comparison graal/Compiler/src/com/sun/c1x/alloc/LinearScanWalker.java @ 2507:9ec15d6914ca

Pull over of compiler from maxine repository.
author Thomas Wuerthinger <thomas@wuerthinger.net>
date Wed, 27 Apr 2011 11:43:22 +0200
parents
children
comparison
equal deleted inserted replaced
2506:4a3bf8a5bf41 2507:9ec15d6914ca
1 /*
2 * Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23 package com.sun.c1x.alloc;
24
25 import static com.sun.cri.ci.CiUtil.*;
26
27 import java.util.*;
28
29 import com.sun.c1x.*;
30 import com.sun.c1x.alloc.Interval.RegisterBinding;
31 import com.sun.c1x.alloc.Interval.RegisterPriority;
32 import com.sun.c1x.alloc.Interval.SpillState;
33 import com.sun.c1x.alloc.Interval.State;
34 import com.sun.c1x.debug.*;
35 import com.sun.c1x.ir.*;
36 import com.sun.c1x.lir.*;
37 import com.sun.c1x.util.*;
38 import com.sun.cri.ci.*;
39 import com.sun.cri.ci.CiRegister.RegisterFlag;
40
41 /**
42 *
43 * @author Thomas Wuerthinger
44 */
45 final class LinearScanWalker extends IntervalWalker {
46
47 private CiRegister[] availableRegs;
48
49 private final int[] usePos;
50 private final int[] blockPos;
51
52 private List<Interval>[] spillIntervals;
53
54 private MoveResolver moveResolver; // for ordering spill moves
55
56 // accessors mapped to same functions in class LinearScan
57 int blockCount() {
58 return allocator.blockCount();
59 }
60
61 BlockBegin blockAt(int idx) {
62 return allocator.blockAt(idx);
63 }
64
65 BlockBegin blockOfOpWithId(int opId) {
66 return allocator.blockForId(opId);
67 }
68
69 LinearScanWalker(LinearScan allocator, Interval unhandledFixedFirst, Interval unhandledAnyFirst) {
70 super(allocator, unhandledFixedFirst, unhandledAnyFirst);
71 moveResolver = new MoveResolver(allocator);
72 spillIntervals = Util.uncheckedCast(new List[allocator.registers.length]);
73 for (int i = 0; i < allocator.registers.length; i++) {
74 spillIntervals[i] = new ArrayList<Interval>(2);
75 }
76 usePos = new int[allocator.registers.length];
77 blockPos = new int[allocator.registers.length];
78 }
79
80 void initUseLists(boolean onlyProcessUsePos) {
81 for (CiRegister register : availableRegs) {
82 int i = register.number;
83 usePos[i] = Integer.MAX_VALUE;
84
85 if (!onlyProcessUsePos) {
86 blockPos[i] = Integer.MAX_VALUE;
87 spillIntervals[i].clear();
88 }
89 }
90 }
91
92 void excludeFromUse(Interval i) {
93 CiValue location = i.location();
94 int i1 = location.asRegister().number;
95 if (i1 >= availableRegs[0].number && i1 <= availableRegs[availableRegs.length - 1].number) {
96 usePos[i1] = 0;
97 }
98 }
99
100 void setUsePos(Interval interval, int usePos, boolean onlyProcessUsePos) {
101 if (usePos != -1) {
102 assert usePos != 0 : "must use excludeFromUse to set usePos to 0";
103 int i = interval.location().asRegister().number;
104 if (i >= availableRegs[0].number && i <= availableRegs[availableRegs.length - 1].number) {
105 if (this.usePos[i] > usePos) {
106 this.usePos[i] = usePos;
107 }
108 if (!onlyProcessUsePos) {
109 spillIntervals[i].add(interval);
110 }
111 }
112 }
113 }
114
115 void setBlockPos(Interval i, int blockPos) {
116 if (blockPos != -1) {
117 int reg = i.location().asRegister().number;
118 if (reg >= availableRegs[0].number && reg <= availableRegs[availableRegs.length - 1].number) {
119 if (this.blockPos[reg] > blockPos) {
120 this.blockPos[reg] = blockPos;
121 }
122 if (usePos[reg] > blockPos) {
123 usePos[reg] = blockPos;
124 }
125 }
126 }
127 }
128
129 void freeExcludeActiveFixed() {
130 Interval interval = activeLists.get(RegisterBinding.Fixed);
131 while (interval != Interval.EndMarker) {
132 assert interval.location().isRegister() : "active interval must have a register assigned";
133 excludeFromUse(interval);
134 interval = interval.next;
135 }
136 }
137
138 void freeExcludeActiveAny() {
139 Interval interval = activeLists.get(RegisterBinding.Any);
140 while (interval != Interval.EndMarker) {
141 assert interval.location().isRegister() : "active interval must have a register assigned";
142 excludeFromUse(interval);
143 interval = interval.next;
144 }
145 }
146
147 void freeCollectInactiveFixed(Interval current) {
148 Interval interval = inactiveLists.get(RegisterBinding.Fixed);
149 while (interval != Interval.EndMarker) {
150 if (current.to() <= interval.currentFrom()) {
151 assert interval.currentIntersectsAt(current) == -1 : "must not intersect";
152 setUsePos(interval, interval.currentFrom(), true);
153 } else {
154 setUsePos(interval, interval.currentIntersectsAt(current), true);
155 }
156 interval = interval.next;
157 }
158 }
159
160 void freeCollectInactiveAny(Interval current) {
161 Interval interval = inactiveLists.get(RegisterBinding.Any);
162 while (interval != Interval.EndMarker) {
163 setUsePos(interval, interval.currentIntersectsAt(current), true);
164 interval = interval.next;
165 }
166 }
167
168 void freeCollectUnhandled(RegisterBinding kind, Interval current) {
169 Interval interval = unhandledLists.get(kind);
170 while (interval != Interval.EndMarker) {
171 setUsePos(interval, interval.intersectsAt(current), true);
172 if (kind == RegisterBinding.Fixed && current.to() <= interval.from()) {
173 setUsePos(interval, interval.from(), true);
174 }
175 interval = interval.next;
176 }
177 }
178
179 void spillExcludeActiveFixed() {
180 Interval interval = activeLists.get(RegisterBinding.Fixed);
181 while (interval != Interval.EndMarker) {
182 excludeFromUse(interval);
183 interval = interval.next;
184 }
185 }
186
187 void spillBlockUnhandledFixed(Interval current) {
188 Interval interval = unhandledLists.get(RegisterBinding.Fixed);
189 while (interval != Interval.EndMarker) {
190 setBlockPos(interval, interval.intersectsAt(current));
191 interval = interval.next;
192 }
193 }
194
195 void spillBlockInactiveFixed(Interval current) {
196 Interval interval = inactiveLists.get(RegisterBinding.Fixed);
197 while (interval != Interval.EndMarker) {
198 if (current.to() > interval.currentFrom()) {
199 setBlockPos(interval, interval.currentIntersectsAt(current));
200 } else {
201 assert interval.currentIntersectsAt(current) == -1 : "invalid optimization: intervals intersect";
202 }
203
204 interval = interval.next;
205 }
206 }
207
208 void spillCollectActiveAny() {
209 Interval interval = activeLists.get(RegisterBinding.Any);
210 while (interval != Interval.EndMarker) {
211 setUsePos(interval, Math.min(interval.nextUsage(RegisterPriority.LiveAtLoopEnd, currentPosition), interval.to()), false);
212 interval = interval.next;
213 }
214 }
215
216 void spillCollectInactiveAny(Interval current) {
217 Interval interval = inactiveLists.get(RegisterBinding.Any);
218 while (interval != Interval.EndMarker) {
219 if (interval.currentIntersects(current)) {
220 setUsePos(interval, Math.min(interval.nextUsage(RegisterPriority.LiveAtLoopEnd, currentPosition), interval.to()), false);
221 }
222 interval = interval.next;
223 }
224 }
225
226 void insertMove(int opId, Interval srcIt, Interval dstIt) {
227 // output all moves here. When source and target are equal, the move is
228 // optimized away later in assignRegNums
229
230 opId = (opId + 1) & ~1;
231 BlockBegin opBlock = allocator.blockForId(opId);
232 assert opId > 0 && allocator.blockForId(opId - 2) == opBlock : "cannot insert move at block boundary";
233
234 // calculate index of instruction inside instruction list of current block
235 // the minimal index (for a block with no spill moves) can be calculated because the
236 // numbering of instructions is known.
237 // When the block already contains spill moves, the index must be increased until the
238 // correct index is reached.
239 List<LIRInstruction> list = opBlock.lir().instructionsList();
240 int index = (opId - list.get(0).id) >> 1;
241 assert list.get(index).id <= opId : "error in calculation";
242
243 while (list.get(index).id != opId) {
244 index++;
245 assert 0 <= index && index < list.size() : "index out of bounds";
246 }
247 assert 1 <= index && index < list.size() : "index out of bounds";
248 assert list.get(index).id == opId : "error in calculation";
249
250 // insert new instruction before instruction at position index
251 moveResolver.moveInsertPosition(opBlock.lir(), index - 1);
252 moveResolver.addMapping(srcIt, dstIt);
253 }
254
255 int findOptimalSplitPos(BlockBegin minBlock, BlockBegin maxBlock, int maxSplitPos) {
256 int fromBlockNr = minBlock.linearScanNumber();
257 int toBlockNr = maxBlock.linearScanNumber();
258
259 assert 0 <= fromBlockNr && fromBlockNr < blockCount() : "out of range";
260 assert 0 <= toBlockNr && toBlockNr < blockCount() : "out of range";
261 assert fromBlockNr < toBlockNr : "must cross block boundary";
262
263 // Try to split at end of maxBlock. If this would be after
264 // maxSplitPos, then use the begin of maxBlock
265 int optimalSplitPos = maxBlock.lastLirInstructionId() + 2;
266 if (optimalSplitPos > maxSplitPos) {
267 optimalSplitPos = maxBlock.firstLirInstructionId();
268 }
269
270 int minLoopDepth = maxBlock.loopDepth();
271 for (int i = toBlockNr - 1; i >= fromBlockNr; i--) {
272 BlockBegin cur = blockAt(i);
273
274 if (cur.loopDepth() < minLoopDepth) {
275 // block with lower loop-depth found . split at the end of this block
276 minLoopDepth = cur.loopDepth();
277 optimalSplitPos = cur.lastLirInstructionId() + 2;
278 }
279 }
280 assert optimalSplitPos > allocator.maxOpId() || allocator.isBlockBegin(optimalSplitPos) : "algorithm must move split pos to block boundary";
281
282 return optimalSplitPos;
283 }
284
285 int findOptimalSplitPos(Interval interval, int minSplitPos, int maxSplitPos, boolean doLoopOptimization) {
286 int optimalSplitPos = -1;
287 if (minSplitPos == maxSplitPos) {
288 // trivial case, no optimization of split position possible
289 if (C1XOptions.TraceLinearScanLevel >= 4) {
290 TTY.println(" min-pos and max-pos are equal, no optimization possible");
291 }
292 optimalSplitPos = minSplitPos;
293
294 } else {
295 assert minSplitPos < maxSplitPos : "must be true then";
296 assert minSplitPos > 0 : "cannot access minSplitPos - 1 otherwise";
297
298 // reason for using minSplitPos - 1: when the minimal split pos is exactly at the
299 // beginning of a block, then minSplitPos is also a possible split position.
300 // Use the block before as minBlock, because then minBlock.lastLirInstructionId() + 2 == minSplitPos
301 BlockBegin minBlock = allocator.blockForId(minSplitPos - 1);
302
303 // reason for using maxSplitPos - 1: otherwise there would be an assert on failure
304 // when an interval ends at the end of the last block of the method
305 // (in this case, maxSplitPos == allocator().maxLirOpId() + 2, and there is no
306 // block at this opId)
307 BlockBegin maxBlock = allocator.blockForId(maxSplitPos - 1);
308
309 assert minBlock.linearScanNumber() <= maxBlock.linearScanNumber() : "invalid order";
310 if (minBlock == maxBlock) {
311 // split position cannot be moved to block boundary : so split as late as possible
312 if (C1XOptions.TraceLinearScanLevel >= 4) {
313 TTY.println(" cannot move split pos to block boundary because minPos and maxPos are in same block");
314 }
315 optimalSplitPos = maxSplitPos;
316
317 } else {
318 if (interval.hasHoleBetween(maxSplitPos - 1, maxSplitPos) && !allocator.isBlockBegin(maxSplitPos)) {
319 // Do not move split position if the interval has a hole before maxSplitPos.
320 // Intervals resulting from Phi-Functions have more than one definition (marked
321 // as mustHaveRegister) with a hole before each definition. When the register is needed
322 // for the second definition : an earlier reloading is unnecessary.
323 if (C1XOptions.TraceLinearScanLevel >= 4) {
324 TTY.println(" interval has hole just before maxSplitPos, so splitting at maxSplitPos");
325 }
326 optimalSplitPos = maxSplitPos;
327
328 } else {
329 // seach optimal block boundary between minSplitPos and maxSplitPos
330 if (C1XOptions.TraceLinearScanLevel >= 4) {
331 TTY.println(" moving split pos to optimal block boundary between block B%d and B%d", minBlock.blockID, maxBlock.blockID);
332 }
333
334 if (doLoopOptimization) {
335 // Loop optimization: if a loop-end marker is found between min- and max-position :
336 // then split before this loop
337 int loopEndPos = interval.nextUsageExact(RegisterPriority.LiveAtLoopEnd, minBlock.lastLirInstructionId() + 2);
338 if (C1XOptions.TraceLinearScanLevel >= 4) {
339 TTY.println(" loop optimization: loop end found at pos %d", loopEndPos);
340 }
341
342 assert loopEndPos > minSplitPos : "invalid order";
343 if (loopEndPos < maxSplitPos) {
344 // loop-end marker found between min- and max-position
345 // if it is not the end marker for the same loop as the min-position : then move
346 // the max-position to this loop block.
347 // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
348 // of the interval (normally, only mustHaveRegister causes a reloading)
349 BlockBegin loopBlock = allocator.blockForId(loopEndPos);
350
351 if (C1XOptions.TraceLinearScanLevel >= 4) {
352 TTY.println(" interval is used in loop that ends in block B%d, so trying to move maxBlock back from B%d to B%d", loopBlock.blockID, maxBlock.blockID, loopBlock.blockID);
353 }
354 assert loopBlock != minBlock : "loopBlock and minBlock must be different because block boundary is needed between";
355
356 optimalSplitPos = findOptimalSplitPos(minBlock, loopBlock, loopBlock.lastLirInstructionId() + 2);
357 if (optimalSplitPos == loopBlock.lastLirInstructionId() + 2) {
358 optimalSplitPos = -1;
359 if (C1XOptions.TraceLinearScanLevel >= 4) {
360 TTY.println(" loop optimization not necessary");
361 }
362 } else {
363 if (C1XOptions.TraceLinearScanLevel >= 4) {
364 TTY.println(" loop optimization successful");
365 }
366 }
367 }
368 }
369
370 if (optimalSplitPos == -1) {
371 // not calculated by loop optimization
372 optimalSplitPos = findOptimalSplitPos(minBlock, maxBlock, maxSplitPos);
373 }
374 }
375 }
376 }
377 if (C1XOptions.TraceLinearScanLevel >= 4) {
378 TTY.println(" optimal split position: %d", optimalSplitPos);
379 }
380
381 return optimalSplitPos;
382 }
383
384 // split an interval at the optimal position between minSplitPos and
385 // maxSplitPos in two parts:
386 // 1) the left part has already a location assigned
387 // 2) the right part is sorted into to the unhandled-list
388 void splitBeforeUsage(Interval interval, int minSplitPos, int maxSplitPos) {
389 if (C1XOptions.TraceLinearScanLevel >= 2) {
390 TTY.println("----- splitting interval: ");
391 }
392 if (C1XOptions.TraceLinearScanLevel >= 4) {
393 TTY.println(interval.logString(allocator));
394 }
395 if (C1XOptions.TraceLinearScanLevel >= 2) {
396 TTY.println(" between %d and %d", minSplitPos, maxSplitPos);
397 }
398
399 assert interval.from() < minSplitPos : "cannot split at start of interval";
400 assert currentPosition < minSplitPos : "cannot split before current position";
401 assert minSplitPos <= maxSplitPos : "invalid order";
402 assert maxSplitPos <= interval.to() : "cannot split after end of interval";
403
404 int optimalSplitPos = findOptimalSplitPos(interval, minSplitPos, maxSplitPos, true);
405
406 assert minSplitPos <= optimalSplitPos && optimalSplitPos <= maxSplitPos : "out of range";
407 assert optimalSplitPos <= interval.to() : "cannot split after end of interval";
408 assert optimalSplitPos > interval.from() : "cannot split at start of interval";
409
410 if (optimalSplitPos == interval.to() && interval.nextUsage(RegisterPriority.MustHaveRegister, minSplitPos) == Integer.MAX_VALUE) {
411 // the split position would be just before the end of the interval
412 // . no split at all necessary
413 if (C1XOptions.TraceLinearScanLevel >= 4) {
414 TTY.println(" no split necessary because optimal split position is at end of interval");
415 }
416 return;
417 }
418
419 // must calculate this before the actual split is performed and before split position is moved to odd opId
420 boolean moveNecessary = !allocator.isBlockBegin(optimalSplitPos) && !interval.hasHoleBetween(optimalSplitPos - 1, optimalSplitPos);
421
422 if (!allocator.isBlockBegin(optimalSplitPos)) {
423 // move position before actual instruction (odd opId)
424 optimalSplitPos = (optimalSplitPos - 1) | 1;
425 }
426
427 if (C1XOptions.TraceLinearScanLevel >= 4) {
428 TTY.println(" splitting at position %d", optimalSplitPos);
429 }
430 assert allocator.isBlockBegin(optimalSplitPos) || (optimalSplitPos % 2 == 1) : "split pos must be odd when not on block boundary";
431 assert !allocator.isBlockBegin(optimalSplitPos) || (optimalSplitPos % 2 == 0) : "split pos must be even on block boundary";
432
433 Interval splitPart = interval.split(optimalSplitPos, allocator);
434
435 allocator.copyRegisterFlags(interval, splitPart);
436 splitPart.setInsertMoveWhenActivated(moveNecessary);
437
438 assert splitPart.from() >= current.currentFrom() : "cannot append new interval before current walk position";
439 unhandledLists.addToListSortedByStartAndUsePositions(RegisterBinding.Any, splitPart);
440
441 if (C1XOptions.TraceLinearScanLevel >= 2) {
442 TTY.println(" split interval in two parts (insertMoveWhenActivated: %b)", moveNecessary);
443 }
444 if (C1XOptions.TraceLinearScanLevel >= 2) {
445 TTY.print(" ");
446 TTY.println(interval.logString(allocator));
447 TTY.print(" ");
448 TTY.println(splitPart.logString(allocator));
449 }
450 }
451
452 // split an interval at the optimal position between minSplitPos and
453 // maxSplitPos in two parts:
454 // 1) the left part has already a location assigned
455 // 2) the right part is always on the stack and therefore ignored in further processing
456
457 void splitForSpilling(Interval interval) {
458 // calculate allowed range of splitting position
459 int maxSplitPos = currentPosition;
460 int minSplitPos = Math.max(interval.previousUsage(RegisterPriority.ShouldHaveRegister, maxSplitPos) + 1, interval.from());
461
462 if (C1XOptions.TraceLinearScanLevel >= 2) {
463 TTY.print("----- splitting and spilling interval: ");
464 TTY.println(interval.logString(allocator));
465 TTY.println(" between %d and %d", minSplitPos, maxSplitPos);
466 }
467
468 assert interval.state == State.Active : "why spill interval that is not active?";
469 assert interval.from() <= minSplitPos : "cannot split before start of interval";
470 assert minSplitPos <= maxSplitPos : "invalid order";
471 assert maxSplitPos < interval.to() : "cannot split at end end of interval";
472 assert currentPosition < interval.to() : "interval must not end before current position";
473
474 if (minSplitPos == interval.from()) {
475 // the whole interval is never used, so spill it entirely to memory
476 if (C1XOptions.TraceLinearScanLevel >= 2) {
477 TTY.println(" spilling entire interval because split pos is at beginning of interval");
478 TTY.println(" use positions: " + interval.usePosList().size());
479 }
480 assert interval.firstUsage(RegisterPriority.ShouldHaveRegister) > currentPosition : "interval must not have use position before currentPosition";
481
482 allocator.assignSpillSlot(interval);
483 allocator.changeSpillState(interval, minSplitPos);
484
485 // Also kick parent intervals out of register to memory when they have no use
486 // position. This avoids short interval in register surrounded by intervals in
487 // memory . avoid useless moves from memory to register and back
488 Interval parent = interval;
489 while (parent != null && parent.isSplitChild()) {
490 parent = parent.getSplitChildBeforeOpId(parent.from());
491
492 if (parent.location().isRegister()) {
493 if (parent.firstUsage(RegisterPriority.ShouldHaveRegister) == Integer.MAX_VALUE) {
494 // parent is never used, so kick it out of its assigned register
495 if (C1XOptions.TraceLinearScanLevel >= 4) {
496 TTY.println(" kicking out interval %d out of its register because it is never used", parent.operandNumber);
497 }
498 allocator.assignSpillSlot(parent);
499 } else {
500 // do not go further back because the register is actually used by the interval
501 parent = null;
502 }
503 }
504 }
505
506 } else {
507 // search optimal split pos, split interval and spill only the right hand part
508 int optimalSplitPos = findOptimalSplitPos(interval, minSplitPos, maxSplitPos, false);
509
510 assert minSplitPos <= optimalSplitPos && optimalSplitPos <= maxSplitPos : "out of range";
511 assert optimalSplitPos < interval.to() : "cannot split at end of interval";
512 assert optimalSplitPos >= interval.from() : "cannot split before start of interval";
513
514 if (!allocator.isBlockBegin(optimalSplitPos)) {
515 // move position before actual instruction (odd opId)
516 optimalSplitPos = (optimalSplitPos - 1) | 1;
517 }
518
519 if (C1XOptions.TraceLinearScanLevel >= 4) {
520 TTY.println(" splitting at position %d", optimalSplitPos);
521 }
522 assert allocator.isBlockBegin(optimalSplitPos) || (optimalSplitPos % 2 == 1) : "split pos must be odd when not on block boundary";
523 assert !allocator.isBlockBegin(optimalSplitPos) || (optimalSplitPos % 2 == 0) : "split pos must be even on block boundary";
524
525 Interval spilledPart = interval.split(optimalSplitPos, allocator);
526 allocator.assignSpillSlot(spilledPart);
527 allocator.changeSpillState(spilledPart, optimalSplitPos);
528
529 if (!allocator.isBlockBegin(optimalSplitPos)) {
530 if (C1XOptions.TraceLinearScanLevel >= 4) {
531 TTY.println(" inserting move from interval %d to %d", interval.operandNumber, spilledPart.operandNumber);
532 }
533 insertMove(optimalSplitPos, interval, spilledPart);
534 }
535
536 // the currentSplitChild is needed later when moves are inserted for reloading
537 assert spilledPart.currentSplitChild() == interval : "overwriting wrong currentSplitChild";
538 spilledPart.makeCurrentSplitChild();
539
540 if (C1XOptions.TraceLinearScanLevel >= 2) {
541 TTY.println(" split interval in two parts");
542 TTY.print(" ");
543 TTY.println(interval.logString(allocator));
544 TTY.print(" ");
545 TTY.println(spilledPart.logString(allocator));
546 }
547 }
548 }
549
550 void splitStackInterval(Interval interval) {
551 int minSplitPos = currentPosition + 1;
552 int maxSplitPos = Math.min(interval.firstUsage(RegisterPriority.ShouldHaveRegister), interval.to());
553
554 splitBeforeUsage(interval, minSplitPos, maxSplitPos);
555 }
556
557 void splitWhenPartialRegisterAvailable(Interval interval, int registerAvailableUntil) {
558 int minSplitPos = Math.max(interval.previousUsage(RegisterPriority.ShouldHaveRegister, registerAvailableUntil), interval.from() + 1);
559 splitBeforeUsage(interval, minSplitPos, registerAvailableUntil);
560 }
561
562 void splitAndSpillInterval(Interval interval) {
563 assert interval.state == State.Active || interval.state == State.Inactive : "other states not allowed";
564
565 int currentPos = currentPosition;
566 if (interval.state == State.Inactive) {
567 // the interval is currently inactive, so no spill slot is needed for now.
568 // when the split part is activated, the interval has a new chance to get a register,
569 // so in the best case no stack slot is necessary
570 assert interval.hasHoleBetween(currentPos - 1, currentPos + 1) : "interval can not be inactive otherwise";
571 splitBeforeUsage(interval, currentPos + 1, currentPos + 1);
572
573 } else {
574 // search the position where the interval must have a register and split
575 // at the optimal position before.
576 // The new created part is added to the unhandled list and will get a register
577 // when it is activated
578 int minSplitPos = currentPos + 1;
579 int maxSplitPos = Math.min(interval.nextUsage(RegisterPriority.MustHaveRegister, minSplitPos), interval.to());
580
581 splitBeforeUsage(interval, minSplitPos, maxSplitPos);
582
583 assert interval.nextUsage(RegisterPriority.MustHaveRegister, currentPos) == Integer.MAX_VALUE : "the remaining part is spilled to stack and therefore has no register";
584 splitForSpilling(interval);
585 }
586 }
587
588 boolean allocFreeRegister(Interval interval) {
589 if (C1XOptions.TraceLinearScanLevel >= 2) {
590 TTY.println("trying to find free register for " + interval.logString(allocator));
591 }
592
593 initUseLists(true);
594 freeExcludeActiveFixed();
595 freeExcludeActiveAny();
596 freeCollectInactiveFixed(interval);
597 freeCollectInactiveAny(interval);
598 // freeCollectUnhandled(fixedKind, cur);
599 assert unhandledLists.get(RegisterBinding.Fixed) == Interval.EndMarker : "must not have unhandled fixed intervals because all fixed intervals have a use at position 0";
600
601 // usePos contains the start of the next interval that has this register assigned
602 // (either as a fixed register or a normal allocated register in the past)
603 // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
604 if (C1XOptions.TraceLinearScanLevel >= 4) {
605 TTY.println(" state of registers:");
606 for (CiRegister register : availableRegs) {
607 int i = register.number;
608 TTY.println(" reg %d: usePos: %d", register.number, usePos[i]);
609 }
610 }
611
612 CiRegister hint = null;
613 Interval locationHint = interval.locationHint(true, allocator);
614 if (locationHint != null && locationHint.location() != null && locationHint.location().isRegister()) {
615 hint = locationHint.location().asRegister();
616 if (C1XOptions.TraceLinearScanLevel >= 4) {
617 TTY.println(" hint register %d from interval %s", hint.number, locationHint.logString(allocator));
618 }
619 }
620 assert interval.location() == null : "register already assigned to interval";
621
622 // the register must be free at least until this position
623 int regNeededUntil = interval.from() + 1;
624 int intervalTo = interval.to();
625
626 boolean needSplit = false;
627 int splitPos = -1;
628
629 CiRegister reg = null;
630 CiRegister minFullReg = null;
631 CiRegister maxPartialReg = null;
632
633 for (int i = 0; i < availableRegs.length; ++i) {
634 CiRegister availableReg = availableRegs[i];
635 int number = availableReg.number;
636 if (usePos[number] >= intervalTo) {
637 // this register is free for the full interval
638 if (minFullReg == null || availableReg == hint || (usePos[number] < usePos[minFullReg.number] && minFullReg != hint)) {
639 minFullReg = availableReg;
640 }
641 } else if (usePos[number] > regNeededUntil) {
642 // this register is at least free until regNeededUntil
643 if (maxPartialReg == null || availableReg == hint || (usePos[number] > usePos[maxPartialReg.number] && maxPartialReg != hint)) {
644 maxPartialReg = availableReg;
645 }
646 }
647 }
648
649 if (minFullReg != null) {
650 reg = minFullReg;
651 } else if (maxPartialReg != null) {
652 needSplit = true;
653 reg = maxPartialReg;
654 } else {
655 return false;
656 }
657
658 splitPos = usePos[reg.number];
659 interval.assignLocation(reg.asValue(interval.kind()));
660 if (C1XOptions.TraceLinearScanLevel >= 2) {
661 TTY.println("selected register %d", reg.number);
662 }
663
664 assert splitPos > 0 : "invalid splitPos";
665 if (needSplit) {
666 // register not available for full interval, so split it
667 splitWhenPartialRegisterAvailable(interval, splitPos);
668 }
669
670 // only return true if interval is completely assigned
671 return true;
672 }
673
674 CiRegister findLockedRegister(int regNeededUntil, int intervalTo, CiValue ignoreReg, boolean[] needSplit) {
675 int maxReg = -1;
676 CiRegister ignore = ignoreReg.isRegister() ? ignoreReg.asRegister() : null;
677
678 for (CiRegister reg : availableRegs) {
679 int i = reg.number;
680 if (reg == ignore) {
681 // this register must be ignored
682
683 } else if (usePos[i] > regNeededUntil) {
684 if (maxReg == -1 || (usePos[i] > usePos[maxReg])) {
685 maxReg = i;
686 }
687 }
688 }
689
690 if (maxReg != -1) {
691 if (blockPos[maxReg] <= intervalTo) {
692 needSplit[0] = true;
693 }
694 return availableRegs[maxReg];
695 }
696
697 return null;
698 }
699
700 void splitAndSpillIntersectingIntervals(CiRegister reg) {
701 assert reg != null : "no register assigned";
702
703 for (int i = 0; i < spillIntervals[reg.number].size(); i++) {
704 Interval interval = spillIntervals[reg.number].get(i);
705 removeFromList(interval);
706 splitAndSpillInterval(interval);
707 }
708 }
709
710 // Split an Interval and spill it to memory so that cur can be placed in a register
711 void allocLockedRegister(Interval interval) {
712 if (C1XOptions.TraceLinearScanLevel >= 2) {
713 TTY.println("need to split and spill to get register for " + interval.logString(allocator));
714 }
715
716 // collect current usage of registers
717 initUseLists(false);
718 spillExcludeActiveFixed();
719 // spillBlockUnhandledFixed(cur);
720 assert unhandledLists.get(RegisterBinding.Fixed) == Interval.EndMarker : "must not have unhandled fixed intervals because all fixed intervals have a use at position 0";
721 spillBlockInactiveFixed(interval);
722 spillCollectActiveAny();
723 spillCollectInactiveAny(interval);
724
725 if (C1XOptions.TraceLinearScanLevel >= 4) {
726 TTY.println(" state of registers:");
727 for (CiRegister reg : availableRegs) {
728 int i = reg.number;
729 TTY.print(" reg %d: usePos: %d, blockPos: %d, intervals: ", i, usePos[i], blockPos[i]);
730 for (int j = 0; j < spillIntervals[i].size(); j++) {
731 TTY.print("%d ", spillIntervals[i].get(j).operandNumber);
732 }
733 TTY.println();
734 }
735 }
736
737 // the register must be free at least until this position
738 int firstUsage = interval.firstUsage(RegisterPriority.MustHaveRegister);
739 int regNeededUntil = Math.min(firstUsage, interval.from() + 1);
740 int intervalTo = interval.to();
741 assert regNeededUntil > 0 && regNeededUntil < Integer.MAX_VALUE : "interval has no use";
742
743 CiRegister reg = null;
744 CiRegister ignore = interval.location() != null && interval.location().isRegister() ? interval.location().asRegister() : null;
745 for (CiRegister availableReg : availableRegs) {
746 int number = availableReg.number;
747 if (availableReg == ignore) {
748 // this register must be ignored
749 } else if (usePos[number] > regNeededUntil) {
750 if (reg == null || (usePos[number] > usePos[reg.number])) {
751 reg = availableReg;
752 }
753 }
754 }
755
756 if (reg == null || usePos[reg.number] <= firstUsage) {
757 // the first use of cur is later than the spilling position -> spill cur
758 if (C1XOptions.TraceLinearScanLevel >= 4) {
759 TTY.println("able to spill current interval. firstUsage(register): %d, usePos: %d", firstUsage, reg == null ? 0 : usePos[reg.number]);
760 }
761
762 if (firstUsage <= interval.from() + 1) {
763 assert false : "cannot spill interval that is used in first instruction (possible reason: no register found) firstUsage=" + firstUsage + ", interval.from()=" + interval.from();
764 // assign a reasonable register and do a bailout in product mode to avoid errors
765 allocator.assignSpillSlot(interval);
766 throw new CiBailout("LinearScan: no register found");
767 }
768
769 splitAndSpillInterval(interval);
770 return;
771 }
772
773 boolean needSplit = blockPos[reg.number] <= intervalTo;
774
775 int splitPos = blockPos[reg.number];
776
777 if (C1XOptions.TraceLinearScanLevel >= 4) {
778 TTY.println("decided to use register %d", reg.number);
779 }
780 assert splitPos > 0 : "invalid splitPos";
781 assert needSplit || splitPos > interval.from() : "splitting interval at from";
782
783 interval.assignLocation(reg.asValue(interval.kind()));
784 if (needSplit) {
785 // register not available for full interval : so split it
786 splitWhenPartialRegisterAvailable(interval, splitPos);
787 }
788
789 // perform splitting and spilling for all affected intervals
790 splitAndSpillIntersectingIntervals(reg);
791 }
792
793 boolean noAllocationPossible(Interval interval) {
794
795 if (compilation.target.arch.isX86()) {
796 // fast calculation of intervals that can never get a register because the
797 // the next instruction is a call that blocks all registers
798 // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
799
800 // check if this interval is the result of a split operation
801 // (an interval got a register until this position)
802 int pos = interval.from();
803 if (isOdd(pos)) {
804 // the current instruction is a call that blocks all registers
805 if (pos < allocator.maxOpId() && allocator.hasCall(pos + 1) && interval.to() > pos + 1) {
806 if (C1XOptions.TraceLinearScanLevel >= 4) {
807 TTY.println(" free register cannot be available because all registers blocked by following call");
808 }
809
810 // safety check that there is really no register available
811 assert !allocFreeRegister(interval) : "found a register for this interval";
812 return true;
813 }
814
815 }
816 }
817 return false;
818 }
819
820 void initVarsForAlloc(Interval interval) {
821 EnumMap<RegisterFlag, CiRegister[]> categorizedRegs = allocator.compilation.registerConfig.getCategorizedAllocatableRegisters();
822 if (allocator.operands.mustBeByteRegister(interval.operand)) {
823 assert interval.kind() != CiKind.Float && interval.kind() != CiKind.Double : "cpu regs only";
824 availableRegs = categorizedRegs.get(RegisterFlag.Byte);
825 } else if (interval.kind() == CiKind.Float || interval.kind() == CiKind.Double) {
826 availableRegs = categorizedRegs.get(RegisterFlag.FPU);
827 } else {
828 availableRegs = categorizedRegs.get(RegisterFlag.CPU);
829 }
830 }
831
832 boolean isMove(LIRInstruction op, Interval from, Interval to) {
833 if (op.code != LIROpcode.Move) {
834 return false;
835 }
836 assert op instanceof LIROp1 : "move must be LIROp1";
837
838 CiValue input = ((LIROp1) op).operand();
839 CiValue result = ((LIROp1) op).result();
840 return input.isVariable() && result.isVariable() && input == from.operand && result == to.operand;
841 }
842
843 // optimization (especially for phi functions of nested loops):
844 // assign same spill slot to non-intersecting intervals
845 void combineSpilledIntervals(Interval interval) {
846 if (interval.isSplitChild()) {
847 // optimization is only suitable for split parents
848 return;
849 }
850
851 Interval registerHint = interval.locationHint(false, allocator);
852 if (registerHint == null) {
853 // cur is not the target of a move : otherwise registerHint would be set
854 return;
855 }
856 assert registerHint.isSplitParent() : "register hint must be split parent";
857
858 if (interval.spillState() != SpillState.NoOptimization || registerHint.spillState() != SpillState.NoOptimization) {
859 // combining the stack slots for intervals where spill move optimization is applied
860 // is not benefitial and would cause problems
861 return;
862 }
863
864 int beginPos = interval.from();
865 int endPos = interval.to();
866 if (endPos > allocator.maxOpId() || isOdd(beginPos) || isOdd(endPos)) {
867 // safety check that lirOpWithId is allowed
868 return;
869 }
870
871 if (!isMove(allocator.instructionForId(beginPos), registerHint, interval) || !isMove(allocator.instructionForId(endPos), interval, registerHint)) {
872 // cur and registerHint are not connected with two moves
873 return;
874 }
875
876 Interval beginHint = registerHint.getSplitChildAtOpId(beginPos, LIRInstruction.OperandMode.Input, allocator);
877 Interval endHint = registerHint.getSplitChildAtOpId(endPos, LIRInstruction.OperandMode.Output, allocator);
878 if (beginHint == endHint || beginHint.to() != beginPos || endHint.from() != endPos) {
879 // registerHint must be split : otherwise the re-writing of use positions does not work
880 return;
881 }
882
883 assert beginHint.location() != null : "must have register assigned";
884 assert endHint.location() == null : "must not have register assigned";
885 assert interval.firstUsage(RegisterPriority.MustHaveRegister) == beginPos : "must have use position at begin of interval because of move";
886 assert endHint.firstUsage(RegisterPriority.MustHaveRegister) == endPos : "must have use position at begin of interval because of move";
887
888 if (beginHint.location().isRegister()) {
889 // registerHint is not spilled at beginPos : so it would not be benefitial to immediately spill cur
890 return;
891 }
892 assert registerHint.spillSlot() != null : "must be set when part of interval was spilled";
893
894 // modify intervals such that cur gets the same stack slot as registerHint
895 // delete use positions to prevent the intervals to get a register at beginning
896 interval.setSpillSlot(registerHint.spillSlot());
897 interval.removeFirstUsePos();
898 endHint.removeFirstUsePos();
899 }
900
901 // allocate a physical register or memory location to an interval
902 @Override
903 boolean activateCurrent() {
904 Interval interval = current;
905 boolean result = true;
906
907 if (C1XOptions.TraceLinearScanLevel >= 2) {
908 TTY.println("+++++ activating interval " + interval.logString(allocator));
909 }
910
911 if (C1XOptions.TraceLinearScanLevel >= 4) {
912 TTY.println(" splitParent: %s, insertMoveWhenActivated: %b", interval.splitParent().operandNumber, interval.insertMoveWhenActivated());
913 }
914
915 final CiValue operand = interval.operand;
916 if (interval.location() != null && interval.location().isStackSlot()) {
917 // activating an interval that has a stack slot assigned . split it at first use position
918 // used for method parameters
919 if (C1XOptions.TraceLinearScanLevel >= 4) {
920 TTY.println(" interval has spill slot assigned (method parameter) . split it before first use");
921 }
922 splitStackInterval(interval);
923 result = false;
924
925 } else {
926 if (operand.isVariable() && allocator.operands.mustStartInMemory((CiVariable) operand)) {
927 assert interval.location() == null : "register already assigned";
928 allocator.assignSpillSlot(interval);
929
930 if (!allocator.operands.mustStayInMemory((CiVariable) operand)) {
931 // activating an interval that must start in a stack slot but may get a register later
932 // used for lirRoundfp: rounding is done by store to stack and reload later
933 if (C1XOptions.TraceLinearScanLevel >= 4) {
934 TTY.println(" interval must start in stack slot . split it before first use");
935 }
936 splitStackInterval(interval);
937 }
938
939 result = false;
940 } else if (interval.location() == null) {
941 // interval has not assigned register . normal allocation
942 // (this is the normal case for most intervals)
943 if (C1XOptions.TraceLinearScanLevel >= 4) {
944 TTY.println(" normal allocation of register");
945 }
946
947 // assign same spill slot to non-intersecting intervals
948 combineSpilledIntervals(interval);
949
950 initVarsForAlloc(interval);
951 if (noAllocationPossible(interval) || !allocFreeRegister(interval)) {
952 // no empty register available.
953 // split and spill another interval so that this interval gets a register
954 allocLockedRegister(interval);
955 }
956
957 // spilled intervals need not be move to active-list
958 if (!interval.location().isRegister()) {
959 result = false;
960 }
961 }
962 }
963
964 // load spilled values that become active from stack slot to register
965 if (interval.insertMoveWhenActivated()) {
966 assert interval.isSplitChild();
967 assert interval.currentSplitChild() != null;
968 assert interval.currentSplitChild().operand != operand : "cannot insert move between same interval";
969 if (C1XOptions.TraceLinearScanLevel >= 4) {
970 TTY.println("Inserting move from interval %d to %d because insertMoveWhenActivated is set", interval.currentSplitChild().operandNumber, interval.operandNumber);
971 }
972
973 insertMove(interval.from(), interval.currentSplitChild(), interval);
974 }
975 interval.makeCurrentSplitChild();
976
977 return result; // true = interval is moved to active list
978 }
979
980 public void finishAllocation() {
981 // must be called when all intervals are allocated
982 moveResolver.resolveAndAppendMoves();
983 }
984 }