view src/share/vm/memory/gcLocker.cpp @ 2368:dde920245681

6896099: Integrate CMS heap ergo with default heap sizing ergo 6627787: CMS: JVM refuses to start up with -Xms16m -Xmx16m 7000125: CMS: Anti-monotone young gen sizing with respect to maximum whole heap size specification 7027529: CMS: retire CMSUseOldDefaults flag Summary: Simplify CMS heap sizing code, relying on ergonomic initial sizing consistent with other collectors for the most part, controlling only young gen sizing to rein in pause times. Make CMS young gen sizing default statically cpu-dependant. Remove inconsistencies wrt generation sizing and policy code, allowing for the fixing for 6627787 and 7000125. For 7027529, retire the flag CMSUseOldDefaults which had been introduced as a bridge from JDK 5 to JDK 6 a number of years ago. Reviewed-by: brutisso, poonam
author ysr
date Wed, 16 Mar 2011 10:37:08 -0700
parents f95d63e2154a
children 1a2723f7ad8e
line wrap: on
line source

/*
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/resourceArea.hpp"
#include "memory/sharedHeap.hpp"

volatile jint GC_locker::_jni_lock_count = 0;
volatile jint GC_locker::_lock_count     = 0;
volatile bool GC_locker::_needs_gc       = false;
volatile bool GC_locker::_doing_gc       = false;

void GC_locker::stall_until_clear() {
  assert(!JavaThread::current()->in_critical(), "Would deadlock");
  if (PrintJNIGCStalls && PrintGCDetails) {
    ResourceMark rm; // JavaThread::name() allocates to convert to UTF8
    gclog_or_tty->print_cr(
      "Allocation failed. Thread \"%s\" is stalled by JNI critical section.",
      JavaThread::current()->name());
  }
  MutexLocker   ml(JNICritical_lock);
  // Wait for _needs_gc  to be cleared
  while (GC_locker::needs_gc()) {
    JNICritical_lock->wait();
  }
}

void GC_locker::jni_lock_slow() {
  MutexLocker mu(JNICritical_lock);
  // Block entering threads if we know at least one thread is in a
  // JNI critical region and we need a GC.
  // We check that at least one thread is in a critical region before
  // blocking because blocked threads are woken up by a thread exiting
  // a JNI critical region.
  while ((is_jni_active() && needs_gc()) || _doing_gc) {
    JNICritical_lock->wait();
  }
  jni_lock();
}

void GC_locker::jni_unlock_slow() {
  MutexLocker mu(JNICritical_lock);
  jni_unlock();
  if (needs_gc() && !is_jni_active()) {
    // We're the last thread out. Cause a GC to occur.
    // GC will also check is_active, so this check is not
    // strictly needed. It's added here to make it clear that
    // the GC will NOT be performed if any other caller
    // of GC_locker::lock() still needs GC locked.
    if (!is_active()) {
      _doing_gc = true;
      {
        // Must give up the lock while at a safepoint
        MutexUnlocker munlock(JNICritical_lock);
        Universe::heap()->collect(GCCause::_gc_locker);
      }
      _doing_gc = false;
    }
    clear_needs_gc();
    JNICritical_lock->notify_all();
  }
}

// Implementation of No_GC_Verifier

#ifdef ASSERT

No_GC_Verifier::No_GC_Verifier(bool verifygc) {
  _verifygc = verifygc;
  if (_verifygc) {
    CollectedHeap* h = Universe::heap();
    assert(!h->is_gc_active(), "GC active during No_GC_Verifier");
    _old_invocations = h->total_collections();
  }
}


No_GC_Verifier::~No_GC_Verifier() {
  if (_verifygc) {
    CollectedHeap* h = Universe::heap();
    assert(!h->is_gc_active(), "GC active during No_GC_Verifier");
    if (_old_invocations != h->total_collections()) {
      fatal("collection in a No_GC_Verifier secured function");
    }
  }
}

Pause_No_GC_Verifier::Pause_No_GC_Verifier(No_GC_Verifier * ngcv) {
  _ngcv = ngcv;
  if (_ngcv->_verifygc) {
    // if we were verifying, then make sure that nothing is
    // wrong before we "pause" verification
    CollectedHeap* h = Universe::heap();
    assert(!h->is_gc_active(), "GC active during No_GC_Verifier");
    if (_ngcv->_old_invocations != h->total_collections()) {
      fatal("collection in a No_GC_Verifier secured function");
    }
  }
}


Pause_No_GC_Verifier::~Pause_No_GC_Verifier() {
  if (_ngcv->_verifygc) {
    // if we were verifying before, then reenable verification
    CollectedHeap* h = Universe::heap();
    assert(!h->is_gc_active(), "GC active during No_GC_Verifier");
    _ngcv->_old_invocations = h->total_collections();
  }
}


// JRT_LEAF rules:
// A JRT_LEAF method may not interfere with safepointing by
//   1) acquiring or blocking on a Mutex or JavaLock - checked
//   2) allocating heap memory - checked
//   3) executing a VM operation - checked
//   4) executing a system call (including malloc) that could block or grab a lock
//   5) invoking GC
//   6) reaching a safepoint
//   7) running too long
// Nor may any method it calls.
JRT_Leaf_Verifier::JRT_Leaf_Verifier()
  : No_Safepoint_Verifier(true, JRT_Leaf_Verifier::should_verify_GC())
{
}

JRT_Leaf_Verifier::~JRT_Leaf_Verifier()
{
}

bool JRT_Leaf_Verifier::should_verify_GC() {
  switch (JavaThread::current()->thread_state()) {
  case _thread_in_Java:
    // is in a leaf routine, there must be no safepoint.
    return true;
  case _thread_in_native:
    // A native thread is not subject to safepoints.
    // Even while it is in a leaf routine, GC is ok
    return false;
  default:
    // Leaf routines cannot be called from other contexts.
    ShouldNotReachHere();
    return false;
  }
}
#endif