annotate src/share/vm/opto/addnode.cpp @ 408:52e32c8b317e

6761092: jvm crashes when CDS is enabled. Summary: CDS hardcoded max c++ virtual method table increased Reviewed-by: coleenp, xlu, jmasa
author acorn
date Wed, 22 Oct 2008 14:48:08 -0400
parents 2b73d212b1fd
children cc80376deb0c
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1 /*
196
d1605aabd0a1 6719955: Update copyright year
xdono
parents: 99
diff changeset
2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
a61af66fc99e Initial load
duke
parents:
diff changeset
4 *
a61af66fc99e Initial load
duke
parents:
diff changeset
5 * This code is free software; you can redistribute it and/or modify it
a61af66fc99e Initial load
duke
parents:
diff changeset
6 * under the terms of the GNU General Public License version 2 only, as
a61af66fc99e Initial load
duke
parents:
diff changeset
7 * published by the Free Software Foundation.
a61af66fc99e Initial load
duke
parents:
diff changeset
8 *
a61af66fc99e Initial load
duke
parents:
diff changeset
9 * This code is distributed in the hope that it will be useful, but WITHOUT
a61af66fc99e Initial load
duke
parents:
diff changeset
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
a61af66fc99e Initial load
duke
parents:
diff changeset
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
a61af66fc99e Initial load
duke
parents:
diff changeset
12 * version 2 for more details (a copy is included in the LICENSE file that
a61af66fc99e Initial load
duke
parents:
diff changeset
13 * accompanied this code).
a61af66fc99e Initial load
duke
parents:
diff changeset
14 *
a61af66fc99e Initial load
duke
parents:
diff changeset
15 * You should have received a copy of the GNU General Public License version
a61af66fc99e Initial load
duke
parents:
diff changeset
16 * 2 along with this work; if not, write to the Free Software Foundation,
a61af66fc99e Initial load
duke
parents:
diff changeset
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
a61af66fc99e Initial load
duke
parents:
diff changeset
18 *
a61af66fc99e Initial load
duke
parents:
diff changeset
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
a61af66fc99e Initial load
duke
parents:
diff changeset
20 * CA 95054 USA or visit www.sun.com if you need additional information or
a61af66fc99e Initial load
duke
parents:
diff changeset
21 * have any questions.
a61af66fc99e Initial load
duke
parents:
diff changeset
22 *
a61af66fc99e Initial load
duke
parents:
diff changeset
23 */
a61af66fc99e Initial load
duke
parents:
diff changeset
24
a61af66fc99e Initial load
duke
parents:
diff changeset
25 // Portions of code courtesy of Clifford Click
a61af66fc99e Initial load
duke
parents:
diff changeset
26
a61af66fc99e Initial load
duke
parents:
diff changeset
27 #include "incls/_precompiled.incl"
a61af66fc99e Initial load
duke
parents:
diff changeset
28 #include "incls/_addnode.cpp.incl"
a61af66fc99e Initial load
duke
parents:
diff changeset
29
a61af66fc99e Initial load
duke
parents:
diff changeset
30 #define MAXFLOAT ((float)3.40282346638528860e+38)
a61af66fc99e Initial load
duke
parents:
diff changeset
31
a61af66fc99e Initial load
duke
parents:
diff changeset
32 // Classic Add functionality. This covers all the usual 'add' behaviors for
a61af66fc99e Initial load
duke
parents:
diff changeset
33 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are
a61af66fc99e Initial load
duke
parents:
diff changeset
34 // all inherited from this class. The various identity values are supplied
a61af66fc99e Initial load
duke
parents:
diff changeset
35 // by virtual functions.
a61af66fc99e Initial load
duke
parents:
diff changeset
36
a61af66fc99e Initial load
duke
parents:
diff changeset
37
a61af66fc99e Initial load
duke
parents:
diff changeset
38 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
39 //------------------------------hash-------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
40 // Hash function over AddNodes. Needs to be commutative; i.e., I swap
a61af66fc99e Initial load
duke
parents:
diff changeset
41 // (commute) inputs to AddNodes willy-nilly so the hash function must return
a61af66fc99e Initial load
duke
parents:
diff changeset
42 // the same value in the presence of edge swapping.
a61af66fc99e Initial load
duke
parents:
diff changeset
43 uint AddNode::hash() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
44 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
45 }
a61af66fc99e Initial load
duke
parents:
diff changeset
46
a61af66fc99e Initial load
duke
parents:
diff changeset
47 //------------------------------Identity---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
48 // If either input is a constant 0, return the other input.
a61af66fc99e Initial load
duke
parents:
diff changeset
49 Node *AddNode::Identity( PhaseTransform *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
50 const Type *zero = add_id(); // The additive identity
a61af66fc99e Initial load
duke
parents:
diff changeset
51 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
52 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
53 return this;
a61af66fc99e Initial load
duke
parents:
diff changeset
54 }
a61af66fc99e Initial load
duke
parents:
diff changeset
55
a61af66fc99e Initial load
duke
parents:
diff changeset
56 //------------------------------commute----------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
57 // Commute operands to move loads and constants to the right.
a61af66fc99e Initial load
duke
parents:
diff changeset
58 static bool commute( Node *add, int con_left, int con_right ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
59 Node *in1 = add->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
60 Node *in2 = add->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
61
a61af66fc99e Initial load
duke
parents:
diff changeset
62 // Convert "1+x" into "x+1".
a61af66fc99e Initial load
duke
parents:
diff changeset
63 // Right is a constant; leave it
a61af66fc99e Initial load
duke
parents:
diff changeset
64 if( con_right ) return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
65 // Left is a constant; move it right.
a61af66fc99e Initial load
duke
parents:
diff changeset
66 if( con_left ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
67 add->swap_edges(1, 2);
a61af66fc99e Initial load
duke
parents:
diff changeset
68 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
69 }
a61af66fc99e Initial load
duke
parents:
diff changeset
70
a61af66fc99e Initial load
duke
parents:
diff changeset
71 // Convert "Load+x" into "x+Load".
a61af66fc99e Initial load
duke
parents:
diff changeset
72 // Now check for loads
99
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
73 if (in2->is_Load()) {
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
74 if (!in1->is_Load()) {
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
75 // already x+Load to return
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
76 return false;
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
77 }
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
78 // both are loads, so fall through to sort inputs by idx
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
79 } else if( in1->is_Load() ) {
8a4ef4e001d3 6680594: Load + Load isn't canonicalized leading to missed GVN opportunities
never
parents: 32
diff changeset
80 // Left is a Load and Right is not; move it right.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
81 add->swap_edges(1, 2);
a61af66fc99e Initial load
duke
parents:
diff changeset
82 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
83 }
a61af66fc99e Initial load
duke
parents:
diff changeset
84
a61af66fc99e Initial load
duke
parents:
diff changeset
85 PhiNode *phi;
a61af66fc99e Initial load
duke
parents:
diff changeset
86 // Check for tight loop increments: Loop-phi of Add of loop-phi
a61af66fc99e Initial load
duke
parents:
diff changeset
87 if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
a61af66fc99e Initial load
duke
parents:
diff changeset
88 return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
89 if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
a61af66fc99e Initial load
duke
parents:
diff changeset
90 add->swap_edges(1, 2);
a61af66fc99e Initial load
duke
parents:
diff changeset
91 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
92 }
a61af66fc99e Initial load
duke
parents:
diff changeset
93
a61af66fc99e Initial load
duke
parents:
diff changeset
94 // Otherwise, sort inputs (commutativity) to help value numbering.
a61af66fc99e Initial load
duke
parents:
diff changeset
95 if( in1->_idx > in2->_idx ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
96 add->swap_edges(1, 2);
a61af66fc99e Initial load
duke
parents:
diff changeset
97 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
98 }
a61af66fc99e Initial load
duke
parents:
diff changeset
99 return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
100 }
a61af66fc99e Initial load
duke
parents:
diff changeset
101
a61af66fc99e Initial load
duke
parents:
diff changeset
102 //------------------------------Idealize---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
103 // If we get here, we assume we are associative!
a61af66fc99e Initial load
duke
parents:
diff changeset
104 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
105 const Type *t1 = phase->type( in(1) );
a61af66fc99e Initial load
duke
parents:
diff changeset
106 const Type *t2 = phase->type( in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
107 int con_left = t1->singleton();
a61af66fc99e Initial load
duke
parents:
diff changeset
108 int con_right = t2->singleton();
a61af66fc99e Initial load
duke
parents:
diff changeset
109
a61af66fc99e Initial load
duke
parents:
diff changeset
110 // Check for commutative operation desired
a61af66fc99e Initial load
duke
parents:
diff changeset
111 if( commute(this,con_left,con_right) ) return this;
a61af66fc99e Initial load
duke
parents:
diff changeset
112
a61af66fc99e Initial load
duke
parents:
diff changeset
113 AddNode *progress = NULL; // Progress flag
a61af66fc99e Initial load
duke
parents:
diff changeset
114
a61af66fc99e Initial load
duke
parents:
diff changeset
115 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a
a61af66fc99e Initial load
duke
parents:
diff changeset
116 // constant, and the left input is an add of a constant, flatten the
a61af66fc99e Initial load
duke
parents:
diff changeset
117 // expression tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
118 Node *add1 = in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
119 Node *add2 = in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
120 int add1_op = add1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
121 int this_op = Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
122 if( con_right && t2 != Type::TOP && // Right input is a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
123 add1_op == this_op ) { // Left input is an Add?
a61af66fc99e Initial load
duke
parents:
diff changeset
124
a61af66fc99e Initial load
duke
parents:
diff changeset
125 // Type of left _in right input
a61af66fc99e Initial load
duke
parents:
diff changeset
126 const Type *t12 = phase->type( add1->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
127 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
128 // Check for rare case of closed data cycle which can happen inside
a61af66fc99e Initial load
duke
parents:
diff changeset
129 // unreachable loops. In these cases the computation is undefined.
a61af66fc99e Initial load
duke
parents:
diff changeset
130 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
131 Node *add11 = add1->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
132 int add11_op = add11->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
133 if( (add1 == add1->in(1))
a61af66fc99e Initial load
duke
parents:
diff changeset
134 || (add11_op == this_op && add11->in(1) == add1) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
135 assert(false, "dead loop in AddNode::Ideal");
a61af66fc99e Initial load
duke
parents:
diff changeset
136 }
a61af66fc99e Initial load
duke
parents:
diff changeset
137 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
138 // The Add of the flattened expression
a61af66fc99e Initial load
duke
parents:
diff changeset
139 Node *x1 = add1->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
140 Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
a61af66fc99e Initial load
duke
parents:
diff changeset
141 PhaseIterGVN *igvn = phase->is_IterGVN();
a61af66fc99e Initial load
duke
parents:
diff changeset
142 if( igvn ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
143 set_req_X(2,x2,igvn);
a61af66fc99e Initial load
duke
parents:
diff changeset
144 set_req_X(1,x1,igvn);
a61af66fc99e Initial load
duke
parents:
diff changeset
145 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
146 set_req(2,x2);
a61af66fc99e Initial load
duke
parents:
diff changeset
147 set_req(1,x1);
a61af66fc99e Initial load
duke
parents:
diff changeset
148 }
a61af66fc99e Initial load
duke
parents:
diff changeset
149 progress = this; // Made progress
a61af66fc99e Initial load
duke
parents:
diff changeset
150 add1 = in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
151 add1_op = add1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
152 }
a61af66fc99e Initial load
duke
parents:
diff changeset
153 }
a61af66fc99e Initial load
duke
parents:
diff changeset
154
a61af66fc99e Initial load
duke
parents:
diff changeset
155 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
156 if( add1_op == this_op && !con_right ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
157 Node *a12 = add1->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
158 const Type *t12 = phase->type( a12 );
a61af66fc99e Initial load
duke
parents:
diff changeset
159 if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
320
2b73d212b1fd 6676462: JVM sometimes would suddenly consume significant amount of memory
kvn
parents: 306
diff changeset
160 assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
0
a61af66fc99e Initial load
duke
parents:
diff changeset
161 add2 = add1->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
162 add2->set_req(2, in(2));
a61af66fc99e Initial load
duke
parents:
diff changeset
163 add2 = phase->transform(add2);
a61af66fc99e Initial load
duke
parents:
diff changeset
164 set_req(1, add2);
a61af66fc99e Initial load
duke
parents:
diff changeset
165 set_req(2, a12);
a61af66fc99e Initial load
duke
parents:
diff changeset
166 progress = this;
a61af66fc99e Initial load
duke
parents:
diff changeset
167 add2 = a12;
a61af66fc99e Initial load
duke
parents:
diff changeset
168 }
a61af66fc99e Initial load
duke
parents:
diff changeset
169 }
a61af66fc99e Initial load
duke
parents:
diff changeset
170
a61af66fc99e Initial load
duke
parents:
diff changeset
171 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
172 int add2_op = add2->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
173 if( add2_op == this_op && !con_left ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
174 Node *a22 = add2->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
175 const Type *t22 = phase->type( a22 );
a61af66fc99e Initial load
duke
parents:
diff changeset
176 if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
320
2b73d212b1fd 6676462: JVM sometimes would suddenly consume significant amount of memory
kvn
parents: 306
diff changeset
177 assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
0
a61af66fc99e Initial load
duke
parents:
diff changeset
178 Node *addx = add2->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
179 addx->set_req(1, in(1));
a61af66fc99e Initial load
duke
parents:
diff changeset
180 addx->set_req(2, add2->in(1));
a61af66fc99e Initial load
duke
parents:
diff changeset
181 addx = phase->transform(addx);
a61af66fc99e Initial load
duke
parents:
diff changeset
182 set_req(1, addx);
a61af66fc99e Initial load
duke
parents:
diff changeset
183 set_req(2, a22);
a61af66fc99e Initial load
duke
parents:
diff changeset
184 progress = this;
a61af66fc99e Initial load
duke
parents:
diff changeset
185 }
a61af66fc99e Initial load
duke
parents:
diff changeset
186 }
a61af66fc99e Initial load
duke
parents:
diff changeset
187
a61af66fc99e Initial load
duke
parents:
diff changeset
188 return progress;
a61af66fc99e Initial load
duke
parents:
diff changeset
189 }
a61af66fc99e Initial load
duke
parents:
diff changeset
190
a61af66fc99e Initial load
duke
parents:
diff changeset
191 //------------------------------Value-----------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
192 // An add node sums it's two _in. If one input is an RSD, we must mixin
a61af66fc99e Initial load
duke
parents:
diff changeset
193 // the other input's symbols.
a61af66fc99e Initial load
duke
parents:
diff changeset
194 const Type *AddNode::Value( PhaseTransform *phase ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
195 // Either input is TOP ==> the result is TOP
a61af66fc99e Initial load
duke
parents:
diff changeset
196 const Type *t1 = phase->type( in(1) );
a61af66fc99e Initial load
duke
parents:
diff changeset
197 const Type *t2 = phase->type( in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
198 if( t1 == Type::TOP ) return Type::TOP;
a61af66fc99e Initial load
duke
parents:
diff changeset
199 if( t2 == Type::TOP ) return Type::TOP;
a61af66fc99e Initial load
duke
parents:
diff changeset
200
a61af66fc99e Initial load
duke
parents:
diff changeset
201 // Either input is BOTTOM ==> the result is the local BOTTOM
a61af66fc99e Initial load
duke
parents:
diff changeset
202 const Type *bot = bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
203 if( (t1 == bot) || (t2 == bot) ||
a61af66fc99e Initial load
duke
parents:
diff changeset
204 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
a61af66fc99e Initial load
duke
parents:
diff changeset
205 return bot;
a61af66fc99e Initial load
duke
parents:
diff changeset
206
a61af66fc99e Initial load
duke
parents:
diff changeset
207 // Check for an addition involving the additive identity
a61af66fc99e Initial load
duke
parents:
diff changeset
208 const Type *tadd = add_of_identity( t1, t2 );
a61af66fc99e Initial load
duke
parents:
diff changeset
209 if( tadd ) return tadd;
a61af66fc99e Initial load
duke
parents:
diff changeset
210
a61af66fc99e Initial load
duke
parents:
diff changeset
211 return add_ring(t1,t2); // Local flavor of type addition
a61af66fc99e Initial load
duke
parents:
diff changeset
212 }
a61af66fc99e Initial load
duke
parents:
diff changeset
213
a61af66fc99e Initial load
duke
parents:
diff changeset
214 //------------------------------add_identity-----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
215 // Check for addition of the identity
a61af66fc99e Initial load
duke
parents:
diff changeset
216 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
217 const Type *zero = add_id(); // The additive identity
a61af66fc99e Initial load
duke
parents:
diff changeset
218 if( t1->higher_equal( zero ) ) return t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
219 if( t2->higher_equal( zero ) ) return t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
220
a61af66fc99e Initial load
duke
parents:
diff changeset
221 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
222 }
a61af66fc99e Initial load
duke
parents:
diff changeset
223
a61af66fc99e Initial load
duke
parents:
diff changeset
224
a61af66fc99e Initial load
duke
parents:
diff changeset
225 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
226 //------------------------------Idealize---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
227 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
228 int op1 = in(1)->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
229 int op2 = in(2)->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
230 // Fold (con1-x)+con2 into (con1+con2)-x
a61af66fc99e Initial load
duke
parents:
diff changeset
231 if( op1 == Op_SubI ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
232 const Type *t_sub1 = phase->type( in(1)->in(1) );
a61af66fc99e Initial load
duke
parents:
diff changeset
233 const Type *t_2 = phase->type( in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
234 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
a61af66fc99e Initial load
duke
parents:
diff changeset
235 return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
a61af66fc99e Initial load
duke
parents:
diff changeset
236 in(1)->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
237 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
a61af66fc99e Initial load
duke
parents:
diff changeset
238 if( op2 == Op_SubI ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
239 // Check for dead cycle: d = (a-b)+(c-d)
a61af66fc99e Initial load
duke
parents:
diff changeset
240 assert( in(1)->in(2) != this && in(2)->in(2) != this,
a61af66fc99e Initial load
duke
parents:
diff changeset
241 "dead loop in AddINode::Ideal" );
a61af66fc99e Initial load
duke
parents:
diff changeset
242 Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
243 sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
a61af66fc99e Initial load
duke
parents:
diff changeset
244 sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
a61af66fc99e Initial load
duke
parents:
diff changeset
245 return sub;
a61af66fc99e Initial load
duke
parents:
diff changeset
246 }
a61af66fc99e Initial load
duke
parents:
diff changeset
247 }
a61af66fc99e Initial load
duke
parents:
diff changeset
248
a61af66fc99e Initial load
duke
parents:
diff changeset
249 // Convert "x+(0-y)" into "(x-y)"
a61af66fc99e Initial load
duke
parents:
diff changeset
250 if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
a61af66fc99e Initial load
duke
parents:
diff changeset
251 return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
252
a61af66fc99e Initial load
duke
parents:
diff changeset
253 // Convert "(0-y)+x" into "(x-y)"
a61af66fc99e Initial load
duke
parents:
diff changeset
254 if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
a61af66fc99e Initial load
duke
parents:
diff changeset
255 return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
256
a61af66fc99e Initial load
duke
parents:
diff changeset
257 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
a61af66fc99e Initial load
duke
parents:
diff changeset
258 // Helps with array allocation math constant folding
a61af66fc99e Initial load
duke
parents:
diff changeset
259 // See 4790063:
a61af66fc99e Initial load
duke
parents:
diff changeset
260 // Unrestricted transformation is unsafe for some runtime values of 'x'
a61af66fc99e Initial load
duke
parents:
diff changeset
261 // ( x == 0, z == 1, y == -1 ) fails
a61af66fc99e Initial load
duke
parents:
diff changeset
262 // ( x == -5, z == 1, y == 1 ) fails
a61af66fc99e Initial load
duke
parents:
diff changeset
263 // Transform works for small z and small negative y when the addition
a61af66fc99e Initial load
duke
parents:
diff changeset
264 // (x + (y << z)) does not cross zero.
a61af66fc99e Initial load
duke
parents:
diff changeset
265 // Implement support for negative y and (x >= -(y << z))
a61af66fc99e Initial load
duke
parents:
diff changeset
266 // Have not observed cases where type information exists to support
a61af66fc99e Initial load
duke
parents:
diff changeset
267 // positive y and (x <= -(y << z))
a61af66fc99e Initial load
duke
parents:
diff changeset
268 if( op1 == Op_URShiftI && op2 == Op_ConI &&
a61af66fc99e Initial load
duke
parents:
diff changeset
269 in(1)->in(2)->Opcode() == Op_ConI ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
270 jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
a61af66fc99e Initial load
duke
parents:
diff changeset
271 jint y = phase->type( in(2) )->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
272
a61af66fc99e Initial load
duke
parents:
diff changeset
273 if( z < 5 && -5 < y && y < 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
274 const Type *t_in11 = phase->type(in(1)->in(1));
a61af66fc99e Initial load
duke
parents:
diff changeset
275 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
276 Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
a61af66fc99e Initial load
duke
parents:
diff changeset
277 return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
278 }
a61af66fc99e Initial load
duke
parents:
diff changeset
279 }
a61af66fc99e Initial load
duke
parents:
diff changeset
280 }
a61af66fc99e Initial load
duke
parents:
diff changeset
281
a61af66fc99e Initial load
duke
parents:
diff changeset
282 return AddNode::Ideal(phase, can_reshape);
a61af66fc99e Initial load
duke
parents:
diff changeset
283 }
a61af66fc99e Initial load
duke
parents:
diff changeset
284
a61af66fc99e Initial load
duke
parents:
diff changeset
285
a61af66fc99e Initial load
duke
parents:
diff changeset
286 //------------------------------Identity---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
287 // Fold (x-y)+y OR y+(x-y) into x
a61af66fc99e Initial load
duke
parents:
diff changeset
288 Node *AddINode::Identity( PhaseTransform *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
289 if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
290 return in(1)->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
291 }
a61af66fc99e Initial load
duke
parents:
diff changeset
292 else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
293 return in(2)->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
294 }
a61af66fc99e Initial load
duke
parents:
diff changeset
295 return AddNode::Identity(phase);
a61af66fc99e Initial load
duke
parents:
diff changeset
296 }
a61af66fc99e Initial load
duke
parents:
diff changeset
297
a61af66fc99e Initial load
duke
parents:
diff changeset
298
a61af66fc99e Initial load
duke
parents:
diff changeset
299 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
300 // Supplied function returns the sum of the inputs. Guaranteed never
a61af66fc99e Initial load
duke
parents:
diff changeset
301 // to be passed a TOP or BOTTOM type, these are filtered out by
a61af66fc99e Initial load
duke
parents:
diff changeset
302 // pre-check.
a61af66fc99e Initial load
duke
parents:
diff changeset
303 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
304 const TypeInt *r0 = t0->is_int(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
305 const TypeInt *r1 = t1->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
306 int lo = r0->_lo + r1->_lo;
a61af66fc99e Initial load
duke
parents:
diff changeset
307 int hi = r0->_hi + r1->_hi;
a61af66fc99e Initial load
duke
parents:
diff changeset
308 if( !(r0->is_con() && r1->is_con()) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
309 // Not both constants, compute approximate result
a61af66fc99e Initial load
duke
parents:
diff changeset
310 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
311 lo = min_jint; hi = max_jint; // Underflow on the low side
a61af66fc99e Initial load
duke
parents:
diff changeset
312 }
a61af66fc99e Initial load
duke
parents:
diff changeset
313 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
314 lo = min_jint; hi = max_jint; // Overflow on the high side
a61af66fc99e Initial load
duke
parents:
diff changeset
315 }
a61af66fc99e Initial load
duke
parents:
diff changeset
316 if( lo > hi ) { // Handle overflow
a61af66fc99e Initial load
duke
parents:
diff changeset
317 lo = min_jint; hi = max_jint;
a61af66fc99e Initial load
duke
parents:
diff changeset
318 }
a61af66fc99e Initial load
duke
parents:
diff changeset
319 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
320 // both constants, compute precise result using 'lo' and 'hi'
a61af66fc99e Initial load
duke
parents:
diff changeset
321 // Semantics define overflow and underflow for integer addition
a61af66fc99e Initial load
duke
parents:
diff changeset
322 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
a61af66fc99e Initial load
duke
parents:
diff changeset
323 }
a61af66fc99e Initial load
duke
parents:
diff changeset
324 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
a61af66fc99e Initial load
duke
parents:
diff changeset
325 }
a61af66fc99e Initial load
duke
parents:
diff changeset
326
a61af66fc99e Initial load
duke
parents:
diff changeset
327
a61af66fc99e Initial load
duke
parents:
diff changeset
328 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
329 //------------------------------Idealize---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
330 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
331 int op1 = in(1)->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
332 int op2 = in(2)->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
333 // Fold (con1-x)+con2 into (con1+con2)-x
a61af66fc99e Initial load
duke
parents:
diff changeset
334 if( op1 == Op_SubL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
335 const Type *t_sub1 = phase->type( in(1)->in(1) );
a61af66fc99e Initial load
duke
parents:
diff changeset
336 const Type *t_2 = phase->type( in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
337 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
a61af66fc99e Initial load
duke
parents:
diff changeset
338 return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
a61af66fc99e Initial load
duke
parents:
diff changeset
339 in(1)->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
340 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
a61af66fc99e Initial load
duke
parents:
diff changeset
341 if( op2 == Op_SubL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
342 // Check for dead cycle: d = (a-b)+(c-d)
a61af66fc99e Initial load
duke
parents:
diff changeset
343 assert( in(1)->in(2) != this && in(2)->in(2) != this,
a61af66fc99e Initial load
duke
parents:
diff changeset
344 "dead loop in AddLNode::Ideal" );
a61af66fc99e Initial load
duke
parents:
diff changeset
345 Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
346 sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
a61af66fc99e Initial load
duke
parents:
diff changeset
347 sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
a61af66fc99e Initial load
duke
parents:
diff changeset
348 return sub;
a61af66fc99e Initial load
duke
parents:
diff changeset
349 }
a61af66fc99e Initial load
duke
parents:
diff changeset
350 }
a61af66fc99e Initial load
duke
parents:
diff changeset
351
a61af66fc99e Initial load
duke
parents:
diff changeset
352 // Convert "x+(0-y)" into "(x-y)"
a61af66fc99e Initial load
duke
parents:
diff changeset
353 if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
a61af66fc99e Initial load
duke
parents:
diff changeset
354 return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
355
a61af66fc99e Initial load
duke
parents:
diff changeset
356 // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
a61af66fc99e Initial load
duke
parents:
diff changeset
357 // into "(X<<1)+Y" and let shift-folding happen.
a61af66fc99e Initial load
duke
parents:
diff changeset
358 if( op2 == Op_AddL &&
a61af66fc99e Initial load
duke
parents:
diff changeset
359 in(2)->in(1) == in(1) &&
a61af66fc99e Initial load
duke
parents:
diff changeset
360 op1 != Op_ConL &&
a61af66fc99e Initial load
duke
parents:
diff changeset
361 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
362 Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
a61af66fc99e Initial load
duke
parents:
diff changeset
363 return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
a61af66fc99e Initial load
duke
parents:
diff changeset
364 }
a61af66fc99e Initial load
duke
parents:
diff changeset
365
a61af66fc99e Initial load
duke
parents:
diff changeset
366 return AddNode::Ideal(phase, can_reshape);
a61af66fc99e Initial load
duke
parents:
diff changeset
367 }
a61af66fc99e Initial load
duke
parents:
diff changeset
368
a61af66fc99e Initial load
duke
parents:
diff changeset
369
a61af66fc99e Initial load
duke
parents:
diff changeset
370 //------------------------------Identity---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
371 // Fold (x-y)+y OR y+(x-y) into x
a61af66fc99e Initial load
duke
parents:
diff changeset
372 Node *AddLNode::Identity( PhaseTransform *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
373 if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
374 return in(1)->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
375 }
a61af66fc99e Initial load
duke
parents:
diff changeset
376 else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
377 return in(2)->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
378 }
a61af66fc99e Initial load
duke
parents:
diff changeset
379 return AddNode::Identity(phase);
a61af66fc99e Initial load
duke
parents:
diff changeset
380 }
a61af66fc99e Initial load
duke
parents:
diff changeset
381
a61af66fc99e Initial load
duke
parents:
diff changeset
382
a61af66fc99e Initial load
duke
parents:
diff changeset
383 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
384 // Supplied function returns the sum of the inputs. Guaranteed never
a61af66fc99e Initial load
duke
parents:
diff changeset
385 // to be passed a TOP or BOTTOM type, these are filtered out by
a61af66fc99e Initial load
duke
parents:
diff changeset
386 // pre-check.
a61af66fc99e Initial load
duke
parents:
diff changeset
387 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
388 const TypeLong *r0 = t0->is_long(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
389 const TypeLong *r1 = t1->is_long();
a61af66fc99e Initial load
duke
parents:
diff changeset
390 jlong lo = r0->_lo + r1->_lo;
a61af66fc99e Initial load
duke
parents:
diff changeset
391 jlong hi = r0->_hi + r1->_hi;
a61af66fc99e Initial load
duke
parents:
diff changeset
392 if( !(r0->is_con() && r1->is_con()) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
393 // Not both constants, compute approximate result
a61af66fc99e Initial load
duke
parents:
diff changeset
394 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
395 lo =min_jlong; hi = max_jlong; // Underflow on the low side
a61af66fc99e Initial load
duke
parents:
diff changeset
396 }
a61af66fc99e Initial load
duke
parents:
diff changeset
397 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
398 lo = min_jlong; hi = max_jlong; // Overflow on the high side
a61af66fc99e Initial load
duke
parents:
diff changeset
399 }
a61af66fc99e Initial load
duke
parents:
diff changeset
400 if( lo > hi ) { // Handle overflow
a61af66fc99e Initial load
duke
parents:
diff changeset
401 lo = min_jlong; hi = max_jlong;
a61af66fc99e Initial load
duke
parents:
diff changeset
402 }
a61af66fc99e Initial load
duke
parents:
diff changeset
403 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
404 // both constants, compute precise result using 'lo' and 'hi'
a61af66fc99e Initial load
duke
parents:
diff changeset
405 // Semantics define overflow and underflow for integer addition
a61af66fc99e Initial load
duke
parents:
diff changeset
406 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
a61af66fc99e Initial load
duke
parents:
diff changeset
407 }
a61af66fc99e Initial load
duke
parents:
diff changeset
408 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
a61af66fc99e Initial load
duke
parents:
diff changeset
409 }
a61af66fc99e Initial load
duke
parents:
diff changeset
410
a61af66fc99e Initial load
duke
parents:
diff changeset
411
a61af66fc99e Initial load
duke
parents:
diff changeset
412 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
413 //------------------------------add_of_identity--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
414 // Check for addition of the identity
a61af66fc99e Initial load
duke
parents:
diff changeset
415 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
416 // x ADD 0 should return x unless 'x' is a -zero
a61af66fc99e Initial load
duke
parents:
diff changeset
417 //
a61af66fc99e Initial load
duke
parents:
diff changeset
418 // const Type *zero = add_id(); // The additive identity
a61af66fc99e Initial load
duke
parents:
diff changeset
419 // jfloat f1 = t1->getf();
a61af66fc99e Initial load
duke
parents:
diff changeset
420 // jfloat f2 = t2->getf();
a61af66fc99e Initial load
duke
parents:
diff changeset
421 //
a61af66fc99e Initial load
duke
parents:
diff changeset
422 // if( t1->higher_equal( zero ) ) return t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
423 // if( t2->higher_equal( zero ) ) return t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
424
a61af66fc99e Initial load
duke
parents:
diff changeset
425 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
426 }
a61af66fc99e Initial load
duke
parents:
diff changeset
427
a61af66fc99e Initial load
duke
parents:
diff changeset
428 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
429 // Supplied function returns the sum of the inputs.
a61af66fc99e Initial load
duke
parents:
diff changeset
430 // This also type-checks the inputs for sanity. Guaranteed never to
a61af66fc99e Initial load
duke
parents:
diff changeset
431 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
a61af66fc99e Initial load
duke
parents:
diff changeset
432 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
433 // We must be adding 2 float constants.
a61af66fc99e Initial load
duke
parents:
diff changeset
434 return TypeF::make( t0->getf() + t1->getf() );
a61af66fc99e Initial load
duke
parents:
diff changeset
435 }
a61af66fc99e Initial load
duke
parents:
diff changeset
436
a61af66fc99e Initial load
duke
parents:
diff changeset
437 //------------------------------Ideal------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
438 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
439 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
440 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
a61af66fc99e Initial load
duke
parents:
diff changeset
441 }
a61af66fc99e Initial load
duke
parents:
diff changeset
442
a61af66fc99e Initial load
duke
parents:
diff changeset
443 // Floating point additions are not associative because of boundary conditions (infinity)
a61af66fc99e Initial load
duke
parents:
diff changeset
444 return commute(this,
a61af66fc99e Initial load
duke
parents:
diff changeset
445 phase->type( in(1) )->singleton(),
a61af66fc99e Initial load
duke
parents:
diff changeset
446 phase->type( in(2) )->singleton() ) ? this : NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
447 }
a61af66fc99e Initial load
duke
parents:
diff changeset
448
a61af66fc99e Initial load
duke
parents:
diff changeset
449
a61af66fc99e Initial load
duke
parents:
diff changeset
450 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
451 //------------------------------add_of_identity--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
452 // Check for addition of the identity
a61af66fc99e Initial load
duke
parents:
diff changeset
453 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
454 // x ADD 0 should return x unless 'x' is a -zero
a61af66fc99e Initial load
duke
parents:
diff changeset
455 //
a61af66fc99e Initial load
duke
parents:
diff changeset
456 // const Type *zero = add_id(); // The additive identity
a61af66fc99e Initial load
duke
parents:
diff changeset
457 // jfloat f1 = t1->getf();
a61af66fc99e Initial load
duke
parents:
diff changeset
458 // jfloat f2 = t2->getf();
a61af66fc99e Initial load
duke
parents:
diff changeset
459 //
a61af66fc99e Initial load
duke
parents:
diff changeset
460 // if( t1->higher_equal( zero ) ) return t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
461 // if( t2->higher_equal( zero ) ) return t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
462
a61af66fc99e Initial load
duke
parents:
diff changeset
463 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
464 }
a61af66fc99e Initial load
duke
parents:
diff changeset
465 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
466 // Supplied function returns the sum of the inputs.
a61af66fc99e Initial load
duke
parents:
diff changeset
467 // This also type-checks the inputs for sanity. Guaranteed never to
a61af66fc99e Initial load
duke
parents:
diff changeset
468 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
a61af66fc99e Initial load
duke
parents:
diff changeset
469 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
470 // We must be adding 2 double constants.
a61af66fc99e Initial load
duke
parents:
diff changeset
471 return TypeD::make( t0->getd() + t1->getd() );
a61af66fc99e Initial load
duke
parents:
diff changeset
472 }
a61af66fc99e Initial load
duke
parents:
diff changeset
473
a61af66fc99e Initial load
duke
parents:
diff changeset
474 //------------------------------Ideal------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
475 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
476 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
477 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
a61af66fc99e Initial load
duke
parents:
diff changeset
478 }
a61af66fc99e Initial load
duke
parents:
diff changeset
479
a61af66fc99e Initial load
duke
parents:
diff changeset
480 // Floating point additions are not associative because of boundary conditions (infinity)
a61af66fc99e Initial load
duke
parents:
diff changeset
481 return commute(this,
a61af66fc99e Initial load
duke
parents:
diff changeset
482 phase->type( in(1) )->singleton(),
a61af66fc99e Initial load
duke
parents:
diff changeset
483 phase->type( in(2) )->singleton() ) ? this : NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
484 }
a61af66fc99e Initial load
duke
parents:
diff changeset
485
a61af66fc99e Initial load
duke
parents:
diff changeset
486
a61af66fc99e Initial load
duke
parents:
diff changeset
487 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
488 //------------------------------Identity---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
489 // If one input is a constant 0, return the other input.
a61af66fc99e Initial load
duke
parents:
diff changeset
490 Node *AddPNode::Identity( PhaseTransform *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
491 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
a61af66fc99e Initial load
duke
parents:
diff changeset
492 }
a61af66fc99e Initial load
duke
parents:
diff changeset
493
a61af66fc99e Initial load
duke
parents:
diff changeset
494 //------------------------------Idealize---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
495 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
496 // Bail out if dead inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
497 if( phase->type( in(Address) ) == Type::TOP ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
498
a61af66fc99e Initial load
duke
parents:
diff changeset
499 // If the left input is an add of a constant, flatten the expression tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
500 const Node *n = in(Address);
a61af66fc99e Initial load
duke
parents:
diff changeset
501 if (n->is_AddP() && n->in(Base) == in(Base)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
502 const AddPNode *addp = n->as_AddP(); // Left input is an AddP
a61af66fc99e Initial load
duke
parents:
diff changeset
503 assert( !addp->in(Address)->is_AddP() ||
a61af66fc99e Initial load
duke
parents:
diff changeset
504 addp->in(Address)->as_AddP() != addp,
a61af66fc99e Initial load
duke
parents:
diff changeset
505 "dead loop in AddPNode::Ideal" );
a61af66fc99e Initial load
duke
parents:
diff changeset
506 // Type of left input's right input
a61af66fc99e Initial load
duke
parents:
diff changeset
507 const Type *t = phase->type( addp->in(Offset) );
a61af66fc99e Initial load
duke
parents:
diff changeset
508 if( t == Type::TOP ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
509 const TypeX *t12 = t->is_intptr_t();
a61af66fc99e Initial load
duke
parents:
diff changeset
510 if( t12->is_con() ) { // Left input is an add of a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
511 // If the right input is a constant, combine constants
a61af66fc99e Initial load
duke
parents:
diff changeset
512 const Type *temp_t2 = phase->type( in(Offset) );
a61af66fc99e Initial load
duke
parents:
diff changeset
513 if( temp_t2 == Type::TOP ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
514 const TypeX *t2 = temp_t2->is_intptr_t();
32
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
515 Node* address;
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
516 Node* offset;
0
a61af66fc99e Initial load
duke
parents:
diff changeset
517 if( t2->is_con() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
518 // The Add of the flattened expression
32
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
519 address = addp->in(Address);
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
520 offset = phase->MakeConX(t2->get_con() + t12->get_con());
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
521 } else {
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
522 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
523 address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
524 offset = addp->in(Offset);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
525 }
32
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
526 PhaseIterGVN *igvn = phase->is_IterGVN();
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
527 if( igvn ) {
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
528 set_req_X(Address,address,igvn);
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
529 set_req_X(Offset,offset,igvn);
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
530 } else {
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
531 set_req(Address,address);
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
532 set_req(Offset,offset);
4d428c5b4cb3 6667573: Use set_req_X() in AddPNode::Ideal() for Iterative GVN
kvn
parents: 17
diff changeset
533 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
534 return this;
a61af66fc99e Initial load
duke
parents:
diff changeset
535 }
a61af66fc99e Initial load
duke
parents:
diff changeset
536 }
a61af66fc99e Initial load
duke
parents:
diff changeset
537
a61af66fc99e Initial load
duke
parents:
diff changeset
538 // Raw pointers?
a61af66fc99e Initial load
duke
parents:
diff changeset
539 if( in(Base)->bottom_type() == Type::TOP ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
540 // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
a61af66fc99e Initial load
duke
parents:
diff changeset
541 if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
a61af66fc99e Initial load
duke
parents:
diff changeset
542 Node* offset = in(Offset);
a61af66fc99e Initial load
duke
parents:
diff changeset
543 return new (phase->C, 2) CastX2PNode(offset);
a61af66fc99e Initial load
duke
parents:
diff changeset
544 }
a61af66fc99e Initial load
duke
parents:
diff changeset
545 }
a61af66fc99e Initial load
duke
parents:
diff changeset
546
a61af66fc99e Initial load
duke
parents:
diff changeset
547 // If the right is an add of a constant, push the offset down.
a61af66fc99e Initial load
duke
parents:
diff changeset
548 // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
a61af66fc99e Initial load
duke
parents:
diff changeset
549 // The idea is to merge array_base+scaled_index groups together,
a61af66fc99e Initial load
duke
parents:
diff changeset
550 // and only have different constant offsets from the same base.
a61af66fc99e Initial load
duke
parents:
diff changeset
551 const Node *add = in(Offset);
a61af66fc99e Initial load
duke
parents:
diff changeset
552 if( add->Opcode() == Op_AddX && add->in(1) != add ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
553 const Type *t22 = phase->type( add->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
554 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
555 set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
a61af66fc99e Initial load
duke
parents:
diff changeset
556 set_req(Offset, add->in(2));
a61af66fc99e Initial load
duke
parents:
diff changeset
557 return this; // Made progress
a61af66fc99e Initial load
duke
parents:
diff changeset
558 }
a61af66fc99e Initial load
duke
parents:
diff changeset
559 }
a61af66fc99e Initial load
duke
parents:
diff changeset
560
a61af66fc99e Initial load
duke
parents:
diff changeset
561 return NULL; // No progress
a61af66fc99e Initial load
duke
parents:
diff changeset
562 }
a61af66fc99e Initial load
duke
parents:
diff changeset
563
a61af66fc99e Initial load
duke
parents:
diff changeset
564 //------------------------------bottom_type------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
565 // Bottom-type is the pointer-type with unknown offset.
a61af66fc99e Initial load
duke
parents:
diff changeset
566 const Type *AddPNode::bottom_type() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
567 if (in(Address) == NULL) return TypePtr::BOTTOM;
a61af66fc99e Initial load
duke
parents:
diff changeset
568 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
a61af66fc99e Initial load
duke
parents:
diff changeset
569 if( !tp ) return Type::TOP; // TOP input means TOP output
a61af66fc99e Initial load
duke
parents:
diff changeset
570 assert( in(Offset)->Opcode() != Op_ConP, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
571 const Type *t = in(Offset)->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
572 if( t == Type::TOP )
a61af66fc99e Initial load
duke
parents:
diff changeset
573 return tp->add_offset(Type::OffsetTop);
a61af66fc99e Initial load
duke
parents:
diff changeset
574 const TypeX *tx = t->is_intptr_t();
a61af66fc99e Initial load
duke
parents:
diff changeset
575 intptr_t txoffset = Type::OffsetBot;
a61af66fc99e Initial load
duke
parents:
diff changeset
576 if (tx->is_con()) { // Left input is an add of a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
577 txoffset = tx->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
578 }
a61af66fc99e Initial load
duke
parents:
diff changeset
579 return tp->add_offset(txoffset);
a61af66fc99e Initial load
duke
parents:
diff changeset
580 }
a61af66fc99e Initial load
duke
parents:
diff changeset
581
a61af66fc99e Initial load
duke
parents:
diff changeset
582 //------------------------------Value------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
583 const Type *AddPNode::Value( PhaseTransform *phase ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
584 // Either input is TOP ==> the result is TOP
a61af66fc99e Initial load
duke
parents:
diff changeset
585 const Type *t1 = phase->type( in(Address) );
a61af66fc99e Initial load
duke
parents:
diff changeset
586 const Type *t2 = phase->type( in(Offset) );
a61af66fc99e Initial load
duke
parents:
diff changeset
587 if( t1 == Type::TOP ) return Type::TOP;
a61af66fc99e Initial load
duke
parents:
diff changeset
588 if( t2 == Type::TOP ) return Type::TOP;
a61af66fc99e Initial load
duke
parents:
diff changeset
589
a61af66fc99e Initial load
duke
parents:
diff changeset
590 // Left input is a pointer
a61af66fc99e Initial load
duke
parents:
diff changeset
591 const TypePtr *p1 = t1->isa_ptr();
a61af66fc99e Initial load
duke
parents:
diff changeset
592 // Right input is an int
a61af66fc99e Initial load
duke
parents:
diff changeset
593 const TypeX *p2 = t2->is_intptr_t();
a61af66fc99e Initial load
duke
parents:
diff changeset
594 // Add 'em
a61af66fc99e Initial load
duke
parents:
diff changeset
595 intptr_t p2offset = Type::OffsetBot;
a61af66fc99e Initial load
duke
parents:
diff changeset
596 if (p2->is_con()) { // Left input is an add of a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
597 p2offset = p2->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
598 }
a61af66fc99e Initial load
duke
parents:
diff changeset
599 return p1->add_offset(p2offset);
a61af66fc99e Initial load
duke
parents:
diff changeset
600 }
a61af66fc99e Initial load
duke
parents:
diff changeset
601
a61af66fc99e Initial load
duke
parents:
diff changeset
602 //------------------------Ideal_base_and_offset--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
603 // Split an oop pointer into a base and offset.
a61af66fc99e Initial load
duke
parents:
diff changeset
604 // (The offset might be Type::OffsetBot in the case of an array.)
a61af66fc99e Initial load
duke
parents:
diff changeset
605 // Return the base, or NULL if failure.
a61af66fc99e Initial load
duke
parents:
diff changeset
606 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
a61af66fc99e Initial load
duke
parents:
diff changeset
607 // second return value:
a61af66fc99e Initial load
duke
parents:
diff changeset
608 intptr_t& offset) {
a61af66fc99e Initial load
duke
parents:
diff changeset
609 if (ptr->is_AddP()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
610 Node* base = ptr->in(AddPNode::Base);
a61af66fc99e Initial load
duke
parents:
diff changeset
611 Node* addr = ptr->in(AddPNode::Address);
a61af66fc99e Initial load
duke
parents:
diff changeset
612 Node* offs = ptr->in(AddPNode::Offset);
a61af66fc99e Initial load
duke
parents:
diff changeset
613 if (base == addr || base->is_top()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
614 offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
a61af66fc99e Initial load
duke
parents:
diff changeset
615 if (offset != Type::OffsetBot) {
a61af66fc99e Initial load
duke
parents:
diff changeset
616 return addr;
a61af66fc99e Initial load
duke
parents:
diff changeset
617 }
a61af66fc99e Initial load
duke
parents:
diff changeset
618 }
a61af66fc99e Initial load
duke
parents:
diff changeset
619 }
a61af66fc99e Initial load
duke
parents:
diff changeset
620 offset = Type::OffsetBot;
a61af66fc99e Initial load
duke
parents:
diff changeset
621 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
622 }
a61af66fc99e Initial load
duke
parents:
diff changeset
623
17
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
624 //------------------------------unpack_offsets----------------------------------
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
625 // Collect the AddP offset values into the elements array, giving up
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
626 // if there are more than length.
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
627 int AddPNode::unpack_offsets(Node* elements[], int length) {
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
628 int count = 0;
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
629 Node* addr = this;
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
630 Node* base = addr->in(AddPNode::Base);
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
631 while (addr->is_AddP()) {
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
632 if (addr->in(AddPNode::Base) != base) {
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
633 // give up
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
634 return -1;
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
635 }
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
636 elements[count++] = addr->in(AddPNode::Offset);
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
637 if (count == length) {
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
638 // give up
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
639 return -1;
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
640 }
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
641 addr = addr->in(AddPNode::Address);
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
642 }
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
643 return count;
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
644 }
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
645
0
a61af66fc99e Initial load
duke
parents:
diff changeset
646 //------------------------------match_edge-------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
647 // Do we Match on this edge index or not? Do not match base pointer edge
a61af66fc99e Initial load
duke
parents:
diff changeset
648 uint AddPNode::match_edge(uint idx) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
649 return idx > Base;
a61af66fc99e Initial load
duke
parents:
diff changeset
650 }
a61af66fc99e Initial load
duke
parents:
diff changeset
651
a61af66fc99e Initial load
duke
parents:
diff changeset
652 //---------------------------mach_bottom_type----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
653 // Utility function for use by ADLC. Implements bottom_type for matched AddP.
a61af66fc99e Initial load
duke
parents:
diff changeset
654 const Type *AddPNode::mach_bottom_type( const MachNode* n) {
a61af66fc99e Initial load
duke
parents:
diff changeset
655 Node* base = n->in(Base);
a61af66fc99e Initial load
duke
parents:
diff changeset
656 const Type *t = base->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
657 if ( t == Type::TOP ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
658 // an untyped pointer
a61af66fc99e Initial load
duke
parents:
diff changeset
659 return TypeRawPtr::BOTTOM;
a61af66fc99e Initial load
duke
parents:
diff changeset
660 }
a61af66fc99e Initial load
duke
parents:
diff changeset
661 const TypePtr* tp = t->isa_oopptr();
a61af66fc99e Initial load
duke
parents:
diff changeset
662 if ( tp == NULL ) return t;
a61af66fc99e Initial load
duke
parents:
diff changeset
663 if ( tp->_offset == TypePtr::OffsetBot ) return tp;
a61af66fc99e Initial load
duke
parents:
diff changeset
664
a61af66fc99e Initial load
duke
parents:
diff changeset
665 // We must carefully add up the various offsets...
a61af66fc99e Initial load
duke
parents:
diff changeset
666 intptr_t offset = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
667 const TypePtr* tptr = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
668
a61af66fc99e Initial load
duke
parents:
diff changeset
669 uint numopnds = n->num_opnds();
a61af66fc99e Initial load
duke
parents:
diff changeset
670 uint index = n->oper_input_base();
a61af66fc99e Initial load
duke
parents:
diff changeset
671 for ( uint i = 1; i < numopnds; i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
672 MachOper *opnd = n->_opnds[i];
a61af66fc99e Initial load
duke
parents:
diff changeset
673 // Check for any interesting operand info.
a61af66fc99e Initial load
duke
parents:
diff changeset
674 // In particular, check for both memory and non-memory operands.
a61af66fc99e Initial load
duke
parents:
diff changeset
675 // %%%%% Clean this up: use xadd_offset
306
af945ba2e739 6741738: TypePtr::add_offset() set incorrect offset when the add overflows
kvn
parents: 293
diff changeset
676 intptr_t con = opnd->constant();
0
a61af66fc99e Initial load
duke
parents:
diff changeset
677 if ( con == TypePtr::OffsetBot ) goto bottom_out;
a61af66fc99e Initial load
duke
parents:
diff changeset
678 offset += con;
a61af66fc99e Initial load
duke
parents:
diff changeset
679 con = opnd->constant_disp();
a61af66fc99e Initial load
duke
parents:
diff changeset
680 if ( con == TypePtr::OffsetBot ) goto bottom_out;
a61af66fc99e Initial load
duke
parents:
diff changeset
681 offset += con;
a61af66fc99e Initial load
duke
parents:
diff changeset
682 if( opnd->scale() != 0 ) goto bottom_out;
a61af66fc99e Initial load
duke
parents:
diff changeset
683
a61af66fc99e Initial load
duke
parents:
diff changeset
684 // Check each operand input edge. Find the 1 allowed pointer
a61af66fc99e Initial load
duke
parents:
diff changeset
685 // edge. Other edges must be index edges; track exact constant
a61af66fc99e Initial load
duke
parents:
diff changeset
686 // inputs and otherwise assume the worst.
a61af66fc99e Initial load
duke
parents:
diff changeset
687 for ( uint j = opnd->num_edges(); j > 0; j-- ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
688 Node* edge = n->in(index++);
a61af66fc99e Initial load
duke
parents:
diff changeset
689 const Type* et = edge->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
690 const TypeX* eti = et->isa_intptr_t();
a61af66fc99e Initial load
duke
parents:
diff changeset
691 if ( eti == NULL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
692 // there must be one pointer among the operands
a61af66fc99e Initial load
duke
parents:
diff changeset
693 guarantee(tptr == NULL, "must be only one pointer operand");
a61af66fc99e Initial load
duke
parents:
diff changeset
694 tptr = et->isa_oopptr();
a61af66fc99e Initial load
duke
parents:
diff changeset
695 guarantee(tptr != NULL, "non-int operand must be pointer");
293
c3e045194476 6731641: assert(m->adr_type() == mach->adr_type(),"matcher should not change adr type")
kvn
parents: 196
diff changeset
696 if (tptr->higher_equal(tp->add_offset(tptr->offset())))
c3e045194476 6731641: assert(m->adr_type() == mach->adr_type(),"matcher should not change adr type")
kvn
parents: 196
diff changeset
697 tp = tptr; // Set more precise type for bailout
0
a61af66fc99e Initial load
duke
parents:
diff changeset
698 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
699 }
a61af66fc99e Initial load
duke
parents:
diff changeset
700 if ( eti->_hi != eti->_lo ) goto bottom_out;
a61af66fc99e Initial load
duke
parents:
diff changeset
701 offset += eti->_lo;
a61af66fc99e Initial load
duke
parents:
diff changeset
702 }
a61af66fc99e Initial load
duke
parents:
diff changeset
703 }
a61af66fc99e Initial load
duke
parents:
diff changeset
704 guarantee(tptr != NULL, "must be exactly one pointer operand");
a61af66fc99e Initial load
duke
parents:
diff changeset
705 return tptr->add_offset(offset);
a61af66fc99e Initial load
duke
parents:
diff changeset
706
a61af66fc99e Initial load
duke
parents:
diff changeset
707 bottom_out:
a61af66fc99e Initial load
duke
parents:
diff changeset
708 return tp->add_offset(TypePtr::OffsetBot);
a61af66fc99e Initial load
duke
parents:
diff changeset
709 }
a61af66fc99e Initial load
duke
parents:
diff changeset
710
a61af66fc99e Initial load
duke
parents:
diff changeset
711 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
712 //------------------------------Identity---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
713 Node *OrINode::Identity( PhaseTransform *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
714 // x | x => x
a61af66fc99e Initial load
duke
parents:
diff changeset
715 if (phase->eqv(in(1), in(2))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
716 return in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
717 }
a61af66fc99e Initial load
duke
parents:
diff changeset
718
a61af66fc99e Initial load
duke
parents:
diff changeset
719 return AddNode::Identity(phase);
a61af66fc99e Initial load
duke
parents:
diff changeset
720 }
a61af66fc99e Initial load
duke
parents:
diff changeset
721
a61af66fc99e Initial load
duke
parents:
diff changeset
722 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
723 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
a61af66fc99e Initial load
duke
parents:
diff changeset
724 // the logical operations the ring's ADD is really a logical OR function.
a61af66fc99e Initial load
duke
parents:
diff changeset
725 // This also type-checks the inputs for sanity. Guaranteed never to
a61af66fc99e Initial load
duke
parents:
diff changeset
726 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
a61af66fc99e Initial load
duke
parents:
diff changeset
727 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
728 const TypeInt *r0 = t0->is_int(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
729 const TypeInt *r1 = t1->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
730
a61af66fc99e Initial load
duke
parents:
diff changeset
731 // If both args are bool, can figure out better types
a61af66fc99e Initial load
duke
parents:
diff changeset
732 if ( r0 == TypeInt::BOOL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
733 if ( r1 == TypeInt::ONE) {
a61af66fc99e Initial load
duke
parents:
diff changeset
734 return TypeInt::ONE;
a61af66fc99e Initial load
duke
parents:
diff changeset
735 } else if ( r1 == TypeInt::BOOL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
736 return TypeInt::BOOL;
a61af66fc99e Initial load
duke
parents:
diff changeset
737 }
a61af66fc99e Initial load
duke
parents:
diff changeset
738 } else if ( r0 == TypeInt::ONE ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
739 if ( r1 == TypeInt::BOOL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
740 return TypeInt::ONE;
a61af66fc99e Initial load
duke
parents:
diff changeset
741 }
a61af66fc99e Initial load
duke
parents:
diff changeset
742 }
a61af66fc99e Initial load
duke
parents:
diff changeset
743
a61af66fc99e Initial load
duke
parents:
diff changeset
744 // If either input is not a constant, just return all integers.
a61af66fc99e Initial load
duke
parents:
diff changeset
745 if( !r0->is_con() || !r1->is_con() )
a61af66fc99e Initial load
duke
parents:
diff changeset
746 return TypeInt::INT; // Any integer, but still no symbols.
a61af66fc99e Initial load
duke
parents:
diff changeset
747
a61af66fc99e Initial load
duke
parents:
diff changeset
748 // Otherwise just OR them bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
749 return TypeInt::make( r0->get_con() | r1->get_con() );
a61af66fc99e Initial load
duke
parents:
diff changeset
750 }
a61af66fc99e Initial load
duke
parents:
diff changeset
751
a61af66fc99e Initial load
duke
parents:
diff changeset
752 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
753 //------------------------------Identity---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
754 Node *OrLNode::Identity( PhaseTransform *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
755 // x | x => x
a61af66fc99e Initial load
duke
parents:
diff changeset
756 if (phase->eqv(in(1), in(2))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
757 return in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
758 }
a61af66fc99e Initial load
duke
parents:
diff changeset
759
a61af66fc99e Initial load
duke
parents:
diff changeset
760 return AddNode::Identity(phase);
a61af66fc99e Initial load
duke
parents:
diff changeset
761 }
a61af66fc99e Initial load
duke
parents:
diff changeset
762
a61af66fc99e Initial load
duke
parents:
diff changeset
763 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
764 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
765 const TypeLong *r0 = t0->is_long(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
766 const TypeLong *r1 = t1->is_long();
a61af66fc99e Initial load
duke
parents:
diff changeset
767
a61af66fc99e Initial load
duke
parents:
diff changeset
768 // If either input is not a constant, just return all integers.
a61af66fc99e Initial load
duke
parents:
diff changeset
769 if( !r0->is_con() || !r1->is_con() )
a61af66fc99e Initial load
duke
parents:
diff changeset
770 return TypeLong::LONG; // Any integer, but still no symbols.
a61af66fc99e Initial load
duke
parents:
diff changeset
771
a61af66fc99e Initial load
duke
parents:
diff changeset
772 // Otherwise just OR them bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
773 return TypeLong::make( r0->get_con() | r1->get_con() );
a61af66fc99e Initial load
duke
parents:
diff changeset
774 }
a61af66fc99e Initial load
duke
parents:
diff changeset
775
a61af66fc99e Initial load
duke
parents:
diff changeset
776 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
777 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
778 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
a61af66fc99e Initial load
duke
parents:
diff changeset
779 // the logical operations the ring's ADD is really a logical OR function.
a61af66fc99e Initial load
duke
parents:
diff changeset
780 // This also type-checks the inputs for sanity. Guaranteed never to
a61af66fc99e Initial load
duke
parents:
diff changeset
781 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
a61af66fc99e Initial load
duke
parents:
diff changeset
782 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
783 const TypeInt *r0 = t0->is_int(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
784 const TypeInt *r1 = t1->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
785
a61af66fc99e Initial load
duke
parents:
diff changeset
786 // Complementing a boolean?
a61af66fc99e Initial load
duke
parents:
diff changeset
787 if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
a61af66fc99e Initial load
duke
parents:
diff changeset
788 || r1 == TypeInt::BOOL))
a61af66fc99e Initial load
duke
parents:
diff changeset
789 return TypeInt::BOOL;
a61af66fc99e Initial load
duke
parents:
diff changeset
790
a61af66fc99e Initial load
duke
parents:
diff changeset
791 if( !r0->is_con() || !r1->is_con() ) // Not constants
a61af66fc99e Initial load
duke
parents:
diff changeset
792 return TypeInt::INT; // Any integer, but still no symbols.
a61af66fc99e Initial load
duke
parents:
diff changeset
793
a61af66fc99e Initial load
duke
parents:
diff changeset
794 // Otherwise just XOR them bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
795 return TypeInt::make( r0->get_con() ^ r1->get_con() );
a61af66fc99e Initial load
duke
parents:
diff changeset
796 }
a61af66fc99e Initial load
duke
parents:
diff changeset
797
a61af66fc99e Initial load
duke
parents:
diff changeset
798 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
799 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
800 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
801 const TypeLong *r0 = t0->is_long(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
802 const TypeLong *r1 = t1->is_long();
a61af66fc99e Initial load
duke
parents:
diff changeset
803
a61af66fc99e Initial load
duke
parents:
diff changeset
804 // If either input is not a constant, just return all integers.
a61af66fc99e Initial load
duke
parents:
diff changeset
805 if( !r0->is_con() || !r1->is_con() )
a61af66fc99e Initial load
duke
parents:
diff changeset
806 return TypeLong::LONG; // Any integer, but still no symbols.
a61af66fc99e Initial load
duke
parents:
diff changeset
807
a61af66fc99e Initial load
duke
parents:
diff changeset
808 // Otherwise just OR them bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
809 return TypeLong::make( r0->get_con() ^ r1->get_con() );
a61af66fc99e Initial load
duke
parents:
diff changeset
810 }
a61af66fc99e Initial load
duke
parents:
diff changeset
811
a61af66fc99e Initial load
duke
parents:
diff changeset
812 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
813 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
814 // Supplied function returns the sum of the inputs.
a61af66fc99e Initial load
duke
parents:
diff changeset
815 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
816 const TypeInt *r0 = t0->is_int(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
817 const TypeInt *r1 = t1->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
818
a61af66fc99e Initial load
duke
parents:
diff changeset
819 // Otherwise just MAX them bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
820 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
a61af66fc99e Initial load
duke
parents:
diff changeset
821 }
a61af66fc99e Initial load
duke
parents:
diff changeset
822
a61af66fc99e Initial load
duke
parents:
diff changeset
823 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
824 //------------------------------Idealize---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
825 // MINs show up in range-check loop limit calculations. Look for
a61af66fc99e Initial load
duke
parents:
diff changeset
826 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
a61af66fc99e Initial load
duke
parents:
diff changeset
827 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
828 Node *progress = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
829 // Force a right-spline graph
a61af66fc99e Initial load
duke
parents:
diff changeset
830 Node *l = in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
831 Node *r = in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
832 // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
a61af66fc99e Initial load
duke
parents:
diff changeset
833 // to force a right-spline graph for the rest of MinINode::Ideal().
a61af66fc99e Initial load
duke
parents:
diff changeset
834 if( l->Opcode() == Op_MinI ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
835 assert( l != l->in(1), "dead loop in MinINode::Ideal" );
a61af66fc99e Initial load
duke
parents:
diff changeset
836 r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
a61af66fc99e Initial load
duke
parents:
diff changeset
837 l = l->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
838 set_req(1, l);
a61af66fc99e Initial load
duke
parents:
diff changeset
839 set_req(2, r);
a61af66fc99e Initial load
duke
parents:
diff changeset
840 return this;
a61af66fc99e Initial load
duke
parents:
diff changeset
841 }
a61af66fc99e Initial load
duke
parents:
diff changeset
842
a61af66fc99e Initial load
duke
parents:
diff changeset
843 // Get left input & constant
a61af66fc99e Initial load
duke
parents:
diff changeset
844 Node *x = l;
a61af66fc99e Initial load
duke
parents:
diff changeset
845 int x_off = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
846 if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
a61af66fc99e Initial load
duke
parents:
diff changeset
847 x->in(2)->is_Con() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
848 const Type *t = x->in(2)->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
849 if( t == Type::TOP ) return NULL; // No progress
a61af66fc99e Initial load
duke
parents:
diff changeset
850 x_off = t->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
851 x = x->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
852 }
a61af66fc99e Initial load
duke
parents:
diff changeset
853
a61af66fc99e Initial load
duke
parents:
diff changeset
854 // Scan a right-spline-tree for MINs
a61af66fc99e Initial load
duke
parents:
diff changeset
855 Node *y = r;
a61af66fc99e Initial load
duke
parents:
diff changeset
856 int y_off = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
857 // Check final part of MIN tree
a61af66fc99e Initial load
duke
parents:
diff changeset
858 if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
a61af66fc99e Initial load
duke
parents:
diff changeset
859 y->in(2)->is_Con() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
860 const Type *t = y->in(2)->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
861 if( t == Type::TOP ) return NULL; // No progress
a61af66fc99e Initial load
duke
parents:
diff changeset
862 y_off = t->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
863 y = y->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
864 }
a61af66fc99e Initial load
duke
parents:
diff changeset
865 if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
866 swap_edges(1, 2);
a61af66fc99e Initial load
duke
parents:
diff changeset
867 return this;
a61af66fc99e Initial load
duke
parents:
diff changeset
868 }
a61af66fc99e Initial load
duke
parents:
diff changeset
869
a61af66fc99e Initial load
duke
parents:
diff changeset
870
a61af66fc99e Initial load
duke
parents:
diff changeset
871 if( r->Opcode() == Op_MinI ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
872 assert( r != r->in(2), "dead loop in MinINode::Ideal" );
a61af66fc99e Initial load
duke
parents:
diff changeset
873 y = r->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
874 // Check final part of MIN tree
a61af66fc99e Initial load
duke
parents:
diff changeset
875 if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
a61af66fc99e Initial load
duke
parents:
diff changeset
876 y->in(2)->is_Con() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
877 const Type *t = y->in(2)->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
878 if( t == Type::TOP ) return NULL; // No progress
a61af66fc99e Initial load
duke
parents:
diff changeset
879 y_off = t->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
880 y = y->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
881 }
a61af66fc99e Initial load
duke
parents:
diff changeset
882
a61af66fc99e Initial load
duke
parents:
diff changeset
883 if( x->_idx > y->_idx )
a61af66fc99e Initial load
duke
parents:
diff changeset
884 return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
a61af66fc99e Initial load
duke
parents:
diff changeset
885
a61af66fc99e Initial load
duke
parents:
diff changeset
886 // See if covers: MIN2(x+c0,MIN2(y+c1,z))
a61af66fc99e Initial load
duke
parents:
diff changeset
887 if( !phase->eqv(x,y) ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
888 // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
a61af66fc99e Initial load
duke
parents:
diff changeset
889 // MIN2(x+c0 or x+c1 which less, z).
a61af66fc99e Initial load
duke
parents:
diff changeset
890 return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
a61af66fc99e Initial load
duke
parents:
diff changeset
891 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
892 // See if covers: MIN2(x+c0,y+c1)
a61af66fc99e Initial load
duke
parents:
diff changeset
893 if( !phase->eqv(x,y) ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
894 // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
a61af66fc99e Initial load
duke
parents:
diff changeset
895 return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
a61af66fc99e Initial load
duke
parents:
diff changeset
896 }
a61af66fc99e Initial load
duke
parents:
diff changeset
897
a61af66fc99e Initial load
duke
parents:
diff changeset
898 }
a61af66fc99e Initial load
duke
parents:
diff changeset
899
a61af66fc99e Initial load
duke
parents:
diff changeset
900 //------------------------------add_ring---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
901 // Supplied function returns the sum of the inputs.
a61af66fc99e Initial load
duke
parents:
diff changeset
902 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
903 const TypeInt *r0 = t0->is_int(); // Handy access
a61af66fc99e Initial load
duke
parents:
diff changeset
904 const TypeInt *r1 = t1->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
905
a61af66fc99e Initial load
duke
parents:
diff changeset
906 // Otherwise just MIN them bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
907 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
a61af66fc99e Initial load
duke
parents:
diff changeset
908 }