most part, controlling only young gen sizing to rein in pause times. Make CMS young gen sizing default statically cpu-dependant. Remove inconsistencies wrt generation sizing and policy code, allowing for the fixing for 6627787 and 7000125. For 7027529, retire the flag CMSUseOldDefaults which had been introduced as a bridge from JDK 5 to JDK 6 a number of years ago. Reviewed-by: brutisso, poonam
author ysr
date Wed, 16 Mar 2011 10:37:08 -0700
parents 28bf941f445e
children 1b4e6a5d98e0
line wrap: on
line source

/*
 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"

#define __ _masm->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
                                                address interpreted_entry) {
  // Just before the actual machine code entry point, allocate space
  // for a MethodHandleEntry::Data record, so that we can manage everything
  // from one base pointer.
  __ align(wordSize);
  address target = __ pc() + sizeof(Data);
  while (__ pc() < target) {
    __ nop();
    __ align(wordSize);
  }

  MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  me->set_end_address(__ pc());         // set a temporary end_address
  me->set_from_interpreted_entry(interpreted_entry);
  me->set_type_checking_entry(NULL);

  return (address) me;
}

MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
                                                address start_addr) {
  MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  assert(me->end_address() == start_addr, "valid ME");

  // Fill in the real end_address:
  __ align(wordSize);
  me->set_end_address(__ pc());

  return me;
}


// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
  // I5_savedSP/O5_savedSP: sender SP (must preserve)
  // G4 (Gargs): incoming argument list (must preserve)
  // G5_method:  invoke methodOop
  // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
  // O0, O1, O2, O3, O4: garbage temps, blown away
  Register O0_mtype   = O0;
  Register O1_scratch = O1;
  Register O2_scratch = O2;
  Register O3_scratch = O3;
  Register O4_argslot = O4;
  Register O4_argbase = O4;

  // emit WrongMethodType path first, to enable back-branch from main path
  Label wrong_method_type;
  __ bind(wrong_method_type);
  Label invoke_generic_slow_path;
  assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
  __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
  __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
  __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
  __ delayed()->nop();
  __ mov(O0_mtype, G5_method_type);  // required by throw_WrongMethodType
  // mov(G3_method_handle, G3_method_handle);  // already in this register
  __ jump_to(AddressLiteral(Interpreter::throw_WrongMethodType_entry()), O1_scratch);
  __ delayed()->nop();

  // here's where control starts out:
  __ align(CodeEntryAlignment);
  address entry_point = __ pc();

  // fetch the MethodType from the method handle
  {
    Register tem = G5_method;
    for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
      __ ld_ptr(Address(tem, *pchase), O0_mtype);
      tem = O0_mtype;          // in case there is another indirection
    }
  }

  // given the MethodType, find out where the MH argument is buried
  __ load_heap_oop(Address(O0_mtype,   __ delayed_value(java_dyn_MethodType::form_offset_in_bytes,        O1_scratch)), O4_argslot);
  __ ldsw(         Address(O4_argslot, __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
  __ add(Gargs, __ argument_offset(O4_argslot, 1), O4_argbase);
  // Note: argument_address uses its input as a scratch register!
  __ ld_ptr(Address(O4_argbase, -Interpreter::stackElementSize), G3_method_handle);

  trace_method_handle(_masm, "invokeExact");

  __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
  __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);

  // for invokeGeneric (only), apply argument and result conversions on the fly
  __ bind(invoke_generic_slow_path);
#ifdef ASSERT
  { Label L;
    __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
    __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
    __ brx(Assembler::equal, false, Assembler::pt, L);
    __ delayed()->nop();
    __ stop("bad methodOop::intrinsic_id");
    __ bind(L);
  }
#endif //ASSERT

  // make room on the stack for another pointer:
  insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK, O4_argbase, O1_scratch, O2_scratch, O3_scratch);
  // load up an adapter from the calling type (Java weaves this)
  Register O2_form    = O2_scratch;
  Register O3_adapter = O3_scratch;
  __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes,               O1_scratch)), O2_form);
  // load_heap_oop(Address(O2_form,  __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
  // deal with old JDK versions:
  __ add(          Address(O2_form,  __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
  __ cmp(O3_adapter, O2_form);
  Label sorry_no_invoke_generic;
  __ brx(Assembler::lessUnsigned, false, Assembler::pn, sorry_no_invoke_generic);
  __ delayed()->nop();

  __ load_heap_oop(Address(O3_adapter, 0), O3_adapter);
  __ tst(O3_adapter);
  __ brx(Assembler::zero, false, Assembler::pn, sorry_no_invoke_generic);
  __ delayed()->nop();
  __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
  // As a trusted first argument, pass the type being called, so the adapter knows
  // the actual types of the arguments and return values.
  // (Generic invokers are shared among form-families of method-type.)
  __ st_ptr(O0_mtype,   Address(O4_argbase, 0 * Interpreter::stackElementSize));
  // FIXME: assert that O3_adapter is of the right method-type.
  __ mov(O3_adapter, G3_method_handle);
  trace_method_handle(_masm, "invokeGeneric");
  __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);

  __ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available!
  __ mov(O0_mtype, G5_method_type);  // required by throw_WrongMethodType
  // mov(G3_method_handle, G3_method_handle);  // already in this register
  __ jump_to(AddressLiteral(Interpreter::throw_WrongMethodType_entry()), O1_scratch);
  __ delayed()->nop();

  return entry_point;
}


#ifdef ASSERT
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
  // Verify that argslot lies within (Gargs, FP].
  Label L_ok, L_bad;
  BLOCK_COMMENT("{ verify_argslot");
#ifdef _LP64
  __ add(FP, STACK_BIAS, temp_reg);
  __ cmp(argslot_reg, temp_reg);
#else
  __ cmp(argslot_reg, FP);
#endif
  __ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
  __ delayed()->nop();
  __ cmp(Gargs, argslot_reg);
  __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
  __ delayed()->nop();
  __ bind(L_bad);
  __ stop(error_message);
  __ bind(L_ok);
  BLOCK_COMMENT("} verify_argslot");
}
#endif


// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and <= 0
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
                                     RegisterOrConstant arg_slots,
                                     int arg_mask,
                                     Register argslot_reg,
                                     Register temp_reg, Register temp2_reg, Register temp3_reg) {
  assert(temp3_reg != noreg, "temp3 required");
  assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
                             (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));

#ifdef ASSERT
  verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
    __ br(Assembler::greater, false, Assembler::pn, L_bad);
    __ delayed()->nop();
    __ btst(-stack_move_unit() - 1, arg_slots.as_register());
    __ br(Assembler::zero, false, Assembler::pt, L_ok);
    __ delayed()->nop();
    __ bind(L_bad);
    __ stop("assert arg_slots <= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() <= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif // ASSERT

#ifdef _LP64
  if (arg_slots.is_register()) {
    // Was arg_slots register loaded as signed int?
    Label L_ok;
    __ sll(arg_slots.as_register(), BitsPerInt, temp_reg);
    __ sra(temp_reg, BitsPerInt, temp_reg);
    __ cmp(arg_slots.as_register(), temp_reg);
    __ br(Assembler::equal, false, Assembler::pt, L_ok);
    __ delayed()->nop();
    __ stop("arg_slots register not loaded as signed int");
    __ bind(L_ok);
  }
#endif

  // Make space on the stack for the inserted argument(s).
  // Then pull down everything shallower than argslot_reg.
  // The stacked return address gets pulled down with everything else.
  // That is, copy [sp, argslot) downward by -size words.  In pseudo-code:
  //   sp -= size;
  //   for (temp = sp + size; temp < argslot; temp++)
  //     temp[-size] = temp[0]
  //   argslot -= size;
  BLOCK_COMMENT("insert_arg_slots {");
  RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);

  // Keep the stack pointer 2*wordSize aligned.
  const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
  RegisterOrConstant masked_offset = __ regcon_andn_ptr(offset, TwoWordAlignmentMask, temp_reg);
  __ add(SP, masked_offset, SP);

  __ mov(Gargs, temp_reg);  // source pointer for copy
  __ add(Gargs, offset, Gargs);

  {
    Label loop;
    __ BIND(loop);
    // pull one word down each time through the loop
    __ ld_ptr(Address(temp_reg, 0), temp2_reg);
    __ st_ptr(temp2_reg, Address(temp_reg, offset));
    __ add(temp_reg, wordSize, temp_reg);
    __ cmp(temp_reg, argslot_reg);
    __ brx(Assembler::less, false, Assembler::pt, loop);
    __ delayed()->nop();  // FILLME
  }

  // Now move the argslot down, to point to the opened-up space.
  __ add(argslot_reg, offset, argslot_reg);
  BLOCK_COMMENT("} insert_arg_slots");
}


// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and >= 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
                                     RegisterOrConstant arg_slots,
                                     Register argslot_reg,
                                     Register temp_reg, Register temp2_reg, Register temp3_reg) {
  assert(temp3_reg != noreg, "temp3 required");
  assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
                             (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));

  RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);

#ifdef ASSERT
  // Verify that [argslot..argslot+size) lies within (Gargs, FP).
  __ add(argslot_reg, offset, temp2_reg);
  verify_argslot(_masm, temp2_reg, temp_reg, "deleted argument(s) must fall within current frame");
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
    __ br(Assembler::less, false, Assembler::pn, L_bad);
    __ delayed()->nop();
    __ btst(-stack_move_unit() - 1, arg_slots.as_register());
    __ br(Assembler::zero, false, Assembler::pt, L_ok);
    __ delayed()->nop();
    __ bind(L_bad);
    __ stop("assert arg_slots >= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() >= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif // ASSERT

  BLOCK_COMMENT("remove_arg_slots {");
  // Pull up everything shallower than argslot.
  // Then remove the excess space on the stack.
  // The stacked return address gets pulled up with everything else.
  // That is, copy [sp, argslot) upward by size words.  In pseudo-code:
  //   for (temp = argslot-1; temp >= sp; --temp)
  //     temp[size] = temp[0]
  //   argslot += size;
  //   sp += size;
  __ sub(argslot_reg, wordSize, temp_reg);  // source pointer for copy
  {
    Label loop;
    __ BIND(loop);
    // pull one word up each time through the loop
    __ ld_ptr(Address(temp_reg, 0), temp2_reg);
    __ st_ptr(temp2_reg, Address(temp_reg, offset));
    __ sub(temp_reg, wordSize, temp_reg);
    __ cmp(temp_reg, Gargs);
    __ brx(Assembler::greaterEqual, false, Assembler::pt, loop);
    __ delayed()->nop();  // FILLME
  }

  // Now move the argslot up, to point to the just-copied block.
  __ add(Gargs, offset, Gargs);
  // And adjust the argslot address to point at the deletion point.
  __ add(argslot_reg, offset, argslot_reg);

  // Keep the stack pointer 2*wordSize aligned.
  const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
  RegisterOrConstant masked_offset = __ regcon_andn_ptr(offset, TwoWordAlignmentMask, temp_reg);
  __ add(SP, masked_offset, SP);
  BLOCK_COMMENT("} remove_arg_slots");
}


#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
                              oopDesc* mh) {
  printf("MH %s mh="INTPTR_FORMAT"\n", adaptername, (intptr_t) mh);
  print_method_handle(mh);
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  if (!TraceMethodHandles)  return;
  BLOCK_COMMENT("trace_method_handle {");
  // save: Gargs, O5_savedSP
  __ save_frame(16);
  __ set((intptr_t) adaptername, O0);
  __ mov(G3_method_handle, O1);
  __ mov(G3_method_handle, L3);
  __ mov(Gargs, L4);
  __ mov(G5_method_type, L5);
  __ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub));

  __ mov(L3, G3_method_handle);
  __ mov(L4, Gargs);
  __ mov(L5, G5_method_type);
  __ restore();
  BLOCK_COMMENT("} trace_method_handle");
}
#endif // PRODUCT

// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
  return ((1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_ONLY)
         |(1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_RAW)
         |(1<<sun_dyn_AdapterMethodHandle::OP_CHECK_CAST)
         |(1<<sun_dyn_AdapterMethodHandle::OP_PRIM_TO_PRIM)
         |(1<<sun_dyn_AdapterMethodHandle::OP_REF_TO_PRIM)
         |(1<<sun_dyn_AdapterMethodHandle::OP_SWAP_ARGS)
         |(1<<sun_dyn_AdapterMethodHandle::OP_ROT_ARGS)
         |(1<<sun_dyn_AdapterMethodHandle::OP_DUP_ARGS)
         |(1<<sun_dyn_AdapterMethodHandle::OP_DROP_ARGS)
         //|(1<<sun_dyn_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
         );
  // FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
}

//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  // Here is the register state during an interpreted call,
  // as set up by generate_method_handle_interpreter_entry():
  // - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
  // - G3: receiver method handle
  // - O5_savedSP: sender SP (must preserve)

  const Register O0_argslot = O0;
  const Register O1_scratch = O1;
  const Register O2_scratch = O2;
  const Register O3_scratch = O3;
  const Register G5_index   = G5;

  // Argument registers for _raise_exception.
  const Register O0_code     = O0;
  const Register O1_actual   = O1;
  const Register O2_required = O2;

  guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");

  // Some handy addresses:
  Address G5_method_fie(    G5_method,        in_bytes(methodOopDesc::from_interpreted_offset()));

  Address G3_mh_vmtarget(   G3_method_handle, java_dyn_MethodHandle::vmtarget_offset_in_bytes());

  Address G3_dmh_vmindex(   G3_method_handle, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes());

  Address G3_bmh_vmargslot( G3_method_handle, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes());
  Address G3_bmh_argument(  G3_method_handle, sun_dyn_BoundMethodHandle::argument_offset_in_bytes());

  Address G3_amh_vmargslot( G3_method_handle, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes());
  Address G3_amh_argument ( G3_method_handle, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes());
  Address G3_amh_conversion(G3_method_handle, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes());

  const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();

  if (have_entry(ek)) {
    __ nop();  // empty stubs make SG sick
    return;
  }

  address interp_entry = __ pc();

  trace_method_handle(_masm, entry_name(ek));

  switch ((int) ek) {
  case _raise_exception:
    {
      // Not a real MH entry, but rather shared code for raising an
      // exception.  Since we use a C2I adapter to set up the
      // interpreter state, arguments are expected in compiler
      // argument registers.
      assert(raise_exception_method(), "must be set");
      address c2i_entry = raise_exception_method()->get_c2i_entry();
      assert(c2i_entry, "method must be linked");

      __ mov(O5_savedSP, SP);  // Cut the stack back to where the caller started.

      Label L_no_method;
      // FIXME: fill in _raise_exception_method with a suitable sun.dyn method
      __ set(AddressLiteral((address) &_raise_exception_method), G5_method);
      __ ld_ptr(Address(G5_method, 0), G5_method);
      __ tst(G5_method);
      __ brx(Assembler::zero, false, Assembler::pn, L_no_method);
      __ delayed()->nop();

      const int jobject_oop_offset = 0;
      __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);
      __ tst(G5_method);
      __ brx(Assembler::zero, false, Assembler::pn, L_no_method);
      __ delayed()->nop();

      __ verify_oop(G5_method);
      __ jump_to(AddressLiteral(c2i_entry), O3_scratch);
      __ delayed()->nop();

      // If we get here, the Java runtime did not do its job of creating the exception.
      // Do something that is at least causes a valid throw from the interpreter.
      __ bind(L_no_method);
      __ unimplemented("call throw_WrongMethodType_entry");
    }
    break;

  case _invokestatic_mh:
  case _invokespecial_mh:
    {
      __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
      __ verify_oop(G5_method);
      // Same as TemplateTable::invokestatic or invokespecial,
      // minus the CP setup and profiling:
      if (ek == _invokespecial_mh) {
        // Must load & check the first argument before entering the target method.
        __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
        __ ld_ptr(__ argument_address(O0_argslot), G3_method_handle);
        __ null_check(G3_method_handle);
        __ verify_oop(G3_method_handle);
      }
      __ jump_indirect_to(G5_method_fie, O1_scratch);
      __ delayed()->nop();
    }
    break;

  case _invokevirtual_mh:
    {
      // Same as TemplateTable::invokevirtual,
      // minus the CP setup and profiling:

      // Pick out the vtable index and receiver offset from the MH,
      // and then we can discard it:
      __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
      __ ldsw(G3_dmh_vmindex, G5_index);
      // Note:  The verifier allows us to ignore G3_mh_vmtarget.
      __ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
      __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());

      // Get receiver klass:
      Register O0_klass = O0_argslot;
      __ load_klass(G3_method_handle, O0_klass);
      __ verify_oop(O0_klass);

      // Get target methodOop & entry point:
      const int base = instanceKlass::vtable_start_offset() * wordSize;
      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");

      __ sll_ptr(G5_index, LogBytesPerWord, G5_index);
      __ add(O0_klass, G5_index, O0_klass);
      Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
      __ ld_ptr(vtable_entry_addr, G5_method);

      __ verify_oop(G5_method);
      __ jump_indirect_to(G5_method_fie, O1_scratch);
      __ delayed()->nop();
    }
    break;

  case _invokeinterface_mh:
    {
      // Same as TemplateTable::invokeinterface,
      // minus the CP setup and profiling:
      __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
      Register O1_intf  = O1_scratch;
      __ load_heap_oop(G3_mh_vmtarget, O1_intf);
      __ ldsw(G3_dmh_vmindex, G5_index);
      __ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
      __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());

      // Get receiver klass:
      Register O0_klass = O0_argslot;
      __ load_klass(G3_method_handle, O0_klass);
      __ verify_oop(O0_klass);

      // Get interface:
      Label no_such_interface;
      __ verify_oop(O1_intf);
      __ lookup_interface_method(O0_klass, O1_intf,
                                 // Note: next two args must be the same:
                                 G5_index, G5_method,
                                 O2_scratch,
                                 O3_scratch,
                                 no_such_interface);

      __ verify_oop(G5_method);
      __ jump_indirect_to(G5_method_fie, O1_scratch);
      __ delayed()->nop();

      __ bind(no_such_interface);
      // Throw an exception.
      // For historical reasons, it will be IncompatibleClassChangeError.
      __ unimplemented("not tested yet");
      __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required);  // required interface
      __ mov(   O0_klass,                             O1_actual);    // bad receiver
      __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
      __ delayed()->mov(Bytecodes::_invokeinterface,  O0_code);      // who is complaining?
    }
    break;

  case _bound_ref_mh:
  case _bound_int_mh:
  case _bound_long_mh:
  case _bound_ref_direct_mh:
  case _bound_int_direct_mh:
  case _bound_long_direct_mh:
    {
      const bool direct_to_method = (ek >= _bound_ref_direct_mh);
      BasicType arg_type  = T_ILLEGAL;
      int       arg_mask  = _INSERT_NO_MASK;
      int       arg_slots = -1;
      get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);

      // Make room for the new argument:
      __ ldsw(G3_bmh_vmargslot, O0_argslot);
      __ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);

      insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, O0_argslot, O1_scratch, O2_scratch, G5_index);

      // Store bound argument into the new stack slot:
      __ load_heap_oop(G3_bmh_argument, O1_scratch);
      if (arg_type == T_OBJECT) {
        __ st_ptr(O1_scratch, Address(O0_argslot, 0));
      } else {
        Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
        const int arg_size = type2aelembytes(arg_type);
        __ load_sized_value(prim_value_addr, O2_scratch, arg_size, is_signed_subword_type(arg_type));
        __ store_sized_value(O2_scratch, Address(O0_argslot, 0), arg_size);  // long store uses O2/O3 on !_LP64
      }

      if (direct_to_method) {
        __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
        __ verify_oop(G5_method);
        __ jump_indirect_to(G5_method_fie, O1_scratch);
        __ delayed()->nop();
      } else {
        __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);  // target is a methodOop
        __ verify_oop(G3_method_handle);
        __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
      }
    }
    break;

  case _adapter_retype_only:
  case _adapter_retype_raw:
    // Immediately jump to the next MH layer:
    __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
    __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    // This is OK when all parameter types widen.
    // It is also OK when a return type narrows.
    break;

  case _adapter_check_cast:
    {
      // Temps:
      Register G5_klass = G5_index;  // Interesting AMH data.

      // Check a reference argument before jumping to the next layer of MH:
      __ ldsw(G3_amh_vmargslot, O0_argslot);
      Address vmarg = __ argument_address(O0_argslot);

      // What class are we casting to?
      __ load_heap_oop(G3_amh_argument, G5_klass);  // This is a Class object!
      __ load_heap_oop(Address(G5_klass, java_lang_Class::klass_offset_in_bytes()), G5_klass);

      Label done;
      __ ld_ptr(vmarg, O1_scratch);
      __ tst(O1_scratch);
      __ brx(Assembler::zero, false, Assembler::pn, done);  // No cast if null.
      __ delayed()->nop();
      __ load_klass(O1_scratch, O1_scratch);

      // Live at this point:
      // - G5_klass        :  klass required by the target method
      // - O1_scratch      :  argument klass to test
      // - G3_method_handle:  adapter method handle
      __ check_klass_subtype(O1_scratch, G5_klass, O0_argslot, O2_scratch, done);

      // If we get here, the type check failed!
      __ load_heap_oop(G3_amh_argument,        O2_required);  // required class
      __ ld_ptr(       vmarg,                  O1_actual);    // bad object
      __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
      __ delayed()->mov(Bytecodes::_checkcast, O0_code);      // who is complaining?

      __ bind(done);
      // Get the new MH:
      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_prim_to_prim:
  case _adapter_ref_to_prim:
    // Handled completely by optimized cases.
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
    {
      // Perform an in-place conversion to int or an int subword.
      __ ldsw(G3_amh_vmargslot, O0_argslot);
      Address value;
      Address vmarg = __ argument_address(O0_argslot);
      bool value_left_justified = false;

      switch (ek) {
      case _adapter_opt_i2i:
        value = vmarg;
        break;
      case _adapter_opt_l2i:
        {
          // just delete the extra slot
#ifdef _LP64
          // In V9, longs are given 2 64-bit slots in the interpreter, but the
          // data is passed in only 1 slot.
          // Keep the second slot.
          __ add(Gargs, __ argument_offset(O0_argslot, -1), O0_argslot);
          remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
          value = Address(O0_argslot, 4);  // Get least-significant 32-bit of 64-bit value.
          vmarg = Address(O0_argslot, Interpreter::stackElementSize);
#else
          // Keep the first slot.
          __ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
          remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
          value = Address(O0_argslot, 0);
          vmarg = value;
#endif
        }
        break;
      case _adapter_opt_unboxi:
        {
          // Load the value up from the heap.
          __ ld_ptr(vmarg, O1_scratch);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)))
              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
          }
#endif
          __ null_check(O1_scratch, value_offset);
          value = Address(O1_scratch, value_offset);
#ifdef _BIG_ENDIAN
          // Values stored in objects are packed.
          value_left_justified = true;
#endif
        }
        break;
      default:
        ShouldNotReachHere();
      }

      // This check is required on _BIG_ENDIAN
      Register G5_vminfo = G5_index;
      __ ldsw(G3_amh_conversion, G5_vminfo);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");

      // Original 32-bit vmdata word must be of this form:
      // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
      __ lduw(value, O1_scratch);
      if (!value_left_justified)
        __ sll(O1_scratch, G5_vminfo, O1_scratch);
      Label zero_extend, done;
      __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
      __ br(Assembler::zero, false, Assembler::pn, zero_extend);
      __ delayed()->nop();

      // this path is taken for int->byte, int->short
      __ sra(O1_scratch, G5_vminfo, O1_scratch);
      __ ba(false, done);
      __ delayed()->nop();

      __ bind(zero_extend);
      // this is taken for int->char
      __ srl(O1_scratch, G5_vminfo, O1_scratch);

      __ bind(done);
      __ st(O1_scratch, vmarg);

      // Get the new MH:
      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
    {
      // Perform an in-place int-to-long or ref-to-long conversion.
      __ ldsw(G3_amh_vmargslot, O0_argslot);

      // On big-endian machine we duplicate the slot and store the MSW
      // in the first slot.
      __ add(Gargs, __ argument_offset(O0_argslot, 1), O0_argslot);

      insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, O0_argslot, O1_scratch, O2_scratch, G5_index);

      Address arg_lsw(O0_argslot, 0);
      Address arg_msw(O0_argslot, -Interpreter::stackElementSize);

      switch (ek) {
      case _adapter_opt_i2l:
        {
          __ ldsw(arg_lsw, O2_scratch);                           // Load LSW
          NOT_LP64(__ srlx(O2_scratch, BitsPerInt, O3_scratch));  // Move high bits to lower bits for std
          __ st_long(O2_scratch, arg_msw);                        // Uses O2/O3 on !_LP64
        }
        break;
      case _adapter_opt_unboxl:
        {
          // Load the value up from the heap.
          __ ld_ptr(arg_lsw, O1_scratch);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
          __ null_check(O1_scratch, value_offset);
          __ ld_long(Address(O1_scratch, value_offset), O2_scratch);  // Uses O2/O3 on !_LP64
          __ st_long(O2_scratch, arg_msw);
        }
        break;
      default:
        ShouldNotReachHere();
      }

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
    {
      // perform an in-place floating primitive conversion
      __ unimplemented(entry_name(ek));
    }
    break;

  case _adapter_prim_to_ref:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_swap_1:
  case _adapter_opt_swap_2:
  case _adapter_opt_rot_1_up:
  case _adapter_opt_rot_1_down:
  case _adapter_opt_rot_2_up:
  case _adapter_opt_rot_2_down:
    {
      int swap_bytes = 0, rotate = 0;
      get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);

      // 'argslot' is the position of the first argument to swap.
      __ ldsw(G3_amh_vmargslot, O0_argslot);
      __ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);

      // 'vminfo' is the second.
      Register O1_destslot = O1_scratch;
      __ ldsw(G3_amh_conversion, O1_destslot);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
      __ and3(O1_destslot, CONV_VMINFO_MASK, O1_destslot);
      __ add(Gargs, __ argument_offset(O1_destslot), O1_destslot);

      if (!rotate) {
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ ld_ptr(Address(O0_argslot,  i), O2_scratch);
          __ ld_ptr(Address(O1_destslot, i), O3_scratch);
          __ st_ptr(O3_scratch, Address(O0_argslot,  i));
          __ st_ptr(O2_scratch, Address(O1_destslot, i));
        }
      } else {
        // Save the first chunk, which is going to get overwritten.
        switch (swap_bytes) {
        case 4 : __ lduw(Address(O0_argslot, 0), O2_scratch); break;
        case 16: __ ldx( Address(O0_argslot, 8), O3_scratch); //fall-thru
        case 8 : __ ldx( Address(O0_argslot, 0), O2_scratch); break;
        default: ShouldNotReachHere();
        }

        if (rotate > 0) {
          // Rorate upward.
          __ sub(O0_argslot, swap_bytes, O0_argslot);
#if ASSERT
          {
            // Verify that argslot > destslot, by at least swap_bytes.
            Label L_ok;
            __ cmp(O0_argslot, O1_destslot);
            __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_ok);
            __ delayed()->nop();
            __ stop("source must be above destination (upward rotation)");
            __ bind(L_ok);
          }
#endif
          // Work argslot down to destslot, copying contiguous data upwards.
          // Pseudo-code:
          //   argslot  = src_addr - swap_bytes
          //   destslot = dest_addr
          //   while (argslot >= destslot) {
          //     *(argslot + swap_bytes) = *(argslot + 0);
          //     argslot--;
          //   }
          Label loop;
          __ bind(loop);
          __ ld_ptr(Address(O0_argslot, 0), G5_index);
          __ st_ptr(G5_index, Address(O0_argslot, swap_bytes));
          __ sub(O0_argslot, wordSize, O0_argslot);
          __ cmp(O0_argslot, O1_destslot);
          __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, loop);
          __ delayed()->nop();  // FILLME
        } else {
          __ add(O0_argslot, swap_bytes, O0_argslot);
#if ASSERT
          {
            // Verify that argslot < destslot, by at least swap_bytes.
            Label L_ok;
            __ cmp(O0_argslot, O1_destslot);
            __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
            __ delayed()->nop();
            __ stop("source must be above destination (upward rotation)");
            __ bind(L_ok);
          }
#endif
          // Work argslot up to destslot, copying contiguous data downwards.
          // Pseudo-code:
          //   argslot  = src_addr + swap_bytes
          //   destslot = dest_addr
          //   while (argslot >= destslot) {
          //     *(argslot - swap_bytes) = *(argslot + 0);
          //     argslot++;
          //   }
          Label loop;
          __ bind(loop);
          __ ld_ptr(Address(O0_argslot, 0), G5_index);
          __ st_ptr(G5_index, Address(O0_argslot, -swap_bytes));
          __ add(O0_argslot, wordSize, O0_argslot);
          __ cmp(O0_argslot, O1_destslot);
          __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, loop);
          __ delayed()->nop();  // FILLME
        }

        // Store the original first chunk into the destination slot, now free.
        switch (swap_bytes) {
        case 4 : __ stw(O2_scratch, Address(O1_destslot, 0)); break;
        case 16: __ stx(O3_scratch, Address(O1_destslot, 8)); // fall-thru
        case 8 : __ stx(O2_scratch, Address(O1_destslot, 0)); break;
        default: ShouldNotReachHere();
        }
      }

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_dup_args:
    {
      // 'argslot' is the position of the first argument to duplicate.
      __ ldsw(G3_amh_vmargslot, O0_argslot);
      __ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);

      // 'stack_move' is negative number of words to duplicate.
      Register G5_stack_move = G5_index;
      __ ldsw(G3_amh_conversion, G5_stack_move);
      __ sra(G5_stack_move, CONV_STACK_MOVE_SHIFT, G5_stack_move);

      // Remember the old Gargs (argslot[0]).
      Register O1_oldarg = O1_scratch;
      __ mov(Gargs, O1_oldarg);

      // Move Gargs down to make room for dups.
      __ sll_ptr(G5_stack_move, LogBytesPerWord, G5_stack_move);
      __ add(Gargs, G5_stack_move, Gargs);

      // Compute the new Gargs (argslot[0]).
      Register O2_newarg = O2_scratch;
      __ mov(Gargs, O2_newarg);

      // Copy from oldarg[0...] down to newarg[0...]
      // Pseude-code:
      //   O1_oldarg  = old-Gargs
      //   O2_newarg  = new-Gargs
      //   O0_argslot = argslot
      //   while (O2_newarg < O1_oldarg) *O2_newarg = *O0_argslot++
      Label loop;
      __ bind(loop);
      __ ld_ptr(Address(O0_argslot, 0), O3_scratch);
      __ st_ptr(O3_scratch, Address(O2_newarg, 0));
      __ add(O0_argslot, wordSize, O0_argslot);
      __ add(O2_newarg,  wordSize, O2_newarg);
      __ cmp(O2_newarg, O1_oldarg);
      __ brx(Assembler::less, false, Assembler::pt, loop);
      __ delayed()->nop();  // FILLME

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_drop_args:
    {
      // 'argslot' is the position of the first argument to nuke.
      __ ldsw(G3_amh_vmargslot, O0_argslot);
      __ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);

      // 'stack_move' is number of words to drop.
      Register G5_stack_move = G5_index;
      __ ldsw(G3_amh_conversion, G5_stack_move);
      __ sra(G5_stack_move, CONV_STACK_MOVE_SHIFT, G5_stack_move);

      remove_arg_slots(_masm, G5_stack_move, O0_argslot, O1_scratch, O2_scratch, O3_scratch);

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_collect_args:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_spread_args:
    // Handled completely by optimized cases.
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_spread_0:
  case _adapter_opt_spread_1:
  case _adapter_opt_spread_more:
    {
      // spread an array out into a group of arguments
      __ unimplemented(entry_name(ek));
    }
    break;

  case _adapter_flyby:
  case _adapter_ricochet:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  default:
    ShouldNotReachHere();
  }

  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI

  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}