
The Graal Compiler - Design and Strategy

The Graal Compiler
Design and Strategy
work in progress

Thomas Würthinger ∗, Lukas Stadler §, Gilles Duboscq ∗

Created: May 5, 2011

Abstract The Graal compiler aims at improving C1X,
the Java port of the HotSpot client compiler, both in
terms of modularity and peak performance. The com-
piler should work with the Maxine VM and the HotSpot
VM. This document contains information about the
proposed design and strategy for developing the Graal
compiler.

1 Context

In 2009, the Maxine team started with creating C1X,
a Java port of the HotSpot client compiler, and inte-
grate it into the Maxine VM. Part of this effort, was
the development of a clear and clean compiler-runtime
interface that allows the separation of the compiler and
the VM that enables the use of one compiler for multi-
ple VMs. In June 2010, we started integrating C1X into
the HotSpot VM and we called the resulting system
Graal VM. Currently, the Graal VM is fully functional
and runs benchmarks (SciMark, DaCapo) at a similar
speed to the HotSpot client compiler.

2 Goals

The Graal compiler effort aims at rewriting the high-
level intermediate representation of C1X with two main
goals:

Modularity: A modular design of the compiler should
simplify the implementation of new languages, new
back-ends, and new optimizations.

∗Oracle, §Johannes Kepler University, Linz

Peak Performance: Amore powerful intermediate rep-
resentation should enable the implementation of heavy-
weight optimizations that impact the peak perfor-
mance of the resulting machine code.

3 Design

For the implementation of the Graal compiler, we rely
on the following design decisions:

Graph Representation: The compiler’s intermediate
representation is modeled as a graph with nodes
that are connected with directed edges. There is
only a single node base class and every node has
an associated graph object that does not change
during the node’s lifetime. Every node is serializ-
able and has an id that is unique within its graph.
Every edge is classified as either a control flow edge
(anti-dependency) or a data flow edge (dependency)
and represented as a simple pointer from the source
node to the target node. It is possible to replace a
node with another node without traversing the full
graph. The graph does not allow data flow edge cy-
cles or control flow edge cycles. We achieve this by
explicitely modelling loops (see Section 5.1).

Extensibility: The compiler is extensible by adding
new compiler phases and new node subclasses with-
out modifying the compiler’s sources. A node has
an abstract way of expressing its effect and new
compiler phases can ask compiler nodes for their
properties and capabilities. We use the “everything
is an extension” concept. Even standard compiler
optimizations are internally modeled as extensions,
to show that the extension mechanism exposes all
necessary functionality.



2

Detailing: The compilation starts with a graph that
contains nodes that represent the operations of the
source language (e.g., one node for an array store
to an object array). During the compilation, the
nodes are replaced with more detailed nodes (e.g.,
the array store node is split into a null check, a
bounds check, a store check, and a memory access).
Compiler phases can choose whether they want to
work on the earlier versions of the graph (e.g., es-
cape analysis) or on later versions (e.g., null check
elimination).

Generality: The compiler does not require Java as its
input. This is achieved by having a graph as the
starting point of the compilation and not a Java
bytecodes array. Building the graph from the Java
bytecodes must happen before giving a method to
the compiler. This enables front-ends for different
languages (e.g., Ruby) to provide their own graph.
Also, there is no dependency on a specific back-end,
but the output of the compiler is a graph that can
then be converted to a different representation in a
final compiler phase.

4 Milestones

The Graal compiler is developed starting from the cur-
rent C1X source code base. This helps us testing the
compiler at every intermediate development step on a
variety of Java benchmarks. We define the following
development milestones and when they are considered
achieved:

M1: We have a fully working Graal VM version with a
stripped down C1X compiler that does not perform
any optimizations.

M2: We modified the high-level intermediate represen-
tation to be based on the Graal compiler graph data
structure.

M3: We have reimplemented and reenabled compiler
optimizations in the Graal compiler that previously
existed in C1X.

M4: We have reintegrated the new Graal compiler into
the Maxine VM and can use it as a Maxine VM
bootstrapping compiler.

After those four milestones, we see three different
possible further development directions that can be fol-
lowed in parallel:

– Removal of the XIR template mechanism and re-
placement with a snippet mechanism that works
with the Graal compiler graph.

– Improvements for Graal peak performance (loop op-
timizations, escape analysis, bounds check elimina-

tion, processing additional interpreter runtime feed-
back).

– Implementation of a prototype front-end for differ-
ent languages, e.g., JavaScript.

5 Implementation

5.1 Loops

Loops form a first-class construct in the IR that is ex-
pressed in specialized IR nodes during all optimization
phases. We only compile methods with a control flow
where every loop has only one single entry point. This
entry point is a LoopBegin node. This node is con-
nected to a LoopEnd node that merges all control flow
paths that do not exit the loop. The edge between the
LoopBegin and the LoopEnd is the backedge of the loop.
It goes from the beginning to the end in order to make
the graph acyclic. An algorithm that traverses the con-
trol flow has to explicitely decide whether it wants to
incorporate backedges (i.e., special case the treatment
of LoopEnd) or ignore them. Figure 5.1 shows a simple
example with a loop with a single entry and two exits.

����������

���������

	
����������

�

�������������

�������	


�


�

Fig. 1 A simple loop with two exits.

5.2 Loop Phis

Data flow in loops is modelled with special phi nodes
at the beginning and the end of the loop. The LoopEnd
node merges every value that is flows into the next
loop iteration in associated LoopEndPhi nodes. A cor-
responding LoopBeginPhi node that is associated with
the loop header has a control flow dependency on the
LoopEndPhi node. Figure 5.2 shows how a simple count-
ing loop is modelled in the graph.



3

����������

���������

������	
�

�

�

�

���������	
� �

�

������


��

������
	
�

Fig. 2 Graal compiler graph for a loop counting from 0 to n-1.

5.3 Loop Counters

The compiler is capable of recognizing variables that
are only increased within a loop. A potential overflow
of such a variable is guarded with a trap before the loop.
Figure 5.3 shows the compiler graph of the example loop
after the loop counter transformation.

����������

���������

������	
�

�

�

�

����	�
����


�
�

�


��
��

����
��

��

Fig. 3 Graal compiler graph after loop counter transformation.

5.4 Bounded Loops

If the total maximum number of iterations of a loop is
fixed, then the loop is converted into a bounded loop.
The total number of iterations always denotes the num-
ber of full iterations of the loop with the control flowing
from the loop begin to the loop end. If the totel number
of iterations is reached, the loop is exited directly from
the loop header. In the example, we can infer from the
loop exit with the comparison on the loop counter that
the total number of iterations of the loop is limited to
n. Figure 5.4 shows the compiler graph of the example
loop after the bounded loop transformation.

����������

��������������	�

������	
�

�

�

����
������


�
�

�


��
��

����
��

Fig. 4 Graal compiler graph after bounded loop transforma-
tion.

5.5 Vectorization

If we have now a bounded loop with no additional loop
exit and no associated phi nodes (only associated loop
counters), we can vectorize the loop. We replace the
loop header with a normal instruction that produces
a vector of values from 0 to the number of loop iter-
ations minus 1. The loop counters are replaced with
VectorAdd and VectorMul nodes. The vectorization is
only possible if every node of the loop can be replaced
with a corresponding vector node. Figure 5.5 shows the
compiler graph of the example loop after vectorization.
The vector nodes all work on an ordered list of inte-
ger values and are subject to canonicalization like any
other node.

5.6 Project Source Structure

In order to support the goal of a modular compiler,
the code will be divided into the following source code
projects (as subprojects of com.oracle.graal).

graph contains the abstract node implementation, the
graph implementation and all the associated tools
and auxiliary classes.



4

�����

������

����

�

�

��������� �

�������	


Fig. 5 Graal compiler graph after bounded loop transforma-
tion.

nodes contains the implementation of known basic nodes
(e.g., phi nodes, control flow nodes, . . . ). Additional
node classes should go into seperate projects and be
specializations of the known basic nodes.]

java contains code for building graphs from Java byte-
codes and Java-specific nodes.

opt contains optimizations such as global value num-
bering or conditional constant propagation.

compiler contains the compiler, including:
– Schedules the compilation phases.
– Implementation of the compiler interface (CI).
– Implements the final compilation phase that pro-

duces the low-level representation.
– Machine code creation, including debug info.
CW So you want to keep the backend as part of the “main
compiler” at first. Seems OK for me.

5.7 Nodes and Graphs

The most important aspect of a compiler is the data
structure that holds information about an executable
piece of code, called intermediate representation (IR).
The IR used in the Graal Compiler (simply referred
to as the compiler in the rest of this document) was
designed in such a way as to allow for extensive opti-
mizations, easy traversal, compact storage and efficient
processing.

5.7.1 The Graph Data Structure

– A graph deals out ids for new nodes and can be
queried for the node corresponding to a given id.

– Graphs can manage side data structures, which will
be automatically invalidated and lazily recomputed
whenever the graph changes. Examples for side data
structures are dominator trees and temporary sched-
ules. These side data structures will usually be un-
derstood by more than one optimization.

5.7.2 The Node Data Structure

– Each node is always associated with a graph.
– Each node has an immutable id which is unique

within its associated graph. CW The server compiler
supports “renumbering” of nodes to make the ids dense again
after large graph manipulations that deleted many nodes.

– Nodes represent either operations on values or con-
trol flow operations.

– Nodes can have a data dependency, which means
that one node requires the result of some other node
as its input. The fact that the result of the first node
needs to be computed before the second node can
be executed introduces a partial order to the set of
nodes.

– Nodes can have a control flow dependency, which
means that the execution of one node depends on
some other node. This includes conditional execu-
tion, memory access serialization and other reasons,
and again introduces a partial order to the set of
nodes.

– Nodes can only have data and control dependencies
to nodes which belong to the same graph.

– Control dependencies and data dependencies each
represent a directed acyclic graph (DAG) on the
same set of nodes. This means that data dependen-
cies always point upwards, and control dependencies
always point downwards. Situations that are nor-
mally incur cycles (like loops) are represented by
special nodes (like LoopEnd). CW I don’t like that
item. Cycles are a normal thing for control flow and for phi
functions. I would phrase it as something like that: Nodes can
only have data and control dependencies to nodes that are
dominators. The only exception of that are control loop head-
ers and phi functions

– Ordering between nodes is specified only to the ex-
tent which is required to correctly express the se-
mantics of a given program. Some compilers (no-
tably the HotSpot client compiler CW Wrong: the
client compiler only has a fixed order of pinned instructions,
most instructions are not pinned and can be moved around
freely ) always maintain a complete order for all
nodes (called scheduling), which impedes advanced
optimizations. For algorithms that require a fixed
ordering of nodes, a temporary schedule can always
be generated.

– Both data and control dependencies can be traversed
in both directions, so that each node can be tra-
versed in four directions:
– inputs are all nodes that this node has data de-

pendencies on.



5

– usages are all nodes that have data dependencies
on this node, this is regarded as the inverse of
inputs.

– successors are all nodes that have a control de-
pendency on this node.

– predecessors are all nodes that this node has con-
trol dependencies on, this is regarded as the in-
verse of successors.

– Only inputs and successors can be changed, and
changes to them will update the usages and pre-
decessors.

– The Node class needs to provide facilities for sub-
classes to perform actions upon cloning, dependency
changes, etc.

– Nodes cannot be reassigned to another graph, they
are cloned instead CW Why should there be the need
for more than one graph when compiling a method?

5.8 Frame States

Frame states capture the state of the program, in terms
of the source representation (e.g., Java state: local vari-
ables, expressions, ...). Whenever a safepoint is reached
or CW why is that an “or”, both is basically the same LS

uncommon traps can be introduced at other points, e.g., at an if
branch that isn’t compiled a deoptimization is needed a
valid frame state needs to be available. A frame state
is valid as long as the program performs only actions
that can safely be reexecuted (e.g., operations on local
variables, loads, etc.). Thus, frame states need only be
generated for bytecodes that cannot be reexecuted:

– Array stores: IASTORE, LASTORE, FASTORE,
DASTORE, AASTORE, BASTORE, CASTORE, SASTORE

– Field stores: PUTSTATIC, PUTFIELD
– Method calls: INVOKEVIRTUAL, INVOKESPECIAL,

INVOKESTATIC, INVOKEINTERFACE
– Synchronization: MONITORENTER, MONITOREXIT

Within the node graph a frame state is represented
as a node that is fixed to the node that caused it to be
generated (control dependency).

FrameStates also have data dependencies on the
contents of the state: the local variables and the ex-
pression stack.

5.9 Deoptimization and Uncommon Traps

Uncommon trap nodes are not fixed to a certain frame
state node, they can move around freely and will always
use the correct frame state. The node that is guarded
by the deoptimization has a data dependency on the
trap, and the trap in turn has a data dependency on

����������

��������	 
���������

����������

��� 
���������

Fig. 6 Simple example using two frame states.

the condition and on the most distant node that is post-
dominated by the guarded node.

��

����� �����

���

��	
�

����
�� �	��

����
��


���


���

������

Fig. 7 In this example, the second load is guarded by an un-
common trap, because its receiver might be null (the receiver
of the load is assumed to be non-null). The trap is anchored to
the control split, because as soon as this node is executed the
second load must be executed as well. In the final scheduling
the trap can be placed before or after the first load.

Another type of uncommon trap is a guard, which is
used to remove branches that have a very low execution
frequency from the compiled code.

At some point during the compilation, trap nodes
need to be fixed, which means that appropriate data
and control dependencies will be inserted so that they
cannot move outside the scope of the associated frame
state. This will generate deoptimization-free zones that
can be targeted by the most aggressive optimizations. A
simple algorithm for this removal of FrameStates would
be to move all traps as far upwards as possible.

Multiple Traps with the same condition and anchor
can be merged:



6

���

�����

����

��	
���

���

Fig. 8 In this example the If from the previous example was
replaced by a guard and an uncommon trap. The guard takes
the place of the If in the control flow, and is connected to the
trap node. The uncommon trap is now anchored to the most
distant node of which the If was a postdominator.

��

����� �����

���

��	
�

����
��

�	��

����
��


��

������

Fig. 9 Two loads guarded by the same Trap.

Also, if two Traps that are anchored to the true and
false branch of the same If have the same condition,
they can be merged, so that the resulting Trap is an-
chored at the most distant node of which the If is a
postdominator.

5.10 Graph Building

– The graph built by the initial parser (called Graph-
Builder) should be as close to the source represen-
tation (bytecode, ...) as possible.

– All nodes should be able to immediately lower them-
selves to a machine-level representation. CW What
is that? You mean every node has x86 specific code that spits
out machine code? Hope you are joking... This allows
for easier compiler development, and also leads to a
compiler that is very flexible in the amount of opti-
mizations it performs (e.g. recompilation of methods
with more aggressive optimizations).

5.11 Graphical Representation

The graphs in this document use the following node
layout:

��� � ��� ��

CW That doesn’t compile with my latex. What do I have to
do to get it working? LS graphviz needs to be installed, and
pdflatex needs to be started with -shell-escape

Red arrows always represents control dependencies,
while black arrows represent data dependencies:

�

�

���

���


