comparison graal/GraalCompiler/src/com/sun/c1x/graph/GraphBuilder.java @ 2509:16b9a8b5ad39

Renamings Runtime=>GraalRuntime and Compiler=>GraalCompiler
author Thomas Wuerthinger <thomas@wuerthinger.net>
date Wed, 27 Apr 2011 11:50:44 +0200
parents graal/Compiler/src/com/sun/c1x/graph/GraphBuilder.java@9ec15d6914ca
children 4fdef1464592
comparison
equal deleted inserted replaced
2508:fea94949e0a2 2509:16b9a8b5ad39
1 /*
2 * Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23 package com.sun.c1x.graph;
24
25 import static com.sun.cri.bytecode.Bytecodes.*;
26 import static java.lang.reflect.Modifier.*;
27
28 import java.lang.reflect.*;
29 import java.util.*;
30
31 import com.sun.c1x.*;
32 import com.sun.c1x.debug.*;
33 import com.sun.c1x.graph.ScopeData.ReturnBlock;
34 import com.sun.c1x.ir.*;
35 import com.sun.c1x.ir.Value.Flag;
36 import com.sun.c1x.opt.*;
37 import com.sun.c1x.util.*;
38 import com.sun.c1x.value.*;
39 import com.sun.cri.bytecode.*;
40 import com.sun.cri.bytecode.Bytecodes.JniOp;
41 import com.sun.cri.ci.*;
42 import com.sun.cri.ri.*;
43 import com.sun.cri.ri.RiType.Representation;
44
45 /**
46 * The {@code GraphBuilder} class parses the bytecode of a method and builds the IR graph.
47 * A number of optimizations may be performed during parsing of the bytecode, including value
48 * numbering, inlining, constant folding, strength reduction, etc.
49 *
50 * @author Ben L. Titzer
51 * @author Doug Simon
52 */
53 public final class GraphBuilder {
54
55 /**
56 * The minimum value to which {@link C1XOptions#TraceBytecodeParserLevel} must be set to trace
57 * the bytecode instructions as they are parsed.
58 */
59 public static final int TRACELEVEL_INSTRUCTIONS = 1;
60
61 /**
62 * The minimum value to which {@link C1XOptions#TraceBytecodeParserLevel} must be set to trace
63 * the frame state before each bytecode instruction as it is parsed.
64 */
65 public static final int TRACELEVEL_STATE = 2;
66
67 final IR ir;
68 final C1XCompilation compilation;
69 final CiStatistics stats;
70
71 /**
72 * Map used to implement local value numbering for the current block.
73 */
74 final ValueMap localValueMap;
75
76 /**
77 * Map used for local load elimination (i.e. within the current block).
78 */
79 final MemoryMap memoryMap;
80
81 final Canonicalizer canonicalizer; // canonicalizer which does strength reduction + constant folding
82 ScopeData scopeData; // Per-scope data; used for inlining
83 BlockBegin curBlock; // the current block
84 MutableFrameState curState; // the current execution state
85 Instruction lastInstr; // the last instruction added
86 final LogStream log;
87
88 boolean skipBlock; // skip processing of the rest of this block
89 private Value rootMethodSynchronizedObject;
90
91 /**
92 * Creates a new, initialized, {@code GraphBuilder} instance for a given compilation.
93 *
94 * @param compilation the compilation
95 * @param ir the IR to build the graph into
96 */
97 public GraphBuilder(C1XCompilation compilation, IR ir) {
98 this.compilation = compilation;
99 this.ir = ir;
100 this.stats = compilation.stats;
101 this.memoryMap = C1XOptions.OptLocalLoadElimination ? new MemoryMap() : null;
102 this.localValueMap = C1XOptions.OptLocalValueNumbering ? new ValueMap() : null;
103 this.canonicalizer = C1XOptions.OptCanonicalize ? new Canonicalizer(compilation.runtime, compilation.method, compilation.target) : null;
104 log = C1XOptions.TraceBytecodeParserLevel > 0 ? new LogStream(TTY.out()) : null;
105 }
106
107 /**
108 * Builds the graph for a the specified {@code IRScope}.
109 * @param scope the top IRScope
110 */
111 public void build(IRScope scope) {
112 RiMethod rootMethod = compilation.method;
113
114 if (log != null) {
115 log.println();
116 log.println("Compiling " + compilation.method);
117 }
118
119 // 1. create the start block
120 ir.startBlock = new BlockBegin(0, ir.nextBlockNumber());
121 BlockBegin startBlock = ir.startBlock;
122
123 // 2. compute the block map and get the entrypoint(s)
124 BlockMap blockMap = compilation.getBlockMap(scope.method, compilation.osrBCI);
125 BlockBegin stdEntry = blockMap.get(0);
126 BlockBegin osrEntry = compilation.osrBCI < 0 ? null : blockMap.get(compilation.osrBCI);
127 pushRootScope(scope, blockMap, startBlock);
128 MutableFrameState initialState = stateAtEntry(rootMethod);
129 startBlock.mergeOrClone(initialState);
130 BlockBegin syncHandler = null;
131
132 // 3. setup internal state for appending instructions
133 curBlock = startBlock;
134 lastInstr = startBlock;
135 lastInstr.setNext(null, -1);
136 curState = initialState;
137
138 if (isSynchronized(rootMethod.accessFlags())) {
139 // 4A.1 add a monitor enter to the start block
140 rootMethodSynchronizedObject = synchronizedObject(initialState, compilation.method);
141 genMonitorEnter(rootMethodSynchronizedObject, Instruction.SYNCHRONIZATION_ENTRY_BCI);
142 // 4A.2 finish the start block
143 finishStartBlock(startBlock, stdEntry, osrEntry);
144
145 // 4A.3 setup an exception handler to unlock the root method synchronized object
146 syncHandler = new BlockBegin(Instruction.SYNCHRONIZATION_ENTRY_BCI, ir.nextBlockNumber());
147 syncHandler.setExceptionEntry();
148 syncHandler.setBlockFlag(BlockBegin.BlockFlag.IsOnWorkList);
149 syncHandler.setBlockFlag(BlockBegin.BlockFlag.DefaultExceptionHandler);
150
151 ExceptionHandler h = new ExceptionHandler(new CiExceptionHandler(0, rootMethod.code().length, -1, 0, null));
152 h.setEntryBlock(syncHandler);
153 scopeData.addExceptionHandler(h);
154 } else {
155 // 4B.1 simply finish the start block
156 finishStartBlock(startBlock, stdEntry, osrEntry);
157 }
158
159 // 5.
160 C1XIntrinsic intrinsic = C1XOptions.OptIntrinsify ? C1XIntrinsic.getIntrinsic(rootMethod) : null;
161 if (intrinsic != null) {
162 lastInstr = stdEntry;
163 // 6A.1 the root method is an intrinsic; load the parameters onto the stack and try to inline it
164 if (C1XOptions.OptIntrinsify && osrEntry == null) {
165 // try to inline an Intrinsic node
166 boolean isStatic = Modifier.isStatic(rootMethod.accessFlags());
167 int argsSize = rootMethod.signature().argumentSlots(!isStatic);
168 Value[] args = new Value[argsSize];
169 for (int i = 0; i < args.length; i++) {
170 args[i] = curState.localAt(i);
171 }
172 if (tryInlineIntrinsic(rootMethod, args, isStatic, intrinsic)) {
173 // intrinsic inlining succeeded, add the return node
174 CiKind rt = returnKind(rootMethod).stackKind();
175 Value result = null;
176 if (rt != CiKind.Void) {
177 result = pop(rt);
178 }
179 genReturn(result);
180 BlockEnd end = (BlockEnd) lastInstr;
181 stdEntry.setEnd(end);
182 end.setStateAfter(curState.immutableCopy(bci()));
183 } else {
184 // try intrinsic failed; do the normal parsing
185 scopeData.addToWorkList(stdEntry);
186 iterateAllBlocks();
187 }
188 } else {
189 // 6B.1 do the normal parsing
190 scopeData.addToWorkList(stdEntry);
191 iterateAllBlocks();
192 }
193 } else {
194 RiType accessor = openAccessorScope(rootMethod);
195
196 // 6B.1 do the normal parsing
197 scopeData.addToWorkList(stdEntry);
198 iterateAllBlocks();
199
200 closeAccessorScope(accessor);
201 }
202
203 if (syncHandler != null && syncHandler.stateBefore() != null) {
204 // generate unlocking code if the exception handler is reachable
205 fillSyncHandler(rootMethodSynchronizedObject, syncHandler, false);
206 }
207
208 if (compilation.osrBCI >= 0) {
209 BlockBegin osrBlock = blockMap.get(compilation.osrBCI);
210 assert osrBlock.wasVisited();
211 if (!osrBlock.stateBefore().stackEmpty()) {
212 throw new CiBailout("cannot OSR with non-empty stack");
213 }
214 }
215 }
216
217 private void closeAccessorScope(RiType accessor) {
218 if (accessor != null) {
219 boundAccessor.set(null);
220 }
221 }
222
223 private RiType openAccessorScope(RiMethod rootMethod) {
224 RiType accessor = rootMethod.accessor();
225 if (accessor != null) {
226 assert boundAccessor.get() == null;
227 boundAccessor.set(accessor);
228
229 // What looks like an object receiver in the bytecode may not be a word value
230 compilation.setNotTypesafe();
231 }
232 return accessor;
233 }
234
235 private void finishStartBlock(BlockBegin startBlock, BlockBegin stdEntry, BlockBegin osrEntry) {
236 assert curBlock == startBlock;
237 Base base = new Base(stdEntry, osrEntry);
238 appendWithoutOptimization(base, 0);
239 FrameState stateAfter = curState.immutableCopy(bci());
240 base.setStateAfter(stateAfter);
241 startBlock.setEnd(base);
242 assert stdEntry.stateBefore() == null;
243 stdEntry.mergeOrClone(stateAfter);
244 }
245
246 void pushRootScope(IRScope scope, BlockMap blockMap, BlockBegin start) {
247 BytecodeStream stream = new BytecodeStream(scope.method.code());
248 RiConstantPool constantPool = compilation.runtime.getConstantPool(scope.method);
249 scopeData = new ScopeData(null, scope, blockMap, stream, constantPool);
250 curBlock = start;
251 }
252
253 public boolean hasHandler() {
254 return scopeData.hasHandler();
255 }
256
257 public IRScope scope() {
258 return scopeData.scope;
259 }
260
261 public IRScope rootScope() {
262 IRScope root = scope();
263 while (root.caller != null) {
264 root = root.caller;
265 }
266 return root;
267 }
268
269 public RiMethod method() {
270 return scopeData.scope.method;
271 }
272
273 public BytecodeStream stream() {
274 return scopeData.stream;
275 }
276
277 public int bci() {
278 return scopeData.stream.currentBCI();
279 }
280
281 public int nextBCI() {
282 return scopeData.stream.nextBCI();
283 }
284
285 private void ipush(Value x) {
286 curState.ipush(x);
287 }
288
289 private void lpush(Value x) {
290 curState.lpush(x);
291 }
292
293 private void fpush(Value x) {
294 curState.fpush(x);
295 }
296
297 private void dpush(Value x) {
298 curState.dpush(x);
299 }
300
301 private void apush(Value x) {
302 curState.apush(x);
303 }
304
305 private void wpush(Value x) {
306 curState.wpush(x);
307 }
308
309 private void push(CiKind kind, Value x) {
310 curState.push(kind, x);
311 }
312
313 private void pushReturn(CiKind kind, Value x) {
314 if (kind != CiKind.Void) {
315 curState.push(kind.stackKind(), x);
316 }
317 }
318
319 private Value ipop() {
320 return curState.ipop();
321 }
322
323 private Value lpop() {
324 return curState.lpop();
325 }
326
327 private Value fpop() {
328 return curState.fpop();
329 }
330
331 private Value dpop() {
332 return curState.dpop();
333 }
334
335 private Value apop() {
336 return curState.apop();
337 }
338
339 private Value wpop() {
340 return curState.wpop();
341 }
342
343 private Value pop(CiKind kind) {
344 return curState.pop(kind);
345 }
346
347 private CiKind peekKind() {
348 Value top = curState.stackAt(curState.stackSize() - 1);
349 if (top == null) {
350 top = curState.stackAt(curState.stackSize() - 2);
351 assert top != null;
352 assert top.kind.isDoubleWord();
353 }
354 return top.kind;
355 }
356
357 private void loadLocal(int index, CiKind kind) {
358 push(kind, curState.loadLocal(index));
359 }
360
361 private void storeLocal(CiKind kind, int index) {
362 if (scopeData.parsingJsr()) {
363 // We need to do additional tracking of the location of the return
364 // address for jsrs since we don't handle arbitrary jsr/ret
365 // constructs. Here we are figuring out in which circumstances we
366 // need to bail out.
367 if (kind == CiKind.Object) {
368 // might be storing the JSR return address
369 Value x = curState.xpop();
370 if (x.kind.isJsr()) {
371 setJsrReturnAddressLocal(index);
372 curState.storeLocal(index, x);
373 } else {
374 // nope, not storing the JSR return address
375 assert x.kind.isObject();
376 curState.storeLocal(index, x);
377 overwriteJsrReturnAddressLocal(index);
378 }
379 return;
380 } else {
381 // not storing the JSR return address local, but might overwrite it
382 overwriteJsrReturnAddressLocal(index);
383 }
384 }
385
386 curState.storeLocal(index, pop(kind));
387 }
388
389 private void overwriteJsrReturnAddressLocal(int index) {
390 if (index == scopeData.jsrEntryReturnAddressLocal()) {
391 scopeData.setJsrEntryReturnAddressLocal(-1);
392 }
393 }
394
395 private void setJsrReturnAddressLocal(int index) {
396 scopeData.setJsrEntryReturnAddressLocal(index);
397
398 // Also check parent jsrs (if any) at this time to see whether
399 // they are using this local. We don't handle skipping over a
400 // ret.
401 for (ScopeData cur = scopeData.parent; cur != null && cur.parsingJsr() && cur.scope == scope(); cur = cur.parent) {
402 if (cur.jsrEntryReturnAddressLocal() == index) {
403 throw new CiBailout("subroutine overwrites return address from previous subroutine");
404 }
405 }
406 }
407
408 List<ExceptionHandler> handleException(Instruction x, int bci) {
409 if (!hasHandler()) {
410 return Util.uncheckedCast(Collections.EMPTY_LIST);
411 }
412
413 ArrayList<ExceptionHandler> exceptionHandlers = new ArrayList<ExceptionHandler>();
414 ScopeData curScopeData = scopeData;
415 FrameState stateBefore = x.stateBefore();
416 int scopeCount = 0;
417
418 assert stateBefore != null : "exception handler state must be available for " + x;
419 FrameState state = stateBefore;
420 do {
421 assert curScopeData.scope == state.scope() : "scopes do not match";
422 assert bci == Instruction.SYNCHRONIZATION_ENTRY_BCI || bci == curScopeData.stream.currentBCI() : "invalid bci";
423
424 // join with all potential exception handlers
425 List<ExceptionHandler> handlers = curScopeData.exceptionHandlers();
426 if (handlers != null) {
427 for (ExceptionHandler handler : handlers) {
428 if (handler.covers(bci)) {
429 // if the handler covers this bytecode index, add it to the list
430 if (addExceptionHandler(exceptionHandlers, handler, curScopeData, state, scopeCount)) {
431 // if the handler was a default handler, we are done
432 return exceptionHandlers;
433 }
434 }
435 }
436 }
437 // pop the scope to the next IRScope level
438 // if parsing a JSR, skip scopes until the next IRScope level
439 IRScope curScope = curScopeData.scope;
440 while (curScopeData.parent != null && curScopeData.parent.scope == curScope) {
441 curScopeData = curScopeData.parent;
442 }
443 if (curScopeData.parent == null) {
444 // no more levels, done
445 break;
446 }
447 // there is another level, pop
448 state = state.callerState();
449 bci = curScopeData.scope.callerBCI();
450 curScopeData = curScopeData.parent;
451 scopeCount++;
452
453 } while (true);
454
455 return exceptionHandlers;
456 }
457
458 /**
459 * Adds an exception handler to the {@linkplain BlockBegin#exceptionHandlerBlocks() list}
460 * of exception handlers for the {@link #curBlock current block}.
461 *
462 * @param exceptionHandlers
463 * @param handler
464 * @param curScopeData
465 * @param curState the current state with empty stack
466 * @param scopeCount
467 * @return {@code true} if handler catches all exceptions (i.e. {@code handler.isCatchAll() == true})
468 */
469 private boolean addExceptionHandler(ArrayList<ExceptionHandler> exceptionHandlers, ExceptionHandler handler, ScopeData curScopeData, FrameState curState, int scopeCount) {
470 compilation.setHasExceptionHandlers();
471
472 BlockBegin entry = handler.entryBlock();
473 FrameState entryState = entry.stateBefore();
474
475 assert entry.bci() == handler.handler.handlerBCI();
476 assert entry.bci() == -1 || entry == curScopeData.blockAt(entry.bci()) : "blocks must correspond";
477 assert entryState == null || curState.locksSize() == entryState.locksSize() : "locks do not match";
478
479 // exception handler starts with an empty expression stack
480 curState = curState.immutableCopyWithEmptyStack();
481
482 entry.mergeOrClone(curState);
483
484 // add current state for correct handling of phi functions
485 int phiOperand = entry.addExceptionState(curState);
486
487 // add entry to the list of exception handlers of this block
488 curBlock.addExceptionHandler(entry);
489
490 // add back-edge from exception handler entry to this block
491 if (!entry.predecessors().contains(curBlock)) {
492 entry.addPredecessor(curBlock);
493 }
494
495 // clone exception handler
496 ExceptionHandler newHandler = new ExceptionHandler(handler);
497 newHandler.setPhiOperand(phiOperand);
498 newHandler.setScopeCount(scopeCount);
499 exceptionHandlers.add(newHandler);
500
501 // fill in exception handler subgraph lazily
502 if (!entry.wasVisited()) {
503 curScopeData.addToWorkList(entry);
504 } else {
505 // This will occur for exception handlers that cover themselves. This code
506 // pattern is generated by javac for synchronized blocks. See the following
507 // for why this change to javac was made:
508 //
509 // http://www.cs.arizona.edu/projects/sumatra/hallofshame/java-async-race.html
510 }
511
512 // stop when reaching catch all
513 return handler.isCatchAll();
514 }
515
516 void genLoadConstant(int cpi) {
517 Object con = constantPool().lookupConstant(cpi);
518
519 if (con instanceof RiType) {
520 // this is a load of class constant which might be unresolved
521 RiType riType = (RiType) con;
522 if (!riType.isResolved() || C1XOptions.TestPatching) {
523 push(CiKind.Object, append(new ResolveClass(riType, RiType.Representation.JavaClass, null)));
524 } else {
525 push(CiKind.Object, append(new Constant(riType.getEncoding(Representation.JavaClass))));
526 }
527 } else if (con instanceof CiConstant) {
528 CiConstant constant = (CiConstant) con;
529 push(constant.kind.stackKind(), appendConstant(constant));
530 } else {
531 throw new Error("lookupConstant returned an object of incorrect type");
532 }
533 }
534
535 void genLoadIndexed(CiKind kind) {
536 FrameState stateBefore = curState.immutableCopy(bci());
537 Value index = ipop();
538 Value array = apop();
539 Value length = null;
540 if (cseArrayLength(array)) {
541 length = append(new ArrayLength(array, stateBefore));
542 }
543 Value v = append(new LoadIndexed(array, index, length, kind, stateBefore));
544 push(kind.stackKind(), v);
545 }
546
547 void genStoreIndexed(CiKind kind) {
548 FrameState stateBefore = curState.immutableCopy(bci());
549 Value value = pop(kind.stackKind());
550 Value index = ipop();
551 Value array = apop();
552 Value length = null;
553 if (cseArrayLength(array)) {
554 length = append(new ArrayLength(array, stateBefore));
555 }
556 StoreIndexed result = new StoreIndexed(array, index, length, kind, value, stateBefore);
557 append(result);
558 if (memoryMap != null) {
559 memoryMap.storeValue(value);
560 }
561 }
562
563 void stackOp(int opcode) {
564 switch (opcode) {
565 case POP: {
566 curState.xpop();
567 break;
568 }
569 case POP2: {
570 curState.xpop();
571 curState.xpop();
572 break;
573 }
574 case DUP: {
575 Value w = curState.xpop();
576 curState.xpush(w);
577 curState.xpush(w);
578 break;
579 }
580 case DUP_X1: {
581 Value w1 = curState.xpop();
582 Value w2 = curState.xpop();
583 curState.xpush(w1);
584 curState.xpush(w2);
585 curState.xpush(w1);
586 break;
587 }
588 case DUP_X2: {
589 Value w1 = curState.xpop();
590 Value w2 = curState.xpop();
591 Value w3 = curState.xpop();
592 curState.xpush(w1);
593 curState.xpush(w3);
594 curState.xpush(w2);
595 curState.xpush(w1);
596 break;
597 }
598 case DUP2: {
599 Value w1 = curState.xpop();
600 Value w2 = curState.xpop();
601 curState.xpush(w2);
602 curState.xpush(w1);
603 curState.xpush(w2);
604 curState.xpush(w1);
605 break;
606 }
607 case DUP2_X1: {
608 Value w1 = curState.xpop();
609 Value w2 = curState.xpop();
610 Value w3 = curState.xpop();
611 curState.xpush(w2);
612 curState.xpush(w1);
613 curState.xpush(w3);
614 curState.xpush(w2);
615 curState.xpush(w1);
616 break;
617 }
618 case DUP2_X2: {
619 Value w1 = curState.xpop();
620 Value w2 = curState.xpop();
621 Value w3 = curState.xpop();
622 Value w4 = curState.xpop();
623 curState.xpush(w2);
624 curState.xpush(w1);
625 curState.xpush(w4);
626 curState.xpush(w3);
627 curState.xpush(w2);
628 curState.xpush(w1);
629 break;
630 }
631 case SWAP: {
632 Value w1 = curState.xpop();
633 Value w2 = curState.xpop();
634 curState.xpush(w1);
635 curState.xpush(w2);
636 break;
637 }
638 default:
639 throw Util.shouldNotReachHere();
640 }
641
642 }
643
644 void genArithmeticOp(CiKind kind, int opcode) {
645 genArithmeticOp(kind, opcode, null);
646 }
647
648 void genArithmeticOp(CiKind kind, int opcode, FrameState state) {
649 genArithmeticOp(kind, opcode, kind, kind, state);
650 }
651
652 void genArithmeticOp(CiKind result, int opcode, CiKind x, CiKind y, FrameState state) {
653 Value yValue = pop(y);
654 Value xValue = pop(x);
655 Value result1 = append(new ArithmeticOp(opcode, result, xValue, yValue, isStrict(method().accessFlags()), state));
656 push(result, result1);
657 }
658
659 void genNegateOp(CiKind kind) {
660 push(kind, append(new NegateOp(pop(kind))));
661 }
662
663 void genShiftOp(CiKind kind, int opcode) {
664 Value s = ipop();
665 Value x = pop(kind);
666 // note that strength reduction of e << K >>> K is correctly handled in canonicalizer now
667 push(kind, append(new ShiftOp(opcode, x, s)));
668 }
669
670 void genLogicOp(CiKind kind, int opcode) {
671 Value y = pop(kind);
672 Value x = pop(kind);
673 push(kind, append(new LogicOp(opcode, x, y)));
674 }
675
676 void genCompareOp(CiKind kind, int opcode, CiKind resultKind) {
677 Value y = pop(kind);
678 Value x = pop(kind);
679 Value value = append(new CompareOp(opcode, resultKind, x, y));
680 if (!resultKind.isVoid()) {
681 ipush(value);
682 }
683 }
684
685 void genUnsignedCompareOp(CiKind kind, int opcode, int op) {
686 Value y = pop(kind);
687 Value x = pop(kind);
688 ipush(append(new UnsignedCompareOp(opcode, op, x, y)));
689 }
690
691 void genConvert(int opcode, CiKind from, CiKind to) {
692 CiKind tt = to.stackKind();
693 push(tt, append(new Convert(opcode, pop(from.stackKind()), tt)));
694 }
695
696 void genIncrement() {
697 int index = stream().readLocalIndex();
698 int delta = stream().readIncrement();
699 Value x = curState.localAt(index);
700 Value y = append(Constant.forInt(delta));
701 curState.storeLocal(index, append(new ArithmeticOp(IADD, CiKind.Int, x, y, isStrict(method().accessFlags()), null)));
702 }
703
704 void genGoto(int fromBCI, int toBCI) {
705 boolean isSafepoint = !scopeData.noSafepoints() && toBCI <= fromBCI;
706 append(new Goto(blockAt(toBCI), null, isSafepoint));
707 }
708
709 void ifNode(Value x, Condition cond, Value y, FrameState stateBefore) {
710 BlockBegin tsucc = blockAt(stream().readBranchDest());
711 BlockBegin fsucc = blockAt(stream().nextBCI());
712 int bci = stream().currentBCI();
713 boolean isSafepoint = !scopeData.noSafepoints() && tsucc.bci() <= bci || fsucc.bci() <= bci;
714 append(new If(x, cond, false, y, tsucc, fsucc, isSafepoint ? stateBefore : null, isSafepoint));
715 }
716
717 void genIfZero(Condition cond) {
718 Value y = appendConstant(CiConstant.INT_0);
719 FrameState stateBefore = curState.immutableCopy(bci());
720 Value x = ipop();
721 ifNode(x, cond, y, stateBefore);
722 }
723
724 void genIfNull(Condition cond) {
725 FrameState stateBefore = curState.immutableCopy(bci());
726 Value y = appendConstant(CiConstant.NULL_OBJECT);
727 Value x = apop();
728 ifNode(x, cond, y, stateBefore);
729 }
730
731 void genIfSame(CiKind kind, Condition cond) {
732 FrameState stateBefore = curState.immutableCopy(bci());
733 Value y = pop(kind);
734 Value x = pop(kind);
735 ifNode(x, cond, y, stateBefore);
736 }
737
738 void genThrow(int bci) {
739 FrameState stateBefore = curState.immutableCopy(bci());
740 Throw t = new Throw(apop(), stateBefore, !scopeData.noSafepoints());
741 appendWithoutOptimization(t, bci);
742 }
743
744 void genUnsafeCast(RiMethod method) {
745 compilation.setNotTypesafe();
746 RiSignature signature = method.signature();
747 int argCount = signature.argumentCount(false);
748 RiType accessingClass = scope().method.holder();
749 RiType fromType;
750 RiType toType = signature.returnType(accessingClass);
751 if (argCount == 1) {
752 fromType = signature.argumentTypeAt(0, accessingClass);
753 } else {
754 assert argCount == 0 : "method with @UNSAFE_CAST must have exactly 1 argument";
755 fromType = method.holder();
756 }
757 CiKind from = fromType.kind();
758 CiKind to = toType.kind();
759 boolean redundant = compilation.archKindsEqual(to, from);
760 curState.push(to, append(new UnsafeCast(toType, curState.pop(from), redundant)));
761 }
762
763 void genCheckCast() {
764 int cpi = stream().readCPI();
765 RiType type = constantPool().lookupType(cpi, CHECKCAST);
766 boolean isInitialized = !C1XOptions.TestPatching && type.isResolved() && type.isInitialized();
767 Value typeInstruction = genResolveClass(RiType.Representation.ObjectHub, type, isInitialized, cpi);
768 CheckCast c = new CheckCast(type, typeInstruction, apop(), null);
769 apush(append(c));
770 checkForDirectCompare(c);
771 }
772
773 void genInstanceOf() {
774 int cpi = stream().readCPI();
775 RiType type = constantPool().lookupType(cpi, INSTANCEOF);
776 boolean isInitialized = !C1XOptions.TestPatching && type.isResolved() && type.isInitialized();
777 Value typeInstruction = genResolveClass(RiType.Representation.ObjectHub, type, isInitialized, cpi);
778 InstanceOf i = new InstanceOf(type, typeInstruction, apop(), null);
779 ipush(append(i));
780 checkForDirectCompare(i);
781 }
782
783 private void checkForDirectCompare(TypeCheck check) {
784 RiType type = check.targetClass();
785 if (!type.isResolved() || type.isArrayClass()) {
786 return;
787 }
788 if (assumeLeafClass(type)) {
789 check.setDirectCompare();
790 }
791 }
792
793 void genNewInstance(int cpi) {
794 FrameState stateBefore = curState.immutableCopy(bci());
795 RiType type = constantPool().lookupType(cpi, NEW);
796 NewInstance n = new NewInstance(type, cpi, constantPool(), stateBefore);
797 if (memoryMap != null) {
798 memoryMap.newInstance(n);
799 }
800 apush(append(n));
801 }
802
803 void genNewTypeArray(int typeCode) {
804 FrameState stateBefore = curState.immutableCopy(bci());
805 CiKind kind = CiKind.fromArrayTypeCode(typeCode);
806 RiType elementType = compilation.runtime.asRiType(kind);
807 apush(append(new NewTypeArray(ipop(), elementType, stateBefore)));
808 }
809
810 void genNewObjectArray(int cpi) {
811 RiType type = constantPool().lookupType(cpi, ANEWARRAY);
812 FrameState stateBefore = curState.immutableCopy(bci());
813 NewArray n = new NewObjectArray(type, ipop(), stateBefore);
814 apush(append(n));
815 }
816
817 void genNewMultiArray(int cpi) {
818 RiType type = constantPool().lookupType(cpi, MULTIANEWARRAY);
819 FrameState stateBefore = curState.immutableCopy(bci());
820 int rank = stream().readUByte(bci() + 3);
821 Value[] dims = new Value[rank];
822 for (int i = rank - 1; i >= 0; i--) {
823 dims[i] = ipop();
824 }
825 NewArray n = new NewMultiArray(type, dims, stateBefore, cpi, constantPool());
826 apush(append(n));
827 }
828
829 void genGetField(int cpi, RiField field) {
830 // Must copy the state here, because the field holder must still be on the stack.
831 FrameState stateBefore = curState.immutableCopy(bci());
832 boolean isLoaded = !C1XOptions.TestPatching && field.isResolved();
833 LoadField load = new LoadField(apop(), field, false, stateBefore, isLoaded);
834 appendOptimizedLoadField(field.kind(), load);
835 }
836
837 void genPutField(int cpi, RiField field) {
838 // Must copy the state here, because the field holder must still be on the stack.
839 FrameState stateBefore = curState.immutableCopy(bci());
840 boolean isLoaded = !C1XOptions.TestPatching && field.isResolved();
841 Value value = pop(field.kind().stackKind());
842 appendOptimizedStoreField(new StoreField(apop(), field, value, false, stateBefore, isLoaded));
843 }
844
845 void genGetStatic(int cpi, RiField field) {
846 RiType holder = field.holder();
847 boolean isInitialized = !C1XOptions.TestPatching && field.isResolved() && holder.isResolved() && holder.isInitialized();
848 CiConstant constantValue = null;
849 if (isInitialized && C1XOptions.CanonicalizeConstantFields) {
850 constantValue = field.constantValue(null);
851 }
852 if (constantValue != null) {
853 push(constantValue.kind.stackKind(), appendConstant(constantValue));
854 } else {
855 Value container = genResolveClass(RiType.Representation.StaticFields, holder, isInitialized, cpi);
856 LoadField load = new LoadField(container, field, true, null, isInitialized);
857 appendOptimizedLoadField(field.kind(), load);
858 }
859 }
860
861 void genPutStatic(int cpi, RiField field) {
862 RiType holder = field.holder();
863 boolean isInitialized = !C1XOptions.TestPatching && field.isResolved() && holder.isResolved() && holder.isInitialized();
864 Value container = genResolveClass(RiType.Representation.StaticFields, holder, isInitialized, cpi);
865 Value value = pop(field.kind().stackKind());
866 StoreField store = new StoreField(container, field, value, true, null, isInitialized);
867 appendOptimizedStoreField(store);
868 }
869
870 private Value genResolveClass(RiType.Representation representation, RiType holder, boolean initialized, int cpi) {
871 Value holderInstr;
872 if (initialized) {
873 holderInstr = appendConstant(holder.getEncoding(representation));
874 } else {
875 holderInstr = append(new ResolveClass(holder, representation, null));
876 }
877 return holderInstr;
878 }
879
880 private void appendOptimizedStoreField(StoreField store) {
881 if (memoryMap != null) {
882 StoreField previous = memoryMap.store(store);
883 if (previous == null) {
884 // the store is redundant, do not append
885 return;
886 }
887 }
888 append(store);
889 }
890
891 private void appendOptimizedLoadField(CiKind kind, LoadField load) {
892 if (memoryMap != null) {
893 Value replacement = memoryMap.load(load);
894 if (replacement != load) {
895 // the memory buffer found a replacement for this load (no need to append)
896 push(kind.stackKind(), replacement);
897 return;
898 }
899 }
900 // append the load to the instruction
901 Value optimized = append(load);
902 if (memoryMap != null && optimized != load) {
903 // local optimization happened, replace its value in the memory map
904 memoryMap.setResult(load, optimized);
905 }
906 push(kind.stackKind(), optimized);
907 }
908
909 /**
910 * Temporary work-around to support the @ACCESSOR Maxine annotation.
911 */
912 private RiMethod handleInvokeAccessorOrBuiltin(RiMethod target) {
913 target = bindAccessorMethod(target);
914 if (target.intrinsic() != 0) {
915 int intrinsic = target.intrinsic();
916 int opcode = intrinsic & 0xff;
917 switch (opcode) {
918 case PREAD : genLoadPointer(intrinsic); break;
919 case PGET : genLoadPointer(intrinsic); break;
920 case PWRITE : genStorePointer(intrinsic); break;
921 case PSET : genStorePointer(intrinsic); break;
922 case PCMPSWP : genCompareAndSwap(intrinsic); break;
923 default:
924 throw new CiBailout("unknown bytecode " + opcode + " (" + nameOf(opcode) + ")");
925 }
926 return null;
927 }
928 return target;
929 }
930
931 void genInvokeStatic(RiMethod target, int cpi, RiConstantPool constantPool) {
932 target = handleInvokeAccessorOrBuiltin(target);
933 if (target == null) {
934 return;
935 }
936 RiType holder = target.holder();
937 boolean isInitialized = !C1XOptions.TestPatching && target.isResolved() && holder.isInitialized();
938 if (!isInitialized && C1XOptions.ResolveClassBeforeStaticInvoke) {
939 // Re-use the same resolution code as for accessing a static field. Even though
940 // the result of resolution is not used by the invocation (only the side effect
941 // of initialization is required), it can be commoned with static field accesses.
942 genResolveClass(RiType.Representation.StaticFields, holder, isInitialized, cpi);
943 }
944
945 Value[] args = curState.popArguments(target.signature().argumentSlots(false));
946 if (!tryRemoveCall(target, args, true)) {
947 if (!tryInline(target, args)) {
948 appendInvoke(INVOKESTATIC, target, args, true, cpi, constantPool);
949 }
950 }
951 }
952
953 void genInvokeInterface(RiMethod target, int cpi, RiConstantPool constantPool) {
954 target = handleInvokeAccessorOrBuiltin(target);
955 if (target == null) {
956 return;
957 }
958 Value[] args = curState.popArguments(target.signature().argumentSlots(true));
959 if (!tryRemoveCall(target, args, false)) {
960 genInvokeIndirect(INVOKEINTERFACE, target, args, cpi, constantPool);
961 }
962 }
963
964 void genInvokeVirtual(RiMethod target, int cpi, RiConstantPool constantPool) {
965 target = handleInvokeAccessorOrBuiltin(target);
966 if (target == null) {
967 return;
968 }
969 Value[] args = curState.popArguments(target.signature().argumentSlots(true));
970 if (!tryRemoveCall(target, args, false)) {
971 genInvokeIndirect(INVOKEVIRTUAL, target, args, cpi, constantPool);
972 }
973 }
974
975 void genInvokeSpecial(RiMethod target, RiType knownHolder, int cpi, RiConstantPool constantPool) {
976 target = handleInvokeAccessorOrBuiltin(target);
977 if (target == null) {
978 return;
979 }
980 Value[] args = curState.popArguments(target.signature().argumentSlots(true));
981 if (!tryRemoveCall(target, args, false)) {
982 invokeDirect(target, args, knownHolder, cpi, constantPool);
983 }
984 }
985
986 /**
987 * Temporary work-around to support the @ACCESSOR Maxine annotation.
988 */
989 private static final Class<?> Accessor;
990 static {
991 Class<?> c = null;
992 try {
993 c = Class.forName("com.sun.max.unsafe.Accessor");
994 } catch (ClassNotFoundException e) {
995 }
996 Accessor = c;
997 }
998
999 /**
1000 * Temporary work-around to support the @ACCESSOR Maxine annotation.
1001 */
1002 private static ThreadLocal<RiType> boundAccessor = new ThreadLocal<RiType>();
1003
1004 /**
1005 * Temporary work-around to support the @ACCESSOR Maxine annotation.
1006 */
1007 private static RiMethod bindAccessorMethod(RiMethod target) {
1008 if (Accessor != null && target.isResolved() && target.holder().javaClass() == Accessor) {
1009 RiType accessor = boundAccessor.get();
1010 assert accessor != null : "Cannot compile call to method in " + target.holder() + " without enclosing @ACCESSOR annotated method";
1011 RiMethod newTarget = accessor.resolveMethodImpl(target);
1012 assert target != newTarget : "Could not bind " + target + " to a method in " + accessor;
1013 target = newTarget;
1014 }
1015 return target;
1016 }
1017
1018 /**
1019 * Temporary work-around to support the @ACCESSOR Maxine annotation.
1020 */
1021 private boolean inlineWithBoundAccessor(RiMethod target, Value[] args, boolean forcedInline) {
1022 RiType accessor = target.accessor();
1023 if (accessor != null) {
1024 assert boundAccessor.get() == null;
1025 boundAccessor.set(accessor);
1026 try {
1027 // What looks like an object receiver in the bytecode may not be a word value
1028 compilation.setNotTypesafe();
1029 inline(target, args, forcedInline);
1030 } finally {
1031 boundAccessor.set(null);
1032 }
1033 return true;
1034 }
1035 return false;
1036 }
1037
1038 private void genInvokeIndirect(int opcode, RiMethod target, Value[] args, int cpi, RiConstantPool constantPool) {
1039 Value receiver = args[0];
1040 // attempt to devirtualize the call
1041 if (target.isResolved()) {
1042 RiType klass = target.holder();
1043
1044 // 0. check for trivial cases
1045 if (target.canBeStaticallyBound() && !isAbstract(target.accessFlags())) {
1046 // check for trivial cases (e.g. final methods, nonvirtual methods)
1047 invokeDirect(target, args, target.holder(), cpi, constantPool);
1048 return;
1049 }
1050 // 1. check if the exact type of the receiver can be determined
1051 RiType exact = getExactType(klass, receiver);
1052 if (exact != null && exact.isResolved()) {
1053 // either the holder class is exact, or the receiver object has an exact type
1054 invokeDirect(exact.resolveMethodImpl(target), args, exact, cpi, constantPool);
1055 return;
1056 }
1057 // 2. check if an assumed leaf method can be found
1058 RiMethod leaf = getAssumedLeafMethod(target, receiver);
1059 if (leaf != null && leaf.isResolved() && !isAbstract(leaf.accessFlags()) && leaf.holder().isResolved()) {
1060 if (C1XOptions.PrintAssumptions) {
1061 TTY.println("Optimistic invoke direct because of leaf method to " + leaf);
1062 }
1063 invokeDirect(leaf, args, null, cpi, constantPool);
1064 return;
1065 } else if (C1XOptions.PrintAssumptions) {
1066 TTY.println("Could not make leaf method assumption for target=" + target + " leaf=" + leaf + " receiver.declaredType=" + receiver.declaredType());
1067 }
1068 // 3. check if the either of the holder or declared type of receiver can be assumed to be a leaf
1069 exact = getAssumedLeafType(klass, receiver);
1070 if (exact != null && exact.isResolved()) {
1071 RiMethod targetMethod = exact.resolveMethodImpl(target);
1072 if (C1XOptions.PrintAssumptions) {
1073 TTY.println("Optimistic invoke direct because of leaf type to " + targetMethod);
1074 }
1075 // either the holder class is exact, or the receiver object has an exact type
1076 invokeDirect(targetMethod, args, exact, cpi, constantPool);
1077 return;
1078 } else if (C1XOptions.PrintAssumptions) {
1079 TTY.println("Could not make leaf type assumption for type " + klass);
1080 }
1081 }
1082 // devirtualization failed, produce an actual invokevirtual
1083 appendInvoke(opcode, target, args, false, cpi, constantPool);
1084 }
1085
1086 private CiKind returnKind(RiMethod target) {
1087 return target.signature().returnKind();
1088 }
1089
1090 private void invokeDirect(RiMethod target, Value[] args, RiType knownHolder, int cpi, RiConstantPool constantPool) {
1091 if (!tryInline(target, args)) {
1092 // could not optimize or inline the method call
1093 appendInvoke(INVOKESPECIAL, target, args, false, cpi, constantPool);
1094 }
1095 }
1096
1097 private void appendInvoke(int opcode, RiMethod target, Value[] args, boolean isStatic, int cpi, RiConstantPool constantPool) {
1098 CiKind resultType = returnKind(target);
1099 Value result = append(new Invoke(opcode, resultType.stackKind(), args, isStatic, target, target.signature().returnType(compilation.method.holder()), null));
1100 pushReturn(resultType, result);
1101 }
1102
1103 private RiType getExactType(RiType staticType, Value receiver) {
1104 RiType exact = staticType.exactType();
1105 if (exact == null) {
1106 exact = receiver.exactType();
1107 if (exact == null) {
1108 if (receiver.isConstant()) {
1109 exact = compilation.runtime.getTypeOf(receiver.asConstant());
1110 }
1111 if (exact == null) {
1112 RiType declared = receiver.declaredType();
1113 exact = declared == null || !declared.isResolved() ? null : declared.exactType();
1114 }
1115 }
1116 }
1117 return exact;
1118 }
1119
1120 private RiType getAssumedLeafType(RiType type) {
1121 if (isFinal(type.accessFlags())) {
1122 return type;
1123 }
1124 RiType assumed = null;
1125 if (C1XOptions.UseAssumptions) {
1126 assumed = type.uniqueConcreteSubtype();
1127 if (assumed != null) {
1128 if (C1XOptions.PrintAssumptions) {
1129 TTY.println("Recording concrete subtype assumption in context of " + type.name() + ": " + assumed.name());
1130 }
1131 compilation.assumptions.recordConcreteSubtype(type, assumed);
1132 }
1133 }
1134 return assumed;
1135 }
1136
1137 private RiType getAssumedLeafType(RiType staticType, Value receiver) {
1138 RiType assumed = getAssumedLeafType(staticType);
1139 if (assumed != null) {
1140 return assumed;
1141 }
1142 RiType declared = receiver.declaredType();
1143 if (declared != null && declared.isResolved()) {
1144 assumed = getAssumedLeafType(declared);
1145 return assumed;
1146 }
1147 return null;
1148 }
1149
1150 private RiMethod getAssumedLeafMethod(RiMethod target, Value receiver) {
1151 RiMethod assumed = getAssumedLeafMethod(target);
1152 if (assumed != null) {
1153 return assumed;
1154 }
1155 RiType declared = receiver.declaredType();
1156 if (declared != null && declared.isResolved() && !declared.isInterface()) {
1157 RiMethod impl = declared.resolveMethodImpl(target);
1158 if (impl != null) {
1159 assumed = getAssumedLeafMethod(impl);
1160 }
1161 }
1162 return assumed;
1163 }
1164
1165 void callRegisterFinalizer() {
1166 Value receiver = curState.loadLocal(0);
1167 RiType declaredType = receiver.declaredType();
1168 RiType receiverType = declaredType;
1169 RiType exactType = receiver.exactType();
1170 if (exactType == null && declaredType != null) {
1171 exactType = declaredType.exactType();
1172 }
1173 if (exactType == null && receiver instanceof Local && ((Local) receiver).javaIndex() == 0) {
1174 // the exact type isn't known, but the receiver is parameter 0 => use holder
1175 receiverType = compilation.method.holder();
1176 exactType = receiverType.exactType();
1177 }
1178 boolean needsCheck = true;
1179 if (exactType != null) {
1180 // we have an exact type
1181 needsCheck = exactType.hasFinalizer();
1182 } else {
1183 // if either the declared type of receiver or the holder can be assumed to have no finalizers
1184 if (declaredType != null && !declaredType.hasFinalizableSubclass()) {
1185 if (compilation.recordNoFinalizableSubclassAssumption(declaredType)) {
1186 needsCheck = false;
1187 }
1188 }
1189
1190 if (receiverType != null && !receiverType.hasFinalizableSubclass()) {
1191 if (compilation.recordNoFinalizableSubclassAssumption(receiverType)) {
1192 needsCheck = false;
1193 }
1194 }
1195 }
1196
1197 if (needsCheck) {
1198 // append a call to the registration intrinsic
1199 loadLocal(0, CiKind.Object);
1200 FrameState stateBefore = curState.immutableCopy(bci());
1201 append(new Intrinsic(CiKind.Void, C1XIntrinsic.java_lang_Object$init,
1202 null, curState.popArguments(1), false, stateBefore, true, true));
1203 C1XMetrics.InlinedFinalizerChecks++;
1204 }
1205 }
1206
1207 void genReturn(Value x) {
1208 if (C1XIntrinsic.getIntrinsic(method()) == C1XIntrinsic.java_lang_Object$init) {
1209 callRegisterFinalizer();
1210 }
1211
1212 // If inlining, then returns become gotos to the continuation point.
1213 if (scopeData.continuation() != null) {
1214 if (isSynchronized(method().accessFlags())) {
1215 // if the inlined method is synchronized, then the monitor
1216 // must be released before jumping to the continuation point
1217 assert C1XOptions.OptInlineSynchronized;
1218 Value object = curState.lockAt(0);
1219 if (object instanceof Instruction) {
1220 Instruction obj = (Instruction) object;
1221 if (!obj.isAppended()) {
1222 appendWithoutOptimization(obj, Instruction.SYNCHRONIZATION_ENTRY_BCI);
1223 }
1224 }
1225 genMonitorExit(object, Instruction.SYNCHRONIZATION_ENTRY_BCI);
1226 }
1227
1228 // empty stack for return value
1229 curState.truncateStack(0);
1230 if (x != null) {
1231 curState.push(x.kind, x);
1232 }
1233 Goto gotoCallee = new Goto(scopeData.continuation(), null, false);
1234
1235 // ATTN: assumption: curState is not used further down, else add .immutableCopy()
1236 scopeData.updateSimpleInlineInfo(curBlock, lastInstr, curState);
1237
1238 // State at end of inlined method is the state of the caller
1239 // without the method parameters on stack, including the
1240 // return value, if any, of the inlined method on operand stack.
1241 curState = scopeData.continuationState().copy();
1242 if (x != null) {
1243 curState.push(x.kind, x);
1244 }
1245
1246 // The current bci is in the wrong scope, so use the bci of the continuation point.
1247 appendWithoutOptimization(gotoCallee, scopeData.continuation().bci());
1248 return;
1249 }
1250
1251 curState.truncateStack(0);
1252 if (Modifier.isSynchronized(method().accessFlags())) {
1253 FrameState stateBefore = curState.immutableCopy(bci());
1254 // unlock before exiting the method
1255 int lockNumber = curState.totalLocksSize() - 1;
1256 MonitorAddress lockAddress = null;
1257 if (compilation.runtime.sizeOfBasicObjectLock() != 0) {
1258 lockAddress = new MonitorAddress(lockNumber);
1259 append(lockAddress);
1260 }
1261 append(new MonitorExit(rootMethodSynchronizedObject, lockAddress, lockNumber, stateBefore));
1262 curState.unlock();
1263 }
1264 append(new Return(x, !scopeData.noSafepoints()));
1265 }
1266
1267 /**
1268 * Gets the number of locks held.
1269 */
1270 private int locksSize() {
1271 return curState.locksSize();
1272 }
1273
1274 void genMonitorEnter(Value x, int bci) {
1275 int lockNumber = locksSize();
1276 MonitorAddress lockAddress = null;
1277 if (compilation.runtime.sizeOfBasicObjectLock() != 0) {
1278 lockAddress = new MonitorAddress(lockNumber);
1279 append(lockAddress);
1280 }
1281 MonitorEnter monitorEnter = new MonitorEnter(x, lockAddress, lockNumber, null);
1282 appendWithoutOptimization(monitorEnter, bci);
1283 curState.lock(scope(), x, lockNumber + 1);
1284 monitorEnter.setStateAfter(curState.immutableCopy(bci));
1285 killMemoryMap(); // prevent any optimizations across synchronization
1286 }
1287
1288 void genMonitorExit(Value x, int bci) {
1289 int lockNumber = curState.totalLocksSize() - 1;
1290 if (lockNumber < 0) {
1291 throw new CiBailout("monitor stack underflow");
1292 }
1293 MonitorAddress lockAddress = null;
1294 if (compilation.runtime.sizeOfBasicObjectLock() != 0) {
1295 lockAddress = new MonitorAddress(lockNumber);
1296 append(lockAddress);
1297 }
1298 appendWithoutOptimization(new MonitorExit(x, lockAddress, lockNumber, null), bci);
1299 curState.unlock();
1300 killMemoryMap(); // prevent any optimizations across synchronization
1301 }
1302
1303 void genJsr(int dest) {
1304 for (ScopeData cur = scopeData; cur != null && cur.parsingJsr() && cur.scope == scope(); cur = cur.parent) {
1305 if (cur.jsrEntryBCI() == dest) {
1306 // the jsr/ret pattern includes a recursive invocation
1307 throw new CiBailout("recursive jsr/ret structure");
1308 }
1309 }
1310 push(CiKind.Jsr, append(Constant.forJsr(nextBCI())));
1311 tryInlineJsr(dest);
1312 }
1313
1314 void genRet(int localIndex) {
1315 if (!scopeData.parsingJsr()) {
1316 throw new CiBailout("ret encountered when not parsing subroutine");
1317 }
1318
1319 if (localIndex != scopeData.jsrEntryReturnAddressLocal()) {
1320 throw new CiBailout("jsr/ret structure is too complicated");
1321 }
1322 // rets become non-safepoint gotos
1323 append(new Goto(scopeData.jsrContinuation(), null, false));
1324 }
1325
1326 void genTableswitch() {
1327 int bci = bci();
1328 BytecodeTableSwitch ts = new BytecodeTableSwitch(stream(), bci);
1329 int max = ts.numberOfCases();
1330 List<BlockBegin> list = new ArrayList<BlockBegin>(max + 1);
1331 boolean isBackwards = false;
1332 for (int i = 0; i < max; i++) {
1333 // add all successors to the successor list
1334 int offset = ts.offsetAt(i);
1335 list.add(blockAt(bci + offset));
1336 isBackwards |= offset < 0; // track if any of the successors are backwards
1337 }
1338 int offset = ts.defaultOffset();
1339 isBackwards |= offset < 0; // if the default successor is backwards
1340 list.add(blockAt(bci + offset));
1341 boolean isSafepoint = isBackwards && !scopeData.noSafepoints();
1342 FrameState stateBefore = isSafepoint ? curState.immutableCopy(bci()) : null;
1343 append(new TableSwitch(ipop(), list, ts.lowKey(), stateBefore, isSafepoint));
1344 }
1345
1346 void genLookupswitch() {
1347 int bci = bci();
1348 BytecodeLookupSwitch ls = new BytecodeLookupSwitch(stream(), bci);
1349 int max = ls.numberOfCases();
1350 List<BlockBegin> list = new ArrayList<BlockBegin>(max + 1);
1351 int[] keys = new int[max];
1352 boolean isBackwards = false;
1353 for (int i = 0; i < max; i++) {
1354 // add all successors to the successor list
1355 int offset = ls.offsetAt(i);
1356 list.add(blockAt(bci + offset));
1357 keys[i] = ls.keyAt(i);
1358 isBackwards |= offset < 0; // track if any of the successors are backwards
1359 }
1360 int offset = ls.defaultOffset();
1361 isBackwards |= offset < 0; // if the default successor is backwards
1362 list.add(blockAt(bci + offset));
1363 boolean isSafepoint = isBackwards && !scopeData.noSafepoints();
1364 FrameState stateBefore = isSafepoint ? curState.immutableCopy(bci()) : null;
1365 append(new LookupSwitch(ipop(), list, keys, stateBefore, isSafepoint));
1366 }
1367
1368 /**
1369 * Determines whether the length of an array should be extracted out as a separate instruction
1370 * before an array indexing instruction. This exposes it to CSE.
1371 * @param array
1372 * @return
1373 */
1374 private boolean cseArrayLength(Value array) {
1375 // checks whether an array length access should be generated for CSE
1376 if (C1XOptions.OptCSEArrayLength) {
1377 // always access the length for CSE
1378 return true;
1379 } else if (array.isConstant()) {
1380 // the array itself is a constant
1381 return true;
1382 } else if (array instanceof LoadField && ((LoadField) array).constantValue() != null) {
1383 // the length is derived from a constant array
1384 return true;
1385 } else if (array instanceof NewArray) {
1386 // the array is derived from an allocation
1387 final Value length = ((NewArray) array).length();
1388 return length != null && length.isConstant();
1389 }
1390 return false;
1391 }
1392
1393 private Value appendConstant(CiConstant type) {
1394 return appendWithBCI(new Constant(type), bci(), false);
1395 }
1396
1397 private Value append(Instruction x) {
1398 return appendWithBCI(x, bci(), C1XOptions.OptCanonicalize);
1399 }
1400
1401 private Value appendWithoutOptimization(Instruction x, int bci) {
1402 return appendWithBCI(x, bci, false);
1403 }
1404
1405 private Value appendWithBCI(Instruction x, int bci, boolean canonicalize) {
1406 if (canonicalize) {
1407 // attempt simple constant folding and strength reduction
1408 Value r = canonicalizer.canonicalize(x);
1409 List<Instruction> extra = canonicalizer.extra();
1410 if (extra != null) {
1411 // the canonicalization introduced instructions that should be added before this
1412 for (Instruction i : extra) {
1413 appendWithBCI(i, bci, false); // don't try to canonicalize the new instructions
1414 }
1415 }
1416 if (r instanceof Instruction) {
1417 // the result is an instruction that may need to be appended
1418 x = (Instruction) r;
1419 } else {
1420 // the result is not an instruction (and thus cannot be appended)
1421 return r;
1422 }
1423 }
1424 if (x.isAppended()) {
1425 // the instruction has already been added
1426 return x;
1427 }
1428 if (localValueMap != null) {
1429 // look in the local value map
1430 Value r = localValueMap.findInsert(x);
1431 if (r != x) {
1432 C1XMetrics.LocalValueNumberHits++;
1433 if (r instanceof Instruction) {
1434 assert ((Instruction) r).isAppended() : "instruction " + r + "is not appended";
1435 }
1436 return r;
1437 }
1438 }
1439
1440 assert x.next() == null : "instruction should not have been appended yet";
1441 assert lastInstr.next() == null : "cannot append instruction to instruction which isn't end (" + lastInstr + "->" + lastInstr.next() + ")";
1442 if (lastInstr instanceof Base) {
1443 assert x instanceof Intrinsic : "may only happen when inlining intrinsics";
1444 Instruction prev = lastInstr.prev(lastInstr.block());
1445 prev.setNext(x, bci);
1446 x.setNext(lastInstr, bci);
1447 } else {
1448 lastInstr = lastInstr.setNext(x, bci);
1449 }
1450 if (++stats.nodeCount >= C1XOptions.MaximumInstructionCount) {
1451 // bailout if we've exceeded the maximum inlining size
1452 throw new CiBailout("Method and/or inlining is too large");
1453 }
1454
1455 if (memoryMap != null && hasUncontrollableSideEffects(x)) {
1456 // conservatively kill all memory if there are unknown side effects
1457 memoryMap.kill();
1458 }
1459
1460 if (x instanceof StateSplit) {
1461 StateSplit stateSplit = (StateSplit) x;
1462 if (!stateSplit.isStateCleared() && stateSplit.stateBefore() == null) {
1463 stateSplit.setStateBefore(curState.immutableCopy(bci));
1464 }
1465 }
1466
1467 if (x.canTrap()) {
1468 // connect the instruction to any exception handlers
1469 x.setExceptionHandlers(handleException(x, bci));
1470 }
1471
1472 return x;
1473 }
1474
1475 private boolean hasUncontrollableSideEffects(Value x) {
1476 return x instanceof Invoke || x instanceof Intrinsic && !((Intrinsic) x).preservesState() || x instanceof ResolveClass;
1477 }
1478
1479 private BlockBegin blockAtOrNull(int bci) {
1480 return scopeData.blockAt(bci);
1481 }
1482
1483 private BlockBegin blockAt(int bci) {
1484 BlockBegin result = blockAtOrNull(bci);
1485 assert result != null : "Expected a block to begin at " + bci;
1486 return result;
1487 }
1488
1489 boolean tryInlineJsr(int jsrStart) {
1490 // start a new continuation point.
1491 // all ret instructions will be replaced with gotos to this point
1492 BlockBegin cont = blockAt(nextBCI());
1493
1494 // push callee scope
1495 pushScopeForJsr(cont, jsrStart);
1496
1497 BlockBegin jsrStartBlock = blockAt(jsrStart);
1498 assert !jsrStartBlock.wasVisited();
1499 Goto gotoSub = new Goto(jsrStartBlock, null, false);
1500 gotoSub.setStateAfter(curState.immutableCopy(bci()));
1501 assert jsrStartBlock.stateBefore() == null;
1502 jsrStartBlock.setStateBefore(curState.immutableCopy(bci()));
1503 append(gotoSub);
1504 curBlock.setEnd(gotoSub);
1505 lastInstr = curBlock = jsrStartBlock;
1506
1507 scopeData.addToWorkList(jsrStartBlock);
1508
1509 iterateAllBlocks();
1510
1511 if (cont.stateBefore() != null) {
1512 if (!cont.wasVisited()) {
1513 scopeData.parent.addToWorkList(cont);
1514 }
1515 }
1516
1517 BlockBegin jsrCont = scopeData.jsrContinuation();
1518 assert jsrCont == cont && (!jsrCont.wasVisited() || jsrCont.isParserLoopHeader());
1519 assert lastInstr != null && lastInstr instanceof BlockEnd;
1520
1521 // continuation is in work list, so end iteration of current block
1522 skipBlock = true;
1523 popScopeForJsr();
1524 C1XMetrics.InlinedJsrs++;
1525 return true;
1526 }
1527
1528 void pushScopeForJsr(BlockBegin jsrCont, int jsrStart) {
1529 BytecodeStream stream = new BytecodeStream(scope().method.code());
1530 RiConstantPool constantPool = scopeData.constantPool;
1531 ScopeData data = new ScopeData(scopeData, scope(), scopeData.blockMap, stream, constantPool, jsrStart);
1532 BlockBegin continuation = scopeData.continuation();
1533 data.setContinuation(continuation);
1534 if (continuation != null) {
1535 assert scopeData.continuationState() != null;
1536 data.setContinuationState(scopeData.continuationState().copy());
1537 }
1538 data.setJsrContinuation(jsrCont);
1539 scopeData = data;
1540 }
1541
1542 void pushScope(RiMethod target, BlockBegin continuation) {
1543 // prepare callee scope
1544 IRScope calleeScope = new IRScope(scope(), curState.immutableCopy(bci()), target, -1);
1545 BlockMap blockMap = compilation.getBlockMap(calleeScope.method, -1);
1546 calleeScope.setStoresInLoops(blockMap.getStoresInLoops());
1547 // prepare callee state
1548 curState = curState.pushScope(calleeScope);
1549 BytecodeStream stream = new BytecodeStream(target.code());
1550 RiConstantPool constantPool = compilation.runtime.getConstantPool(target);
1551 ScopeData data = new ScopeData(scopeData, calleeScope, blockMap, stream, constantPool);
1552 data.setContinuation(continuation);
1553 scopeData = data;
1554 }
1555
1556 MutableFrameState stateAtEntry(RiMethod method) {
1557 MutableFrameState state = new MutableFrameState(scope(), -1, method.maxLocals(), method.maxStackSize());
1558 int index = 0;
1559 if (!isStatic(method.accessFlags())) {
1560 // add the receiver and assume it is non null
1561 Local local = new Local(method.holder().kind(), index);
1562 local.setFlag(Value.Flag.NonNull, true);
1563 local.setDeclaredType(method.holder());
1564 state.storeLocal(index, local);
1565 index = 1;
1566 }
1567 RiSignature sig = method.signature();
1568 int max = sig.argumentCount(false);
1569 RiType accessingClass = method.holder();
1570 for (int i = 0; i < max; i++) {
1571 RiType type = sig.argumentTypeAt(i, accessingClass);
1572 CiKind kind = type.kind().stackKind();
1573 Local local = new Local(kind, index);
1574 if (type.isResolved()) {
1575 local.setDeclaredType(type);
1576 }
1577 state.storeLocal(index, local);
1578 index += kind.sizeInSlots();
1579 }
1580 return state;
1581 }
1582
1583 boolean tryRemoveCall(RiMethod target, Value[] args, boolean isStatic) {
1584 if (target.isResolved()) {
1585 if (C1XOptions.OptIntrinsify) {
1586 // try to create an intrinsic node instead of a call
1587 C1XIntrinsic intrinsic = C1XIntrinsic.getIntrinsic(target);
1588 if (intrinsic != null && tryInlineIntrinsic(target, args, isStatic, intrinsic)) {
1589 // this method is not an intrinsic
1590 return true;
1591 }
1592 }
1593 if (C1XOptions.CanonicalizeFoldableMethods) {
1594 // next try to fold the method call
1595 if (tryFoldable(target, args)) {
1596 return true;
1597 }
1598 }
1599 }
1600 return false;
1601 }
1602
1603 private boolean tryInlineIntrinsic(RiMethod target, Value[] args, boolean isStatic, C1XIntrinsic intrinsic) {
1604 boolean preservesState = true;
1605 boolean canTrap = false;
1606
1607 Instruction result = null;
1608
1609 // handle intrinsics differently
1610 switch (intrinsic) {
1611
1612 case java_lang_System$arraycopy:
1613 if (compilation.runtime.supportsArrayIntrinsics()) {
1614 break;
1615 } else {
1616 return false;
1617 }
1618 case java_lang_Object$getClass:
1619 canTrap = true;
1620 break;
1621 case java_lang_Thread$currentThread:
1622 break;
1623 case java_util_Arrays$copyOf:
1624 if (args[0].declaredType() != null && args[0].declaredType().isArrayClass() && compilation.runtime.supportsArrayIntrinsics()) {
1625 break;
1626 } else {
1627 return false;
1628 }
1629 case java_lang_Object$init: // fall through
1630 case java_lang_String$equals: // fall through
1631 case java_lang_String$compareTo: // fall through
1632 case java_lang_String$indexOf: // fall through
1633 case java_lang_Math$max: // fall through
1634 case java_lang_Math$min: // fall through
1635 case java_lang_Math$atan2: // fall through
1636 case java_lang_Math$pow: // fall through
1637 case java_lang_Math$exp: // fall through
1638 case java_nio_Buffer$checkIndex: // fall through
1639 case java_lang_System$identityHashCode: // fall through
1640 case java_lang_System$currentTimeMillis: // fall through
1641 case java_lang_System$nanoTime: // fall through
1642 case java_lang_Object$hashCode: // fall through
1643 case java_lang_Class$isAssignableFrom: // fall through
1644 case java_lang_Class$isInstance: // fall through
1645 case java_lang_Class$getModifiers: // fall through
1646 case java_lang_Class$isInterface: // fall through
1647 case java_lang_Class$isArray: // fall through
1648 case java_lang_Class$isPrimitive: // fall through
1649 case java_lang_Class$getSuperclass: // fall through
1650 case java_lang_Class$getComponentType: // fall through
1651 case java_lang_reflect_Array$getLength: // fall through
1652 case java_lang_reflect_Array$newArray: // fall through
1653 case java_lang_Double$doubleToLongBits: // fall through
1654 case java_lang_Float$floatToIntBits: // fall through
1655 case java_lang_Math$sin: // fall through
1656 case java_lang_Math$cos: // fall through
1657 case java_lang_Math$tan: // fall through
1658 case java_lang_Math$log: // fall through
1659 case java_lang_Math$log10: // fall through
1660 case java_lang_Integer$bitCount: // fall through
1661 case java_lang_Integer$reverseBytes: // fall through
1662 case java_lang_Long$bitCount: // fall through
1663 case java_lang_Long$reverseBytes: // fall through
1664 case java_lang_Object$clone: return false;
1665 // TODO: preservesState and canTrap for complex intrinsics
1666 }
1667
1668
1669
1670 // get the arguments for the intrinsic
1671 CiKind resultType = returnKind(target);
1672
1673 if (C1XOptions.PrintInlinedIntrinsics) {
1674 TTY.println("Inlining intrinsic: " + intrinsic);
1675 }
1676
1677 // Create state before intrinsic.
1678 for (int i = 0; i < args.length; ++i) {
1679 if (args[i] != null) {
1680 curState.push(args[i].kind.stackKind(), args[i]);
1681 }
1682 }
1683
1684 // Create the intrinsic node.
1685 if (intrinsic == C1XIntrinsic.java_lang_System$arraycopy) {
1686 result = genArrayCopy(target, args);
1687 } else if (intrinsic == C1XIntrinsic.java_util_Arrays$copyOf) {
1688 result = genArrayClone(target, args);
1689 } else {
1690 result = new Intrinsic(resultType.stackKind(), intrinsic, target, args, isStatic, curState.immutableCopy(bci()), preservesState, canTrap);
1691 }
1692
1693 // Pop arguments.
1694 curState.popArguments(args.length);
1695
1696 pushReturn(resultType, append(result));
1697 stats.intrinsicCount++;
1698 return true;
1699 }
1700
1701 private Instruction genArrayClone(RiMethod target, Value[] args) {
1702 FrameState state = curState.immutableCopy(bci());
1703 Value array = args[0];
1704 RiType type = array.declaredType();
1705 assert type != null && type.isResolved() && type.isArrayClass();
1706 Value newLength = args[1];
1707
1708 Value oldLength = append(new ArrayLength(array, state));
1709 Value newArray = append(new NewObjectArrayClone(newLength, array, state));
1710 Value copyLength = append(new IfOp(newLength, Condition.LT, oldLength, newLength, oldLength));
1711 append(new ArrayCopy(array, Constant.forInt(0), newArray, Constant.forInt(0), copyLength, null, null));
1712 return (Instruction) newArray;
1713 }
1714
1715 private Instruction genArrayCopy(RiMethod target, Value[] args) {
1716 FrameState state = curState.immutableCopy(bci());
1717 Instruction result;
1718 Value src = args[0];
1719 Value srcPos = args[1];
1720 Value dest = args[2];
1721 Value destPos = args[3];
1722 Value length = args[4];
1723
1724 // Check src start pos.
1725 Value srcLength = append(new ArrayLength(src, state));
1726
1727 // Check dest start pos.
1728 Value destLength = srcLength;
1729 if (src != dest) {
1730 destLength = append(new ArrayLength(dest, state));
1731 }
1732
1733 // Check src end pos.
1734 Value srcEndPos = append(new ArithmeticOp(IADD, CiKind.Int, srcPos, length, false, null));
1735 append(new BoundsCheck(srcEndPos, srcLength, state, Condition.LE));
1736
1737 // Check dest end pos.
1738 Value destEndPos = srcEndPos;
1739 if (destPos != srcPos) {
1740 destEndPos = append(new ArithmeticOp(IADD, CiKind.Int, destPos, length, false, null));
1741 }
1742 append(new BoundsCheck(destEndPos, destLength, state, Condition.LE));
1743
1744 Value zero = append(Constant.forInt(0));
1745 append(new BoundsCheck(length, zero, state, Condition.GE));
1746 append(new BoundsCheck(srcPos, zero, state, Condition.GE));
1747 append(new BoundsCheck(destPos, zero, state, Condition.GE));
1748
1749 result = new ArrayCopy(src, srcPos, dest, destPos, length, target, state);
1750 return result;
1751 }
1752
1753 private boolean tryFoldable(RiMethod target, Value[] args) {
1754 CiConstant result = Canonicalizer.foldInvocation(compilation.runtime, target, args);
1755 if (result != null) {
1756 if (C1XOptions.TraceBytecodeParserLevel > 0) {
1757 log.println("|");
1758 log.println("| [folded " + target + " --> " + result + "]");
1759 log.println("|");
1760 }
1761
1762 pushReturn(returnKind(target), append(new Constant(result)));
1763 return true;
1764 }
1765 return false;
1766 }
1767
1768 private boolean tryInline(RiMethod target, Value[] args) {
1769 boolean forcedInline = compilation.runtime.mustInline(target);
1770 if (forcedInline) {
1771 for (IRScope scope = scope().caller; scope != null; scope = scope.caller) {
1772 if (scope.method.equals(target)) {
1773 throw new CiBailout("Cannot recursively inline method that is force-inlined: " + target);
1774 }
1775 }
1776 C1XMetrics.InlineForcedMethods++;
1777 }
1778 if (forcedInline || checkInliningConditions(target)) {
1779 if (C1XOptions.TraceBytecodeParserLevel > 0) {
1780 log.adjustIndentation(1);
1781 log.println("\\");
1782 log.adjustIndentation(1);
1783 if (C1XOptions.TraceBytecodeParserLevel < TRACELEVEL_STATE) {
1784 log.println("| [inlining " + target + "]");
1785 log.println("|");
1786 }
1787 }
1788 if (!inlineWithBoundAccessor(target, args, forcedInline)) {
1789 inline(target, args, forcedInline);
1790 }
1791
1792 if (C1XOptions.TraceBytecodeParserLevel > 0) {
1793 if (C1XOptions.TraceBytecodeParserLevel < TRACELEVEL_STATE) {
1794 log.println("|");
1795 log.println("| [return to " + curState.scope().method + "]");
1796 }
1797 log.adjustIndentation(-1);
1798 log.println("/");
1799 log.adjustIndentation(-1);
1800 }
1801 return true;
1802 }
1803 return false;
1804 }
1805
1806 private boolean checkInliningConditions(RiMethod target) {
1807 if (!C1XOptions.OptInline) {
1808 return false; // all inlining is turned off
1809 }
1810 if (!target.isResolved()) {
1811 return cannotInline(target, "unresolved method");
1812 }
1813 if (target.code() == null) {
1814 return cannotInline(target, "method has no code");
1815 }
1816 if (!target.holder().isInitialized()) {
1817 return cannotInline(target, "holder is not initialized");
1818 }
1819 if (recursiveInlineLevel(target) > C1XOptions.MaximumRecursiveInlineLevel) {
1820 return cannotInline(target, "recursive inlining too deep");
1821 }
1822 if (target.code().length > scopeData.maxInlineSize()) {
1823 return cannotInline(target, "inlinee too large for this level");
1824 }
1825 if (scopeData.scope.level + 1 > C1XOptions.MaximumInlineLevel) {
1826 return cannotInline(target, "inlining too deep");
1827 }
1828 if (stats.nodeCount > C1XOptions.MaximumDesiredSize) {
1829 return cannotInline(target, "compilation already too big " + "(" + compilation.stats.nodeCount + " nodes)");
1830 }
1831 if (compilation.runtime.mustNotInline(target)) {
1832 C1XMetrics.InlineForbiddenMethods++;
1833 return cannotInline(target, "inlining excluded by runtime");
1834 }
1835 if (compilation.runtime.mustNotCompile(target)) {
1836 return cannotInline(target, "compile excluded by runtime");
1837 }
1838 if (isSynchronized(target.accessFlags()) && !C1XOptions.OptInlineSynchronized) {
1839 return cannotInline(target, "is synchronized");
1840 }
1841 if (target.exceptionHandlers().length != 0 && !C1XOptions.OptInlineExcept) {
1842 return cannotInline(target, "has exception handlers");
1843 }
1844 if (!target.hasBalancedMonitors()) {
1845 return cannotInline(target, "has unbalanced monitors");
1846 }
1847 if (target.isConstructor()) {
1848 if (compilation.runtime.isExceptionType(target.holder())) {
1849 // don't inline constructors of throwable classes unless the inlining tree is
1850 // rooted in a throwable class
1851 if (!compilation.runtime.isExceptionType(rootScope().method.holder())) {
1852 return cannotInline(target, "don't inline Throwable constructors");
1853 }
1854 }
1855 }
1856 return true;
1857 }
1858
1859 private boolean cannotInline(RiMethod target, String reason) {
1860 if (C1XOptions.PrintInliningFailures) {
1861 TTY.println("Cannot inline " + target.toString() + " into " + compilation.method.toString() + " because of " + reason);
1862 }
1863 return false;
1864 }
1865
1866 private void inline(RiMethod target, Value[] args, boolean forcedInline) {
1867 BlockBegin orig = curBlock;
1868 if (!forcedInline && !isStatic(target.accessFlags())) {
1869 // the receiver object must be null-checked for instance methods
1870 Value receiver = args[0];
1871 if (!receiver.isNonNull() && !receiver.kind.isWord()) {
1872 NullCheck check = new NullCheck(receiver, null);
1873 args[0] = append(check);
1874 }
1875 }
1876
1877 // Introduce a new callee continuation point. All return instructions
1878 // in the callee will be transformed to Goto's to the continuation
1879 BlockBegin continuationBlock = blockAtOrNull(nextBCI());
1880 boolean continuationExisted = true;
1881 if (continuationBlock == null) {
1882 // there was not already a block starting at the next BCI
1883 continuationBlock = new BlockBegin(nextBCI(), ir.nextBlockNumber());
1884 continuationBlock.setDepthFirstNumber(0);
1885 continuationExisted = false;
1886 }
1887 // record the number of predecessors before inlining, to determine
1888 // whether the inlined method has added edges to the continuation
1889 int continuationPredecessors = continuationBlock.predecessors().size();
1890
1891 // push the target scope
1892 pushScope(target, continuationBlock);
1893
1894 // pass parameters into the callee state
1895 FrameState calleeState = curState;
1896 for (int i = 0; i < args.length; i++) {
1897 Value arg = args[i];
1898 if (arg != null) {
1899 calleeState.storeLocal(i, arg);
1900 }
1901 }
1902
1903 // setup state that is used at returns from the inlined method.
1904 // this is essentially the state of the continuation block,
1905 // but without the return value on the stack.
1906 scopeData.setContinuationState(scope().callerState);
1907
1908 Value lock = null;
1909 BlockBegin syncHandler = null;
1910 // inline the locking code if the target method is synchronized
1911 if (Modifier.isSynchronized(target.accessFlags())) {
1912 // lock the receiver object if it is an instance method, the class object otherwise
1913 lock = synchronizedObject(curState, target);
1914 syncHandler = new BlockBegin(Instruction.SYNCHRONIZATION_ENTRY_BCI, ir.nextBlockNumber());
1915 syncHandler.setNext(null, -1);
1916 inlineSyncEntry(lock, syncHandler);
1917 }
1918
1919 BlockBegin calleeStartBlock = blockAt(0);
1920 if (calleeStartBlock.isParserLoopHeader()) {
1921 // the block is a loop header, so we have to insert a goto
1922 Goto gotoCallee = new Goto(calleeStartBlock, null, false);
1923 gotoCallee.setStateAfter(curState.immutableCopy(bci()));
1924 appendWithoutOptimization(gotoCallee, 0);
1925 curBlock.setEnd(gotoCallee);
1926 calleeStartBlock.mergeOrClone(calleeState);
1927 lastInstr = curBlock = calleeStartBlock;
1928 scopeData.addToWorkList(calleeStartBlock);
1929 // now iterate over all the blocks
1930 iterateAllBlocks();
1931 } else {
1932 // ready to resume parsing inlined method into this block
1933 iterateBytecodesForBlock(0, true);
1934 // now iterate over the rest of the blocks
1935 iterateAllBlocks();
1936 }
1937
1938 assert continuationExisted || !continuationBlock.wasVisited() : "continuation should not have been parsed if we created it";
1939
1940 ReturnBlock simpleInlineInfo = scopeData.simpleInlineInfo();
1941 if (simpleInlineInfo != null && curBlock == orig) {
1942 // Optimization: during parsing of the callee we
1943 // generated at least one Goto to the continuation block. If we
1944 // generated exactly one, and if the inlined method spanned exactly
1945 // one block (and we didn't have to Goto its entry), then we snip
1946 // off the Goto to the continuation, allowing control to fall
1947 // through back into the caller block and effectively performing
1948 // block merging. This allows local load elimination and local value numbering
1949 // to take place across multiple callee scopes if they are relatively simple, and
1950 // is currently essential to making inlining profitable. It also reduces the
1951 // number of blocks in the CFG
1952 lastInstr = simpleInlineInfo.returnPredecessor;
1953 curState = simpleInlineInfo.returnState.popScope();
1954 lastInstr.setNext(null, -1);
1955 } else if (continuationPredecessors == continuationBlock.predecessors().size()) {
1956 // Inlining caused the instructions after the invoke in the
1957 // caller to not reachable any more (i.e. no control flow path
1958 // in the callee was terminated by a return instruction).
1959 // So skip filling this block with instructions!
1960 assert continuationBlock == scopeData.continuation();
1961 assert lastInstr instanceof BlockEnd;
1962 skipBlock = true;
1963 } else {
1964 // Resume parsing in continuation block unless it was already parsed.
1965 // Note that if we don't change lastInstr here, iteration in
1966 // iterateBytecodesForBlock will stop when we return.
1967 if (!scopeData.continuation().wasVisited()) {
1968 // add continuation to work list instead of parsing it immediately
1969 assert lastInstr instanceof BlockEnd;
1970 scopeData.parent.addToWorkList(scopeData.continuation());
1971 skipBlock = true;
1972 }
1973 }
1974
1975 // fill the exception handler for synchronized methods with instructions
1976 if (syncHandler != null && syncHandler.stateBefore() != null) {
1977 // generate unlocking code if the exception handler is reachable
1978 fillSyncHandler(lock, syncHandler, true);
1979 } else {
1980 popScope();
1981 }
1982
1983 stats.inlineCount++;
1984 }
1985
1986 private Value synchronizedObject(FrameState curState2, RiMethod target) {
1987 if (isStatic(target.accessFlags())) {
1988 Constant classConstant = new Constant(target.holder().getEncoding(Representation.JavaClass));
1989 return appendWithoutOptimization(classConstant, Instruction.SYNCHRONIZATION_ENTRY_BCI);
1990 } else {
1991 return curState2.localAt(0);
1992 }
1993 }
1994
1995 private void inlineSyncEntry(Value lock, BlockBegin syncHandler) {
1996 genMonitorEnter(lock, Instruction.SYNCHRONIZATION_ENTRY_BCI);
1997 syncHandler.setExceptionEntry();
1998 syncHandler.setBlockFlag(BlockBegin.BlockFlag.IsOnWorkList);
1999 ExceptionHandler handler = new ExceptionHandler(new CiExceptionHandler(0, method().code().length, -1, 0, null));
2000 handler.setEntryBlock(syncHandler);
2001 scopeData.addExceptionHandler(handler);
2002 }
2003
2004 private void fillSyncHandler(Value lock, BlockBegin syncHandler, boolean inlinedMethod) {
2005 BlockBegin origBlock = curBlock;
2006 MutableFrameState origState = curState;
2007 Instruction origLast = lastInstr;
2008
2009 lastInstr = curBlock = syncHandler;
2010 while (lastInstr.next() != null) {
2011 // go forward to the end of the block
2012 lastInstr = lastInstr.next();
2013 }
2014 curState = syncHandler.stateBefore().copy();
2015
2016 int bci = Instruction.SYNCHRONIZATION_ENTRY_BCI;
2017 Value exception = appendWithoutOptimization(new ExceptionObject(curState.immutableCopy(bci)), bci);
2018
2019 assert lock != null;
2020 assert curState.locksSize() > 0 && curState.lockAt(locksSize() - 1) == lock;
2021 if (lock instanceof Instruction) {
2022 Instruction l = (Instruction) lock;
2023 if (!l.isAppended()) {
2024 lock = appendWithoutOptimization(l, Instruction.SYNCHRONIZATION_ENTRY_BCI);
2025 }
2026 }
2027 // exit the monitor
2028 genMonitorExit(lock, Instruction.SYNCHRONIZATION_ENTRY_BCI);
2029
2030 // exit the context of the synchronized method
2031 if (inlinedMethod) {
2032 popScope();
2033 bci = curState.scope().callerBCI();
2034 curState = curState.popScope();
2035 }
2036
2037 apush(exception);
2038 genThrow(bci);
2039 BlockEnd end = (BlockEnd) lastInstr;
2040 curBlock.setEnd(end);
2041 end.setStateAfter(curState.immutableCopy(bci()));
2042
2043 curBlock = origBlock;
2044 curState = origState;
2045 lastInstr = origLast;
2046 }
2047
2048 private void iterateAllBlocks() {
2049 BlockBegin b;
2050 while ((b = scopeData.removeFromWorkList()) != null) {
2051 if (!b.wasVisited()) {
2052 if (b.isOsrEntry()) {
2053 // this is the OSR entry block, set up edges accordingly
2054 setupOsrEntryBlock();
2055 // this is no longer the OSR entry block
2056 b.setOsrEntry(false);
2057 }
2058 b.setWasVisited(true);
2059 // now parse the block
2060 killMemoryMap();
2061 curBlock = b;
2062 curState = b.stateBefore().copy();
2063 lastInstr = b;
2064 b.setNext(null, -1);
2065
2066 iterateBytecodesForBlock(b.bci(), false);
2067 }
2068 }
2069 }
2070
2071 private void popScope() {
2072 int maxLocks = scope().maxLocks();
2073 scopeData = scopeData.parent;
2074 scope().updateMaxLocks(maxLocks);
2075 }
2076
2077 private void popScopeForJsr() {
2078 scopeData = scopeData.parent;
2079 }
2080
2081 private void setupOsrEntryBlock() {
2082 assert compilation.isOsrCompilation();
2083
2084 int osrBCI = compilation.osrBCI;
2085 BytecodeStream s = scopeData.stream;
2086 RiOsrFrame frame = compilation.getOsrFrame();
2087 s.setBCI(osrBCI);
2088 s.next(); // XXX: why go to next bytecode?
2089
2090 // create a new block to contain the OSR setup code
2091 ir.osrEntryBlock = new BlockBegin(osrBCI, ir.nextBlockNumber());
2092 ir.osrEntryBlock.setOsrEntry(true);
2093 ir.osrEntryBlock.setDepthFirstNumber(0);
2094
2095 // get the target block of the OSR
2096 BlockBegin target = scopeData.blockAt(osrBCI);
2097 assert target != null && target.isOsrEntry();
2098
2099 MutableFrameState state = target.stateBefore().copy();
2100 ir.osrEntryBlock.setStateBefore(state);
2101
2102 killMemoryMap();
2103 curBlock = ir.osrEntryBlock;
2104 curState = state.copy();
2105 lastInstr = ir.osrEntryBlock;
2106
2107 // create the entry instruction which represents the OSR state buffer
2108 // input from interpreter / JIT
2109 Instruction e = new OsrEntry();
2110 e.setFlag(Value.Flag.NonNull, true);
2111
2112 for (int i = 0; i < state.localsSize(); i++) {
2113 Value local = state.localAt(i);
2114 Value get;
2115 int offset = frame.getLocalOffset(i);
2116 if (local != null) {
2117 // this is a live local according to compiler
2118 if (local.kind.isObject() && !frame.isLiveObject(i)) {
2119 // the compiler thinks this is live, but not the interpreter
2120 // pretend that it passed null
2121 get = appendConstant(CiConstant.NULL_OBJECT);
2122 } else {
2123 Value oc = appendConstant(CiConstant.forInt(offset));
2124 get = append(new UnsafeGetRaw(local.kind, e, oc, 0, true));
2125 }
2126 state.storeLocal(i, get);
2127 }
2128 }
2129
2130 assert state.callerState() == null;
2131 state.clearLocals();
2132 // ATTN: assumption: state is not used further below, else add .immutableCopy()
2133 Goto g = new Goto(target, state, false);
2134 append(g);
2135 ir.osrEntryBlock.setEnd(g);
2136 target.mergeOrClone(ir.osrEntryBlock.end().stateAfter());
2137 }
2138
2139 private BlockEnd iterateBytecodesForBlock(int bci, boolean inliningIntoCurrentBlock) {
2140 skipBlock = false;
2141 assert curState != null;
2142 BytecodeStream s = scopeData.stream;
2143 s.setBCI(bci);
2144
2145 BlockBegin block = curBlock;
2146 BlockEnd end = null;
2147 boolean pushException = block.isExceptionEntry() && block.next() == null;
2148 int prevBCI = bci;
2149 int endBCI = s.endBCI();
2150 boolean blockStart = true;
2151
2152 while (bci < endBCI) {
2153 BlockBegin nextBlock = blockAtOrNull(bci);
2154 if (bci == 0 && inliningIntoCurrentBlock) {
2155 if (!nextBlock.isParserLoopHeader()) {
2156 // Ignore the block boundary of the entry block of a method
2157 // being inlined unless the block is a loop header.
2158 nextBlock = null;
2159 blockStart = false;
2160 }
2161 }
2162 if (nextBlock != null && nextBlock != block) {
2163 // we fell through to the next block, add a goto and break
2164 end = new Goto(nextBlock, null, false);
2165 lastInstr = lastInstr.setNext(end, prevBCI);
2166 break;
2167 }
2168 // read the opcode
2169 int opcode = s.currentBC();
2170
2171 // check for active JSR during OSR compilation
2172 if (compilation.isOsrCompilation() && scope().isTopScope() && scopeData.parsingJsr() && s.currentBCI() == compilation.osrBCI) {
2173 throw new CiBailout("OSR not supported while a JSR is active");
2174 }
2175
2176 // push an exception object onto the stack if we are parsing an exception handler
2177 if (pushException) {
2178 FrameState stateBefore = curState.immutableCopy(bci());
2179 apush(append(new ExceptionObject(stateBefore)));
2180 pushException = false;
2181 }
2182
2183 traceState();
2184 traceInstruction(bci, s, opcode, blockStart);
2185 processBytecode(bci, s, opcode);
2186
2187 prevBCI = bci;
2188
2189 if (lastInstr instanceof BlockEnd) {
2190 end = (BlockEnd) lastInstr;
2191 break;
2192 }
2193 s.next();
2194 bci = s.currentBCI();
2195 blockStart = false;
2196 }
2197
2198 // stop processing of this block
2199 if (skipBlock) {
2200 skipBlock = false;
2201 return (BlockEnd) lastInstr;
2202 }
2203
2204 // if the method terminates, we don't need the stack anymore
2205 if (end instanceof Return || end instanceof Throw) {
2206 curState.clearStack();
2207 }
2208
2209 // connect to begin and set state
2210 // NOTE that inlining may have changed the block we are parsing
2211 assert end != null : "end should exist after iterating over bytecodes";
2212 end.setStateAfter(curState.immutableCopy(bci()));
2213 curBlock.setEnd(end);
2214 // propagate the state
2215 for (BlockBegin succ : end.successors()) {
2216 assert succ.predecessors().contains(curBlock);
2217 succ.mergeOrClone(end.stateAfter());
2218 scopeData.addToWorkList(succ);
2219 }
2220 return end;
2221 }
2222
2223 private void traceState() {
2224 if (C1XOptions.TraceBytecodeParserLevel >= TRACELEVEL_STATE && !TTY.isSuppressed()) {
2225 log.println(String.format("| state [nr locals = %d, stack depth = %d, method = %s]", curState.localsSize(), curState.stackSize(), curState.scope().method));
2226 for (int i = 0; i < curState.localsSize(); ++i) {
2227 Value value = curState.localAt(i);
2228 log.println(String.format("| local[%d] = %-8s : %s", i, value == null ? "bogus" : value.kind.javaName, value));
2229 }
2230 for (int i = 0; i < curState.stackSize(); ++i) {
2231 Value value = curState.stackAt(i);
2232 log.println(String.format("| stack[%d] = %-8s : %s", i, value == null ? "bogus" : value.kind.javaName, value));
2233 }
2234 for (int i = 0; i < curState.locksSize(); ++i) {
2235 Value value = curState.lockAt(i);
2236 log.println(String.format("| lock[%d] = %-8s : %s", i, value == null ? "bogus" : value.kind.javaName, value));
2237 }
2238 }
2239 }
2240
2241 private void processBytecode(int bci, BytecodeStream s, int opcode) {
2242 int cpi;
2243
2244 // Checkstyle: stop
2245 switch (opcode) {
2246 case NOP : /* nothing to do */ break;
2247 case ACONST_NULL : apush(appendConstant(CiConstant.NULL_OBJECT)); break;
2248 case ICONST_M1 : ipush(appendConstant(CiConstant.INT_MINUS_1)); break;
2249 case ICONST_0 : ipush(appendConstant(CiConstant.INT_0)); break;
2250 case ICONST_1 : ipush(appendConstant(CiConstant.INT_1)); break;
2251 case ICONST_2 : ipush(appendConstant(CiConstant.INT_2)); break;
2252 case ICONST_3 : ipush(appendConstant(CiConstant.INT_3)); break;
2253 case ICONST_4 : ipush(appendConstant(CiConstant.INT_4)); break;
2254 case ICONST_5 : ipush(appendConstant(CiConstant.INT_5)); break;
2255 case LCONST_0 : lpush(appendConstant(CiConstant.LONG_0)); break;
2256 case LCONST_1 : lpush(appendConstant(CiConstant.LONG_1)); break;
2257 case FCONST_0 : fpush(appendConstant(CiConstant.FLOAT_0)); break;
2258 case FCONST_1 : fpush(appendConstant(CiConstant.FLOAT_1)); break;
2259 case FCONST_2 : fpush(appendConstant(CiConstant.FLOAT_2)); break;
2260 case DCONST_0 : dpush(appendConstant(CiConstant.DOUBLE_0)); break;
2261 case DCONST_1 : dpush(appendConstant(CiConstant.DOUBLE_1)); break;
2262 case BIPUSH : ipush(appendConstant(CiConstant.forInt(s.readByte()))); break;
2263 case SIPUSH : ipush(appendConstant(CiConstant.forInt(s.readShort()))); break;
2264 case LDC : // fall through
2265 case LDC_W : // fall through
2266 case LDC2_W : genLoadConstant(s.readCPI()); break;
2267 case ILOAD : loadLocal(s.readLocalIndex(), CiKind.Int); break;
2268 case LLOAD : loadLocal(s.readLocalIndex(), CiKind.Long); break;
2269 case FLOAD : loadLocal(s.readLocalIndex(), CiKind.Float); break;
2270 case DLOAD : loadLocal(s.readLocalIndex(), CiKind.Double); break;
2271 case ALOAD : loadLocal(s.readLocalIndex(), CiKind.Object); break;
2272 case ILOAD_0 : // fall through
2273 case ILOAD_1 : // fall through
2274 case ILOAD_2 : // fall through
2275 case ILOAD_3 : loadLocal(opcode - ILOAD_0, CiKind.Int); break;
2276 case LLOAD_0 : // fall through
2277 case LLOAD_1 : // fall through
2278 case LLOAD_2 : // fall through
2279 case LLOAD_3 : loadLocal(opcode - LLOAD_0, CiKind.Long); break;
2280 case FLOAD_0 : // fall through
2281 case FLOAD_1 : // fall through
2282 case FLOAD_2 : // fall through
2283 case FLOAD_3 : loadLocal(opcode - FLOAD_0, CiKind.Float); break;
2284 case DLOAD_0 : // fall through
2285 case DLOAD_1 : // fall through
2286 case DLOAD_2 : // fall through
2287 case DLOAD_3 : loadLocal(opcode - DLOAD_0, CiKind.Double); break;
2288 case ALOAD_0 : // fall through
2289 case ALOAD_1 : // fall through
2290 case ALOAD_2 : // fall through
2291 case ALOAD_3 : loadLocal(opcode - ALOAD_0, CiKind.Object); break;
2292 case IALOAD : genLoadIndexed(CiKind.Int ); break;
2293 case LALOAD : genLoadIndexed(CiKind.Long ); break;
2294 case FALOAD : genLoadIndexed(CiKind.Float ); break;
2295 case DALOAD : genLoadIndexed(CiKind.Double); break;
2296 case AALOAD : genLoadIndexed(CiKind.Object); break;
2297 case BALOAD : genLoadIndexed(CiKind.Byte ); break;
2298 case CALOAD : genLoadIndexed(CiKind.Char ); break;
2299 case SALOAD : genLoadIndexed(CiKind.Short ); break;
2300 case ISTORE : storeLocal(CiKind.Int, s.readLocalIndex()); break;
2301 case LSTORE : storeLocal(CiKind.Long, s.readLocalIndex()); break;
2302 case FSTORE : storeLocal(CiKind.Float, s.readLocalIndex()); break;
2303 case DSTORE : storeLocal(CiKind.Double, s.readLocalIndex()); break;
2304 case ASTORE : storeLocal(CiKind.Object, s.readLocalIndex()); break;
2305 case ISTORE_0 : // fall through
2306 case ISTORE_1 : // fall through
2307 case ISTORE_2 : // fall through
2308 case ISTORE_3 : storeLocal(CiKind.Int, opcode - ISTORE_0); break;
2309 case LSTORE_0 : // fall through
2310 case LSTORE_1 : // fall through
2311 case LSTORE_2 : // fall through
2312 case LSTORE_3 : storeLocal(CiKind.Long, opcode - LSTORE_0); break;
2313 case FSTORE_0 : // fall through
2314 case FSTORE_1 : // fall through
2315 case FSTORE_2 : // fall through
2316 case FSTORE_3 : storeLocal(CiKind.Float, opcode - FSTORE_0); break;
2317 case DSTORE_0 : // fall through
2318 case DSTORE_1 : // fall through
2319 case DSTORE_2 : // fall through
2320 case DSTORE_3 : storeLocal(CiKind.Double, opcode - DSTORE_0); break;
2321 case ASTORE_0 : // fall through
2322 case ASTORE_1 : // fall through
2323 case ASTORE_2 : // fall through
2324 case ASTORE_3 : storeLocal(CiKind.Object, opcode - ASTORE_0); break;
2325 case IASTORE : genStoreIndexed(CiKind.Int ); break;
2326 case LASTORE : genStoreIndexed(CiKind.Long ); break;
2327 case FASTORE : genStoreIndexed(CiKind.Float ); break;
2328 case DASTORE : genStoreIndexed(CiKind.Double); break;
2329 case AASTORE : genStoreIndexed(CiKind.Object); break;
2330 case BASTORE : genStoreIndexed(CiKind.Byte ); break;
2331 case CASTORE : genStoreIndexed(CiKind.Char ); break;
2332 case SASTORE : genStoreIndexed(CiKind.Short ); break;
2333 case POP : // fall through
2334 case POP2 : // fall through
2335 case DUP : // fall through
2336 case DUP_X1 : // fall through
2337 case DUP_X2 : // fall through
2338 case DUP2 : // fall through
2339 case DUP2_X1 : // fall through
2340 case DUP2_X2 : // fall through
2341 case SWAP : stackOp(opcode); break;
2342 case IADD : // fall through
2343 case ISUB : // fall through
2344 case IMUL : genArithmeticOp(CiKind.Int, opcode); break;
2345 case IDIV : // fall through
2346 case IREM : genArithmeticOp(CiKind.Int, opcode, curState.immutableCopy(bci())); break;
2347 case LADD : // fall through
2348 case LSUB : // fall through
2349 case LMUL : genArithmeticOp(CiKind.Long, opcode); break;
2350 case LDIV : // fall through
2351 case LREM : genArithmeticOp(CiKind.Long, opcode, curState.immutableCopy(bci())); break;
2352 case FADD : // fall through
2353 case FSUB : // fall through
2354 case FMUL : // fall through
2355 case FDIV : // fall through
2356 case FREM : genArithmeticOp(CiKind.Float, opcode); break;
2357 case DADD : // fall through
2358 case DSUB : // fall through
2359 case DMUL : // fall through
2360 case DDIV : // fall through
2361 case DREM : genArithmeticOp(CiKind.Double, opcode); break;
2362 case INEG : genNegateOp(CiKind.Int); break;
2363 case LNEG : genNegateOp(CiKind.Long); break;
2364 case FNEG : genNegateOp(CiKind.Float); break;
2365 case DNEG : genNegateOp(CiKind.Double); break;
2366 case ISHL : // fall through
2367 case ISHR : // fall through
2368 case IUSHR : genShiftOp(CiKind.Int, opcode); break;
2369 case IAND : // fall through
2370 case IOR : // fall through
2371 case IXOR : genLogicOp(CiKind.Int, opcode); break;
2372 case LSHL : // fall through
2373 case LSHR : // fall through
2374 case LUSHR : genShiftOp(CiKind.Long, opcode); break;
2375 case LAND : // fall through
2376 case LOR : // fall through
2377 case LXOR : genLogicOp(CiKind.Long, opcode); break;
2378 case IINC : genIncrement(); break;
2379 case I2L : genConvert(opcode, CiKind.Int , CiKind.Long ); break;
2380 case I2F : genConvert(opcode, CiKind.Int , CiKind.Float ); break;
2381 case I2D : genConvert(opcode, CiKind.Int , CiKind.Double); break;
2382 case L2I : genConvert(opcode, CiKind.Long , CiKind.Int ); break;
2383 case L2F : genConvert(opcode, CiKind.Long , CiKind.Float ); break;
2384 case L2D : genConvert(opcode, CiKind.Long , CiKind.Double); break;
2385 case F2I : genConvert(opcode, CiKind.Float , CiKind.Int ); break;
2386 case F2L : genConvert(opcode, CiKind.Float , CiKind.Long ); break;
2387 case F2D : genConvert(opcode, CiKind.Float , CiKind.Double); break;
2388 case D2I : genConvert(opcode, CiKind.Double, CiKind.Int ); break;
2389 case D2L : genConvert(opcode, CiKind.Double, CiKind.Long ); break;
2390 case D2F : genConvert(opcode, CiKind.Double, CiKind.Float ); break;
2391 case I2B : genConvert(opcode, CiKind.Int , CiKind.Byte ); break;
2392 case I2C : genConvert(opcode, CiKind.Int , CiKind.Char ); break;
2393 case I2S : genConvert(opcode, CiKind.Int , CiKind.Short ); break;
2394 case LCMP : genCompareOp(CiKind.Long, opcode, CiKind.Int); break;
2395 case FCMPL : genCompareOp(CiKind.Float, opcode, CiKind.Int); break;
2396 case FCMPG : genCompareOp(CiKind.Float, opcode, CiKind.Int); break;
2397 case DCMPL : genCompareOp(CiKind.Double, opcode, CiKind.Int); break;
2398 case DCMPG : genCompareOp(CiKind.Double, opcode, CiKind.Int); break;
2399 case IFEQ : genIfZero(Condition.EQ); break;
2400 case IFNE : genIfZero(Condition.NE); break;
2401 case IFLT : genIfZero(Condition.LT); break;
2402 case IFGE : genIfZero(Condition.GE); break;
2403 case IFGT : genIfZero(Condition.GT); break;
2404 case IFLE : genIfZero(Condition.LE); break;
2405 case IF_ICMPEQ : genIfSame(CiKind.Int, Condition.EQ); break;
2406 case IF_ICMPNE : genIfSame(CiKind.Int, Condition.NE); break;
2407 case IF_ICMPLT : genIfSame(CiKind.Int, Condition.LT); break;
2408 case IF_ICMPGE : genIfSame(CiKind.Int, Condition.GE); break;
2409 case IF_ICMPGT : genIfSame(CiKind.Int, Condition.GT); break;
2410 case IF_ICMPLE : genIfSame(CiKind.Int, Condition.LE); break;
2411 case IF_ACMPEQ : genIfSame(peekKind(), Condition.EQ); break;
2412 case IF_ACMPNE : genIfSame(peekKind(), Condition.NE); break;
2413 case GOTO : genGoto(s.currentBCI(), s.readBranchDest()); break;
2414 case JSR : genJsr(s.readBranchDest()); break;
2415 case RET : genRet(s.readLocalIndex()); break;
2416 case TABLESWITCH : genTableswitch(); break;
2417 case LOOKUPSWITCH : genLookupswitch(); break;
2418 case IRETURN : genReturn(ipop()); break;
2419 case LRETURN : genReturn(lpop()); break;
2420 case FRETURN : genReturn(fpop()); break;
2421 case DRETURN : genReturn(dpop()); break;
2422 case ARETURN : genReturn(apop()); break;
2423 case RETURN : genReturn(null ); break;
2424 case GETSTATIC : cpi = s.readCPI(); genGetStatic(cpi, constantPool().lookupField(cpi, opcode)); break;
2425 case PUTSTATIC : cpi = s.readCPI(); genPutStatic(cpi, constantPool().lookupField(cpi, opcode)); break;
2426 case GETFIELD : cpi = s.readCPI(); genGetField(cpi, constantPool().lookupField(cpi, opcode)); break;
2427 case PUTFIELD : cpi = s.readCPI(); genPutField(cpi, constantPool().lookupField(cpi, opcode)); break;
2428 case INVOKEVIRTUAL : cpi = s.readCPI(); genInvokeVirtual(constantPool().lookupMethod(cpi, opcode), cpi, constantPool()); break;
2429 case INVOKESPECIAL : cpi = s.readCPI(); genInvokeSpecial(constantPool().lookupMethod(cpi, opcode), null, cpi, constantPool()); break;
2430 case INVOKESTATIC : cpi = s.readCPI(); genInvokeStatic(constantPool().lookupMethod(cpi, opcode), cpi, constantPool()); break;
2431 case INVOKEINTERFACE: cpi = s.readCPI(); genInvokeInterface(constantPool().lookupMethod(cpi, opcode), cpi, constantPool()); break;
2432 case NEW : genNewInstance(s.readCPI()); break;
2433 case NEWARRAY : genNewTypeArray(s.readLocalIndex()); break;
2434 case ANEWARRAY : genNewObjectArray(s.readCPI()); break;
2435 case ARRAYLENGTH : genArrayLength(); break;
2436 case ATHROW : genThrow(s.currentBCI()); break;
2437 case CHECKCAST : genCheckCast(); break;
2438 case INSTANCEOF : genInstanceOf(); break;
2439 case MONITORENTER : genMonitorEnter(apop(), s.currentBCI()); break;
2440 case MONITOREXIT : genMonitorExit(apop(), s.currentBCI()); break;
2441 case MULTIANEWARRAY : genNewMultiArray(s.readCPI()); break;
2442 case IFNULL : genIfNull(Condition.EQ); break;
2443 case IFNONNULL : genIfNull(Condition.NE); break;
2444 case GOTO_W : genGoto(s.currentBCI(), s.readFarBranchDest()); break;
2445 case JSR_W : genJsr(s.readFarBranchDest()); break;
2446 default:
2447 processExtendedBytecode(bci, s, opcode);
2448 }
2449 // Checkstyle: resume
2450 }
2451
2452 private void processExtendedBytecode(int bci, BytecodeStream s, int opcode) {
2453 // Checkstyle: stop
2454 switch (opcode) {
2455 case UNSAFE_CAST : genUnsafeCast(constantPool().lookupMethod(s.readCPI(), (byte)Bytecodes.UNSAFE_CAST)); break;
2456 case WLOAD : loadLocal(s.readLocalIndex(), CiKind.Word); break;
2457 case WLOAD_0 : loadLocal(0, CiKind.Word); break;
2458 case WLOAD_1 : loadLocal(1, CiKind.Word); break;
2459 case WLOAD_2 : loadLocal(2, CiKind.Word); break;
2460 case WLOAD_3 : loadLocal(3, CiKind.Word); break;
2461
2462 case WSTORE : storeLocal(CiKind.Word, s.readLocalIndex()); break;
2463 case WSTORE_0 : // fall through
2464 case WSTORE_1 : // fall through
2465 case WSTORE_2 : // fall through
2466 case WSTORE_3 : storeLocal(CiKind.Word, opcode - WSTORE_0); break;
2467
2468 case WCONST_0 : wpush(appendConstant(CiConstant.ZERO)); break;
2469 case WDIV : // fall through
2470 case WREM : genArithmeticOp(CiKind.Word, opcode, curState.immutableCopy(bci())); break;
2471 case WDIVI : genArithmeticOp(CiKind.Word, opcode, CiKind.Word, CiKind.Int, curState.immutableCopy(bci())); break;
2472 case WREMI : genArithmeticOp(CiKind.Int, opcode, CiKind.Word, CiKind.Int, curState.immutableCopy(bci())); break;
2473
2474 case READREG : genLoadRegister(s.readCPI()); break;
2475 case WRITEREG : genStoreRegister(s.readCPI()); break;
2476 case INCREG : genIncRegister(s.readCPI()); break;
2477
2478 case PREAD : genLoadPointer(PREAD | (s.readCPI() << 8)); break;
2479 case PGET : genLoadPointer(PGET | (s.readCPI() << 8)); break;
2480 case PWRITE : genStorePointer(PWRITE | (s.readCPI() << 8)); break;
2481 case PSET : genStorePointer(PSET | (s.readCPI() << 8)); break;
2482 case PCMPSWP : genCompareAndSwap(PCMPSWP | (s.readCPI() << 8)); break;
2483 case MEMBAR : genMemoryBarrier(s.readCPI()); break;
2484
2485 case WRETURN : genReturn(wpop()); break;
2486 case INFOPOINT : genInfopoint(INFOPOINT | (s.readUByte(bci() + 1) << 16), s.readUByte(bci() + 2) != 0); break;
2487 case JNICALL : genNativeCall(s.readCPI()); break;
2488 case JNIOP : genJniOp(s.readCPI()); break;
2489 case ALLOCA : genStackAllocate(); break;
2490
2491 case MOV_I2F : genConvert(opcode, CiKind.Int, CiKind.Float ); break;
2492 case MOV_F2I : genConvert(opcode, CiKind.Float, CiKind.Int ); break;
2493 case MOV_L2D : genConvert(opcode, CiKind.Long, CiKind.Double ); break;
2494 case MOV_D2L : genConvert(opcode, CiKind.Double, CiKind.Long ); break;
2495
2496 case UCMP : genUnsignedCompareOp(CiKind.Int, opcode, s.readCPI()); break;
2497 case UWCMP : genUnsignedCompareOp(CiKind.Word, opcode, s.readCPI()); break;
2498
2499 case STACKHANDLE : genStackHandle(s.readCPI() == 0); break;
2500 case BREAKPOINT_TRAP: genBreakpointTrap(); break;
2501 case PAUSE : genPause(); break;
2502 case LSB : // fall through
2503 case MSB : genSignificantBit(opcode);break;
2504
2505 case TEMPLATE_CALL : genTemplateCall(constantPool().lookupMethod(s.readCPI(), (byte)Bytecodes.TEMPLATE_CALL)); break;
2506 case ICMP : genCompareOp(CiKind.Int, opcode, CiKind.Void); break;
2507 case WCMP : genCompareOp(CiKind.Word, opcode, CiKind.Void); break;
2508
2509 case BREAKPOINT:
2510 throw new CiBailout("concurrent setting of breakpoint");
2511 default:
2512 throw new CiBailout("Unsupported opcode " + opcode + " (" + nameOf(opcode) + ") [bci=" + bci + "]");
2513 }
2514 // Checkstyle: resume
2515 }
2516
2517 private void traceInstruction(int bci, BytecodeStream s, int opcode, boolean blockStart) {
2518 if (C1XOptions.TraceBytecodeParserLevel >= TRACELEVEL_INSTRUCTIONS && !TTY.isSuppressed()) {
2519 StringBuilder sb = new StringBuilder(40);
2520 sb.append(blockStart ? '+' : '|');
2521 if (bci < 10) {
2522 sb.append(" ");
2523 } else if (bci < 100) {
2524 sb.append(' ');
2525 }
2526 sb.append(bci).append(": ").append(Bytecodes.nameOf(opcode));
2527 for (int i = bci + 1; i < s.nextBCI(); ++i) {
2528 sb.append(' ').append(s.readUByte(i));
2529 }
2530 log.println(sb.toString());
2531 }
2532 }
2533
2534 private void genPause() {
2535 append(new Pause());
2536 }
2537
2538 private void genBreakpointTrap() {
2539 append(new BreakpointTrap());
2540 }
2541
2542 private void genStackHandle(boolean isCategory1) {
2543 Value value = curState.xpop();
2544 wpush(append(new StackHandle(value)));
2545 }
2546
2547 private void genStackAllocate() {
2548 Value size = pop(CiKind.Int);
2549 wpush(append(new StackAllocate(size)));
2550 }
2551
2552 private void genSignificantBit(int opcode) {
2553 Value value = pop(CiKind.Word);
2554 push(CiKind.Int, append(new SignificantBitOp(value, opcode)));
2555 }
2556
2557 private void appendSnippetCall(RiSnippetCall snippetCall) {
2558 Value[] args = new Value[snippetCall.arguments.length];
2559 RiMethod snippet = snippetCall.snippet;
2560 RiSignature signature = snippet.signature();
2561 assert signature.argumentCount(!isStatic(snippet.accessFlags())) == args.length;
2562 for (int i = args.length - 1; i >= 0; --i) {
2563 CiKind argKind = signature.argumentKindAt(i);
2564 if (snippetCall.arguments[i] == null) {
2565 args[i] = pop(argKind);
2566 } else {
2567 args[i] = append(new Constant(snippetCall.arguments[i]));
2568 }
2569 }
2570
2571 if (!tryRemoveCall(snippet, args, true)) {
2572 if (!tryInline(snippet, args)) {
2573 appendInvoke(snippetCall.opcode, snippet, args, true, (char) 0, constantPool());
2574 }
2575 }
2576 }
2577
2578 private void genJniOp(int operand) {
2579 RiSnippets snippets = compilation.runtime.getSnippets();
2580 switch (operand) {
2581 case JniOp.LINK: {
2582 RiMethod nativeMethod = scope().method;
2583 RiSnippetCall linkSnippet = snippets.link(nativeMethod);
2584 if (linkSnippet.result != null) {
2585 wpush(appendConstant(linkSnippet.result));
2586 } else {
2587 appendSnippetCall(linkSnippet);
2588 }
2589 break;
2590 }
2591 case JniOp.J2N: {
2592 RiMethod nativeMethod = scope().method;
2593 appendSnippetCall(snippets.enterNative(nativeMethod));
2594 break;
2595 }
2596 case JniOp.N2J: {
2597 RiMethod nativeMethod = scope().method;
2598 appendSnippetCall(snippets.enterVM(nativeMethod));
2599 break;
2600 }
2601 }
2602 }
2603
2604 private void genNativeCall(int cpi) {
2605 Value nativeFunctionAddress = wpop();
2606 RiSignature sig = constantPool().lookupSignature(cpi);
2607 Value[] args = curState.popArguments(sig.argumentSlots(false));
2608
2609 RiMethod nativeMethod = scope().method;
2610 CiKind returnKind = sig.returnKind();
2611 pushReturn(returnKind, append(new NativeCall(nativeMethod, sig, nativeFunctionAddress, args, null)));
2612
2613 // Sign extend or zero the upper bits of a return value smaller than an int to
2614 // preserve the invariant that all such values are represented by an int
2615 // in the VM. We cannot rely on the native C compiler doing this for us.
2616 switch (sig.returnKind()) {
2617 case Boolean:
2618 case Byte: {
2619 genConvert(I2B, CiKind.Int, CiKind.Byte);
2620 break;
2621 }
2622 case Short: {
2623 genConvert(I2S, CiKind.Int, CiKind.Short);
2624 break;
2625 }
2626 case Char: {
2627 genConvert(I2C, CiKind.Int, CiKind.Char);
2628 break;
2629 }
2630 }
2631 }
2632
2633 void genTemplateCall(RiMethod method) {
2634 RiSignature sig = method.signature();
2635 Value[] args = curState.popArguments(sig.argumentSlots(false));
2636 assert args.length <= 2;
2637 CiKind returnKind = sig.returnKind();
2638 Value address = null;
2639 Value receiver = null;
2640 if (args.length == 1) {
2641 address = args[0];
2642 assert address.kind.isWord();
2643 } else if (args.length == 2) {
2644 address = args[0];
2645 assert address.kind.isWord();
2646 receiver = args[1];
2647 assert receiver.kind.isObject();
2648 }
2649 pushReturn(returnKind, append(new TemplateCall(returnKind, address, receiver)));
2650 }
2651
2652 private void genInfopoint(int opcode, boolean inclFrame) {
2653 // TODO: create slimmer frame state if inclFrame is false
2654 FrameState state = curState.immutableCopy(bci());
2655 assert opcode != SAFEPOINT || !scopeData.noSafepoints() : "cannot place explicit safepoint in uninterruptible code scope";
2656 Value result = append(new Infopoint(opcode, state));
2657 if (!result.kind.isVoid()) {
2658 push(result.kind, result);
2659 }
2660 }
2661
2662 private void genLoadRegister(int registerId) {
2663 CiRegister register = compilation.registerConfig.getRegisterForRole(registerId);
2664 if (register == null) {
2665 throw new CiBailout("Unsupported READREG operand " + registerId);
2666 }
2667 LoadRegister load = new LoadRegister(CiKind.Word, register);
2668 RiRegisterAttributes regAttr = compilation.registerConfig.getAttributesMap()[register.number];
2669 if (regAttr.isNonZero) {
2670 load.setFlag(Flag.NonNull);
2671 }
2672 wpush(append(load));
2673 }
2674
2675 private void genStoreRegister(int registerId) {
2676 CiRegister register = compilation.registerConfig.getRegisterForRole(registerId);
2677 if (register == null) {
2678 throw new CiBailout("Unsupported WRITEREG operand " + registerId);
2679 }
2680 Value value = pop(CiKind.Word);
2681 append(new StoreRegister(CiKind.Word, register, value));
2682 }
2683
2684 private void genIncRegister(int registerId) {
2685 CiRegister register = compilation.registerConfig.getRegisterForRole(registerId);
2686 if (register == null) {
2687 throw new CiBailout("Unsupported INCREG operand " + registerId);
2688 }
2689 Value value = pop(CiKind.Int);
2690 append(new IncrementRegister(register, value));
2691 }
2692
2693 /**
2694 * Gets the data kind corresponding to a given pointer operation opcode.
2695 * The data kind may be more specific than a {@linkplain CiKind#stackKind()}.
2696 *
2697 * @return the kind of value at the address accessed by the pointer operation denoted by {@code opcode}
2698 */
2699 private static CiKind dataKindForPointerOp(int opcode) {
2700 switch (opcode) {
2701 case PGET_BYTE :
2702 case PSET_BYTE :
2703 case PREAD_BYTE :
2704 case PREAD_BYTE_I :
2705 case PWRITE_BYTE :
2706 case PWRITE_BYTE_I : return CiKind.Byte;
2707 case PGET_CHAR :
2708 case PREAD_CHAR :
2709 case PREAD_CHAR_I : return CiKind.Char;
2710 case PGET_SHORT :
2711 case PSET_SHORT :
2712 case PREAD_SHORT :
2713 case PREAD_SHORT_I :
2714 case PWRITE_SHORT :
2715 case PWRITE_SHORT_I : return CiKind.Short;
2716 case PGET_INT :
2717 case PSET_INT :
2718 case PREAD_INT :
2719 case PREAD_INT_I :
2720 case PWRITE_INT :
2721 case PWRITE_INT_I : return CiKind.Int;
2722 case PGET_FLOAT :
2723 case PSET_FLOAT :
2724 case PREAD_FLOAT :
2725 case PREAD_FLOAT_I :
2726 case PWRITE_FLOAT :
2727 case PWRITE_FLOAT_I : return CiKind.Float;
2728 case PGET_LONG :
2729 case PSET_LONG :
2730 case PREAD_LONG :
2731 case PREAD_LONG_I :
2732 case PWRITE_LONG :
2733 case PWRITE_LONG_I : return CiKind.Long;
2734 case PGET_DOUBLE :
2735 case PSET_DOUBLE :
2736 case PREAD_DOUBLE :
2737 case PREAD_DOUBLE_I :
2738 case PWRITE_DOUBLE :
2739 case PWRITE_DOUBLE_I : return CiKind.Double;
2740 case PGET_WORD :
2741 case PSET_WORD :
2742 case PREAD_WORD :
2743 case PREAD_WORD_I :
2744 case PWRITE_WORD :
2745 case PWRITE_WORD_I : return CiKind.Word;
2746 case PGET_REFERENCE :
2747 case PSET_REFERENCE :
2748 case PREAD_REFERENCE :
2749 case PREAD_REFERENCE_I :
2750 case PWRITE_REFERENCE :
2751 case PWRITE_REFERENCE_I : return CiKind.Object;
2752 default:
2753 throw new CiBailout("Unsupported pointer operation opcode " + opcode + "(" + nameOf(opcode) + ")");
2754 }
2755 }
2756
2757 /**
2758 * Pops the value producing the scaled-index or the byte offset for a pointer operation.
2759 * If compiling for a 64-bit platform and the value is an {@link CiKind#Int} parameter,
2760 * then a conversion is inserted to sign extend the int to a word.
2761 *
2762 * This is required as the value is used as a 64-bit value and so the high 32 bits
2763 * need to be correct.
2764 *
2765 * @param isInt specifies if the value is an {@code int}
2766 */
2767 private Value popOffsetOrIndexForPointerOp(boolean isInt) {
2768 if (isInt) {
2769 Value offsetOrIndex = ipop();
2770 if (compilation.target.arch.is64bit() && offsetOrIndex instanceof Local) {
2771 return append(new Convert(I2L, offsetOrIndex, CiKind.Word));
2772 }
2773 return offsetOrIndex;
2774 }
2775 return wpop();
2776 }
2777
2778 private void genLoadPointer(int opcode) {
2779 FrameState stateBefore = curState.immutableCopy(bci());
2780 CiKind dataKind = dataKindForPointerOp(opcode);
2781 Value offsetOrIndex;
2782 Value displacement;
2783 if ((opcode & 0xff) == PREAD) {
2784 offsetOrIndex = popOffsetOrIndexForPointerOp(opcode >= PREAD_BYTE_I && opcode <= PREAD_REFERENCE_I);
2785 displacement = null;
2786 } else {
2787 offsetOrIndex = popOffsetOrIndexForPointerOp(true);
2788 displacement = ipop();
2789 }
2790 Value pointer = wpop();
2791 push(dataKind.stackKind(), append(new LoadPointer(dataKind, opcode, pointer, displacement, offsetOrIndex, stateBefore, false)));
2792 }
2793
2794 private void genStorePointer(int opcode) {
2795 FrameState stateBefore = curState.immutableCopy(bci());
2796 CiKind dataKind = dataKindForPointerOp(opcode);
2797 Value value = pop(dataKind.stackKind());
2798 Value offsetOrIndex;
2799 Value displacement;
2800 if ((opcode & 0xff) == PWRITE) {
2801 offsetOrIndex = popOffsetOrIndexForPointerOp(opcode >= PWRITE_BYTE_I && opcode <= PWRITE_REFERENCE_I);
2802 displacement = null;
2803 } else {
2804 offsetOrIndex = popOffsetOrIndexForPointerOp(true);
2805 displacement = ipop();
2806 }
2807 Value pointer = wpop();
2808 append(new StorePointer(opcode, dataKind, pointer, displacement, offsetOrIndex, value, stateBefore, false));
2809 }
2810
2811 private static CiKind kindForCompareAndSwap(int opcode) {
2812 switch (opcode) {
2813 case PCMPSWP_INT :
2814 case PCMPSWP_INT_I : return CiKind.Int;
2815 case PCMPSWP_WORD :
2816 case PCMPSWP_WORD_I : return CiKind.Word;
2817 case PCMPSWP_REFERENCE :
2818 case PCMPSWP_REFERENCE_I: return CiKind.Object;
2819 default:
2820 throw new CiBailout("Unsupported compare-and-swap opcode " + opcode + "(" + nameOf(opcode) + ")");
2821 }
2822 }
2823
2824 private void genCompareAndSwap(int opcode) {
2825 FrameState stateBefore = curState.immutableCopy(bci());
2826 CiKind kind = kindForCompareAndSwap(opcode);
2827 Value newValue = pop(kind);
2828 Value expectedValue = pop(kind);
2829 Value offset;
2830 offset = popOffsetOrIndexForPointerOp(opcode >= PCMPSWP_INT_I && opcode <= PCMPSWP_REFERENCE_I);
2831 Value pointer = wpop();
2832 push(kind, append(new CompareAndSwap(opcode, pointer, offset, expectedValue, newValue, stateBefore, false)));
2833 }
2834
2835
2836 private void genMemoryBarrier(int barriers) {
2837 int explicitMemoryBarriers = barriers & ~compilation.target.arch.implicitMemoryBarriers;
2838 if (explicitMemoryBarriers != 0) {
2839 append(new MemoryBarrier(explicitMemoryBarriers));
2840 }
2841 }
2842
2843 private void genArrayLength() {
2844 FrameState stateBefore = curState.immutableCopy(bci());
2845 ipush(append(new ArrayLength(apop(), stateBefore)));
2846 }
2847
2848 void killMemoryMap() {
2849 if (localValueMap != null) {
2850 localValueMap.killAll();
2851 }
2852 if (memoryMap != null) {
2853 memoryMap.kill();
2854 }
2855 }
2856
2857 boolean assumeLeafClass(RiType type) {
2858 if (type.isResolved()) {
2859 if (isFinal(type.accessFlags())) {
2860 return true;
2861 }
2862
2863 if (C1XOptions.UseAssumptions) {
2864 RiType assumed = type.uniqueConcreteSubtype();
2865 if (assumed != null && assumed == type) {
2866 if (C1XOptions.PrintAssumptions) {
2867 TTY.println("Recording leaf class assumption for " + type.name());
2868 }
2869 compilation.assumptions.recordConcreteSubtype(type, assumed);
2870 return true;
2871 }
2872 }
2873 }
2874 return false;
2875 }
2876
2877 RiMethod getAssumedLeafMethod(RiMethod method) {
2878 if (method.isResolved()) {
2879 if (method.isLeafMethod()) {
2880 return method;
2881 }
2882
2883 if (C1XOptions.UseAssumptions) {
2884 RiMethod assumed = method.uniqueConcreteMethod();
2885 if (assumed != null) {
2886 if (C1XOptions.PrintAssumptions) {
2887 TTY.println("Recording concrete method assumption in context of " + method.holder().name() + ": " + assumed.name());
2888 }
2889 compilation.assumptions.recordConcreteMethod(method, assumed);
2890 return assumed;
2891 } else {
2892 if (C1XOptions.PrintAssumptions) {
2893 TTY.println("Did not find unique concrete method for " + method);
2894 }
2895 }
2896 }
2897 }
2898 return null;
2899 }
2900
2901 private int recursiveInlineLevel(RiMethod target) {
2902 int rec = 0;
2903 IRScope scope = scope();
2904 while (scope != null) {
2905 if (scope.method != target) {
2906 break;
2907 }
2908 scope = scope.caller;
2909 rec++;
2910 }
2911 return rec;
2912 }
2913
2914 private RiConstantPool constantPool() {
2915 return scopeData.constantPool;
2916 }
2917 }