view src/cpu/x86/vm/dump_x86_64.cpp @ 3249:e1162778c1c8

7009266: G1: assert(obj->is_oop_or_null(true )) failed: Error Summary: A referent object that is only weakly reachable at the start of concurrent marking but is re-attached to the strongly reachable object graph during marking may not be marked as live. This can cause the reference object to be processed prematurely and leave dangling pointers to the referent object. Implement a read barrier for the java.lang.ref.Reference::referent field by intrinsifying the Reference.get() method, and intercepting accesses though JNI, reflection, and Unsafe, so that when a non-null referent object is read it is also logged in an SATB buffer. Reviewed-by: kvn, iveresov, never, tonyp, dholmes
author johnc
date Thu, 07 Apr 2011 09:53:20 -0700
parents f95d63e2154a
children
line wrap: on
line source

/*
 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "assembler_x86.inline.hpp"
#include "memory/compactingPermGenGen.hpp"
#include "memory/generation.inline.hpp"
#include "memory/space.inline.hpp"



// Generate the self-patching vtable method:
//
// This method will be called (as any other Klass virtual method) with
// the Klass itself as the first argument.  Example:
//
//      oop obj;
//      int size = obj->klass()->klass_part()->oop_size(this);
//
// for which the virtual method call is Klass::oop_size();
//
// The dummy method is called with the Klass object as the first
// operand, and an object as the second argument.
//

//=====================================================================

// All of the dummy methods in the vtable are essentially identical,
// differing only by an ordinal constant, and they bear no releationship
// to the original method which the caller intended. Also, there needs
// to be 'vtbl_list_size' instances of the vtable in order to
// differentiate between the 'vtable_list_size' original Klass objects.

#define __ masm->

void CompactingPermGenGen::generate_vtable_methods(void** vtbl_list,
                                                   void** vtable,
                                                   char** md_top,
                                                   char* md_end,
                                                   char** mc_top,
                                                   char* mc_end) {

  intptr_t vtable_bytes = (num_virtuals * vtbl_list_size) * sizeof(void*);
  *(intptr_t *)(*md_top) = vtable_bytes;
  *md_top += sizeof(intptr_t);
  void** dummy_vtable = (void**)*md_top;
  *vtable = dummy_vtable;
  *md_top += vtable_bytes;

  // Get ready to generate dummy methods.

  CodeBuffer cb((unsigned char*)*mc_top, mc_end - *mc_top);
  MacroAssembler* masm = new MacroAssembler(&cb);

  Label common_code;
  for (int i = 0; i < vtbl_list_size; ++i) {
    for (int j = 0; j < num_virtuals; ++j) {
      dummy_vtable[num_virtuals * i + j] = (void*)masm->pc();

      // Load eax with a value indicating vtable/offset pair.
      // -- bits[ 7..0]  (8 bits) which virtual method in table?
      // -- bits[12..8]  (5 bits) which virtual method table?
      // -- must fit in 13-bit instruction immediate field.
      __ movl(rax, (i << 8) + j);
      __ jmp(common_code);
    }
  }

  __ bind(common_code);

  // Expecting to be called with "thiscall" convections -- the arguments
  // are on the stack and the "this" pointer is in c_rarg0. In addition, rax
  // was set (above) to the offset of the method in the table.

  __ push(c_rarg1);                     // save & free register
  __ push(c_rarg0);                     // save "this"
  __ mov(c_rarg0, rax);
  __ shrptr(c_rarg0, 8);                // isolate vtable identifier.
  __ shlptr(c_rarg0, LogBytesPerWord);
  __ lea(c_rarg1, ExternalAddress((address)vtbl_list)); // ptr to correct vtable list.
  __ addptr(c_rarg1, c_rarg0);          // ptr to list entry.
  __ movptr(c_rarg1, Address(c_rarg1, 0));      // get correct vtable address.
  __ pop(c_rarg0);                      // restore "this"
  __ movptr(Address(c_rarg0, 0), c_rarg1);      // update vtable pointer.

  __ andptr(rax, 0x00ff);                       // isolate vtable method index
  __ shlptr(rax, LogBytesPerWord);
  __ addptr(rax, c_rarg1);              // address of real method pointer.
  __ pop(c_rarg1);                      // restore register.
  __ movptr(rax, Address(rax, 0));      // get real method pointer.
  __ jmp(rax);                          // jump to the real method.

  __ flush();

  *mc_top = (char*)__ pc();
}