comparison src/share/vm/memory/binaryTreeDictionary.cpp @ 6885:685df3c6f84b

7045397: NPG: Add freelists to class loader arenas. Reviewed-by: coleenp, stefank, jprovino, ohair
author jmasa
date Tue, 18 Sep 2012 23:35:42 -0700
parents a297b0e14605
children 0400886d2613
comparison
equal deleted inserted replaced
6877:d0e7716b179e 6885:685df3c6f84b
23 */ 23 */
24 24
25 #include "precompiled.hpp" 25 #include "precompiled.hpp"
26 #include "gc_implementation/shared/allocationStats.hpp" 26 #include "gc_implementation/shared/allocationStats.hpp"
27 #include "memory/binaryTreeDictionary.hpp" 27 #include "memory/binaryTreeDictionary.hpp"
28 #include "memory/freeList.hpp"
29 #include "memory/freeBlockDictionary.hpp"
30 #include "memory/metablock.hpp"
31 #include "memory/metachunk.hpp"
28 #include "runtime/globals.hpp" 32 #include "runtime/globals.hpp"
29 #include "utilities/ostream.hpp" 33 #include "utilities/ostream.hpp"
30 #ifndef SERIALGC 34 #ifndef SERIALGC
35 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
36 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
31 #include "gc_implementation/shared/spaceDecorator.hpp" 37 #include "gc_implementation/shared/spaceDecorator.hpp"
32 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp" 38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
33 #endif // SERIALGC 39 #endif // SERIALGC
34 40
35 //////////////////////////////////////////////////////////////////////////////// 41 ////////////////////////////////////////////////////////////////////////////////
36 // A binary tree based search structure for free blocks. 42 // A binary tree based search structure for free blocks.
37 // This is currently used in the Concurrent Mark&Sweep implementation. 43 // This is currently used in the Concurrent Mark&Sweep implementation.
38 //////////////////////////////////////////////////////////////////////////////// 44 ////////////////////////////////////////////////////////////////////////////////
39 45
40 template <class Chunk> 46 template <class Chunk_t, template <class> class FreeList_t>
41 TreeChunk<Chunk>* TreeChunk<Chunk>::as_TreeChunk(Chunk* fc) { 47 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t, FreeList_t>)/HeapWordSize;
48
49 template <class Chunk_t, template <class> class FreeList_t>
50 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
42 // Do some assertion checking here. 51 // Do some assertion checking here.
43 return (TreeChunk<Chunk>*) fc; 52 return (TreeChunk<Chunk_t, FreeList_t>*) fc;
44 } 53 }
45 54
46 template <class Chunk> 55 template <class Chunk_t, template <class> class FreeList_t>
47 void TreeChunk<Chunk>::verify_tree_chunk_list() const { 56 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
48 TreeChunk<Chunk>* nextTC = (TreeChunk<Chunk>*)next(); 57 TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
49 if (prev() != NULL) { // interior list node shouldn'r have tree fields 58 if (prev() != NULL) { // interior list node shouldn'r have tree fields
50 guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL && 59 guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
51 embedded_list()->right() == NULL, "should be clear"); 60 embedded_list()->right() == NULL, "should be clear");
52 } 61 }
53 if (nextTC != NULL) { 62 if (nextTC != NULL) {
55 guarantee(nextTC->size() == size(), "wrong size"); 64 guarantee(nextTC->size() == size(), "wrong size");
56 nextTC->verify_tree_chunk_list(); 65 nextTC->verify_tree_chunk_list();
57 } 66 }
58 } 67 }
59 68
60 69 template <class Chunk_t, template <class> class FreeList_t>
61 template <class Chunk> 70 TreeList<Chunk_t, FreeList_t>::TreeList() {}
62 TreeList<Chunk>* TreeList<Chunk>::as_TreeList(TreeChunk<Chunk>* tc) { 71
72 template <class Chunk_t, template <class> class FreeList_t>
73 TreeList<Chunk_t, FreeList_t>*
74 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
63 // This first free chunk in the list will be the tree list. 75 // This first free chunk in the list will be the tree list.
64 assert(tc->size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk"); 76 assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
65 TreeList<Chunk>* tl = tc->embedded_list(); 77 "Chunk is too small for a TreeChunk");
78 TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
79 tl->initialize();
66 tc->set_list(tl); 80 tc->set_list(tl);
67 #ifdef ASSERT
68 tl->set_protecting_lock(NULL);
69 #endif
70 tl->set_hint(0);
71 tl->set_size(tc->size()); 81 tl->set_size(tc->size());
72 tl->link_head(tc); 82 tl->link_head(tc);
73 tl->link_tail(tc); 83 tl->link_tail(tc);
74 tl->set_count(1); 84 tl->set_count(1);
75 tl->init_statistics(true /* split_birth */); 85
76 tl->set_parent(NULL);
77 tl->set_left(NULL);
78 tl->set_right(NULL);
79 return tl; 86 return tl;
80 } 87 }
81 88
82 template <class Chunk> 89
83 TreeList<Chunk>* TreeList<Chunk>::as_TreeList(HeapWord* addr, size_t size) { 90 template <class Chunk_t, template <class> class FreeList_t>
84 TreeChunk<Chunk>* tc = (TreeChunk<Chunk>*) addr; 91 TreeList<Chunk_t, FreeList_t>*
85 assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk"); 92 get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
86 // The space in the heap will have been mangled initially but 93 FreeBlockDictionary<Chunk_t>::verify_par_locked();
87 // is not remangled when a free chunk is returned to the free list 94 Chunk_t* res = get_chunk_from_tree(size, dither);
95 assert(res == NULL || res->is_free(),
96 "Should be returning a free chunk");
97 assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
98 res->size() == size, "Not correct size");
99 return res;
100 }
101
102 template <class Chunk_t, template <class> class FreeList_t>
103 TreeList<Chunk_t, FreeList_t>*
104 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
105 TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
106 assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
107 "Chunk is too small for a TreeChunk");
108 // The space will have been mangled initially but
109 // is not remangled when a Chunk_t is returned to the free list
88 // (since it is used to maintain the chunk on the free list). 110 // (since it is used to maintain the chunk on the free list).
89 assert((ZapUnusedHeapArea && 111 tc->assert_is_mangled();
90 SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
91 SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
92 SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
93 (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
94 "Space should be clear or mangled");
95 tc->set_size(size); 112 tc->set_size(size);
96 tc->link_prev(NULL); 113 tc->link_prev(NULL);
97 tc->link_next(NULL); 114 tc->link_next(NULL);
98 TreeList<Chunk>* tl = TreeList<Chunk>::as_TreeList(tc); 115 TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
99 return tl; 116 return tl;
100 } 117 }
101 118
102 template <class Chunk> 119
103 TreeList<Chunk>* TreeList<Chunk>::remove_chunk_replace_if_needed(TreeChunk<Chunk>* tc) { 120 #ifndef SERIALGC
104 121 // Specialize for AdaptiveFreeList which tries to avoid
105 TreeList<Chunk>* retTL = this; 122 // splitting a chunk of a size that is under populated in favor of
106 Chunk* list = head(); 123 // an over populated size. The general get_better_list() just returns
124 // the current list.
125 template <>
126 TreeList<FreeChunk, AdaptiveFreeList>*
127 TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
128 BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
129 // A candidate chunk has been found. If it is already under
130 // populated, get a chunk associated with the hint for this
131 // chunk.
132
133 TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
134 if (surplus() <= 0) {
135 /* Use the hint to find a size with a surplus, and reset the hint. */
136 TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
137 while (hintTL->hint() != 0) {
138 assert(hintTL->hint() > hintTL->size(),
139 "hint points in the wrong direction");
140 hintTL = dictionary->find_list(hintTL->hint());
141 assert(curTL != hintTL, "Infinite loop");
142 if (hintTL == NULL ||
143 hintTL == curTL /* Should not happen but protect against it */ ) {
144 // No useful hint. Set the hint to NULL and go on.
145 curTL->set_hint(0);
146 break;
147 }
148 assert(hintTL->size() > curTL->size(), "hint is inconsistent");
149 if (hintTL->surplus() > 0) {
150 // The hint led to a list that has a surplus. Use it.
151 // Set the hint for the candidate to an overpopulated
152 // size.
153 curTL->set_hint(hintTL->size());
154 // Change the candidate.
155 curTL = hintTL;
156 break;
157 }
158 }
159 }
160 return curTL;
161 }
162 #endif // SERIALGC
163
164 template <class Chunk_t, template <class> class FreeList_t>
165 TreeList<Chunk_t, FreeList_t>*
166 TreeList<Chunk_t, FreeList_t>::get_better_list(
167 BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
168 return this;
169 }
170
171 template <class Chunk_t, template <class> class FreeList_t>
172 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
173
174 TreeList<Chunk_t, FreeList_t>* retTL = this;
175 Chunk_t* list = head();
107 assert(!list || list != list->next(), "Chunk on list twice"); 176 assert(!list || list != list->next(), "Chunk on list twice");
108 assert(tc != NULL, "Chunk being removed is NULL"); 177 assert(tc != NULL, "Chunk being removed is NULL");
109 assert(parent() == NULL || this == parent()->left() || 178 assert(parent() == NULL || this == parent()->left() ||
110 this == parent()->right(), "list is inconsistent"); 179 this == parent()->right(), "list is inconsistent");
111 assert(tc->is_free(), "Header is not marked correctly"); 180 assert(tc->is_free(), "Header is not marked correctly");
112 assert(head() == NULL || head()->prev() == NULL, "list invariant"); 181 assert(head() == NULL || head()->prev() == NULL, "list invariant");
113 assert(tail() == NULL || tail()->next() == NULL, "list invariant"); 182 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
114 183
115 Chunk* prevFC = tc->prev(); 184 Chunk_t* prevFC = tc->prev();
116 TreeChunk<Chunk>* nextTC = TreeChunk<Chunk>::as_TreeChunk(tc->next()); 185 TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
117 assert(list != NULL, "should have at least the target chunk"); 186 assert(list != NULL, "should have at least the target chunk");
118 187
119 // Is this the first item on the list? 188 // Is this the first item on the list?
120 if (tc == list) { 189 if (tc == list) {
121 // The "getChunk..." functions for a TreeList<Chunk> will not return the 190 // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
122 // first chunk in the list unless it is the last chunk in the list 191 // first chunk in the list unless it is the last chunk in the list
123 // because the first chunk is also acting as the tree node. 192 // because the first chunk is also acting as the tree node.
124 // When coalescing happens, however, the first chunk in the a tree 193 // When coalescing happens, however, the first chunk in the a tree
125 // list can be the start of a free range. Free ranges are removed 194 // list can be the start of a free range. Free ranges are removed
126 // from the free lists so that they are not available to be 195 // from the free lists so that they are not available to be
127 // allocated when the sweeper yields (giving up the free list lock) 196 // allocated when the sweeper yields (giving up the free list lock)
128 // to allow mutator activity. If this chunk is the first in the 197 // to allow mutator activity. If this chunk is the first in the
129 // list and is not the last in the list, do the work to copy the 198 // list and is not the last in the list, do the work to copy the
130 // TreeList<Chunk> from the first chunk to the next chunk and update all 199 // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
131 // the TreeList<Chunk> pointers in the chunks in the list. 200 // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
132 if (nextTC == NULL) { 201 if (nextTC == NULL) {
133 assert(prevFC == NULL, "Not last chunk in the list"); 202 assert(prevFC == NULL, "Not last chunk in the list");
134 set_tail(NULL); 203 set_tail(NULL);
135 set_head(NULL); 204 set_head(NULL);
136 } else { 205 } else {
139 retTL = nextTC->embedded_list(); 208 retTL = nextTC->embedded_list();
140 // Fix the pointer to the list in each chunk in the list. 209 // Fix the pointer to the list in each chunk in the list.
141 // This can be slow for a long list. Consider having 210 // This can be slow for a long list. Consider having
142 // an option that does not allow the first chunk on the 211 // an option that does not allow the first chunk on the
143 // list to be coalesced. 212 // list to be coalesced.
144 for (TreeChunk<Chunk>* curTC = nextTC; curTC != NULL; 213 for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
145 curTC = TreeChunk<Chunk>::as_TreeChunk(curTC->next())) { 214 curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
146 curTC->set_list(retTL); 215 curTC->set_list(retTL);
147 } 216 }
148 // Fix the parent to point to the new TreeList<Chunk>. 217 // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
149 if (retTL->parent() != NULL) { 218 if (retTL->parent() != NULL) {
150 if (this == retTL->parent()->left()) { 219 if (this == retTL->parent()->left()) {
151 retTL->parent()->set_left(retTL); 220 retTL->parent()->set_left(retTL);
152 } else { 221 } else {
153 assert(this == retTL->parent()->right(), "Parent is incorrect"); 222 assert(this == retTL->parent()->right(), "Parent is incorrect");
174 } 243 }
175 // Chunk is interior to the list 244 // Chunk is interior to the list
176 prevFC->link_after(nextTC); 245 prevFC->link_after(nextTC);
177 } 246 }
178 247
179 // Below this point the embeded TreeList<Chunk> being used for the 248 // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
180 // tree node may have changed. Don't use "this" 249 // tree node may have changed. Don't use "this"
181 // TreeList<Chunk>*. 250 // TreeList<Chunk_t, FreeList_t>*.
182 // chunk should still be a free chunk (bit set in _prev) 251 // chunk should still be a free chunk (bit set in _prev)
183 assert(!retTL->head() || retTL->size() == retTL->head()->size(), 252 assert(!retTL->head() || retTL->size() == retTL->head()->size(),
184 "Wrong sized chunk in list"); 253 "Wrong sized chunk in list");
185 debug_only( 254 debug_only(
186 tc->link_prev(NULL); 255 tc->link_prev(NULL);
187 tc->link_next(NULL); 256 tc->link_next(NULL);
188 tc->set_list(NULL); 257 tc->set_list(NULL);
189 bool prev_found = false; 258 bool prev_found = false;
190 bool next_found = false; 259 bool next_found = false;
191 for (Chunk* curFC = retTL->head(); 260 for (Chunk_t* curFC = retTL->head();
192 curFC != NULL; curFC = curFC->next()) { 261 curFC != NULL; curFC = curFC->next()) {
193 assert(curFC != tc, "Chunk is still in list"); 262 assert(curFC != tc, "Chunk is still in list");
194 if (curFC == prevFC) { 263 if (curFC == prevFC) {
195 prev_found = true; 264 prev_found = true;
196 } 265 }
213 assert(retTL->tail() == NULL || retTL->tail()->next() == NULL, 282 assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
214 "list invariant"); 283 "list invariant");
215 return retTL; 284 return retTL;
216 } 285 }
217 286
218 template <class Chunk> 287 template <class Chunk_t, template <class> class FreeList_t>
219 void TreeList<Chunk>::return_chunk_at_tail(TreeChunk<Chunk>* chunk) { 288 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
220 assert(chunk != NULL, "returning NULL chunk"); 289 assert(chunk != NULL, "returning NULL chunk");
221 assert(chunk->list() == this, "list should be set for chunk"); 290 assert(chunk->list() == this, "list should be set for chunk");
222 assert(tail() != NULL, "The tree list is embedded in the first chunk"); 291 assert(tail() != NULL, "The tree list is embedded in the first chunk");
223 // which means that the list can never be empty. 292 // which means that the list can never be empty.
224 assert(!verify_chunk_in_free_list(chunk), "Double entry"); 293 assert(!verify_chunk_in_free_list(chunk), "Double entry");
225 assert(head() == NULL || head()->prev() == NULL, "list invariant"); 294 assert(head() == NULL || head()->prev() == NULL, "list invariant");
226 assert(tail() == NULL || tail()->next() == NULL, "list invariant"); 295 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
227 296
228 Chunk* fc = tail(); 297 Chunk_t* fc = tail();
229 fc->link_after(chunk); 298 fc->link_after(chunk);
230 link_tail(chunk); 299 link_tail(chunk);
231 300
232 assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list"); 301 assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
233 increment_count(); 302 FreeList_t<Chunk_t>::increment_count();
234 debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));) 303 debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
235 assert(head() == NULL || head()->prev() == NULL, "list invariant"); 304 assert(head() == NULL || head()->prev() == NULL, "list invariant");
236 assert(tail() == NULL || tail()->next() == NULL, "list invariant"); 305 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
237 } 306 }
238 307
239 // Add this chunk at the head of the list. "At the head of the list" 308 // Add this chunk at the head of the list. "At the head of the list"
240 // is defined to be after the chunk pointer to by head(). This is 309 // is defined to be after the chunk pointer to by head(). This is
241 // because the TreeList<Chunk> is embedded in the first TreeChunk<Chunk> in the 310 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
242 // list. See the definition of TreeChunk<Chunk>. 311 // list. See the definition of TreeChunk<Chunk_t, FreeList_t>.
243 template <class Chunk> 312 template <class Chunk_t, template <class> class FreeList_t>
244 void TreeList<Chunk>::return_chunk_at_head(TreeChunk<Chunk>* chunk) { 313 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
245 assert(chunk->list() == this, "list should be set for chunk"); 314 assert(chunk->list() == this, "list should be set for chunk");
246 assert(head() != NULL, "The tree list is embedded in the first chunk"); 315 assert(head() != NULL, "The tree list is embedded in the first chunk");
247 assert(chunk != NULL, "returning NULL chunk"); 316 assert(chunk != NULL, "returning NULL chunk");
248 assert(!verify_chunk_in_free_list(chunk), "Double entry"); 317 assert(!verify_chunk_in_free_list(chunk), "Double entry");
249 assert(head() == NULL || head()->prev() == NULL, "list invariant"); 318 assert(head() == NULL || head()->prev() == NULL, "list invariant");
250 assert(tail() == NULL || tail()->next() == NULL, "list invariant"); 319 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
251 320
252 Chunk* fc = head()->next(); 321 Chunk_t* fc = head()->next();
253 if (fc != NULL) { 322 if (fc != NULL) {
254 chunk->link_after(fc); 323 chunk->link_after(fc);
255 } else { 324 } else {
256 assert(tail() == NULL, "List is inconsistent"); 325 assert(tail() == NULL, "List is inconsistent");
257 link_tail(chunk); 326 link_tail(chunk);
258 } 327 }
259 head()->link_after(chunk); 328 head()->link_after(chunk);
260 assert(!head() || size() == head()->size(), "Wrong sized chunk in list"); 329 assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
261 increment_count(); 330 FreeList_t<Chunk_t>::increment_count();
262 debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));) 331 debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
263 assert(head() == NULL || head()->prev() == NULL, "list invariant"); 332 assert(head() == NULL || head()->prev() == NULL, "list invariant");
264 assert(tail() == NULL || tail()->next() == NULL, "list invariant"); 333 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
265 } 334 }
266 335
267 template <class Chunk> 336 template <class Chunk_t, template <class> class FreeList_t>
268 TreeChunk<Chunk>* TreeList<Chunk>::head_as_TreeChunk() { 337 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
269 assert(head() == NULL || TreeChunk<Chunk>::as_TreeChunk(head())->list() == this, 338 assert((ZapUnusedHeapArea &&
339 SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
340 SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
341 SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
342 (size() == 0 && prev() == NULL && next() == NULL),
343 "Space should be clear or mangled");
344 }
345
346 template <class Chunk_t, template <class> class FreeList_t>
347 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
348 assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
270 "Wrong type of chunk?"); 349 "Wrong type of chunk?");
271 return TreeChunk<Chunk>::as_TreeChunk(head()); 350 return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
272 } 351 }
273 352
274 template <class Chunk> 353 template <class Chunk_t, template <class> class FreeList_t>
275 TreeChunk<Chunk>* TreeList<Chunk>::first_available() { 354 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
276 assert(head() != NULL, "The head of the list cannot be NULL"); 355 assert(head() != NULL, "The head of the list cannot be NULL");
277 Chunk* fc = head()->next(); 356 Chunk_t* fc = head()->next();
278 TreeChunk<Chunk>* retTC; 357 TreeChunk<Chunk_t, FreeList_t>* retTC;
279 if (fc == NULL) { 358 if (fc == NULL) {
280 retTC = head_as_TreeChunk(); 359 retTC = head_as_TreeChunk();
281 } else { 360 } else {
282 retTC = TreeChunk<Chunk>::as_TreeChunk(fc); 361 retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
283 } 362 }
284 assert(retTC->list() == this, "Wrong type of chunk."); 363 assert(retTC->list() == this, "Wrong type of chunk.");
285 return retTC; 364 return retTC;
286 } 365 }
287 366
288 // Returns the block with the largest heap address amongst 367 // Returns the block with the largest heap address amongst
289 // those in the list for this size; potentially slow and expensive, 368 // those in the list for this size; potentially slow and expensive,
290 // use with caution! 369 // use with caution!
291 template <class Chunk> 370 template <class Chunk_t, template <class> class FreeList_t>
292 TreeChunk<Chunk>* TreeList<Chunk>::largest_address() { 371 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
293 assert(head() != NULL, "The head of the list cannot be NULL"); 372 assert(head() != NULL, "The head of the list cannot be NULL");
294 Chunk* fc = head()->next(); 373 Chunk_t* fc = head()->next();
295 TreeChunk<Chunk>* retTC; 374 TreeChunk<Chunk_t, FreeList_t>* retTC;
296 if (fc == NULL) { 375 if (fc == NULL) {
297 retTC = head_as_TreeChunk(); 376 retTC = head_as_TreeChunk();
298 } else { 377 } else {
299 // walk down the list and return the one with the highest 378 // walk down the list and return the one with the highest
300 // heap address among chunks of this size. 379 // heap address among chunks of this size.
301 Chunk* last = fc; 380 Chunk_t* last = fc;
302 while (fc->next() != NULL) { 381 while (fc->next() != NULL) {
303 if ((HeapWord*)last < (HeapWord*)fc) { 382 if ((HeapWord*)last < (HeapWord*)fc) {
304 last = fc; 383 last = fc;
305 } 384 }
306 fc = fc->next(); 385 fc = fc->next();
307 } 386 }
308 retTC = TreeChunk<Chunk>::as_TreeChunk(last); 387 retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
309 } 388 }
310 assert(retTC->list() == this, "Wrong type of chunk."); 389 assert(retTC->list() == this, "Wrong type of chunk.");
311 return retTC; 390 return retTC;
312 } 391 }
313 392
314 template <class Chunk> 393 template <class Chunk_t, template <class> class FreeList_t>
315 BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(bool adaptive_freelists, bool splay) : 394 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
316 _splay(splay), _adaptive_freelists(adaptive_freelists), 395 assert((mr.byte_size() > min_size()), "minimum chunk size");
317 _total_size(0), _total_free_blocks(0), _root(0) {}
318
319 template <class Chunk>
320 BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(MemRegion mr,
321 bool adaptive_freelists,
322 bool splay):
323 _adaptive_freelists(adaptive_freelists), _splay(splay)
324 {
325 assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
326 396
327 reset(mr); 397 reset(mr);
328 assert(root()->left() == NULL, "reset check failed"); 398 assert(root()->left() == NULL, "reset check failed");
329 assert(root()->right() == NULL, "reset check failed"); 399 assert(root()->right() == NULL, "reset check failed");
330 assert(root()->head()->next() == NULL, "reset check failed"); 400 assert(root()->head()->next() == NULL, "reset check failed");
331 assert(root()->head()->prev() == NULL, "reset check failed"); 401 assert(root()->head()->prev() == NULL, "reset check failed");
332 assert(total_size() == root()->size(), "reset check failed"); 402 assert(total_size() == root()->size(), "reset check failed");
333 assert(total_free_blocks() == 1, "reset check failed"); 403 assert(total_free_blocks() == 1, "reset check failed");
334 } 404 }
335 405
336 template <class Chunk> 406 template <class Chunk_t, template <class> class FreeList_t>
337 void BinaryTreeDictionary<Chunk>::inc_total_size(size_t inc) { 407 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
338 _total_size = _total_size + inc; 408 _total_size = _total_size + inc;
339 } 409 }
340 410
341 template <class Chunk> 411 template <class Chunk_t, template <class> class FreeList_t>
342 void BinaryTreeDictionary<Chunk>::dec_total_size(size_t dec) { 412 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
343 _total_size = _total_size - dec; 413 _total_size = _total_size - dec;
344 } 414 }
345 415
346 template <class Chunk> 416 template <class Chunk_t, template <class> class FreeList_t>
347 void BinaryTreeDictionary<Chunk>::reset(MemRegion mr) { 417 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
348 assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size"); 418 assert((mr.byte_size() > min_size()), "minimum chunk size");
349 set_root(TreeList<Chunk>::as_TreeList(mr.start(), mr.word_size())); 419 set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
350 set_total_size(mr.word_size()); 420 set_total_size(mr.word_size());
351 set_total_free_blocks(1); 421 set_total_free_blocks(1);
352 } 422 }
353 423
354 template <class Chunk> 424 template <class Chunk_t, template <class> class FreeList_t>
355 void BinaryTreeDictionary<Chunk>::reset(HeapWord* addr, size_t byte_size) { 425 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
356 MemRegion mr(addr, heap_word_size(byte_size)); 426 MemRegion mr(addr, heap_word_size(byte_size));
357 reset(mr); 427 reset(mr);
358 } 428 }
359 429
360 template <class Chunk> 430 template <class Chunk_t, template <class> class FreeList_t>
361 void BinaryTreeDictionary<Chunk>::reset() { 431 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
362 set_root(NULL); 432 set_root(NULL);
363 set_total_size(0); 433 set_total_size(0);
364 set_total_free_blocks(0); 434 set_total_free_blocks(0);
365 } 435 }
366 436
367 // Get a free block of size at least size from tree, or NULL. 437 // Get a free block of size at least size from tree, or NULL.
368 // If a splay step is requested, the removal algorithm (only) incorporates 438 template <class Chunk_t, template <class> class FreeList_t>
369 // a splay step as follows: 439 TreeChunk<Chunk_t, FreeList_t>*
370 // . the search proceeds down the tree looking for a possible 440 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
371 // match. At the (closest) matching location, an appropriate splay step is applied 441 size_t size,
372 // (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned 442 enum FreeBlockDictionary<Chunk_t>::Dither dither)
373 // if available, and if it's the last chunk, the node is deleted. A deteleted
374 // node is replaced in place by its tree successor.
375 template <class Chunk>
376 TreeChunk<Chunk>*
377 BinaryTreeDictionary<Chunk>::get_chunk_from_tree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay)
378 { 443 {
379 TreeList<Chunk> *curTL, *prevTL; 444 TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
380 TreeChunk<Chunk>* retTC = NULL; 445 TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
381 assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size"); 446
447 assert((size >= min_size()), "minimum chunk size");
382 if (FLSVerifyDictionary) { 448 if (FLSVerifyDictionary) {
383 verify_tree(); 449 verify_tree();
384 } 450 }
385 // starting at the root, work downwards trying to find match. 451 // starting at the root, work downwards trying to find match.
386 // Remember the last node of size too great or too small. 452 // Remember the last node of size too great or too small.
396 curTL = curTL->left(); 462 curTL = curTL->left();
397 } 463 }
398 } 464 }
399 if (curTL == NULL) { // couldn't find exact match 465 if (curTL == NULL) { // couldn't find exact match
400 466
401 if (dither == FreeBlockDictionary<Chunk>::exactly) return NULL; 467 if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
402 468
403 // try and find the next larger size by walking back up the search path 469 // try and find the next larger size by walking back up the search path
404 for (curTL = prevTL; curTL != NULL;) { 470 for (curTL = prevTL; curTL != NULL;) {
405 if (curTL->size() >= size) break; 471 if (curTL->size() >= size) break;
406 else curTL = curTL->parent(); 472 else curTL = curTL->parent();
408 assert(curTL == NULL || curTL->count() > 0, 474 assert(curTL == NULL || curTL->count() > 0,
409 "An empty list should not be in the tree"); 475 "An empty list should not be in the tree");
410 } 476 }
411 if (curTL != NULL) { 477 if (curTL != NULL) {
412 assert(curTL->size() >= size, "size inconsistency"); 478 assert(curTL->size() >= size, "size inconsistency");
413 if (adaptive_freelists()) { 479
414 480 curTL = curTL->get_better_list(this);
415 // A candidate chunk has been found. If it is already under 481
416 // populated, get a chunk associated with the hint for this
417 // chunk.
418 if (curTL->surplus() <= 0) {
419 /* Use the hint to find a size with a surplus, and reset the hint. */
420 TreeList<Chunk>* hintTL = curTL;
421 while (hintTL->hint() != 0) {
422 assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
423 "hint points in the wrong direction");
424 hintTL = find_list(hintTL->hint());
425 assert(curTL != hintTL, "Infinite loop");
426 if (hintTL == NULL ||
427 hintTL == curTL /* Should not happen but protect against it */ ) {
428 // No useful hint. Set the hint to NULL and go on.
429 curTL->set_hint(0);
430 break;
431 }
432 assert(hintTL->size() > size, "hint is inconsistent");
433 if (hintTL->surplus() > 0) {
434 // The hint led to a list that has a surplus. Use it.
435 // Set the hint for the candidate to an overpopulated
436 // size.
437 curTL->set_hint(hintTL->size());
438 // Change the candidate.
439 curTL = hintTL;
440 break;
441 }
442 // The evm code reset the hint of the candidate as
443 // at an interim point. Why? Seems like this leaves
444 // the hint pointing to a list that didn't work.
445 // curTL->set_hint(hintTL->size());
446 }
447 }
448 }
449 // don't waste time splaying if chunk's singleton
450 if (splay && curTL->head()->next() != NULL) {
451 semi_splay_step(curTL);
452 }
453 retTC = curTL->first_available(); 482 retTC = curTL->first_available();
454 assert((retTC != NULL) && (curTL->count() > 0), 483 assert((retTC != NULL) && (curTL->count() > 0),
455 "A list in the binary tree should not be NULL"); 484 "A list in the binary tree should not be NULL");
456 assert(retTC->size() >= size, 485 assert(retTC->size() >= size,
457 "A chunk of the wrong size was found"); 486 "A chunk of the wrong size was found");
463 verify(); 492 verify();
464 } 493 }
465 return retTC; 494 return retTC;
466 } 495 }
467 496
468 template <class Chunk> 497 template <class Chunk_t, template <class> class FreeList_t>
469 TreeList<Chunk>* BinaryTreeDictionary<Chunk>::find_list(size_t size) const { 498 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
470 TreeList<Chunk>* curTL; 499 TreeList<Chunk_t, FreeList_t>* curTL;
471 for (curTL = root(); curTL != NULL;) { 500 for (curTL = root(); curTL != NULL;) {
472 if (curTL->size() == size) { // exact match 501 if (curTL->size() == size) { // exact match
473 break; 502 break;
474 } 503 }
475 504
482 } 511 }
483 return curTL; 512 return curTL;
484 } 513 }
485 514
486 515
487 template <class Chunk> 516 template <class Chunk_t, template <class> class FreeList_t>
488 bool BinaryTreeDictionary<Chunk>::verify_chunk_in_free_list(Chunk* tc) const { 517 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
489 size_t size = tc->size(); 518 size_t size = tc->size();
490 TreeList<Chunk>* tl = find_list(size); 519 TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
491 if (tl == NULL) { 520 if (tl == NULL) {
492 return false; 521 return false;
493 } else { 522 } else {
494 return tl->verify_chunk_in_free_list(tc); 523 return tl->verify_chunk_in_free_list(tc);
495 } 524 }
496 } 525 }
497 526
498 template <class Chunk> 527 template <class Chunk_t, template <class> class FreeList_t>
499 Chunk* BinaryTreeDictionary<Chunk>::find_largest_dict() const { 528 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
500 TreeList<Chunk> *curTL = root(); 529 TreeList<Chunk_t, FreeList_t> *curTL = root();
501 if (curTL != NULL) { 530 if (curTL != NULL) {
502 while(curTL->right() != NULL) curTL = curTL->right(); 531 while(curTL->right() != NULL) curTL = curTL->right();
503 return curTL->largest_address(); 532 return curTL->largest_address();
504 } else { 533 } else {
505 return NULL; 534 return NULL;
508 537
509 // Remove the current chunk from the tree. If it is not the last 538 // Remove the current chunk from the tree. If it is not the last
510 // chunk in a list on a tree node, just unlink it. 539 // chunk in a list on a tree node, just unlink it.
511 // If it is the last chunk in the list (the next link is NULL), 540 // If it is the last chunk in the list (the next link is NULL),
512 // remove the node and repair the tree. 541 // remove the node and repair the tree.
513 template <class Chunk> 542 template <class Chunk_t, template <class> class FreeList_t>
514 TreeChunk<Chunk>* 543 TreeChunk<Chunk_t, FreeList_t>*
515 BinaryTreeDictionary<Chunk>::remove_chunk_from_tree(TreeChunk<Chunk>* tc) { 544 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
516 assert(tc != NULL, "Should not call with a NULL chunk"); 545 assert(tc != NULL, "Should not call with a NULL chunk");
517 assert(tc->is_free(), "Header is not marked correctly"); 546 assert(tc->is_free(), "Header is not marked correctly");
518 547
519 TreeList<Chunk> *newTL, *parentTL; 548 TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
520 TreeChunk<Chunk>* retTC; 549 TreeChunk<Chunk_t, FreeList_t>* retTC;
521 TreeList<Chunk>* tl = tc->list(); 550 TreeList<Chunk_t, FreeList_t>* tl = tc->list();
522 debug_only( 551 debug_only(
523 bool removing_only_chunk = false; 552 bool removing_only_chunk = false;
524 if (tl == _root) { 553 if (tl == _root) {
525 if ((_root->left() == NULL) && (_root->right() == NULL)) { 554 if ((_root->left() == NULL) && (_root->right() == NULL)) {
526 if (_root->count() == 1) { 555 if (_root->count() == 1) {
536 565
537 bool complicated_splice = false; 566 bool complicated_splice = false;
538 567
539 retTC = tc; 568 retTC = tc;
540 // Removing this chunk can have the side effect of changing the node 569 // Removing this chunk can have the side effect of changing the node
541 // (TreeList<Chunk>*) in the tree. If the node is the root, update it. 570 // (TreeList<Chunk_t, FreeList_t>*) in the tree. If the node is the root, update it.
542 TreeList<Chunk>* replacementTL = tl->remove_chunk_replace_if_needed(tc); 571 TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
543 assert(tc->is_free(), "Chunk should still be free"); 572 assert(tc->is_free(), "Chunk should still be free");
544 assert(replacementTL->parent() == NULL || 573 assert(replacementTL->parent() == NULL ||
545 replacementTL == replacementTL->parent()->left() || 574 replacementTL == replacementTL->parent()->left() ||
546 replacementTL == replacementTL->parent()->right(), 575 replacementTL == replacementTL->parent()->right(),
547 "list is inconsistent"); 576 "list is inconsistent");
548 if (tl == root()) { 577 if (tl == root()) {
549 assert(replacementTL->parent() == NULL, "Incorrectly replacing root"); 578 assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
550 set_root(replacementTL); 579 set_root(replacementTL);
551 } 580 }
552 debug_only( 581 #ifdef ASSERT
553 if (tl != replacementTL) { 582 if (tl != replacementTL) {
554 assert(replacementTL->head() != NULL, 583 assert(replacementTL->head() != NULL,
555 "If the tree list was replaced, it should not be a NULL list"); 584 "If the tree list was replaced, it should not be a NULL list");
556 TreeList<Chunk>* rhl = replacementTL->head_as_TreeChunk()->list(); 585 TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
557 TreeList<Chunk>* rtl = TreeChunk<Chunk>::as_TreeChunk(replacementTL->tail())->list(); 586 TreeList<Chunk_t, FreeList_t>* rtl =
587 TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
558 assert(rhl == replacementTL, "Broken head"); 588 assert(rhl == replacementTL, "Broken head");
559 assert(rtl == replacementTL, "Broken tail"); 589 assert(rtl == replacementTL, "Broken tail");
560 assert(replacementTL->size() == tc->size(), "Broken size"); 590 assert(replacementTL->size() == tc->size(), "Broken size");
561 } 591 }
562 ) 592 #endif
563 593
564 // Does the tree need to be repaired? 594 // Does the tree need to be repaired?
565 if (replacementTL->count() == 0) { 595 if (replacementTL->count() == 0) {
566 assert(replacementTL->head() == NULL && 596 assert(replacementTL->head() == NULL &&
567 replacementTL->tail() == NULL, "list count is incorrect"); 597 replacementTL->tail() == NULL, "list count is incorrect");
572 newTL = replacementTL->right(); 602 newTL = replacementTL->right();
573 debug_only(replacementTL->clear_right();) 603 debug_only(replacementTL->clear_right();)
574 } else if (replacementTL->right() == NULL) { 604 } else if (replacementTL->right() == NULL) {
575 // right is NULL 605 // right is NULL
576 newTL = replacementTL->left(); 606 newTL = replacementTL->left();
577 debug_only(replacementTL->clearLeft();) 607 debug_only(replacementTL->clear_left();)
578 } else { // we have both children, so, by patriarchal convention, 608 } else { // we have both children, so, by patriarchal convention,
579 // my replacement is least node in right sub-tree 609 // my replacement is least node in right sub-tree
580 complicated_splice = true; 610 complicated_splice = true;
581 newTL = remove_tree_minimum(replacementTL->right()); 611 newTL = remove_tree_minimum(replacementTL->right());
582 assert(newTL != NULL && newTL->left() == NULL && 612 assert(newTL != NULL && newTL->left() == NULL &&
621 assert(replacementTL->left() != NULL, "else !complicated_splice"); 651 assert(replacementTL->left() != NULL, "else !complicated_splice");
622 newTL->set_left(replacementTL->left()); 652 newTL->set_left(replacementTL->left());
623 newTL->set_right(replacementTL->right()); 653 newTL->set_right(replacementTL->right());
624 debug_only( 654 debug_only(
625 replacementTL->clear_right(); 655 replacementTL->clear_right();
626 replacementTL->clearLeft(); 656 replacementTL->clear_left();
627 ) 657 )
628 } 658 }
629 assert(replacementTL->right() == NULL && 659 assert(replacementTL->right() == NULL &&
630 replacementTL->left() == NULL && 660 replacementTL->left() == NULL &&
631 replacementTL->parent() == NULL, 661 replacementTL->parent() == NULL,
642 "should return without encumbrances"); 672 "should return without encumbrances");
643 if (FLSVerifyDictionary) { 673 if (FLSVerifyDictionary) {
644 verify_tree(); 674 verify_tree();
645 } 675 }
646 assert(!removing_only_chunk || _root == NULL, "root should be NULL"); 676 assert(!removing_only_chunk || _root == NULL, "root should be NULL");
647 return TreeChunk<Chunk>::as_TreeChunk(retTC); 677 return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
648 } 678 }
649 679
650 // Remove the leftmost node (lm) in the tree and return it. 680 // Remove the leftmost node (lm) in the tree and return it.
651 // If lm has a right child, link it to the left node of 681 // If lm has a right child, link it to the left node of
652 // the parent of lm. 682 // the parent of lm.
653 template <class Chunk> 683 template <class Chunk_t, template <class> class FreeList_t>
654 TreeList<Chunk>* BinaryTreeDictionary<Chunk>::remove_tree_minimum(TreeList<Chunk>* tl) { 684 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
655 assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree"); 685 assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
656 // locate the subtree minimum by walking down left branches 686 // locate the subtree minimum by walking down left branches
657 TreeList<Chunk>* curTL = tl; 687 TreeList<Chunk_t, FreeList_t>* curTL = tl;
658 for (; curTL->left() != NULL; curTL = curTL->left()); 688 for (; curTL->left() != NULL; curTL = curTL->left());
659 // obviously curTL now has at most one child, a right child 689 // obviously curTL now has at most one child, a right child
660 if (curTL != root()) { // Should this test just be removed? 690 if (curTL != root()) { // Should this test just be removed?
661 TreeList<Chunk>* parentTL = curTL->parent(); 691 TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
662 if (parentTL->left() == curTL) { // curTL is a left child 692 if (parentTL->left() == curTL) { // curTL is a left child
663 parentTL->set_left(curTL->right()); 693 parentTL->set_left(curTL->right());
664 } else { 694 } else {
665 // If the list tl has no left child, then curTL may be 695 // If the list tl has no left child, then curTL may be
666 // the right child of parentTL. 696 // the right child of parentTL.
683 verify_tree(); 713 verify_tree();
684 } 714 }
685 return curTL; 715 return curTL;
686 } 716 }
687 717
688 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985). 718 template <class Chunk_t, template <class> class FreeList_t>
689 // The simplifications are the following: 719 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
690 // . we splay only when we delete (not when we insert) 720 TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
691 // . we apply a single spay step per deletion/access
692 // By doing such partial splaying, we reduce the amount of restructuring,
693 // while getting a reasonably efficient search tree (we think).
694 // [Measurements will be needed to (in)validate this expectation.]
695
696 template <class Chunk>
697 void BinaryTreeDictionary<Chunk>::semi_splay_step(TreeList<Chunk>* tc) {
698 // apply a semi-splay step at the given node:
699 // . if root, norting needs to be done
700 // . if child of root, splay once
701 // . else zig-zig or sig-zag depending on path from grandparent
702 if (root() == tc) return;
703 warning("*** Splaying not yet implemented; "
704 "tree operations may be inefficient ***");
705 }
706
707 template <class Chunk>
708 void BinaryTreeDictionary<Chunk>::insert_chunk_in_tree(Chunk* fc) {
709 TreeList<Chunk> *curTL, *prevTL;
710 size_t size = fc->size(); 721 size_t size = fc->size();
711 722
712 assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "too small to be a TreeList<Chunk>"); 723 assert((size >= min_size()),
724 err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
725 size, min_size()));
713 if (FLSVerifyDictionary) { 726 if (FLSVerifyDictionary) {
714 verify_tree(); 727 verify_tree();
715 } 728 }
716 729
717 fc->clear_next(); 730 fc->clear_next();
727 } else { // follow right branch 740 } else { // follow right branch
728 assert(curTL->size() < size, "size inconsistency"); 741 assert(curTL->size() < size, "size inconsistency");
729 curTL = curTL->right(); 742 curTL = curTL->right();
730 } 743 }
731 } 744 }
732 TreeChunk<Chunk>* tc = TreeChunk<Chunk>::as_TreeChunk(fc); 745 TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
733 // This chunk is being returned to the binary tree. Its embedded 746 // This chunk is being returned to the binary tree. Its embedded
734 // TreeList<Chunk> should be unused at this point. 747 // TreeList<Chunk_t, FreeList_t> should be unused at this point.
735 tc->initialize(); 748 tc->initialize();
736 if (curTL != NULL) { // exact match 749 if (curTL != NULL) { // exact match
737 tc->set_list(curTL); 750 tc->set_list(curTL);
738 curTL->return_chunk_at_tail(tc); 751 curTL->return_chunk_at_tail(tc);
739 } else { // need a new node in tree 752 } else { // need a new node in tree
740 tc->clear_next(); 753 tc->clear_next();
741 tc->link_prev(NULL); 754 tc->link_prev(NULL);
742 TreeList<Chunk>* newTL = TreeList<Chunk>::as_TreeList(tc); 755 TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
743 assert(((TreeChunk<Chunk>*)tc)->list() == newTL, 756 assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
744 "List was not initialized correctly"); 757 "List was not initialized correctly");
745 if (prevTL == NULL) { // we are the only tree node 758 if (prevTL == NULL) { // we are the only tree node
746 assert(root() == NULL, "control point invariant"); 759 assert(root() == NULL, "control point invariant");
747 set_root(newTL); 760 set_root(newTL);
748 } else { // insert under prevTL ... 761 } else { // insert under prevTL ...
766 if (FLSVerifyDictionary) { 779 if (FLSVerifyDictionary) {
767 verify_tree(); 780 verify_tree();
768 } 781 }
769 } 782 }
770 783
771 template <class Chunk> 784 template <class Chunk_t, template <class> class FreeList_t>
772 size_t BinaryTreeDictionary<Chunk>::max_chunk_size() const { 785 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
773 FreeBlockDictionary<Chunk>::verify_par_locked(); 786 FreeBlockDictionary<Chunk_t>::verify_par_locked();
774 TreeList<Chunk>* tc = root(); 787 TreeList<Chunk_t, FreeList_t>* tc = root();
775 if (tc == NULL) return 0; 788 if (tc == NULL) return 0;
776 for (; tc->right() != NULL; tc = tc->right()); 789 for (; tc->right() != NULL; tc = tc->right());
777 return tc->size(); 790 return tc->size();
778 } 791 }
779 792
780 template <class Chunk> 793 template <class Chunk_t, template <class> class FreeList_t>
781 size_t BinaryTreeDictionary<Chunk>::total_list_length(TreeList<Chunk>* tl) const { 794 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
782 size_t res; 795 size_t res;
783 res = tl->count(); 796 res = tl->count();
784 #ifdef ASSERT 797 #ifdef ASSERT
785 size_t cnt; 798 size_t cnt;
786 Chunk* tc = tl->head(); 799 Chunk_t* tc = tl->head();
787 for (cnt = 0; tc != NULL; tc = tc->next(), cnt++); 800 for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
788 assert(res == cnt, "The count is not being maintained correctly"); 801 assert(res == cnt, "The count is not being maintained correctly");
789 #endif 802 #endif
790 return res; 803 return res;
791 } 804 }
792 805
793 template <class Chunk> 806 template <class Chunk_t, template <class> class FreeList_t>
794 size_t BinaryTreeDictionary<Chunk>::total_size_in_tree(TreeList<Chunk>* tl) const { 807 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
795 if (tl == NULL) 808 if (tl == NULL)
796 return 0; 809 return 0;
797 return (tl->size() * total_list_length(tl)) + 810 return (tl->size() * total_list_length(tl)) +
798 total_size_in_tree(tl->left()) + 811 total_size_in_tree(tl->left()) +
799 total_size_in_tree(tl->right()); 812 total_size_in_tree(tl->right());
800 } 813 }
801 814
802 template <class Chunk> 815 template <class Chunk_t, template <class> class FreeList_t>
803 double BinaryTreeDictionary<Chunk>::sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const { 816 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
804 if (tl == NULL) { 817 if (tl == NULL) {
805 return 0.0; 818 return 0.0;
806 } 819 }
807 double size = (double)(tl->size()); 820 double size = (double)(tl->size());
808 double curr = size * size * total_list_length(tl); 821 double curr = size * size * total_list_length(tl);
809 curr += sum_of_squared_block_sizes(tl->left()); 822 curr += sum_of_squared_block_sizes(tl->left());
810 curr += sum_of_squared_block_sizes(tl->right()); 823 curr += sum_of_squared_block_sizes(tl->right());
811 return curr; 824 return curr;
812 } 825 }
813 826
814 template <class Chunk> 827 template <class Chunk_t, template <class> class FreeList_t>
815 size_t BinaryTreeDictionary<Chunk>::total_free_blocks_in_tree(TreeList<Chunk>* tl) const { 828 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
816 if (tl == NULL) 829 if (tl == NULL)
817 return 0; 830 return 0;
818 return total_list_length(tl) + 831 return total_list_length(tl) +
819 total_free_blocks_in_tree(tl->left()) + 832 total_free_blocks_in_tree(tl->left()) +
820 total_free_blocks_in_tree(tl->right()); 833 total_free_blocks_in_tree(tl->right());
821 } 834 }
822 835
823 template <class Chunk> 836 template <class Chunk_t, template <class> class FreeList_t>
824 size_t BinaryTreeDictionary<Chunk>::num_free_blocks() const { 837 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
825 assert(total_free_blocks_in_tree(root()) == total_free_blocks(), 838 assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
826 "_total_free_blocks inconsistency"); 839 "_total_free_blocks inconsistency");
827 return total_free_blocks(); 840 return total_free_blocks();
828 } 841 }
829 842
830 template <class Chunk> 843 template <class Chunk_t, template <class> class FreeList_t>
831 size_t BinaryTreeDictionary<Chunk>::tree_height_helper(TreeList<Chunk>* tl) const { 844 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
832 if (tl == NULL) 845 if (tl == NULL)
833 return 0; 846 return 0;
834 return 1 + MAX2(tree_height_helper(tl->left()), 847 return 1 + MAX2(tree_height_helper(tl->left()),
835 tree_height_helper(tl->right())); 848 tree_height_helper(tl->right()));
836 } 849 }
837 850
838 template <class Chunk> 851 template <class Chunk_t, template <class> class FreeList_t>
839 size_t BinaryTreeDictionary<Chunk>::treeHeight() const { 852 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
840 return tree_height_helper(root()); 853 return tree_height_helper(root());
841 } 854 }
842 855
843 template <class Chunk> 856 template <class Chunk_t, template <class> class FreeList_t>
844 size_t BinaryTreeDictionary<Chunk>::total_nodes_helper(TreeList<Chunk>* tl) const { 857 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
845 if (tl == NULL) { 858 if (tl == NULL) {
846 return 0; 859 return 0;
847 } 860 }
848 return 1 + total_nodes_helper(tl->left()) + 861 return 1 + total_nodes_helper(tl->left()) +
849 total_nodes_helper(tl->right()); 862 total_nodes_helper(tl->right());
850 } 863 }
851 864
852 template <class Chunk> 865 template <class Chunk_t, template <class> class FreeList_t>
853 size_t BinaryTreeDictionary<Chunk>::total_nodes_in_tree(TreeList<Chunk>* tl) const { 866 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
854 return total_nodes_helper(root()); 867 return total_nodes_helper(root());
855 } 868 }
856 869
857 template <class Chunk> 870 template <class Chunk_t, template <class> class FreeList_t>
858 void BinaryTreeDictionary<Chunk>::dict_census_udpate(size_t size, bool split, bool birth){ 871 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
859 TreeList<Chunk>* nd = find_list(size); 872
873 #ifndef SERIALGC
874 template <>
875 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::dict_census_update(size_t size, bool split, bool birth){
876 TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
860 if (nd) { 877 if (nd) {
861 if (split) { 878 if (split) {
862 if (birth) { 879 if (birth) {
863 nd->increment_split_births(); 880 nd->increment_split_births();
864 nd->increment_surplus(); 881 nd->increment_surplus();
880 // This is a death where the appropriate list is now 897 // This is a death where the appropriate list is now
881 // empty and has been removed from the list. 898 // empty and has been removed from the list.
882 // This is a birth associated with a LinAB. The chunk 899 // This is a birth associated with a LinAB. The chunk
883 // for the LinAB is not in the dictionary. 900 // for the LinAB is not in the dictionary.
884 } 901 }
885 902 #endif // SERIALGC
886 template <class Chunk> 903
887 bool BinaryTreeDictionary<Chunk>::coal_dict_over_populated(size_t size) { 904 template <class Chunk_t, template <class> class FreeList_t>
905 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
906 // For the general type of freelists, encourage coalescing by
907 // returning true.
908 return true;
909 }
910
911 #ifndef SERIALGC
912 template <>
913 bool BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::coal_dict_over_populated(size_t size) {
888 if (FLSAlwaysCoalesceLarge) return true; 914 if (FLSAlwaysCoalesceLarge) return true;
889 915
890 TreeList<Chunk>* list_of_size = find_list(size); 916 TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
891 // None of requested size implies overpopulated. 917 // None of requested size implies overpopulated.
892 return list_of_size == NULL || list_of_size->coal_desired() <= 0 || 918 return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
893 list_of_size->count() > list_of_size->coal_desired(); 919 list_of_size->count() > list_of_size->coal_desired();
894 } 920 }
921 #endif // SERIALGC
895 922
896 // Closures for walking the binary tree. 923 // Closures for walking the binary tree.
897 // do_list() walks the free list in a node applying the closure 924 // do_list() walks the free list in a node applying the closure
898 // to each free chunk in the list 925 // to each free chunk in the list
899 // do_tree() walks the nodes in the binary tree applying do_list() 926 // do_tree() walks the nodes in the binary tree applying do_list()
900 // to each list at each node. 927 // to each list at each node.
901 928
902 template <class Chunk> 929 template <class Chunk_t, template <class> class FreeList_t>
903 class TreeCensusClosure : public StackObj { 930 class TreeCensusClosure : public StackObj {
904 protected: 931 protected:
905 virtual void do_list(FreeList<Chunk>* fl) = 0; 932 virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
906 public: 933 public:
907 virtual void do_tree(TreeList<Chunk>* tl) = 0; 934 virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
908 }; 935 };
909 936
910 template <class Chunk> 937 template <class Chunk_t, template <class> class FreeList_t>
911 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk> { 938 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
912 using TreeCensusClosure<Chunk>::do_list;
913 public: 939 public:
914 void do_tree(TreeList<Chunk>* tl) { 940 void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
915 if (tl != NULL) { 941 if (tl != NULL) {
916 do_tree(tl->left()); 942 do_tree(tl->left());
917 do_list(tl); 943 do_list(tl);
918 do_tree(tl->right()); 944 do_tree(tl->right());
919 } 945 }
920 } 946 }
921 }; 947 };
922 948
923 template <class Chunk> 949 template <class Chunk_t, template <class> class FreeList_t>
924 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk> { 950 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
925 using TreeCensusClosure<Chunk>::do_list;
926 public: 951 public:
927 void do_tree(TreeList<Chunk>* tl) { 952 void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
928 if (tl != NULL) { 953 if (tl != NULL) {
929 do_tree(tl->right()); 954 do_tree(tl->right());
930 do_list(tl); 955 do_list(tl);
931 do_tree(tl->left()); 956 do_tree(tl->left());
932 } 957 }
933 } 958 }
934 }; 959 };
935 960
936 // For each list in the tree, calculate the desired, desired 961 // For each list in the tree, calculate the desired, desired
937 // coalesce, count before sweep, and surplus before sweep. 962 // coalesce, count before sweep, and surplus before sweep.
938 template <class Chunk> 963 template <class Chunk_t, template <class> class FreeList_t>
939 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk> { 964 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
940 double _percentage; 965 double _percentage;
941 float _inter_sweep_current; 966 float _inter_sweep_current;
942 float _inter_sweep_estimate; 967 float _inter_sweep_estimate;
943 float _intra_sweep_estimate; 968 float _intra_sweep_estimate;
944 969
949 _percentage(p), 974 _percentage(p),
950 _inter_sweep_current(inter_sweep_current), 975 _inter_sweep_current(inter_sweep_current),
951 _inter_sweep_estimate(inter_sweep_estimate), 976 _inter_sweep_estimate(inter_sweep_estimate),
952 _intra_sweep_estimate(intra_sweep_estimate) { } 977 _intra_sweep_estimate(intra_sweep_estimate) { }
953 978
954 void do_list(FreeList<Chunk>* fl) { 979 void do_list(FreeList<Chunk_t>* fl) {}
980
981 #ifndef SERIALGC
982 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
955 double coalSurplusPercent = _percentage; 983 double coalSurplusPercent = _percentage;
956 fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate); 984 fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
957 fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent)); 985 fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
958 fl->set_before_sweep(fl->count()); 986 fl->set_before_sweep(fl->count());
959 fl->set_bfr_surp(fl->surplus()); 987 fl->set_bfr_surp(fl->surplus());
960 } 988 }
989 #endif // SERIALGC
961 }; 990 };
962 991
963 // Used to search the tree until a condition is met. 992 // Used to search the tree until a condition is met.
964 // Similar to TreeCensusClosure but searches the 993 // Similar to TreeCensusClosure but searches the
965 // tree and returns promptly when found. 994 // tree and returns promptly when found.
966 995
967 template <class Chunk> 996 template <class Chunk_t, template <class> class FreeList_t>
968 class TreeSearchClosure : public StackObj { 997 class TreeSearchClosure : public StackObj {
969 protected: 998 protected:
970 virtual bool do_list(FreeList<Chunk>* fl) = 0; 999 virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
971 public: 1000 public:
972 virtual bool do_tree(TreeList<Chunk>* tl) = 0; 1001 virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
973 }; 1002 };
974 1003
975 #if 0 // Don't need this yet but here for symmetry. 1004 #if 0 // Don't need this yet but here for symmetry.
976 template <class Chunk> 1005 template <class Chunk_t, template <class> class FreeList_t>
977 class AscendTreeSearchClosure : public TreeSearchClosure { 1006 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
978 public: 1007 public:
979 bool do_tree(TreeList<Chunk>* tl) { 1008 bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
980 if (tl != NULL) { 1009 if (tl != NULL) {
981 if (do_tree(tl->left())) return true; 1010 if (do_tree(tl->left())) return true;
982 if (do_list(tl)) return true; 1011 if (do_list(tl)) return true;
983 if (do_tree(tl->right())) return true; 1012 if (do_tree(tl->right())) return true;
984 } 1013 }
985 return false; 1014 return false;
986 } 1015 }
987 }; 1016 };
988 #endif 1017 #endif
989 1018
990 template <class Chunk> 1019 template <class Chunk_t, template <class> class FreeList_t>
991 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk> { 1020 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
992 using TreeSearchClosure<Chunk>::do_list;
993 public: 1021 public:
994 bool do_tree(TreeList<Chunk>* tl) { 1022 bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
995 if (tl != NULL) { 1023 if (tl != NULL) {
996 if (do_tree(tl->right())) return true; 1024 if (do_tree(tl->right())) return true;
997 if (do_list(tl)) return true; 1025 if (do_list(tl)) return true;
998 if (do_tree(tl->left())) return true; 1026 if (do_tree(tl->left())) return true;
999 } 1027 }
1001 } 1029 }
1002 }; 1030 };
1003 1031
1004 // Searches the tree for a chunk that ends at the 1032 // Searches the tree for a chunk that ends at the
1005 // specified address. 1033 // specified address.
1006 template <class Chunk> 1034 template <class Chunk_t, template <class> class FreeList_t>
1007 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk> { 1035 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
1008 HeapWord* _target; 1036 HeapWord* _target;
1009 Chunk* _found; 1037 Chunk_t* _found;
1010 1038
1011 public: 1039 public:
1012 EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {} 1040 EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
1013 bool do_list(FreeList<Chunk>* fl) { 1041 bool do_list(FreeList_t<Chunk_t>* fl) {
1014 Chunk* item = fl->head(); 1042 Chunk_t* item = fl->head();
1015 while (item != NULL) { 1043 while (item != NULL) {
1016 if (item->end() == _target) { 1044 if (item->end() == (uintptr_t*) _target) {
1017 _found = item; 1045 _found = item;
1018 return true; 1046 return true;
1019 } 1047 }
1020 item = item->next(); 1048 item = item->next();
1021 } 1049 }
1022 return false; 1050 return false;
1023 } 1051 }
1024 Chunk* found() { return _found; } 1052 Chunk_t* found() { return _found; }
1025 }; 1053 };
1026 1054
1027 template <class Chunk> 1055 template <class Chunk_t, template <class> class FreeList_t>
1028 Chunk* BinaryTreeDictionary<Chunk>::find_chunk_ends_at(HeapWord* target) const { 1056 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
1029 EndTreeSearchClosure<Chunk> etsc(target); 1057 EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
1030 bool found_target = etsc.do_tree(root()); 1058 bool found_target = etsc.do_tree(root());
1031 assert(found_target || etsc.found() == NULL, "Consistency check"); 1059 assert(found_target || etsc.found() == NULL, "Consistency check");
1032 assert(!found_target || etsc.found() != NULL, "Consistency check"); 1060 assert(!found_target || etsc.found() != NULL, "Consistency check");
1033 return etsc.found(); 1061 return etsc.found();
1034 } 1062 }
1035 1063
1036 template <class Chunk> 1064 template <class Chunk_t, template <class> class FreeList_t>
1037 void BinaryTreeDictionary<Chunk>::begin_sweep_dict_census(double coalSurplusPercent, 1065 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
1038 float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) { 1066 float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
1039 BeginSweepClosure<Chunk> bsc(coalSurplusPercent, inter_sweep_current, 1067 BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
1040 inter_sweep_estimate, 1068 inter_sweep_estimate,
1041 intra_sweep_estimate); 1069 intra_sweep_estimate);
1042 bsc.do_tree(root()); 1070 bsc.do_tree(root());
1043 } 1071 }
1044 1072
1045 // Closures and methods for calculating total bytes returned to the 1073 // Closures and methods for calculating total bytes returned to the
1046 // free lists in the tree. 1074 // free lists in the tree.
1047 #ifndef PRODUCT 1075 #ifndef PRODUCT
1048 template <class Chunk> 1076 template <class Chunk_t, template <class> class FreeList_t>
1049 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> { 1077 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1050 public: 1078 public:
1051 void do_list(FreeList<Chunk>* fl) { 1079 void do_list(FreeList_t<Chunk_t>* fl) {
1052 fl->set_returned_bytes(0); 1080 fl->set_returned_bytes(0);
1053 } 1081 }
1054 }; 1082 };
1055 1083
1056 template <class Chunk> 1084 template <class Chunk_t, template <class> class FreeList_t>
1057 void BinaryTreeDictionary<Chunk>::initialize_dict_returned_bytes() { 1085 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
1058 InitializeDictReturnedBytesClosure<Chunk> idrb; 1086 InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
1059 idrb.do_tree(root()); 1087 idrb.do_tree(root());
1060 } 1088 }
1061 1089
1062 template <class Chunk> 1090 template <class Chunk_t, template <class> class FreeList_t>
1063 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> { 1091 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1064 size_t _dict_returned_bytes; 1092 size_t _dict_returned_bytes;
1065 public: 1093 public:
1066 ReturnedBytesClosure() { _dict_returned_bytes = 0; } 1094 ReturnedBytesClosure() { _dict_returned_bytes = 0; }
1067 void do_list(FreeList<Chunk>* fl) { 1095 void do_list(FreeList_t<Chunk_t>* fl) {
1068 _dict_returned_bytes += fl->returned_bytes(); 1096 _dict_returned_bytes += fl->returned_bytes();
1069 } 1097 }
1070 size_t dict_returned_bytes() { return _dict_returned_bytes; } 1098 size_t dict_returned_bytes() { return _dict_returned_bytes; }
1071 }; 1099 };
1072 1100
1073 template <class Chunk> 1101 template <class Chunk_t, template <class> class FreeList_t>
1074 size_t BinaryTreeDictionary<Chunk>::sum_dict_returned_bytes() { 1102 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
1075 ReturnedBytesClosure<Chunk> rbc; 1103 ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
1076 rbc.do_tree(root()); 1104 rbc.do_tree(root());
1077 1105
1078 return rbc.dict_returned_bytes(); 1106 return rbc.dict_returned_bytes();
1079 } 1107 }
1080 1108
1081 // Count the number of entries in the tree. 1109 // Count the number of entries in the tree.
1082 template <class Chunk> 1110 template <class Chunk_t, template <class> class FreeList_t>
1083 class treeCountClosure : public DescendTreeCensusClosure<Chunk> { 1111 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1084 public: 1112 public:
1085 uint count; 1113 uint count;
1086 treeCountClosure(uint c) { count = c; } 1114 treeCountClosure(uint c) { count = c; }
1087 void do_list(FreeList<Chunk>* fl) { 1115 void do_list(FreeList_t<Chunk_t>* fl) {
1088 count++; 1116 count++;
1089 } 1117 }
1090 }; 1118 };
1091 1119
1092 template <class Chunk> 1120 template <class Chunk_t, template <class> class FreeList_t>
1093 size_t BinaryTreeDictionary<Chunk>::total_count() { 1121 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
1094 treeCountClosure<Chunk> ctc(0); 1122 treeCountClosure<Chunk_t, FreeList_t> ctc(0);
1095 ctc.do_tree(root()); 1123 ctc.do_tree(root());
1096 return ctc.count; 1124 return ctc.count;
1097 } 1125 }
1098 #endif // PRODUCT 1126 #endif // PRODUCT
1099 1127
1100 // Calculate surpluses for the lists in the tree. 1128 // Calculate surpluses for the lists in the tree.
1101 template <class Chunk> 1129 template <class Chunk_t, template <class> class FreeList_t>
1102 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk> { 1130 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1103 double percentage; 1131 double percentage;
1104 public: 1132 public:
1105 setTreeSurplusClosure(double v) { percentage = v; } 1133 setTreeSurplusClosure(double v) { percentage = v; }
1106 void do_list(FreeList<Chunk>* fl) { 1134 void do_list(FreeList<Chunk_t>* fl) {}
1135
1136 #ifndef SERIALGC
1137 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1107 double splitSurplusPercent = percentage; 1138 double splitSurplusPercent = percentage;
1108 fl->set_surplus(fl->count() - 1139 fl->set_surplus(fl->count() -
1109 (ssize_t)((double)fl->desired() * splitSurplusPercent)); 1140 (ssize_t)((double)fl->desired() * splitSurplusPercent));
1110 } 1141 }
1111 }; 1142 #endif // SERIALGC
1112 1143 };
1113 template <class Chunk> 1144
1114 void BinaryTreeDictionary<Chunk>::set_tree_surplus(double splitSurplusPercent) { 1145 template <class Chunk_t, template <class> class FreeList_t>
1115 setTreeSurplusClosure<Chunk> sts(splitSurplusPercent); 1146 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
1147 setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
1116 sts.do_tree(root()); 1148 sts.do_tree(root());
1117 } 1149 }
1118 1150
1119 // Set hints for the lists in the tree. 1151 // Set hints for the lists in the tree.
1120 template <class Chunk> 1152 template <class Chunk_t, template <class> class FreeList_t>
1121 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk> { 1153 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1122 size_t hint; 1154 size_t hint;
1123 public: 1155 public:
1124 setTreeHintsClosure(size_t v) { hint = v; } 1156 setTreeHintsClosure(size_t v) { hint = v; }
1125 void do_list(FreeList<Chunk>* fl) { 1157 void do_list(FreeList<Chunk_t>* fl) {}
1158
1159 #ifndef SERIALGC
1160 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1126 fl->set_hint(hint); 1161 fl->set_hint(hint);
1127 assert(fl->hint() == 0 || fl->hint() > fl->size(), 1162 assert(fl->hint() == 0 || fl->hint() > fl->size(),
1128 "Current hint is inconsistent"); 1163 "Current hint is inconsistent");
1129 if (fl->surplus() > 0) { 1164 if (fl->surplus() > 0) {
1130 hint = fl->size(); 1165 hint = fl->size();
1131 } 1166 }
1132 } 1167 }
1133 }; 1168 #endif // SERIALGC
1134 1169 };
1135 template <class Chunk> 1170
1136 void BinaryTreeDictionary<Chunk>::set_tree_hints(void) { 1171 template <class Chunk_t, template <class> class FreeList_t>
1137 setTreeHintsClosure<Chunk> sth(0); 1172 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
1173 setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
1138 sth.do_tree(root()); 1174 sth.do_tree(root());
1139 } 1175 }
1140 1176
1141 // Save count before previous sweep and splits and coalesces. 1177 // Save count before previous sweep and splits and coalesces.
1142 template <class Chunk> 1178 template <class Chunk_t, template <class> class FreeList_t>
1143 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk> { 1179 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1144 void do_list(FreeList<Chunk>* fl) { 1180 void do_list(FreeList<Chunk_t>* fl) {}
1181
1182 #ifndef SERIALGC
1183 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1145 fl->set_prev_sweep(fl->count()); 1184 fl->set_prev_sweep(fl->count());
1146 fl->set_coal_births(0); 1185 fl->set_coal_births(0);
1147 fl->set_coal_deaths(0); 1186 fl->set_coal_deaths(0);
1148 fl->set_split_births(0); 1187 fl->set_split_births(0);
1149 fl->set_split_deaths(0); 1188 fl->set_split_deaths(0);
1150 } 1189 }
1151 }; 1190 #endif // SERIALGC
1152 1191 };
1153 template <class Chunk> 1192
1154 void BinaryTreeDictionary<Chunk>::clear_tree_census(void) { 1193 template <class Chunk_t, template <class> class FreeList_t>
1155 clearTreeCensusClosure<Chunk> ctc; 1194 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
1195 clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
1156 ctc.do_tree(root()); 1196 ctc.do_tree(root());
1157 } 1197 }
1158 1198
1159 // Do reporting and post sweep clean up. 1199 // Do reporting and post sweep clean up.
1160 template <class Chunk> 1200 template <class Chunk_t, template <class> class FreeList_t>
1161 void BinaryTreeDictionary<Chunk>::end_sweep_dict_census(double splitSurplusPercent) { 1201 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
1162 // Does walking the tree 3 times hurt? 1202 // Does walking the tree 3 times hurt?
1163 set_tree_surplus(splitSurplusPercent); 1203 set_tree_surplus(splitSurplusPercent);
1164 set_tree_hints(); 1204 set_tree_hints();
1165 if (PrintGC && Verbose) { 1205 if (PrintGC && Verbose) {
1166 report_statistics(); 1206 report_statistics();
1167 } 1207 }
1168 clear_tree_census(); 1208 clear_tree_census();
1169 } 1209 }
1170 1210
1171 // Print summary statistics 1211 // Print summary statistics
1172 template <class Chunk> 1212 template <class Chunk_t, template <class> class FreeList_t>
1173 void BinaryTreeDictionary<Chunk>::report_statistics() const { 1213 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
1174 FreeBlockDictionary<Chunk>::verify_par_locked(); 1214 FreeBlockDictionary<Chunk_t>::verify_par_locked();
1175 gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n" 1215 gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1176 "------------------------------------\n"); 1216 "------------------------------------\n");
1177 size_t total_size = total_chunk_size(debug_only(NULL)); 1217 size_t total_size = total_chunk_size(debug_only(NULL));
1178 size_t free_blocks = num_free_blocks(); 1218 size_t free_blocks = num_free_blocks();
1179 gclog_or_tty->print("Total Free Space: %d\n", total_size); 1219 gclog_or_tty->print("Total Free Space: %d\n", total_size);
1180 gclog_or_tty->print("Max Chunk Size: %d\n", max_chunk_size()); 1220 gclog_or_tty->print("Max Chunk Size: %d\n", max_chunk_size());
1181 gclog_or_tty->print("Number of Blocks: %d\n", free_blocks); 1221 gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
1182 if (free_blocks > 0) { 1222 if (free_blocks > 0) {
1183 gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks); 1223 gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
1184 } 1224 }
1185 gclog_or_tty->print("Tree Height: %d\n", treeHeight()); 1225 gclog_or_tty->print("Tree Height: %d\n", tree_height());
1186 } 1226 }
1187 1227
1188 // Print census information - counts, births, deaths, etc. 1228 // Print census information - counts, births, deaths, etc.
1189 // for each list in the tree. Also print some summary 1229 // for each list in the tree. Also print some summary
1190 // information. 1230 // information.
1191 template <class Chunk> 1231 template <class Chunk_t, template <class> class FreeList_t>
1192 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk> { 1232 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1193 int _print_line; 1233 int _print_line;
1194 size_t _total_free; 1234 size_t _total_free;
1195 FreeList<Chunk> _total; 1235 FreeList_t<Chunk_t> _total;
1196 1236
1197 public: 1237 public:
1198 PrintTreeCensusClosure() { 1238 PrintTreeCensusClosure() {
1199 _print_line = 0; 1239 _print_line = 0;
1200 _total_free = 0; 1240 _total_free = 0;
1201 } 1241 }
1202 FreeList<Chunk>* total() { return &_total; } 1242 FreeList_t<Chunk_t>* total() { return &_total; }
1203 size_t total_free() { return _total_free; } 1243 size_t total_free() { return _total_free; }
1204 void do_list(FreeList<Chunk>* fl) { 1244 void do_list(FreeList<Chunk_t>* fl) {
1205 if (++_print_line >= 40) { 1245 if (++_print_line >= 40) {
1206 FreeList<Chunk>::print_labels_on(gclog_or_tty, "size"); 1246 FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1207 _print_line = 0; 1247 _print_line = 0;
1208 } 1248 }
1209 fl->print_on(gclog_or_tty); 1249 fl->print_on(gclog_or_tty);
1210 _total_free += fl->count() * fl->size() ; 1250 _total_free += fl->count() * fl->size() ;
1211 total()->set_count( total()->count() + fl->count() ); 1251 total()->set_count( total()->count() + fl->count() );
1212 total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() ); 1252 }
1253
1254 #ifndef SERIALGC
1255 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1256 if (++_print_line >= 40) {
1257 FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1258 _print_line = 0;
1259 }
1260 fl->print_on(gclog_or_tty);
1261 _total_free += fl->count() * fl->size() ;
1262 total()->set_count( total()->count() + fl->count() );
1263 total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() );
1213 total()->set_surplus( total()->split_deaths() + fl->surplus() ); 1264 total()->set_surplus( total()->split_deaths() + fl->surplus() );
1214 total()->set_desired( total()->desired() + fl->desired() ); 1265 total()->set_desired( total()->desired() + fl->desired() );
1215 total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() ); 1266 total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() );
1216 total()->set_before_sweep(total()->before_sweep() + fl->before_sweep()); 1267 total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
1217 total()->set_coal_births( total()->coal_births() + fl->coal_births() ); 1268 total()->set_coal_births( total()->coal_births() + fl->coal_births() );
1218 total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() ); 1269 total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() );
1219 total()->set_split_births(total()->split_births() + fl->split_births()); 1270 total()->set_split_births(total()->split_births() + fl->split_births());
1220 total()->set_split_deaths(total()->split_deaths() + fl->split_deaths()); 1271 total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
1221 } 1272 }
1222 }; 1273 #endif // SERIALGC
1223 1274 };
1224 template <class Chunk> 1275
1225 void BinaryTreeDictionary<Chunk>::print_dict_census(void) const { 1276 template <class Chunk_t, template <class> class FreeList_t>
1277 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
1226 1278
1227 gclog_or_tty->print("\nBinaryTree\n"); 1279 gclog_or_tty->print("\nBinaryTree\n");
1228 FreeList<Chunk>::print_labels_on(gclog_or_tty, "size"); 1280 FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1229 PrintTreeCensusClosure<Chunk> ptc; 1281 PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
1230 ptc.do_tree(root()); 1282 ptc.do_tree(root());
1231 1283
1232 FreeList<Chunk>* total = ptc.total(); 1284 FreeList_t<Chunk_t>* total = ptc.total();
1233 FreeList<Chunk>::print_labels_on(gclog_or_tty, " "); 1285 FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
1286 }
1287
1288 #ifndef SERIALGC
1289 template <>
1290 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::print_dict_census(void) const {
1291
1292 gclog_or_tty->print("\nBinaryTree\n");
1293 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
1294 PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
1295 ptc.do_tree(root());
1296
1297 AdaptiveFreeList<FreeChunk>* total = ptc.total();
1298 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
1234 total->print_on(gclog_or_tty, "TOTAL\t"); 1299 total->print_on(gclog_or_tty, "TOTAL\t");
1235 gclog_or_tty->print( 1300 gclog_or_tty->print(
1236 "total_free(words): " SIZE_FORMAT_W(16) 1301 "total_free(words): " SIZE_FORMAT_W(16)
1237 " growth: %8.5f deficit: %8.5f\n", 1302 " growth: %8.5f deficit: %8.5f\n",
1238 ptc.total_free(), 1303 ptc.total_free(),
1240 - total->split_deaths() - total->coal_deaths()) 1305 - total->split_deaths() - total->coal_deaths())
1241 /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0), 1306 /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
1242 (double)(total->desired() - total->count()) 1307 (double)(total->desired() - total->count())
1243 /(total->desired() != 0 ? (double)total->desired() : 1.0)); 1308 /(total->desired() != 0 ? (double)total->desired() : 1.0));
1244 } 1309 }
1245 1310 #endif // SERIALGC
1246 template <class Chunk> 1311
1247 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk> { 1312 template <class Chunk_t, template <class> class FreeList_t>
1313 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1248 outputStream* _st; 1314 outputStream* _st;
1249 int _print_line; 1315 int _print_line;
1250 1316
1251 public: 1317 public:
1252 PrintFreeListsClosure(outputStream* st) { 1318 PrintFreeListsClosure(outputStream* st) {
1253 _st = st; 1319 _st = st;
1254 _print_line = 0; 1320 _print_line = 0;
1255 } 1321 }
1256 void do_list(FreeList<Chunk>* fl) { 1322 void do_list(FreeList_t<Chunk_t>* fl) {
1257 if (++_print_line >= 40) { 1323 if (++_print_line >= 40) {
1258 FreeList<Chunk>::print_labels_on(_st, "size"); 1324 FreeList_t<Chunk_t>::print_labels_on(_st, "size");
1259 _print_line = 0; 1325 _print_line = 0;
1260 } 1326 }
1261 fl->print_on(gclog_or_tty); 1327 fl->print_on(gclog_or_tty);
1262 size_t sz = fl->size(); 1328 size_t sz = fl->size();
1263 for (Chunk* fc = fl->head(); fc != NULL; 1329 for (Chunk_t* fc = fl->head(); fc != NULL;
1264 fc = fc->next()) { 1330 fc = fc->next()) {
1265 _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s", 1331 _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
1266 fc, (HeapWord*)fc + sz, 1332 fc, (HeapWord*)fc + sz,
1267 fc->cantCoalesce() ? "\t CC" : ""); 1333 fc->cantCoalesce() ? "\t CC" : "");
1268 } 1334 }
1269 } 1335 }
1270 }; 1336 };
1271 1337
1272 template <class Chunk> 1338 template <class Chunk_t, template <class> class FreeList_t>
1273 void BinaryTreeDictionary<Chunk>::print_free_lists(outputStream* st) const { 1339 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
1274 1340
1275 FreeList<Chunk>::print_labels_on(st, "size"); 1341 FreeList_t<Chunk_t>::print_labels_on(st, "size");
1276 PrintFreeListsClosure<Chunk> pflc(st); 1342 PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
1277 pflc.do_tree(root()); 1343 pflc.do_tree(root());
1278 } 1344 }
1279 1345
1280 // Verify the following tree invariants: 1346 // Verify the following tree invariants:
1281 // . _root has no parent 1347 // . _root has no parent
1282 // . parent and child point to each other 1348 // . parent and child point to each other
1283 // . each node's key correctly related to that of its child(ren) 1349 // . each node's key correctly related to that of its child(ren)
1284 template <class Chunk> 1350 template <class Chunk_t, template <class> class FreeList_t>
1285 void BinaryTreeDictionary<Chunk>::verify_tree() const { 1351 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
1286 guarantee(root() == NULL || total_free_blocks() == 0 || 1352 guarantee(root() == NULL || total_free_blocks() == 0 ||
1287 total_size() != 0, "_total_size should't be 0?"); 1353 total_size() != 0, "_total_size should't be 0?");
1288 guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent"); 1354 guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1289 verify_tree_helper(root()); 1355 verify_tree_helper(root());
1290 } 1356 }
1291 1357
1292 template <class Chunk> 1358 template <class Chunk_t, template <class> class FreeList_t>
1293 size_t BinaryTreeDictionary<Chunk>::verify_prev_free_ptrs(TreeList<Chunk>* tl) { 1359 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
1294 size_t ct = 0; 1360 size_t ct = 0;
1295 for (Chunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) { 1361 for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1296 ct++; 1362 ct++;
1297 assert(curFC->prev() == NULL || curFC->prev()->is_free(), 1363 assert(curFC->prev() == NULL || curFC->prev()->is_free(),
1298 "Chunk should be free"); 1364 "Chunk should be free");
1299 } 1365 }
1300 return ct; 1366 return ct;
1301 } 1367 }
1302 1368
1303 // Note: this helper is recursive rather than iterative, so use with 1369 // Note: this helper is recursive rather than iterative, so use with
1304 // caution on very deep trees; and watch out for stack overflow errors; 1370 // caution on very deep trees; and watch out for stack overflow errors;
1305 // In general, to be used only for debugging. 1371 // In general, to be used only for debugging.
1306 template <class Chunk> 1372 template <class Chunk_t, template <class> class FreeList_t>
1307 void BinaryTreeDictionary<Chunk>::verify_tree_helper(TreeList<Chunk>* tl) const { 1373 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
1308 if (tl == NULL) 1374 if (tl == NULL)
1309 return; 1375 return;
1310 guarantee(tl->size() != 0, "A list must has a size"); 1376 guarantee(tl->size() != 0, "A list must has a size");
1311 guarantee(tl->left() == NULL || tl->left()->parent() == tl, 1377 guarantee(tl->left() == NULL || tl->left()->parent() == tl,
1312 "parent<-/->left"); 1378 "parent<-/->left");
1330 } 1396 }
1331 verify_tree_helper(tl->left()); 1397 verify_tree_helper(tl->left());
1332 verify_tree_helper(tl->right()); 1398 verify_tree_helper(tl->right());
1333 } 1399 }
1334 1400
1335 template <class Chunk> 1401 template <class Chunk_t, template <class> class FreeList_t>
1336 void BinaryTreeDictionary<Chunk>::verify() const { 1402 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
1337 verify_tree(); 1403 verify_tree();
1338 guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency"); 1404 guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
1339 } 1405 }
1340 1406
1407 template class TreeList<Metablock, FreeList>;
1408 template class BinaryTreeDictionary<Metablock, FreeList>;
1409 template class TreeChunk<Metablock, FreeList>;
1410
1411 template class TreeList<Metachunk, FreeList>;
1412 template class BinaryTreeDictionary<Metachunk, FreeList>;
1413 template class TreeChunk<Metachunk, FreeList>;
1414
1415
1341 #ifndef SERIALGC 1416 #ifndef SERIALGC
1342 // Explicitly instantiate these types for FreeChunk. 1417 // Explicitly instantiate these types for FreeChunk.
1343 template class BinaryTreeDictionary<FreeChunk>; 1418 template class TreeList<FreeChunk, AdaptiveFreeList>;
1344 template class TreeChunk<FreeChunk>; 1419 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
1345 template class TreeList<FreeChunk>; 1420 template class TreeChunk<FreeChunk, AdaptiveFreeList>;
1421
1346 #endif // SERIALGC 1422 #endif // SERIALGC