comparison src/share/vm/gc_implementation/g1/heapRegion.hpp @ 342:37f87013dfd8

6711316: Open source the Garbage-First garbage collector Summary: First mercurial integration of the code for the Garbage-First garbage collector. Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr
author ysr
date Thu, 05 Jun 2008 15:57:56 -0700
parents
children 0edda524b58c
comparison
equal deleted inserted replaced
189:0b27f3512f9e 342:37f87013dfd8
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #ifndef SERIALGC
26
27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
28 // can be collected independently.
29
30 // NOTE: Although a HeapRegion is a Space, its
31 // Space::initDirtyCardClosure method must not be called.
32 // The problem is that the existence of this method breaks
33 // the independence of barrier sets from remembered sets.
34 // The solution is to remove this method from the definition
35 // of a Space.
36
37 class CompactibleSpace;
38 class ContiguousSpace;
39 class HeapRegionRemSet;
40 class HeapRegionRemSetIterator;
41 class HeapRegion;
42
43 // A dirty card to oop closure for heap regions. It
44 // knows how to get the G1 heap and how to use the bitmap
45 // in the concurrent marker used by G1 to filter remembered
46 // sets.
47
48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
49 public:
50 // Specification of possible DirtyCardToOopClosure filtering.
51 enum FilterKind {
52 NoFilterKind,
53 IntoCSFilterKind,
54 OutOfRegionFilterKind
55 };
56
57 protected:
58 HeapRegion* _hr;
59 FilterKind _fk;
60 G1CollectedHeap* _g1;
61
62 void walk_mem_region_with_cl(MemRegion mr,
63 HeapWord* bottom, HeapWord* top,
64 OopClosure* cl);
65
66 // We don't specialize this for FilteringClosure; filtering is handled by
67 // the "FilterKind" mechanism. But we provide this to avoid a compiler
68 // warning.
69 void walk_mem_region_with_cl(MemRegion mr,
70 HeapWord* bottom, HeapWord* top,
71 FilteringClosure* cl) {
72 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
73 (OopClosure*)cl);
74 }
75
76 // Get the actual top of the area on which the closure will
77 // operate, given where the top is assumed to be (the end of the
78 // memory region passed to do_MemRegion) and where the object
79 // at the top is assumed to start. For example, an object may
80 // start at the top but actually extend past the assumed top,
81 // in which case the top becomes the end of the object.
82 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
83 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
84 }
85
86 // Walk the given memory region from bottom to (actual) top
87 // looking for objects and applying the oop closure (_cl) to
88 // them. The base implementation of this treats the area as
89 // blocks, where a block may or may not be an object. Sub-
90 // classes should override this to provide more accurate
91 // or possibly more efficient walking.
92 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
93 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
94 }
95
96 public:
97 HeapRegionDCTOC(G1CollectedHeap* g1,
98 HeapRegion* hr, OopClosure* cl,
99 CardTableModRefBS::PrecisionStyle precision,
100 FilterKind fk);
101 };
102
103
104 // The complicating factor is that BlockOffsetTable diverged
105 // significantly, and we need functionality that is only in the G1 version.
106 // So I copied that code, which led to an alternate G1 version of
107 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
108 // be reconciled, then G1OffsetTableContigSpace could go away.
109
110 // The idea behind time stamps is the following. Doing a save_marks on
111 // all regions at every GC pause is time consuming (if I remember
112 // well, 10ms or so). So, we would like to do that only for regions
113 // that are GC alloc regions. To achieve this, we use time
114 // stamps. For every evacuation pause, G1CollectedHeap generates a
115 // unique time stamp (essentially a counter that gets
116 // incremented). Every time we want to call save_marks on a region,
117 // we set the saved_mark_word to top and also copy the current GC
118 // time stamp to the time stamp field of the space. Reading the
119 // saved_mark_word involves checking the time stamp of the
120 // region. If it is the same as the current GC time stamp, then we
121 // can safely read the saved_mark_word field, as it is valid. If the
122 // time stamp of the region is not the same as the current GC time
123 // stamp, then we instead read top, as the saved_mark_word field is
124 // invalid. Time stamps (on the regions and also on the
125 // G1CollectedHeap) are reset at every cleanup (we iterate over
126 // the regions anyway) and at the end of a Full GC. The current scheme
127 // that uses sequential unsigned ints will fail only if we have 4b
128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
129
130 class G1OffsetTableContigSpace: public ContiguousSpace {
131 friend class VMStructs;
132 protected:
133 G1BlockOffsetArrayContigSpace _offsets;
134 Mutex _par_alloc_lock;
135 volatile unsigned _gc_time_stamp;
136
137 public:
138 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
139 // assumed to contain zeros.
140 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
141 MemRegion mr, bool is_zeroed = false);
142
143 void set_bottom(HeapWord* value);
144 void set_end(HeapWord* value);
145
146 virtual HeapWord* saved_mark_word() const;
147 virtual void set_saved_mark();
148 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
149
150 virtual void initialize(MemRegion mr, bool clear_space);
151 virtual void clear();
152
153 HeapWord* block_start(const void* p);
154 HeapWord* block_start_const(const void* p) const;
155
156 // Add offset table update.
157 virtual HeapWord* allocate(size_t word_size);
158 HeapWord* par_allocate(size_t word_size);
159
160 // MarkSweep support phase3
161 virtual HeapWord* initialize_threshold();
162 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
163
164 virtual void print() const;
165 };
166
167 class HeapRegion: public G1OffsetTableContigSpace {
168 friend class VMStructs;
169 private:
170
171 // The next filter kind that should be used for a "new_dcto_cl" call with
172 // the "traditional" signature.
173 HeapRegionDCTOC::FilterKind _next_fk;
174
175 // Requires that the region "mr" be dense with objects, and begin and end
176 // with an object.
177 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
178
179 // The remembered set for this region.
180 // (Might want to make this "inline" later, to avoid some alloc failure
181 // issues.)
182 HeapRegionRemSet* _rem_set;
183
184 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
185
186 protected:
187 // If this region is a member of a HeapRegionSeq, the index in that
188 // sequence, otherwise -1.
189 int _hrs_index;
190
191 bool _humongous; // starts or continues a humongous object
192 bool _humongous_start; // starts a humongous object
193 // For a humongous region, region in which it starts.
194 HeapRegion* _humongous_start_region;
195 // For the start region of a humongous sequence, it's original end().
196 HeapWord* _orig_end;
197
198 // True iff the region is in current collection_set.
199 bool _in_collection_set;
200
201 // True iff the region is on the unclean list, waiting to be zero filled.
202 bool _is_on_unclean_list;
203
204 // True iff the region is on the free list, ready for allocation.
205 bool _is_on_free_list;
206
207 // Is this or has it been an allocation region in the current collection
208 // pause.
209 bool _is_gc_alloc_region;
210
211 // True iff an attempt to evacuate an object in the region failed.
212 bool _evacuation_failed;
213
214 // A heap region may be a member one of a number of special subsets, each
215 // represented as linked lists through the field below. Currently, these
216 // sets include:
217 // The collection set.
218 // The set of allocation regions used in a collection pause.
219 // Spaces that may contain gray objects.
220 HeapRegion* _next_in_special_set;
221
222 // next region in the young "generation" region set
223 HeapRegion* _next_young_region;
224
225 // For parallel heapRegion traversal.
226 jint _claimed;
227
228 // We use concurrent marking to determine the amount of live data
229 // in each heap region.
230 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
231 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
232
233 // See "sort_index" method. -1 means is not in the array.
234 int _sort_index;
235
236 // Means it has (or at least had) a very large RS, and should not be
237 // considered for membership in a collection set.
238 enum PopularityState {
239 NotPopular,
240 PopularPending,
241 Popular
242 };
243 PopularityState _popularity;
244
245 // <PREDICTION>
246 double _gc_efficiency;
247 // </PREDICTION>
248
249 enum YoungType {
250 NotYoung, // a region is not young
251 ScanOnly, // a region is young and scan-only
252 Young, // a region is young
253 Survivor // a region is young and it contains
254 // survivor
255 };
256
257 YoungType _young_type;
258 int _young_index_in_cset;
259 SurvRateGroup* _surv_rate_group;
260 int _age_index;
261
262 // The start of the unmarked area. The unmarked area extends from this
263 // word until the top and/or end of the region, and is the part
264 // of the region for which no marking was done, i.e. objects may
265 // have been allocated in this part since the last mark phase.
266 // "prev" is the top at the start of the last completed marking.
267 // "next" is the top at the start of the in-progress marking (if any.)
268 HeapWord* _prev_top_at_mark_start;
269 HeapWord* _next_top_at_mark_start;
270 // If a collection pause is in progress, this is the top at the start
271 // of that pause.
272
273 // We've counted the marked bytes of objects below here.
274 HeapWord* _top_at_conc_mark_count;
275
276 void init_top_at_mark_start() {
277 assert(_prev_marked_bytes == 0 &&
278 _next_marked_bytes == 0,
279 "Must be called after zero_marked_bytes.");
280 HeapWord* bot = bottom();
281 _prev_top_at_mark_start = bot;
282 _next_top_at_mark_start = bot;
283 _top_at_conc_mark_count = bot;
284 }
285
286 jint _zfs; // A member of ZeroFillState. Protected by ZF_lock.
287 Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
288 // made it so.
289
290 void set_young_type(YoungType new_type) {
291 //assert(_young_type != new_type, "setting the same type" );
292 // TODO: add more assertions here
293 _young_type = new_type;
294 }
295
296 public:
297 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
298 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
299 MemRegion mr, bool is_zeroed);
300
301 enum SomePublicConstants {
302 // HeapRegions are GrainBytes-aligned
303 // and have sizes that are multiples of GrainBytes.
304 LogOfHRGrainBytes = 20,
305 LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize,
306 GrainBytes = 1 << LogOfHRGrainBytes,
307 GrainWords = 1 <<LogOfHRGrainWords,
308 MaxAge = 2, NoOfAges = MaxAge+1
309 };
310
311 // Concurrent refinement requires contiguous heap regions (in which TLABs
312 // might be allocated) to be zero-filled. Each region therefore has a
313 // zero-fill-state.
314 enum ZeroFillState {
315 NotZeroFilled,
316 ZeroFilling,
317 ZeroFilled,
318 Allocated
319 };
320
321 // If this region is a member of a HeapRegionSeq, the index in that
322 // sequence, otherwise -1.
323 int hrs_index() const { return _hrs_index; }
324 void set_hrs_index(int index) { _hrs_index = index; }
325
326 // The number of bytes marked live in the region in the last marking phase.
327 size_t marked_bytes() { return _prev_marked_bytes; }
328 // The number of bytes counted in the next marking.
329 size_t next_marked_bytes() { return _next_marked_bytes; }
330 // The number of bytes live wrt the next marking.
331 size_t next_live_bytes() {
332 return (top() - next_top_at_mark_start())
333 * HeapWordSize
334 + next_marked_bytes();
335 }
336
337 // A lower bound on the amount of garbage bytes in the region.
338 size_t garbage_bytes() {
339 size_t used_at_mark_start_bytes =
340 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
341 assert(used_at_mark_start_bytes >= marked_bytes(),
342 "Can't mark more than we have.");
343 return used_at_mark_start_bytes - marked_bytes();
344 }
345
346 // An upper bound on the number of live bytes in the region.
347 size_t max_live_bytes() { return used() - garbage_bytes(); }
348
349 void add_to_marked_bytes(size_t incr_bytes) {
350 _next_marked_bytes = _next_marked_bytes + incr_bytes;
351 guarantee( _next_marked_bytes <= used(), "invariant" );
352 }
353
354 void zero_marked_bytes() {
355 _prev_marked_bytes = _next_marked_bytes = 0;
356 }
357
358 bool isHumongous() const { return _humongous; }
359 bool startsHumongous() const { return _humongous_start; }
360 bool continuesHumongous() const { return _humongous && ! _humongous_start; }
361 // For a humongous region, region in which it starts.
362 HeapRegion* humongous_start_region() const {
363 return _humongous_start_region;
364 }
365
366 // Causes the current region to represent a humongous object spanning "n"
367 // regions.
368 virtual void set_startsHumongous();
369
370 // The regions that continue a humongous sequence should be added using
371 // this method, in increasing address order.
372 void set_continuesHumongous(HeapRegion* start);
373
374 void add_continuingHumongousRegion(HeapRegion* cont);
375
376 // If the region has a remembered set, return a pointer to it.
377 HeapRegionRemSet* rem_set() const {
378 return _rem_set;
379 }
380
381 // True iff the region is in current collection_set.
382 bool in_collection_set() const {
383 return _in_collection_set;
384 }
385 void set_in_collection_set(bool b) {
386 _in_collection_set = b;
387 }
388 HeapRegion* next_in_collection_set() {
389 assert(in_collection_set(), "should only invoke on member of CS.");
390 assert(_next_in_special_set == NULL ||
391 _next_in_special_set->in_collection_set(),
392 "Malformed CS.");
393 return _next_in_special_set;
394 }
395 void set_next_in_collection_set(HeapRegion* r) {
396 assert(in_collection_set(), "should only invoke on member of CS.");
397 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
398 _next_in_special_set = r;
399 }
400
401 // True iff it is or has been an allocation region in the current
402 // collection pause.
403 bool is_gc_alloc_region() const {
404 return _is_gc_alloc_region;
405 }
406 void set_is_gc_alloc_region(bool b) {
407 _is_gc_alloc_region = b;
408 }
409 HeapRegion* next_gc_alloc_region() {
410 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
411 assert(_next_in_special_set == NULL ||
412 _next_in_special_set->is_gc_alloc_region(),
413 "Malformed CS.");
414 return _next_in_special_set;
415 }
416 void set_next_gc_alloc_region(HeapRegion* r) {
417 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
418 assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
419 _next_in_special_set = r;
420 }
421
422 bool is_reserved() {
423 return popular();
424 }
425
426 bool is_on_free_list() {
427 return _is_on_free_list;
428 }
429
430 void set_on_free_list(bool b) {
431 _is_on_free_list = b;
432 }
433
434 HeapRegion* next_from_free_list() {
435 assert(is_on_free_list(),
436 "Should only invoke on free space.");
437 assert(_next_in_special_set == NULL ||
438 _next_in_special_set->is_on_free_list(),
439 "Malformed Free List.");
440 return _next_in_special_set;
441 }
442
443 void set_next_on_free_list(HeapRegion* r) {
444 assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
445 _next_in_special_set = r;
446 }
447
448 bool is_on_unclean_list() {
449 return _is_on_unclean_list;
450 }
451
452 void set_on_unclean_list(bool b);
453
454 HeapRegion* next_from_unclean_list() {
455 assert(is_on_unclean_list(),
456 "Should only invoke on unclean space.");
457 assert(_next_in_special_set == NULL ||
458 _next_in_special_set->is_on_unclean_list(),
459 "Malformed unclean List.");
460 return _next_in_special_set;
461 }
462
463 void set_next_on_unclean_list(HeapRegion* r);
464
465 HeapRegion* get_next_young_region() { return _next_young_region; }
466 void set_next_young_region(HeapRegion* hr) {
467 _next_young_region = hr;
468 }
469
470 // Allows logical separation between objects allocated before and after.
471 void save_marks();
472
473 // Reset HR stuff to default values.
474 void hr_clear(bool par, bool clear_space);
475
476 void initialize(MemRegion mr, bool clear_space);
477
478 // Ensure that "this" is zero-filled.
479 void ensure_zero_filled();
480 // This one requires that the calling thread holds ZF_mon.
481 void ensure_zero_filled_locked();
482
483 // Get the start of the unmarked area in this region.
484 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
485 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
486
487 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
488 // allocated in the current region before the last call to "save_mark".
489 void oop_before_save_marks_iterate(OopClosure* cl);
490
491 // This call determines the "filter kind" argument that will be used for
492 // the next call to "new_dcto_cl" on this region with the "traditional"
493 // signature (i.e., the call below.) The default, in the absence of a
494 // preceding call to this method, is "NoFilterKind", and a call to this
495 // method is necessary for each such call, or else it reverts to the
496 // default.
497 // (This is really ugly, but all other methods I could think of changed a
498 // lot of main-line code for G1.)
499 void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
500 _next_fk = nfk;
501 }
502
503 DirtyCardToOopClosure*
504 new_dcto_closure(OopClosure* cl,
505 CardTableModRefBS::PrecisionStyle precision,
506 HeapRegionDCTOC::FilterKind fk);
507
508 #if WHASSUP
509 DirtyCardToOopClosure*
510 new_dcto_closure(OopClosure* cl,
511 CardTableModRefBS::PrecisionStyle precision,
512 HeapWord* boundary) {
513 assert(boundary == NULL, "This arg doesn't make sense here.");
514 DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
515 _next_fk = HeapRegionDCTOC::NoFilterKind;
516 return res;
517 }
518 #endif
519
520 //
521 // Note the start or end of marking. This tells the heap region
522 // that the collector is about to start or has finished (concurrently)
523 // marking the heap.
524 //
525
526 // Note the start of a marking phase. Record the
527 // start of the unmarked area of the region here.
528 void note_start_of_marking(bool during_initial_mark) {
529 init_top_at_conc_mark_count();
530 _next_marked_bytes = 0;
531 if (during_initial_mark && is_young() && !is_survivor())
532 _next_top_at_mark_start = bottom();
533 else
534 _next_top_at_mark_start = top();
535 }
536
537 // Note the end of a marking phase. Install the start of
538 // the unmarked area that was captured at start of marking.
539 void note_end_of_marking() {
540 _prev_top_at_mark_start = _next_top_at_mark_start;
541 _prev_marked_bytes = _next_marked_bytes;
542 _next_marked_bytes = 0;
543
544 guarantee(_prev_marked_bytes <=
545 (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
546 "invariant");
547 }
548
549 // After an evacuation, we need to update _next_top_at_mark_start
550 // to be the current top. Note this is only valid if we have only
551 // ever evacuated into this region. If we evacuate, allocate, and
552 // then evacuate we are in deep doodoo.
553 void note_end_of_copying() {
554 assert(top() >= _next_top_at_mark_start,
555 "Increase only");
556 _next_top_at_mark_start = top();
557 }
558
559 // Returns "false" iff no object in the region was allocated when the
560 // last mark phase ended.
561 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
562
563 // If "is_marked()" is true, then this is the index of the region in
564 // an array constructed at the end of marking of the regions in a
565 // "desirability" order.
566 int sort_index() {
567 return _sort_index;
568 }
569 void set_sort_index(int i) {
570 _sort_index = i;
571 }
572
573 void init_top_at_conc_mark_count() {
574 _top_at_conc_mark_count = bottom();
575 }
576
577 void set_top_at_conc_mark_count(HeapWord *cur) {
578 assert(bottom() <= cur && cur <= end(), "Sanity.");
579 _top_at_conc_mark_count = cur;
580 }
581
582 HeapWord* top_at_conc_mark_count() {
583 return _top_at_conc_mark_count;
584 }
585
586 void reset_during_compaction() {
587 guarantee( isHumongous() && startsHumongous(),
588 "should only be called for humongous regions");
589
590 zero_marked_bytes();
591 init_top_at_mark_start();
592 }
593
594 bool popular() { return _popularity == Popular; }
595 void set_popular(bool b) {
596 if (b) {
597 _popularity = Popular;
598 } else {
599 _popularity = NotPopular;
600 }
601 }
602 bool popular_pending() { return _popularity == PopularPending; }
603 void set_popular_pending(bool b) {
604 if (b) {
605 _popularity = PopularPending;
606 } else {
607 _popularity = NotPopular;
608 }
609 }
610
611 // <PREDICTION>
612 void calc_gc_efficiency(void);
613 double gc_efficiency() { return _gc_efficiency;}
614 // </PREDICTION>
615
616 bool is_young() const { return _young_type != NotYoung; }
617 bool is_scan_only() const { return _young_type == ScanOnly; }
618 bool is_survivor() const { return _young_type == Survivor; }
619
620 int young_index_in_cset() const { return _young_index_in_cset; }
621 void set_young_index_in_cset(int index) {
622 assert( (index == -1) || is_young(), "pre-condition" );
623 _young_index_in_cset = index;
624 }
625
626 int age_in_surv_rate_group() {
627 assert( _surv_rate_group != NULL, "pre-condition" );
628 assert( _age_index > -1, "pre-condition" );
629 return _surv_rate_group->age_in_group(_age_index);
630 }
631
632 void recalculate_age_in_surv_rate_group() {
633 assert( _surv_rate_group != NULL, "pre-condition" );
634 assert( _age_index > -1, "pre-condition" );
635 _age_index = _surv_rate_group->recalculate_age_index(_age_index);
636 }
637
638 void record_surv_words_in_group(size_t words_survived) {
639 assert( _surv_rate_group != NULL, "pre-condition" );
640 assert( _age_index > -1, "pre-condition" );
641 int age_in_group = age_in_surv_rate_group();
642 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
643 }
644
645 int age_in_surv_rate_group_cond() {
646 if (_surv_rate_group != NULL)
647 return age_in_surv_rate_group();
648 else
649 return -1;
650 }
651
652 SurvRateGroup* surv_rate_group() {
653 return _surv_rate_group;
654 }
655
656 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
657 assert( surv_rate_group != NULL, "pre-condition" );
658 assert( _surv_rate_group == NULL, "pre-condition" );
659 assert( is_young(), "pre-condition" );
660
661 _surv_rate_group = surv_rate_group;
662 _age_index = surv_rate_group->next_age_index();
663 }
664
665 void uninstall_surv_rate_group() {
666 if (_surv_rate_group != NULL) {
667 assert( _age_index > -1, "pre-condition" );
668 assert( is_young(), "pre-condition" );
669
670 _surv_rate_group = NULL;
671 _age_index = -1;
672 } else {
673 assert( _age_index == -1, "pre-condition" );
674 }
675 }
676
677 void set_young() { set_young_type(Young); }
678
679 void set_scan_only() { set_young_type(ScanOnly); }
680
681 void set_survivor() { set_young_type(Survivor); }
682
683 void set_not_young() { set_young_type(NotYoung); }
684
685 // Determine if an object has been allocated since the last
686 // mark performed by the collector. This returns true iff the object
687 // is within the unmarked area of the region.
688 bool obj_allocated_since_prev_marking(oop obj) const {
689 return (HeapWord *) obj >= prev_top_at_mark_start();
690 }
691 bool obj_allocated_since_next_marking(oop obj) const {
692 return (HeapWord *) obj >= next_top_at_mark_start();
693 }
694
695 // For parallel heapRegion traversal.
696 bool claimHeapRegion(int claimValue);
697 jint claim_value() { return _claimed; }
698 // Use this carefully: only when you're sure no one is claiming...
699 void set_claim_value(int claimValue) { _claimed = claimValue; }
700
701 // Returns the "evacuation_failed" property of the region.
702 bool evacuation_failed() { return _evacuation_failed; }
703
704 // Sets the "evacuation_failed" property of the region.
705 void set_evacuation_failed(bool b) {
706 _evacuation_failed = b;
707
708 if (b) {
709 init_top_at_conc_mark_count();
710 _next_marked_bytes = 0;
711 }
712 }
713
714 // Requires that "mr" be entirely within the region.
715 // Apply "cl->do_object" to all objects that intersect with "mr".
716 // If the iteration encounters an unparseable portion of the region,
717 // or if "cl->abort()" is true after a closure application,
718 // terminate the iteration and return the address of the start of the
719 // subregion that isn't done. (The two can be distinguished by querying
720 // "cl->abort()".) Return of "NULL" indicates that the iteration
721 // completed.
722 HeapWord*
723 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
724
725 HeapWord*
726 oops_on_card_seq_iterate_careful(MemRegion mr,
727 FilterOutOfRegionClosure* cl);
728
729 // The region "mr" is entirely in "this", and starts and ends at block
730 // boundaries. The caller declares that all the contained blocks are
731 // coalesced into one.
732 void declare_filled_region_to_BOT(MemRegion mr) {
733 _offsets.single_block(mr.start(), mr.end());
734 }
735
736 // A version of block start that is guaranteed to find *some* block
737 // boundary at or before "p", but does not object iteration, and may
738 // therefore be used safely when the heap is unparseable.
739 HeapWord* block_start_careful(const void* p) const {
740 return _offsets.block_start_careful(p);
741 }
742
743 // Requires that "addr" is within the region. Returns the start of the
744 // first ("careful") block that starts at or after "addr", or else the
745 // "end" of the region if there is no such block.
746 HeapWord* next_block_start_careful(HeapWord* addr);
747
748 // Returns the zero-fill-state of the current region.
749 ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
750 bool zero_fill_is_allocated() { return _zfs == Allocated; }
751 Thread* zero_filler() { return _zero_filler; }
752
753 // Indicate that the contents of the region are unknown, and therefore
754 // might require zero-filling.
755 void set_zero_fill_needed() {
756 set_zero_fill_state_work(NotZeroFilled);
757 }
758 void set_zero_fill_in_progress(Thread* t) {
759 set_zero_fill_state_work(ZeroFilling);
760 _zero_filler = t;
761 }
762 void set_zero_fill_complete();
763 void set_zero_fill_allocated() {
764 set_zero_fill_state_work(Allocated);
765 }
766
767 void set_zero_fill_state_work(ZeroFillState zfs);
768
769 // This is called when a full collection shrinks the heap.
770 // We want to set the heap region to a value which says
771 // it is no longer part of the heap. For now, we'll let "NotZF" fill
772 // that role.
773 void reset_zero_fill() {
774 set_zero_fill_state_work(NotZeroFilled);
775 _zero_filler = NULL;
776 }
777
778 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
779 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
780 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
781
782 CompactibleSpace* next_compaction_space() const;
783
784 virtual void reset_after_compaction();
785
786 void print() const;
787 void print_on(outputStream* st) const;
788
789 // Override
790 virtual void verify(bool allow_dirty) const;
791
792 #ifdef DEBUG
793 HeapWord* allocate(size_t size);
794 #endif
795 };
796
797 // HeapRegionClosure is used for iterating over regions.
798 // Terminates the iteration when the "doHeapRegion" method returns "true".
799 class HeapRegionClosure : public StackObj {
800 friend class HeapRegionSeq;
801 friend class G1CollectedHeap;
802
803 bool _complete;
804 void incomplete() { _complete = false; }
805
806 public:
807 HeapRegionClosure(): _complete(true) {}
808
809 // Typically called on each region until it returns true.
810 virtual bool doHeapRegion(HeapRegion* r) = 0;
811
812 // True after iteration if the closure was applied to all heap regions
813 // and returned "false" in all cases.
814 bool complete() { return _complete; }
815 };
816
817 // A linked lists of heap regions. It leaves the "next" field
818 // unspecified; that's up to subtypes.
819 class RegionList {
820 protected:
821 virtual HeapRegion* get_next(HeapRegion* chr) = 0;
822 virtual void set_next(HeapRegion* chr,
823 HeapRegion* new_next) = 0;
824
825 HeapRegion* _hd;
826 HeapRegion* _tl;
827 size_t _sz;
828
829 // Protected constructor because this type is only meaningful
830 // when the _get/_set next functions are defined.
831 RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
832 public:
833 void reset() {
834 _hd = NULL;
835 _tl = NULL;
836 _sz = 0;
837 }
838 HeapRegion* hd() { return _hd; }
839 HeapRegion* tl() { return _tl; }
840 size_t sz() { return _sz; }
841 size_t length();
842
843 bool well_formed() {
844 return
845 ((hd() == NULL && tl() == NULL && sz() == 0)
846 || (hd() != NULL && tl() != NULL && sz() > 0))
847 && (sz() == length());
848 }
849 virtual void insert_before_head(HeapRegion* r);
850 void prepend_list(RegionList* new_list);
851 virtual HeapRegion* pop();
852 void dec_sz() { _sz--; }
853 // Requires that "r" is an element of the list, and is not the tail.
854 void delete_after(HeapRegion* r);
855 };
856
857 class EmptyNonHRegionList: public RegionList {
858 protected:
859 // Protected constructor because this type is only meaningful
860 // when the _get/_set next functions are defined.
861 EmptyNonHRegionList() : RegionList() {}
862
863 public:
864 void insert_before_head(HeapRegion* r) {
865 // assert(r->is_empty(), "Better be empty");
866 assert(!r->isHumongous(), "Better not be humongous.");
867 RegionList::insert_before_head(r);
868 }
869 void prepend_list(EmptyNonHRegionList* new_list) {
870 // assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
871 // "Better be empty");
872 assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
873 "Better not be humongous.");
874 // assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
875 // "Better be empty");
876 assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
877 "Better not be humongous.");
878 RegionList::prepend_list(new_list);
879 }
880 };
881
882 class UncleanRegionList: public EmptyNonHRegionList {
883 public:
884 HeapRegion* get_next(HeapRegion* hr) {
885 return hr->next_from_unclean_list();
886 }
887 void set_next(HeapRegion* hr, HeapRegion* new_next) {
888 hr->set_next_on_unclean_list(new_next);
889 }
890
891 UncleanRegionList() : EmptyNonHRegionList() {}
892
893 void insert_before_head(HeapRegion* r) {
894 assert(!r->is_on_free_list(),
895 "Better not already be on free list");
896 assert(!r->is_on_unclean_list(),
897 "Better not already be on unclean list");
898 r->set_zero_fill_needed();
899 r->set_on_unclean_list(true);
900 EmptyNonHRegionList::insert_before_head(r);
901 }
902 void prepend_list(UncleanRegionList* new_list) {
903 assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
904 "Better not already be on free list");
905 assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
906 "Better already be marked as on unclean list");
907 assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
908 "Better not already be on free list");
909 assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
910 "Better already be marked as on unclean list");
911 EmptyNonHRegionList::prepend_list(new_list);
912 }
913 HeapRegion* pop() {
914 HeapRegion* res = RegionList::pop();
915 if (res != NULL) res->set_on_unclean_list(false);
916 return res;
917 }
918 };
919
920 // Local Variables: ***
921 // c-indentation-style: gnu ***
922 // End: ***
923
924 #endif // SERIALGC