comparison src/cpu/sparc/vm/assembler_sparc.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 class BiasedLockingCounters;
26
27 // <sys/trap.h> promises that the system will not use traps 16-31
28 #define ST_RESERVED_FOR_USER_0 0x10
29
30 /* Written: David Ungar 4/19/97 */
31
32 // Contains all the definitions needed for sparc assembly code generation.
33
34 // Register aliases for parts of the system:
35
36 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
37 // across context switches in V8+ ABI. Of course, there are no 64 bit regs
38 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
39
40 // g2-g4 are scratch registers called "application globals". Their
41 // meaning is reserved to the "compilation system"--which means us!
42 // They are are not supposed to be touched by ordinary C code, although
43 // highly-optimized C code might steal them for temps. They are safe
44 // across thread switches, and the ABI requires that they be safe
45 // across function calls.
46 //
47 // g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
48 // across func calls, and V8+ also allows g5 to be clobbered across
49 // func calls. Also, g1 and g5 can get touched while doing shared
50 // library loading.
51 //
52 // We must not touch g7 (it is the thread-self register) and g6 is
53 // reserved for certain tools. g0, of course, is always zero.
54 //
55 // (Sources: SunSoft Compilers Group, thread library engineers.)
56
57 // %%%% The interpreter should be revisited to reduce global scratch regs.
58
59 // This global always holds the current JavaThread pointer:
60
61 REGISTER_DECLARATION(Register, G2_thread , G2);
62
63 // The following globals are part of the Java calling convention:
64
65 REGISTER_DECLARATION(Register, G5_method , G5);
66 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
67 REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
68
69 // The following globals are used for the new C1 & interpreter calling convention:
70 REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
71
72 // This local is used to preserve G2_thread in the interpreter and in stubs:
73 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
74
75 // These globals are used as scratch registers in the interpreter:
76
77 REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
78 REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
79 REGISTER_DECLARATION(Register, G3_scratch , G3);
80 REGISTER_DECLARATION(Register, G4_scratch , G4);
81
82 // These globals are used as short-lived scratch registers in the compiler:
83
84 REGISTER_DECLARATION(Register, Gtemp , G5);
85
86 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
87 // because a single patchable "set" instruction (NativeMovConstReg,
88 // or NativeMovConstPatching for compiler1) instruction
89 // serves to set up either quantity, depending on whether the compiled
90 // call site is an inline cache or is megamorphic. See the function
91 // CompiledIC::set_to_megamorphic.
92 //
93 // On the other hand, G5_inline_cache_klass must differ from G5_method,
94 // because both registers are needed for an inline cache that calls
95 // an interpreted method.
96 //
97 // Note that G5_method is only the method-self for the interpreter,
98 // and is logically unrelated to G5_megamorphic_method.
99 //
100 // Invariants on G2_thread (the JavaThread pointer):
101 // - it should not be used for any other purpose anywhere
102 // - it must be re-initialized by StubRoutines::call_stub()
103 // - it must be preserved around every use of call_VM
104
105 // We can consider using g2/g3/g4 to cache more values than the
106 // JavaThread, such as the card-marking base or perhaps pointers into
107 // Eden. It's something of a waste to use them as scratch temporaries,
108 // since they are not supposed to be volatile. (Of course, if we find
109 // that Java doesn't benefit from application globals, then we can just
110 // use them as ordinary temporaries.)
111 //
112 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
113 // it makes sense to use them routinely for procedure linkage,
114 // whenever the On registers are not applicable. Examples: G5_method,
115 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
116 // stubs. This means that compiler stubs, etc., should be kept to a
117 // maximum of two or three G-register arguments.
118
119
120 // stub frames
121
122 REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
123
124 // Interpreter frames
125
126 #ifdef CC_INTERP
127 REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer
128 REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch
129 REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only)
130 REGISTER_DECLARATION(Register, L2_scratch , L2);
131 REGISTER_DECLARATION(Register, L3_scratch , L3);
132 REGISTER_DECLARATION(Register, L4_scratch , L4);
133 REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses
134 REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses
135 REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache
136 REGISTER_DECLARATION(Register, O5_savedSP , O5);
137 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
138 // a copy SP, so in 64-bit it's a biased value. The bias
139 // is added and removed as needed in the frame code.
140 // Interface to signature handler
141 REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler
142 REGISTER_DECLARATION(Register, Lmethod , L6); // methodOop when calling signature handler
143
144 #else
145 REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
146 REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
147 REGISTER_DECLARATION(Register, Lmethod , L2);
148 REGISTER_DECLARATION(Register, Llocals , L3);
149 REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
150 // must match Llocals in asm interpreter
151 REGISTER_DECLARATION(Register, Lmonitors , L4);
152 REGISTER_DECLARATION(Register, Lbyte_code , L5);
153 // When calling out from the interpreter we record SP so that we can remove any extra stack
154 // space allocated during adapter transitions. This register is only live from the point
155 // of the call until we return.
156 REGISTER_DECLARATION(Register, Llast_SP , L5);
157 REGISTER_DECLARATION(Register, Lscratch , L5);
158 REGISTER_DECLARATION(Register, Lscratch2 , L6);
159 REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
160
161 REGISTER_DECLARATION(Register, O5_savedSP , O5);
162 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
163 // a copy SP, so in 64-bit it's a biased value. The bias
164 // is added and removed as needed in the frame code.
165 REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables
166 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
167 REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
168 #endif /* CC_INTERP */
169
170 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
171 // the interpreter code. If Lscratch2 needs to be used for some
172 // purpose than LcpoolCache should be restore after that for
173 // the interpreter to work right
174 // (These assignments must be compatible with L7_thread_cache; see above.)
175
176 // Since Lbcp points into the middle of the method object,
177 // it is temporarily converted into a "bcx" during GC.
178
179 // Exception processing
180 // These registers are passed into exception handlers.
181 // All exception handlers require the exception object being thrown.
182 // In addition, an nmethod's exception handler must be passed
183 // the address of the call site within the nmethod, to allow
184 // proper selection of the applicable catch block.
185 // (Interpreter frames use their own bcp() for this purpose.)
186 //
187 // The Oissuing_pc value is not always needed. When jumping to a
188 // handler that is known to be interpreted, the Oissuing_pc value can be
189 // omitted. An actual catch block in compiled code receives (from its
190 // nmethod's exception handler) the thrown exception in the Oexception,
191 // but it doesn't need the Oissuing_pc.
192 //
193 // If an exception handler (either interpreted or compiled)
194 // discovers there is no applicable catch block, it updates
195 // the Oissuing_pc to the continuation PC of its own caller,
196 // pops back to that caller's stack frame, and executes that
197 // caller's exception handler. Obviously, this process will
198 // iterate until the control stack is popped back to a method
199 // containing an applicable catch block. A key invariant is
200 // that the Oissuing_pc value is always a value local to
201 // the method whose exception handler is currently executing.
202 //
203 // Note: The issuing PC value is __not__ a raw return address (I7 value).
204 // It is a "return pc", the address __following__ the call.
205 // Raw return addresses are converted to issuing PCs by frame::pc(),
206 // or by stubs. Issuing PCs can be used directly with PC range tables.
207 //
208 REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
209 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
210
211
212 // These must occur after the declarations above
213 #ifndef DONT_USE_REGISTER_DEFINES
214
215 #define Gthread AS_REGISTER(Register, Gthread)
216 #define Gmethod AS_REGISTER(Register, Gmethod)
217 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
218 #define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg)
219 #define Gargs AS_REGISTER(Register, Gargs)
220 #define Lthread_cache AS_REGISTER(Register, Lthread_cache)
221 #define Gframe_size AS_REGISTER(Register, Gframe_size)
222 #define Gtemp AS_REGISTER(Register, Gtemp)
223
224 #ifdef CC_INTERP
225 #define Lstate AS_REGISTER(Register, Lstate)
226 #define Lesp AS_REGISTER(Register, Lesp)
227 #define L1_scratch AS_REGISTER(Register, L1_scratch)
228 #define Lmirror AS_REGISTER(Register, Lmirror)
229 #define L2_scratch AS_REGISTER(Register, L2_scratch)
230 #define L3_scratch AS_REGISTER(Register, L3_scratch)
231 #define L4_scratch AS_REGISTER(Register, L4_scratch)
232 #define Lscratch AS_REGISTER(Register, Lscratch)
233 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
234 #define L7_scratch AS_REGISTER(Register, L7_scratch)
235 #define Ostate AS_REGISTER(Register, Ostate)
236 #else
237 #define Lesp AS_REGISTER(Register, Lesp)
238 #define Lbcp AS_REGISTER(Register, Lbcp)
239 #define Lmethod AS_REGISTER(Register, Lmethod)
240 #define Llocals AS_REGISTER(Register, Llocals)
241 #define Lmonitors AS_REGISTER(Register, Lmonitors)
242 #define Lbyte_code AS_REGISTER(Register, Lbyte_code)
243 #define Lscratch AS_REGISTER(Register, Lscratch)
244 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
245 #define LcpoolCache AS_REGISTER(Register, LcpoolCache)
246 #endif /* ! CC_INTERP */
247
248 #define Lentry_args AS_REGISTER(Register, Lentry_args)
249 #define I5_savedSP AS_REGISTER(Register, I5_savedSP)
250 #define O5_savedSP AS_REGISTER(Register, O5_savedSP)
251 #define IdispatchAddress AS_REGISTER(Register, IdispatchAddress)
252 #define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr)
253 #define IdispatchTables AS_REGISTER(Register, IdispatchTables)
254
255 #define Oexception AS_REGISTER(Register, Oexception)
256 #define Oissuing_pc AS_REGISTER(Register, Oissuing_pc)
257
258
259 #endif
260
261 // Address is an abstraction used to represent a memory location.
262 //
263 // Note: A register location is represented via a Register, not
264 // via an address for efficiency & simplicity reasons.
265
266 class Address VALUE_OBJ_CLASS_SPEC {
267 private:
268 Register _base;
269 #ifdef _LP64
270 int _hi32; // bits 63::32
271 int _low32; // bits 31::0
272 #endif
273 int _hi;
274 int _disp;
275 RelocationHolder _rspec;
276
277 RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) {
278 switch (rt) {
279 case relocInfo::external_word_type:
280 return external_word_Relocation::spec(a);
281 case relocInfo::internal_word_type:
282 return internal_word_Relocation::spec(a);
283 #ifdef _LP64
284 case relocInfo::opt_virtual_call_type:
285 return opt_virtual_call_Relocation::spec();
286 case relocInfo::static_call_type:
287 return static_call_Relocation::spec();
288 case relocInfo::runtime_call_type:
289 return runtime_call_Relocation::spec();
290 #endif
291 case relocInfo::none:
292 return RelocationHolder();
293 default:
294 ShouldNotReachHere();
295 return RelocationHolder();
296 }
297 }
298
299 public:
300 Address(Register b, address a, relocInfo::relocType rt = relocInfo::none)
301 : _rspec(rspec_from_rtype(rt, a))
302 {
303 _base = b;
304 #ifdef _LP64
305 _hi32 = (intptr_t)a >> 32; // top 32 bits in 64 bit word
306 _low32 = (intptr_t)a & ~0; // low 32 bits in 64 bit word
307 #endif
308 _hi = (intptr_t)a & ~0x3ff; // top 22 bits in low word
309 _disp = (intptr_t)a & 0x3ff; // bottom 10 bits
310 }
311
312 Address(Register b, address a, RelocationHolder const& rspec)
313 : _rspec(rspec)
314 {
315 _base = b;
316 #ifdef _LP64
317 _hi32 = (intptr_t)a >> 32; // top 32 bits in 64 bit word
318 _low32 = (intptr_t)a & ~0; // low 32 bits in 64 bit word
319 #endif
320 _hi = (intptr_t)a & ~0x3ff; // top 22 bits
321 _disp = (intptr_t)a & 0x3ff; // bottom 10 bits
322 }
323
324 Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder())
325 : _rspec(rspec)
326 {
327 _base = b;
328 #ifdef _LP64
329 // [RGV] Put in Assert to force me to check usage of this constructor
330 assert( h == 0, "Check usage of this constructor" );
331 _hi32 = h;
332 _low32 = d;
333 _hi = h;
334 _disp = d;
335 #else
336 _hi = h;
337 _disp = d;
338 #endif
339 }
340
341 Address()
342 : _rspec(RelocationHolder())
343 {
344 _base = G0;
345 #ifdef _LP64
346 _hi32 = 0;
347 _low32 = 0;
348 #endif
349 _hi = 0;
350 _disp = 0;
351 }
352
353 // fancier constructors
354
355 enum addr_type {
356 extra_in_argument, // in the In registers
357 extra_out_argument // in the Outs
358 };
359
360 Address( addr_type, int );
361
362 // accessors
363
364 Register base() const { return _base; }
365 #ifdef _LP64
366 int hi32() const { return _hi32; }
367 int low32() const { return _low32; }
368 #endif
369 int hi() const { return _hi; }
370 int disp() const { return _disp; }
371 #ifdef _LP64
372 intptr_t value() const { return ((intptr_t)_hi32 << 32) |
373 (intptr_t)(uint32_t)_low32; }
374 #else
375 int value() const { return _hi | _disp; }
376 #endif
377 const relocInfo::relocType rtype() { return _rspec.type(); }
378 const RelocationHolder& rspec() { return _rspec; }
379
380 RelocationHolder rspec(int offset) const {
381 return offset == 0 ? _rspec : _rspec.plus(offset);
382 }
383
384 inline bool is_simm13(int offset = 0); // check disp+offset for overflow
385
386 Address split_disp() const { // deal with disp overflow
387 Address a = (*this);
388 int hi_disp = _disp & ~0x3ff;
389 if (hi_disp != 0) {
390 a._disp -= hi_disp;
391 a._hi += hi_disp;
392 }
393 return a;
394 }
395
396 Address after_save() const {
397 Address a = (*this);
398 a._base = a._base->after_save();
399 return a;
400 }
401
402 Address after_restore() const {
403 Address a = (*this);
404 a._base = a._base->after_restore();
405 return a;
406 }
407
408 friend class Assembler;
409 };
410
411
412 inline Address RegisterImpl::address_in_saved_window() const {
413 return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
414 }
415
416
417
418 // Argument is an abstraction used to represent an outgoing
419 // actual argument or an incoming formal parameter, whether
420 // it resides in memory or in a register, in a manner consistent
421 // with the SPARC Application Binary Interface, or ABI. This is
422 // often referred to as the native or C calling convention.
423
424 class Argument VALUE_OBJ_CLASS_SPEC {
425 private:
426 int _number;
427 bool _is_in;
428
429 public:
430 #ifdef _LP64
431 enum {
432 n_register_parameters = 6, // only 6 registers may contain integer parameters
433 n_float_register_parameters = 16 // Can have up to 16 floating registers
434 };
435 #else
436 enum {
437 n_register_parameters = 6 // only 6 registers may contain integer parameters
438 };
439 #endif
440
441 // creation
442 Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
443
444 int number() const { return _number; }
445 bool is_in() const { return _is_in; }
446 bool is_out() const { return !is_in(); }
447
448 Argument successor() const { return Argument(number() + 1, is_in()); }
449 Argument as_in() const { return Argument(number(), true ); }
450 Argument as_out() const { return Argument(number(), false); }
451
452 // locating register-based arguments:
453 bool is_register() const { return _number < n_register_parameters; }
454
455 #ifdef _LP64
456 // locating Floating Point register-based arguments:
457 bool is_float_register() const { return _number < n_float_register_parameters; }
458
459 FloatRegister as_float_register() const {
460 assert(is_float_register(), "must be a register argument");
461 return as_FloatRegister(( number() *2 ) + 1);
462 }
463 FloatRegister as_double_register() const {
464 assert(is_float_register(), "must be a register argument");
465 return as_FloatRegister(( number() *2 ));
466 }
467 #endif
468
469 Register as_register() const {
470 assert(is_register(), "must be a register argument");
471 return is_in() ? as_iRegister(number()) : as_oRegister(number());
472 }
473
474 // locating memory-based arguments
475 Address as_address() const {
476 assert(!is_register(), "must be a memory argument");
477 return address_in_frame();
478 }
479
480 // When applied to a register-based argument, give the corresponding address
481 // into the 6-word area "into which callee may store register arguments"
482 // (This is a different place than the corresponding register-save area location.)
483 Address address_in_frame() const {
484 return Address( is_in() ? Address::extra_in_argument
485 : Address::extra_out_argument,
486 _number );
487 }
488
489 // debugging
490 const char* name() const;
491
492 friend class Assembler;
493 };
494
495
496 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
497 // level; i.e., what you write
498 // is what you get. The Assembler is generating code into a CodeBuffer.
499
500 class Assembler : public AbstractAssembler {
501 protected:
502
503 static void print_instruction(int inst);
504 static int patched_branch(int dest_pos, int inst, int inst_pos);
505 static int branch_destination(int inst, int pos);
506
507
508 friend class AbstractAssembler;
509
510 // code patchers need various routines like inv_wdisp()
511 friend class NativeInstruction;
512 friend class NativeGeneralJump;
513 friend class Relocation;
514 friend class Label;
515
516 public:
517 // op carries format info; see page 62 & 267
518
519 enum ops {
520 call_op = 1, // fmt 1
521 branch_op = 0, // also sethi (fmt2)
522 arith_op = 2, // fmt 3, arith & misc
523 ldst_op = 3 // fmt 3, load/store
524 };
525
526 enum op2s {
527 bpr_op2 = 3,
528 fb_op2 = 6,
529 fbp_op2 = 5,
530 br_op2 = 2,
531 bp_op2 = 1,
532 cb_op2 = 7, // V8
533 sethi_op2 = 4
534 };
535
536 enum op3s {
537 // selected op3s
538 add_op3 = 0x00,
539 and_op3 = 0x01,
540 or_op3 = 0x02,
541 xor_op3 = 0x03,
542 sub_op3 = 0x04,
543 andn_op3 = 0x05,
544 orn_op3 = 0x06,
545 xnor_op3 = 0x07,
546 addc_op3 = 0x08,
547 mulx_op3 = 0x09,
548 umul_op3 = 0x0a,
549 smul_op3 = 0x0b,
550 subc_op3 = 0x0c,
551 udivx_op3 = 0x0d,
552 udiv_op3 = 0x0e,
553 sdiv_op3 = 0x0f,
554
555 addcc_op3 = 0x10,
556 andcc_op3 = 0x11,
557 orcc_op3 = 0x12,
558 xorcc_op3 = 0x13,
559 subcc_op3 = 0x14,
560 andncc_op3 = 0x15,
561 orncc_op3 = 0x16,
562 xnorcc_op3 = 0x17,
563 addccc_op3 = 0x18,
564 umulcc_op3 = 0x1a,
565 smulcc_op3 = 0x1b,
566 subccc_op3 = 0x1c,
567 udivcc_op3 = 0x1e,
568 sdivcc_op3 = 0x1f,
569
570 taddcc_op3 = 0x20,
571 tsubcc_op3 = 0x21,
572 taddcctv_op3 = 0x22,
573 tsubcctv_op3 = 0x23,
574 mulscc_op3 = 0x24,
575 sll_op3 = 0x25,
576 sllx_op3 = 0x25,
577 srl_op3 = 0x26,
578 srlx_op3 = 0x26,
579 sra_op3 = 0x27,
580 srax_op3 = 0x27,
581 rdreg_op3 = 0x28,
582 membar_op3 = 0x28,
583
584 flushw_op3 = 0x2b,
585 movcc_op3 = 0x2c,
586 sdivx_op3 = 0x2d,
587 popc_op3 = 0x2e,
588 movr_op3 = 0x2f,
589
590 sir_op3 = 0x30,
591 wrreg_op3 = 0x30,
592 saved_op3 = 0x31,
593
594 fpop1_op3 = 0x34,
595 fpop2_op3 = 0x35,
596 impdep1_op3 = 0x36,
597 impdep2_op3 = 0x37,
598 jmpl_op3 = 0x38,
599 rett_op3 = 0x39,
600 trap_op3 = 0x3a,
601 flush_op3 = 0x3b,
602 save_op3 = 0x3c,
603 restore_op3 = 0x3d,
604 done_op3 = 0x3e,
605 retry_op3 = 0x3e,
606
607 lduw_op3 = 0x00,
608 ldub_op3 = 0x01,
609 lduh_op3 = 0x02,
610 ldd_op3 = 0x03,
611 stw_op3 = 0x04,
612 stb_op3 = 0x05,
613 sth_op3 = 0x06,
614 std_op3 = 0x07,
615 ldsw_op3 = 0x08,
616 ldsb_op3 = 0x09,
617 ldsh_op3 = 0x0a,
618 ldx_op3 = 0x0b,
619
620 ldstub_op3 = 0x0d,
621 stx_op3 = 0x0e,
622 swap_op3 = 0x0f,
623
624 lduwa_op3 = 0x10,
625 ldxa_op3 = 0x1b,
626
627 stwa_op3 = 0x14,
628 stxa_op3 = 0x1e,
629
630 ldf_op3 = 0x20,
631 ldfsr_op3 = 0x21,
632 ldqf_op3 = 0x22,
633 lddf_op3 = 0x23,
634 stf_op3 = 0x24,
635 stfsr_op3 = 0x25,
636 stqf_op3 = 0x26,
637 stdf_op3 = 0x27,
638
639 prefetch_op3 = 0x2d,
640
641
642 ldc_op3 = 0x30,
643 ldcsr_op3 = 0x31,
644 lddc_op3 = 0x33,
645 stc_op3 = 0x34,
646 stcsr_op3 = 0x35,
647 stdcq_op3 = 0x36,
648 stdc_op3 = 0x37,
649
650 casa_op3 = 0x3c,
651 casxa_op3 = 0x3e,
652
653 alt_bit_op3 = 0x10,
654 cc_bit_op3 = 0x10
655 };
656
657 enum opfs {
658 // selected opfs
659 fmovs_opf = 0x01,
660 fmovd_opf = 0x02,
661
662 fnegs_opf = 0x05,
663 fnegd_opf = 0x06,
664
665 fadds_opf = 0x41,
666 faddd_opf = 0x42,
667 fsubs_opf = 0x45,
668 fsubd_opf = 0x46,
669
670 fmuls_opf = 0x49,
671 fmuld_opf = 0x4a,
672 fdivs_opf = 0x4d,
673 fdivd_opf = 0x4e,
674
675 fcmps_opf = 0x51,
676 fcmpd_opf = 0x52,
677
678 fstox_opf = 0x81,
679 fdtox_opf = 0x82,
680 fxtos_opf = 0x84,
681 fxtod_opf = 0x88,
682 fitos_opf = 0xc4,
683 fdtos_opf = 0xc6,
684 fitod_opf = 0xc8,
685 fstod_opf = 0xc9,
686 fstoi_opf = 0xd1,
687 fdtoi_opf = 0xd2
688 };
689
690 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7 };
691
692 enum Condition {
693 // for FBfcc & FBPfcc instruction
694 f_never = 0,
695 f_notEqual = 1,
696 f_notZero = 1,
697 f_lessOrGreater = 2,
698 f_unorderedOrLess = 3,
699 f_less = 4,
700 f_unorderedOrGreater = 5,
701 f_greater = 6,
702 f_unordered = 7,
703 f_always = 8,
704 f_equal = 9,
705 f_zero = 9,
706 f_unorderedOrEqual = 10,
707 f_greaterOrEqual = 11,
708 f_unorderedOrGreaterOrEqual = 12,
709 f_lessOrEqual = 13,
710 f_unorderedOrLessOrEqual = 14,
711 f_ordered = 15,
712
713 // V8 coproc, pp 123 v8 manual
714
715 cp_always = 8,
716 cp_never = 0,
717 cp_3 = 7,
718 cp_2 = 6,
719 cp_2or3 = 5,
720 cp_1 = 4,
721 cp_1or3 = 3,
722 cp_1or2 = 2,
723 cp_1or2or3 = 1,
724 cp_0 = 9,
725 cp_0or3 = 10,
726 cp_0or2 = 11,
727 cp_0or2or3 = 12,
728 cp_0or1 = 13,
729 cp_0or1or3 = 14,
730 cp_0or1or2 = 15,
731
732
733 // for integers
734
735 never = 0,
736 equal = 1,
737 zero = 1,
738 lessEqual = 2,
739 less = 3,
740 lessEqualUnsigned = 4,
741 lessUnsigned = 5,
742 carrySet = 5,
743 negative = 6,
744 overflowSet = 7,
745 always = 8,
746 notEqual = 9,
747 notZero = 9,
748 greater = 10,
749 greaterEqual = 11,
750 greaterUnsigned = 12,
751 greaterEqualUnsigned = 13,
752 carryClear = 13,
753 positive = 14,
754 overflowClear = 15
755 };
756
757 enum CC {
758 icc = 0, xcc = 2,
759 // ptr_cc is the correct condition code for a pointer or intptr_t:
760 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
761 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
762 };
763
764 enum PrefetchFcn {
765 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
766 };
767
768 public:
769 // Helper functions for groups of instructions
770
771 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
772
773 enum Membar_mask_bits { // page 184, v9
774 StoreStore = 1 << 3,
775 LoadStore = 1 << 2,
776 StoreLoad = 1 << 1,
777 LoadLoad = 1 << 0,
778
779 Sync = 1 << 6,
780 MemIssue = 1 << 5,
781 Lookaside = 1 << 4
782 };
783
784 // test if x is within signed immediate range for nbits
785 static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 ) <= x && x < ( 1 << nbits-1 ); }
786
787 // test if -4096 <= x <= 4095
788 static bool is_simm13(int x) { return is_simm(x, 13); }
789
790 enum ASIs { // page 72, v9
791 ASI_PRIMARY = 0x80,
792 ASI_PRIMARY_LITTLE = 0x88
793 // add more from book as needed
794 };
795
796 protected:
797 // helpers
798
799 // x is supposed to fit in a field "nbits" wide
800 // and be sign-extended. Check the range.
801
802 static void assert_signed_range(intptr_t x, int nbits) {
803 assert( nbits == 32
804 || -(1 << nbits-1) <= x && x < ( 1 << nbits-1),
805 "value out of range");
806 }
807
808 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
809 assert( (x & 3) == 0, "not word aligned");
810 assert_signed_range(x, nbits + 2);
811 }
812
813 static void assert_unsigned_const(int x, int nbits) {
814 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
815 }
816
817 // fields: note bits numbered from LSB = 0,
818 // fields known by inclusive bit range
819
820 static int fmask(juint hi_bit, juint lo_bit) {
821 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
822 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
823 }
824
825 // inverse of u_field
826
827 static int inv_u_field(int x, int hi_bit, int lo_bit) {
828 juint r = juint(x) >> lo_bit;
829 r &= fmask( hi_bit, lo_bit);
830 return int(r);
831 }
832
833
834 // signed version: extract from field and sign-extend
835
836 static int inv_s_field(int x, int hi_bit, int lo_bit) {
837 int sign_shift = 31 - hi_bit;
838 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
839 }
840
841 // given a field that ranges from hi_bit to lo_bit (inclusive,
842 // LSB = 0), and an unsigned value for the field,
843 // shift it into the field
844
845 #ifdef ASSERT
846 static int u_field(int x, int hi_bit, int lo_bit) {
847 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
848 "value out of range");
849 int r = x << lo_bit;
850 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
851 return r;
852 }
853 #else
854 // make sure this is inlined as it will reduce code size significantly
855 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
856 #endif
857
858 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
859 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
860 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
861 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
862
863 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
864
865 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
866 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
867 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
868
869 static int op( int x) { return u_field(x, 31, 30); }
870 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
871 static int fcn( int x) { return u_field(x, 29, 25); }
872 static int op3( int x) { return u_field(x, 24, 19); }
873 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
874 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
875 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
876 static int cond( int x) { return u_field(x, 28, 25); }
877 static int cond_mov( int x) { return u_field(x, 17, 14); }
878 static int rcond( RCondition x) { return u_field(x, 12, 10); }
879 static int op2( int x) { return u_field(x, 24, 22); }
880 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
881 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
882 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
883 static int imm_asi( int x) { return u_field(x, 12, 5); }
884 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
885 static int opf_low6( int w) { return u_field(w, 10, 5); }
886 static int opf_low5( int w) { return u_field(w, 9, 5); }
887 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
888 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
889 static int opf( int x) { return u_field(x, 13, 5); }
890
891 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
892 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
893
894 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
895 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
896 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
897
898 // some float instructions use this encoding on the op3 field
899 static int alt_op3(int op, FloatRegisterImpl::Width w) {
900 int r;
901 switch(w) {
902 case FloatRegisterImpl::S: r = op + 0; break;
903 case FloatRegisterImpl::D: r = op + 3; break;
904 case FloatRegisterImpl::Q: r = op + 2; break;
905 default: ShouldNotReachHere(); break;
906 }
907 return op3(r);
908 }
909
910
911 // compute inverse of simm
912 static int inv_simm(int x, int nbits) {
913 return (int)(x << (32 - nbits)) >> (32 - nbits);
914 }
915
916 static int inv_simm13( int x ) { return inv_simm(x, 13); }
917
918 // signed immediate, in low bits, nbits long
919 static int simm(int x, int nbits) {
920 assert_signed_range(x, nbits);
921 return x & (( 1 << nbits ) - 1);
922 }
923
924 // compute inverse of wdisp16
925 static intptr_t inv_wdisp16(int x, intptr_t pos) {
926 int lo = x & (( 1 << 14 ) - 1);
927 int hi = (x >> 20) & 3;
928 if (hi >= 2) hi |= ~1;
929 return (((hi << 14) | lo) << 2) + pos;
930 }
931
932 // word offset, 14 bits at LSend, 2 bits at B21, B20
933 static int wdisp16(intptr_t x, intptr_t off) {
934 intptr_t xx = x - off;
935 assert_signed_word_disp_range(xx, 16);
936 int r = (xx >> 2) & ((1 << 14) - 1)
937 | ( ( (xx>>(2+14)) & 3 ) << 20 );
938 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
939 return r;
940 }
941
942
943 // word displacement in low-order nbits bits
944
945 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
946 int pre_sign_extend = x & (( 1 << nbits ) - 1);
947 int r = pre_sign_extend >= ( 1 << (nbits-1) )
948 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
949 : pre_sign_extend;
950 return (r << 2) + pos;
951 }
952
953 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
954 intptr_t xx = x - off;
955 assert_signed_word_disp_range(xx, nbits);
956 int r = (xx >> 2) & (( 1 << nbits ) - 1);
957 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
958 return r;
959 }
960
961
962 // Extract the top 32 bits in a 64 bit word
963 static int32_t hi32( int64_t x ) {
964 int32_t r = int32_t( (uint64_t)x >> 32 );
965 return r;
966 }
967
968 // given a sethi instruction, extract the constant, left-justified
969 static int inv_hi22( int x ) {
970 return x << 10;
971 }
972
973 // create an imm22 field, given a 32-bit left-justified constant
974 static int hi22( int x ) {
975 int r = int( juint(x) >> 10 );
976 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
977 return r;
978 }
979
980 // create a low10 __value__ (not a field) for a given a 32-bit constant
981 static int low10( int x ) {
982 return x & ((1 << 10) - 1);
983 }
984
985 // instruction only in v9
986 static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
987
988 // instruction only in v8
989 static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
990
991 // instruction deprecated in v9
992 static void v9_dep() { } // do nothing for now
993
994 // some float instructions only exist for single prec. on v8
995 static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); }
996
997 // v8 has no CC field
998 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
999
1000 protected:
1001 // Simple delay-slot scheme:
1002 // In order to check the programmer, the assembler keeps track of deley slots.
1003 // It forbids CTIs in delay slots (conservative, but should be OK).
1004 // Also, when putting an instruction into a delay slot, you must say
1005 // asm->delayed()->add(...), in order to check that you don't omit
1006 // delay-slot instructions.
1007 // To implement this, we use a simple FSA
1008
1009 #ifdef ASSERT
1010 #define CHECK_DELAY
1011 #endif
1012 #ifdef CHECK_DELAY
1013 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
1014 #endif
1015
1016 public:
1017 // Tells assembler next instruction must NOT be in delay slot.
1018 // Use at start of multinstruction macros.
1019 void assert_not_delayed() {
1020 // This is a separate overloading to avoid creation of string constants
1021 // in non-asserted code--with some compilers this pollutes the object code.
1022 #ifdef CHECK_DELAY
1023 assert_not_delayed("next instruction should not be a delay slot");
1024 #endif
1025 }
1026 void assert_not_delayed(const char* msg) {
1027 #ifdef CHECK_DELAY
1028 assert_msg ( delay_state == no_delay, msg);
1029 #endif
1030 }
1031
1032 protected:
1033 // Delay slot helpers
1034 // cti is called when emitting control-transfer instruction,
1035 // BEFORE doing the emitting.
1036 // Only effective when assertion-checking is enabled.
1037 void cti() {
1038 #ifdef CHECK_DELAY
1039 assert_not_delayed("cti should not be in delay slot");
1040 #endif
1041 }
1042
1043 // called when emitting cti with a delay slot, AFTER emitting
1044 void has_delay_slot() {
1045 #ifdef CHECK_DELAY
1046 assert_not_delayed("just checking");
1047 delay_state = at_delay_slot;
1048 #endif
1049 }
1050
1051 public:
1052 // Tells assembler you know that next instruction is delayed
1053 Assembler* delayed() {
1054 #ifdef CHECK_DELAY
1055 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
1056 delay_state = filling_delay_slot;
1057 #endif
1058 return this;
1059 }
1060
1061 void flush() {
1062 #ifdef CHECK_DELAY
1063 assert ( delay_state == no_delay, "ending code with a delay slot");
1064 #endif
1065 AbstractAssembler::flush();
1066 }
1067
1068 inline void emit_long(int); // shadows AbstractAssembler::emit_long
1069 inline void emit_data(int x) { emit_long(x); }
1070 inline void emit_data(int, RelocationHolder const&);
1071 inline void emit_data(int, relocInfo::relocType rtype);
1072 // helper for above fcns
1073 inline void check_delay();
1074
1075
1076 public:
1077 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
1078
1079 // pp 135 (addc was addx in v8)
1080
1081 inline void add( Register s1, Register s2, Register d );
1082 inline void add( Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
1083 inline void add( Register s1, int simm13a, Register d, RelocationHolder const& rspec);
1084 inline void add( const Address& a, Register d, int offset = 0);
1085
1086 void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1087 void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1088 void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
1089 void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1090 void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1091 void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1092
1093 // pp 136
1094
1095 inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
1096 inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
1097
1098 protected: // use MacroAssembler::br instead
1099
1100 // pp 138
1101
1102 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1103 inline void fb( Condition c, bool a, Label& L );
1104
1105 // pp 141
1106
1107 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1108 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1109
1110 public:
1111
1112 // pp 144
1113
1114 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1115 inline void br( Condition c, bool a, Label& L );
1116
1117 // pp 146
1118
1119 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1120 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1121
1122 // pp 121 (V8)
1123
1124 inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1125 inline void cb( Condition c, bool a, Label& L );
1126
1127 // pp 149
1128
1129 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
1130 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
1131
1132 // pp 150
1133
1134 // These instructions compare the contents of s2 with the contents of
1135 // memory at address in s1. If the values are equal, the contents of memory
1136 // at address s1 is swapped with the data in d. If the values are not equal,
1137 // the the contents of memory at s1 is loaded into d, without the swap.
1138
1139 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1140 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1141
1142 // pp 152
1143
1144 void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
1145 void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1146 void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
1147 void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1148 void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1149 void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1150 void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1151 void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1152
1153 // pp 155
1154
1155 void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
1156 void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
1157
1158 // pp 156
1159
1160 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
1161 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
1162
1163 // pp 157
1164
1165 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
1166 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
1167
1168 // pp 159
1169
1170 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
1171 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
1172
1173 // pp 160
1174
1175 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
1176
1177 // pp 161
1178
1179 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
1180 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
1181
1182 // pp 162
1183
1184 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
1185
1186 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
1187
1188 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
1189 // on v8 to do negation of single, double and quad precision floats.
1190
1191 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); }
1192
1193 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
1194
1195 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
1196 // on v8 to do abs operation on single/double/quad precision floats.
1197
1198 void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
1199
1200 // pp 163
1201
1202 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
1203 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
1204 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
1205
1206 // pp 164
1207
1208 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
1209
1210 // pp 165
1211
1212 inline void flush( Register s1, Register s2 );
1213 inline void flush( Register s1, int simm13a);
1214
1215 // pp 167
1216
1217 void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); }
1218
1219 // pp 168
1220
1221 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
1222 // v8 unimp == illtrap(0)
1223
1224 // pp 169
1225
1226 void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
1227 void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
1228
1229 // pp 149 (v8)
1230
1231 void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1232 void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1233
1234 // pp 170
1235
1236 void jmpl( Register s1, Register s2, Register d );
1237 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1238
1239 inline void jmpl( Address& a, Register d, int offset = 0);
1240
1241 // 171
1242
1243 inline void ldf( FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d );
1244 inline void ldf( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d );
1245
1246 inline void ldf( FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
1247
1248
1249 inline void ldfsr( Register s1, Register s2 );
1250 inline void ldfsr( Register s1, int simm13a);
1251 inline void ldxfsr( Register s1, Register s2 );
1252 inline void ldxfsr( Register s1, int simm13a);
1253
1254 // pp 94 (v8)
1255
1256 inline void ldc( Register s1, Register s2, int crd );
1257 inline void ldc( Register s1, int simm13a, int crd);
1258 inline void lddc( Register s1, Register s2, int crd );
1259 inline void lddc( Register s1, int simm13a, int crd);
1260 inline void ldcsr( Register s1, Register s2, int crd );
1261 inline void ldcsr( Register s1, int simm13a, int crd);
1262
1263
1264 // 173
1265
1266 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1267 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1268
1269 // pp 175, lduw is ld on v8
1270
1271 inline void ldsb( Register s1, Register s2, Register d );
1272 inline void ldsb( Register s1, int simm13a, Register d);
1273 inline void ldsh( Register s1, Register s2, Register d );
1274 inline void ldsh( Register s1, int simm13a, Register d);
1275 inline void ldsw( Register s1, Register s2, Register d );
1276 inline void ldsw( Register s1, int simm13a, Register d);
1277 inline void ldub( Register s1, Register s2, Register d );
1278 inline void ldub( Register s1, int simm13a, Register d);
1279 inline void lduh( Register s1, Register s2, Register d );
1280 inline void lduh( Register s1, int simm13a, Register d);
1281 inline void lduw( Register s1, Register s2, Register d );
1282 inline void lduw( Register s1, int simm13a, Register d);
1283 inline void ldx( Register s1, Register s2, Register d );
1284 inline void ldx( Register s1, int simm13a, Register d);
1285 inline void ld( Register s1, Register s2, Register d );
1286 inline void ld( Register s1, int simm13a, Register d);
1287 inline void ldd( Register s1, Register s2, Register d );
1288 inline void ldd( Register s1, int simm13a, Register d);
1289
1290 inline void ldsb( const Address& a, Register d, int offset = 0 );
1291 inline void ldsh( const Address& a, Register d, int offset = 0 );
1292 inline void ldsw( const Address& a, Register d, int offset = 0 );
1293 inline void ldub( const Address& a, Register d, int offset = 0 );
1294 inline void lduh( const Address& a, Register d, int offset = 0 );
1295 inline void lduw( const Address& a, Register d, int offset = 0 );
1296 inline void ldx( const Address& a, Register d, int offset = 0 );
1297 inline void ld( const Address& a, Register d, int offset = 0 );
1298 inline void ldd( const Address& a, Register d, int offset = 0 );
1299
1300 // pp 177
1301
1302 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1303 void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1304 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1305 void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1306 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1307 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1308 void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1309 void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1310 void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1311 void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1312 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1313 void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1314 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1315 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1316 void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1317 void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1318
1319 // pp 179
1320
1321 inline void ldstub( Register s1, Register s2, Register d );
1322 inline void ldstub( Register s1, int simm13a, Register d);
1323
1324 // pp 180
1325
1326 void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1327 void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1328
1329 // pp 181
1330
1331 void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
1332 void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1333 void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1334 void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1335 void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
1336 void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1337 void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1338 void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1339 void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
1340 void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1341 void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1342 void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1343 void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
1344 void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1345 void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1346 void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1347 void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
1348 void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1349 void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1350 void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1351 void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
1352 void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1353 void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1354 void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1355
1356 // pp 183
1357
1358 void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
1359
1360 // pp 185
1361
1362 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
1363
1364 // pp 189
1365
1366 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
1367
1368 // pp 191
1369
1370 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
1371 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
1372
1373 // pp 195
1374
1375 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
1376 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
1377
1378 // pp 196
1379
1380 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
1381 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1382 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
1383 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1384 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
1385 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1386
1387 // pp 197
1388
1389 void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
1390 void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1391 void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
1392 void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1393 void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1394 void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1395 void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1396 void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1397
1398 // pp 199
1399
1400 void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
1401 void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1402
1403 // pp 201
1404
1405 void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
1406
1407
1408 // pp 202
1409
1410 void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
1411 void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
1412
1413 // pp 203
1414
1415 void prefetch( Register s1, Register s2, PrefetchFcn f);
1416 void prefetch( Register s1, int simm13a, PrefetchFcn f);
1417 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1418 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1419
1420 inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
1421
1422 // pp 208
1423
1424 // not implementing read privileged register
1425
1426 inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
1427 inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
1428 inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
1429 inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
1430 inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
1431 inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
1432
1433 // pp 213
1434
1435 inline void rett( Register s1, Register s2);
1436 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
1437
1438 // pp 214
1439
1440 void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
1441 void save( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1442
1443 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
1444 void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1445
1446 // pp 216
1447
1448 void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
1449 void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
1450
1451 // pp 217
1452
1453 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1454 // pp 218
1455
1456 void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1457 void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1458 void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1459 void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1460 void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1461 void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1462
1463 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1464 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1465 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1466 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1467 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1468 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1469
1470 // pp 220
1471
1472 void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
1473
1474 // pp 221
1475
1476 void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
1477
1478 // pp 222
1479
1480 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 );
1481 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
1482 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
1483
1484 inline void stfsr( Register s1, Register s2 );
1485 inline void stfsr( Register s1, int simm13a);
1486 inline void stxfsr( Register s1, Register s2 );
1487 inline void stxfsr( Register s1, int simm13a);
1488
1489 // pp 224
1490
1491 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1492 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1493
1494 // p 226
1495
1496 inline void stb( Register d, Register s1, Register s2 );
1497 inline void stb( Register d, Register s1, int simm13a);
1498 inline void sth( Register d, Register s1, Register s2 );
1499 inline void sth( Register d, Register s1, int simm13a);
1500 inline void stw( Register d, Register s1, Register s2 );
1501 inline void stw( Register d, Register s1, int simm13a);
1502 inline void st( Register d, Register s1, Register s2 );
1503 inline void st( Register d, Register s1, int simm13a);
1504 inline void stx( Register d, Register s1, Register s2 );
1505 inline void stx( Register d, Register s1, int simm13a);
1506 inline void std( Register d, Register s1, Register s2 );
1507 inline void std( Register d, Register s1, int simm13a);
1508
1509 inline void stb( Register d, const Address& a, int offset = 0 );
1510 inline void sth( Register d, const Address& a, int offset = 0 );
1511 inline void stw( Register d, const Address& a, int offset = 0 );
1512 inline void stx( Register d, const Address& a, int offset = 0 );
1513 inline void st( Register d, const Address& a, int offset = 0 );
1514 inline void std( Register d, const Address& a, int offset = 0 );
1515
1516 // pp 177
1517
1518 void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1519 void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1520 void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1521 void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1522 void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1523 void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1524 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1525 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1526 void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1527 void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1528
1529 // pp 97 (v8)
1530
1531 inline void stc( int crd, Register s1, Register s2 );
1532 inline void stc( int crd, Register s1, int simm13a);
1533 inline void stdc( int crd, Register s1, Register s2 );
1534 inline void stdc( int crd, Register s1, int simm13a);
1535 inline void stcsr( int crd, Register s1, Register s2 );
1536 inline void stcsr( int crd, Register s1, int simm13a);
1537 inline void stdcq( int crd, Register s1, Register s2 );
1538 inline void stdcq( int crd, Register s1, int simm13a);
1539
1540 // pp 230
1541
1542 void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
1543 void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1544 void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
1545 void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1546 void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
1547 void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1548 void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1549 void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1550
1551 // pp 231
1552
1553 inline void swap( Register s1, Register s2, Register d );
1554 inline void swap( Register s1, int simm13a, Register d);
1555 inline void swap( Address& a, Register d, int offset = 0 );
1556
1557 // pp 232
1558
1559 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1560 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1561
1562 // pp 234, note op in book is wrong, see pp 268
1563
1564 void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
1565 void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1566 void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
1567 void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1568
1569 // pp 235
1570
1571 void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
1572 void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1573 void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
1574 void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1575
1576 // pp 237
1577
1578 void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
1579 void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
1580 // simple uncond. trap
1581 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
1582
1583 // pp 239 omit write priv register for now
1584
1585 inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
1586 inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
1587 inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
1588 rs1(s) |
1589 op3(wrreg_op3) |
1590 u_field(2, 29, 25) |
1591 u_field(1, 13, 13) |
1592 simm(simm13a, 13)); }
1593 inline void wrasi( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
1594 inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
1595
1596
1597 // Creation
1598 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1599 #ifdef CHECK_DELAY
1600 delay_state = no_delay;
1601 #endif
1602 }
1603
1604 // Testing
1605 #ifndef PRODUCT
1606 void test_v9();
1607 void test_v8_onlys();
1608 #endif
1609 };
1610
1611
1612 class RegistersForDebugging : public StackObj {
1613 public:
1614 intptr_t i[8], l[8], o[8], g[8];
1615 float f[32];
1616 double d[32];
1617
1618 void print(outputStream* s);
1619
1620 static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
1621 static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
1622 static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
1623 static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
1624 static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
1625 static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
1626
1627 // gen asm code to save regs
1628 static void save_registers(MacroAssembler* a);
1629
1630 // restore global registers in case C code disturbed them
1631 static void restore_registers(MacroAssembler* a, Register r);
1632 };
1633
1634
1635 // MacroAssembler extends Assembler by a few frequently used macros.
1636 //
1637 // Most of the standard SPARC synthetic ops are defined here.
1638 // Instructions for which a 'better' code sequence exists depending
1639 // on arguments should also go in here.
1640
1641 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
1642 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
1643 #define JUMP(a, off) jump(a, off, __FILE__, __LINE__)
1644 #define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__)
1645
1646
1647 class MacroAssembler: public Assembler {
1648 protected:
1649 // Support for VM calls
1650 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1651 // may customize this version by overriding it for its purposes (e.g., to save/restore
1652 // additional registers when doing a VM call).
1653 #ifdef CC_INTERP
1654 #define VIRTUAL
1655 #else
1656 #define VIRTUAL virtual
1657 #endif
1658
1659 VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
1660
1661 //
1662 // It is imperative that all calls into the VM are handled via the call_VM macros.
1663 // They make sure that the stack linkage is setup correctly. call_VM's correspond
1664 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1665 //
1666 // This is the base routine called by the different versions of call_VM. The interpreter
1667 // may customize this version by overriding it for its purposes (e.g., to save/restore
1668 // additional registers when doing a VM call).
1669 //
1670 // A non-volatile java_thread_cache register should be specified so
1671 // that the G2_thread value can be preserved across the call.
1672 // (If java_thread_cache is noreg, then a slow get_thread call
1673 // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
1674 // thread.
1675 //
1676 // If no last_java_sp is specified (noreg) than SP will be used instead.
1677
1678 virtual void call_VM_base(
1679 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
1680 Register java_thread_cache, // the thread if computed before ; use noreg otherwise
1681 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
1682 address entry_point, // the entry point
1683 int number_of_arguments, // the number of arguments (w/o thread) to pop after call
1684 bool check_exception=true // flag which indicates if exception should be checked
1685 );
1686
1687 // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1688 // The implementation is only non-empty for the InterpreterMacroAssembler,
1689 // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
1690 virtual void check_and_handle_popframe(Register scratch_reg);
1691 virtual void check_and_handle_earlyret(Register scratch_reg);
1692
1693 public:
1694 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1695
1696 // Support for NULL-checks
1697 //
1698 // Generates code that causes a NULL OS exception if the content of reg is NULL.
1699 // If the accessed location is M[reg + offset] and the offset is known, provide the
1700 // offset. No explicit code generation is needed if the offset is within a certain
1701 // range (0 <= offset <= page_size).
1702 //
1703 // %%%%%% Currently not done for SPARC
1704
1705 void null_check(Register reg, int offset = -1);
1706 static bool needs_explicit_null_check(intptr_t offset);
1707
1708 // support for delayed instructions
1709 MacroAssembler* delayed() { Assembler::delayed(); return this; }
1710
1711 // branches that use right instruction for v8 vs. v9
1712 inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1713 inline void br( Condition c, bool a, Predict p, Label& L );
1714 inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1715 inline void fb( Condition c, bool a, Predict p, Label& L );
1716
1717 // compares register with zero and branches (V9 and V8 instructions)
1718 void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
1719 // Compares a pointer register with zero and branches on (not)null.
1720 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1721 void br_null ( Register s1, bool a, Predict p, Label& L );
1722 void br_notnull( Register s1, bool a, Predict p, Label& L );
1723
1724 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1725 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1726
1727 // Branch that tests xcc in LP64 and icc in !LP64
1728 inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1729 inline void brx( Condition c, bool a, Predict p, Label& L );
1730
1731 // unconditional short branch
1732 inline void ba( bool a, Label& L );
1733
1734 // Branch that tests fp condition codes
1735 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1736 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1737
1738 // get PC the best way
1739 inline int get_pc( Register d );
1740
1741 // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
1742 inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
1743 inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
1744
1745 inline void jmp( Register s1, Register s2 );
1746 inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1747
1748 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
1749 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
1750 inline void callr( Register s1, Register s2 );
1751 inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1752
1753 // Emits nothing on V8
1754 inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
1755 inline void iprefetch( Label& L);
1756
1757 inline void tst( Register s ) { orcc( G0, s, G0 ); }
1758
1759 #ifdef PRODUCT
1760 inline void ret( bool trace = TraceJumps ) { if (trace) {
1761 mov(I7, O7); // traceable register
1762 JMP(O7, 2 * BytesPerInstWord);
1763 } else {
1764 jmpl( I7, 2 * BytesPerInstWord, G0 );
1765 }
1766 }
1767
1768 inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
1769 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
1770 #else
1771 void ret( bool trace = TraceJumps );
1772 void retl( bool trace = TraceJumps );
1773 #endif /* PRODUCT */
1774
1775 // Required platform-specific helpers for Label::patch_instructions.
1776 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1777 void pd_patch_instruction(address branch, address target);
1778 #ifndef PRODUCT
1779 static void pd_print_patched_instruction(address branch);
1780 #endif
1781
1782 // sethi Macro handles optimizations and relocations
1783 void sethi( Address& a, bool ForceRelocatable = false );
1784 void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder());
1785
1786 // compute the size of a sethi/set
1787 static int size_of_sethi( address a, bool worst_case = false );
1788 static int worst_case_size_of_set();
1789
1790 // set may be either setsw or setuw (high 32 bits may be zero or sign)
1791 void set( intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() );
1792 void setsw( int value, Register d, RelocationHolder const& rspec = RelocationHolder() );
1793 void set64( jlong value, Register d, Register tmp);
1794
1795 // sign-extend 32 to 64
1796 inline void signx( Register s, Register d ) { sra( s, G0, d); }
1797 inline void signx( Register d ) { sra( d, G0, d); }
1798
1799 inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
1800 inline void not1( Register d ) { xnor( d, G0, d ); }
1801
1802 inline void neg( Register s, Register d ) { sub( G0, s, d ); }
1803 inline void neg( Register d ) { sub( G0, d, d ); }
1804
1805 inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
1806 inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
1807 // Functions for isolating 64 bit atomic swaps for LP64
1808 // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
1809 inline void cas_ptr( Register s1, Register s2, Register d) {
1810 #ifdef _LP64
1811 casx( s1, s2, d );
1812 #else
1813 cas( s1, s2, d );
1814 #endif
1815 }
1816
1817 // Functions for isolating 64 bit shifts for LP64
1818 inline void sll_ptr( Register s1, Register s2, Register d );
1819 inline void sll_ptr( Register s1, int imm6a, Register d );
1820 inline void srl_ptr( Register s1, Register s2, Register d );
1821 inline void srl_ptr( Register s1, int imm6a, Register d );
1822
1823 // little-endian
1824 inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
1825 inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
1826
1827 inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); }
1828 inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); }
1829
1830 inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); }
1831 inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); }
1832
1833 inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); }
1834 inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); }
1835
1836 inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); }
1837 inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); }
1838
1839 inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); }
1840 inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); }
1841
1842 inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); }
1843 inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); }
1844
1845 inline void clr( Register d ) { or3( G0, G0, d ); }
1846
1847 inline void clrb( Register s1, Register s2);
1848 inline void clrh( Register s1, Register s2);
1849 inline void clr( Register s1, Register s2);
1850 inline void clrx( Register s1, Register s2);
1851
1852 inline void clrb( Register s1, int simm13a);
1853 inline void clrh( Register s1, int simm13a);
1854 inline void clr( Register s1, int simm13a);
1855 inline void clrx( Register s1, int simm13a);
1856
1857 // copy & clear upper word
1858 inline void clruw( Register s, Register d ) { srl( s, G0, d); }
1859 // clear upper word
1860 inline void clruwu( Register d ) { srl( d, G0, d); }
1861
1862 // membar psuedo instruction. takes into account target memory model.
1863 inline void membar( Assembler::Membar_mask_bits const7a );
1864
1865 // returns if membar generates anything.
1866 inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
1867
1868 // mov pseudo instructions
1869 inline void mov( Register s, Register d) {
1870 if ( s != d ) or3( G0, s, d);
1871 else assert_not_delayed(); // Put something useful in the delay slot!
1872 }
1873
1874 inline void mov_or_nop( Register s, Register d) {
1875 if ( s != d ) or3( G0, s, d);
1876 else nop();
1877 }
1878
1879 inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
1880
1881 // address pseudos: make these names unlike instruction names to avoid confusion
1882 inline void split_disp( Address& a, Register temp );
1883 inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
1884 inline void load_address( Address& a, int offset = 0 );
1885 inline void load_contents( Address& a, Register d, int offset = 0 );
1886 inline void load_ptr_contents( Address& a, Register d, int offset = 0 );
1887 inline void store_contents( Register s, Address& a, int offset = 0 );
1888 inline void store_ptr_contents( Register s, Address& a, int offset = 0 );
1889 inline void jumpl_to( Address& a, Register d, int offset = 0 );
1890 inline void jump_to( Address& a, int offset = 0 );
1891
1892 // ring buffer traceable jumps
1893
1894 void jmp2( Register r1, Register r2, const char* file, int line );
1895 void jmp ( Register r1, int offset, const char* file, int line );
1896
1897 void jumpl( Address& a, Register d, int offset, const char* file, int line );
1898 void jump ( Address& a, int offset, const char* file, int line );
1899
1900
1901 // argument pseudos:
1902
1903 inline void load_argument( Argument& a, Register d );
1904 inline void store_argument( Register s, Argument& a );
1905 inline void store_ptr_argument( Register s, Argument& a );
1906 inline void store_float_argument( FloatRegister s, Argument& a );
1907 inline void store_double_argument( FloatRegister s, Argument& a );
1908 inline void store_long_argument( Register s, Argument& a );
1909
1910 // handy macros:
1911
1912 inline void round_to( Register r, int modulus ) {
1913 assert_not_delayed();
1914 inc( r, modulus - 1 );
1915 and3( r, -modulus, r );
1916 }
1917
1918 // --------------------------------------------------
1919
1920 // Functions for isolating 64 bit loads for LP64
1921 // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
1922 // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
1923 inline void ld_ptr( Register s1, Register s2, Register d );
1924 inline void ld_ptr( Register s1, int simm13a, Register d);
1925 inline void ld_ptr( const Address& a, Register d, int offset = 0 );
1926 inline void st_ptr( Register d, Register s1, Register s2 );
1927 inline void st_ptr( Register d, Register s1, int simm13a);
1928 inline void st_ptr( Register d, const Address& a, int offset = 0 );
1929
1930 // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
1931 // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
1932 inline void ld_long( Register s1, Register s2, Register d );
1933 inline void ld_long( Register s1, int simm13a, Register d );
1934 inline void ld_long( const Address& a, Register d, int offset = 0 );
1935 inline void st_long( Register d, Register s1, Register s2 );
1936 inline void st_long( Register d, Register s1, int simm13a );
1937 inline void st_long( Register d, const Address& a, int offset = 0 );
1938
1939 // --------------------------------------------------
1940
1941 public:
1942 // traps as per trap.h (SPARC ABI?)
1943
1944 void breakpoint_trap();
1945 void breakpoint_trap(Condition c, CC cc = icc);
1946 void flush_windows_trap();
1947 void clean_windows_trap();
1948 void get_psr_trap();
1949 void set_psr_trap();
1950
1951 // V8/V9 flush_windows
1952 void flush_windows();
1953
1954 // Support for serializing memory accesses between threads
1955 void serialize_memory(Register thread, Register tmp1, Register tmp2);
1956
1957 // Stack frame creation/removal
1958 void enter();
1959 void leave();
1960
1961 // V8/V9 integer multiply
1962 void mult(Register s1, Register s2, Register d);
1963 void mult(Register s1, int simm13a, Register d);
1964
1965 // V8/V9 read and write of condition codes.
1966 void read_ccr(Register d);
1967 void write_ccr(Register s);
1968
1969 // Manipulation of C++ bools
1970 // These are idioms to flag the need for care with accessing bools but on
1971 // this platform we assume byte size
1972
1973 inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); }
1974 inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); }
1975 inline void tstbool( Register s ) { tst(s); }
1976 inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
1977
1978 // Support for managing the JavaThread pointer (i.e.; the reference to
1979 // thread-local information).
1980 void get_thread(); // load G2_thread
1981 void verify_thread(); // verify G2_thread contents
1982 void save_thread (const Register threache); // save to cache
1983 void restore_thread(const Register thread_cache); // restore from cache
1984
1985 // Support for last Java frame (but use call_VM instead where possible)
1986 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
1987 void reset_last_Java_frame(void);
1988
1989 // Call into the VM.
1990 // Passes the thread pointer (in O0) as a prepended argument.
1991 // Makes sure oop return values are visible to the GC.
1992 void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1993 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
1994 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1995 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1996
1997 // these overloadings are not presently used on SPARC:
1998 void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1999 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
2000 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2001 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2002
2003 void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
2004 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
2005 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
2006 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
2007
2008 void get_vm_result (Register oop_result);
2009 void get_vm_result_2(Register oop_result);
2010
2011 // vm result is currently getting hijacked to for oop preservation
2012 void set_vm_result(Register oop_result);
2013
2014 // if call_VM_base was called with check_exceptions=false, then call
2015 // check_and_forward_exception to handle exceptions when it is safe
2016 void check_and_forward_exception(Register scratch_reg);
2017
2018 private:
2019 // For V8
2020 void read_ccr_trap(Register ccr_save);
2021 void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
2022
2023 #ifdef ASSERT
2024 // For V8 debugging. Uses V8 instruction sequence and checks
2025 // result with V9 insturctions rdccr and wrccr.
2026 // Uses Gscatch and Gscatch2
2027 void read_ccr_v8_assert(Register ccr_save);
2028 void write_ccr_v8_assert(Register ccr_save);
2029 #endif // ASSERT
2030
2031 public:
2032 // Stores
2033 void store_check(Register tmp, Register obj); // store check for obj - register is destroyed afterwards
2034 void store_check(Register tmp, Register obj, Register offset); // store check for obj - register is destroyed afterwards
2035
2036 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2037 void push_fTOS();
2038
2039 // pops double TOS element from CPU stack and pushes on FPU stack
2040 void pop_fTOS();
2041
2042 void empty_FPU_stack();
2043
2044 void push_IU_state();
2045 void pop_IU_state();
2046
2047 void push_FPU_state();
2048 void pop_FPU_state();
2049
2050 void push_CPU_state();
2051 void pop_CPU_state();
2052
2053 // Debugging
2054 void _verify_oop(Register reg, const char * msg, const char * file, int line);
2055 void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
2056
2057 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
2058 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
2059
2060 // only if +VerifyOops
2061 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2062 // only if +VerifyFPU
2063 void stop(const char* msg); // prints msg, dumps registers and stops execution
2064 void warn(const char* msg); // prints msg, but don't stop
2065 void untested(const char* what = "");
2066 void unimplemented(const char* what = "") { char* b = new char[1024]; sprintf(b, "unimplemented: %s", what); stop(b); }
2067 void should_not_reach_here() { stop("should not reach here"); }
2068 void print_CPU_state();
2069
2070 // oops in code
2071 Address allocate_oop_address( jobject obj, Register d ); // allocate_index
2072 Address constant_oop_address( jobject obj, Register d ); // find_index
2073 inline void set_oop ( jobject obj, Register d ); // uses allocate_oop_address
2074 inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address
2075 inline void set_oop ( Address obj_addr ); // same as load_address
2076
2077 // nop padding
2078 void align(int modulus);
2079
2080 // declare a safepoint
2081 void safepoint();
2082
2083 // factor out part of stop into subroutine to save space
2084 void stop_subroutine();
2085 // factor out part of verify_oop into subroutine to save space
2086 void verify_oop_subroutine();
2087
2088 // side-door communication with signalHandler in os_solaris.cpp
2089 static address _verify_oop_implicit_branch[3];
2090
2091 #ifndef PRODUCT
2092 static void test();
2093 #endif
2094
2095 // convert an incoming arglist to varargs format; put the pointer in d
2096 void set_varargs( Argument a, Register d );
2097
2098 int total_frame_size_in_bytes(int extraWords);
2099
2100 // used when extraWords known statically
2101 void save_frame(int extraWords);
2102 void save_frame_c1(int size_in_bytes);
2103 // make a frame, and simultaneously pass up one or two register value
2104 // into the new register window
2105 void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
2106
2107 // give no. (outgoing) params, calc # of words will need on frame
2108 void calc_mem_param_words(Register Rparam_words, Register Rresult);
2109
2110 // used to calculate frame size dynamically
2111 // result is in bytes and must be negated for save inst
2112 void calc_frame_size(Register extraWords, Register resultReg);
2113
2114 // calc and also save
2115 void calc_frame_size_and_save(Register extraWords, Register resultReg);
2116
2117 static void debug(char* msg, RegistersForDebugging* outWindow);
2118
2119 // implementations of bytecodes used by both interpreter and compiler
2120
2121 void lcmp( Register Ra_hi, Register Ra_low,
2122 Register Rb_hi, Register Rb_low,
2123 Register Rresult);
2124
2125 void lneg( Register Rhi, Register Rlow );
2126
2127 void lshl( Register Rin_high, Register Rin_low, Register Rcount,
2128 Register Rout_high, Register Rout_low, Register Rtemp );
2129
2130 void lshr( Register Rin_high, Register Rin_low, Register Rcount,
2131 Register Rout_high, Register Rout_low, Register Rtemp );
2132
2133 void lushr( Register Rin_high, Register Rin_low, Register Rcount,
2134 Register Rout_high, Register Rout_low, Register Rtemp );
2135
2136 #ifdef _LP64
2137 void lcmp( Register Ra, Register Rb, Register Rresult);
2138 #endif
2139
2140 void float_cmp( bool is_float, int unordered_result,
2141 FloatRegister Fa, FloatRegister Fb,
2142 Register Rresult);
2143
2144 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2145 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
2146 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2147 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2148
2149 void save_all_globals_into_locals();
2150 void restore_globals_from_locals();
2151
2152 void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2153 address lock_addr=0, bool use_call_vm=false);
2154 void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2155 address lock_addr=0, bool use_call_vm=false);
2156 void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
2157
2158 // These set the icc condition code to equal if the lock succeeded
2159 // and notEqual if it failed and requires a slow case
2160 void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
2161 BiasedLockingCounters* counters = NULL);
2162 void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch);
2163
2164 // Biased locking support
2165 // Upon entry, lock_reg must point to the lock record on the stack,
2166 // obj_reg must contain the target object, and mark_reg must contain
2167 // the target object's header.
2168 // Destroys mark_reg if an attempt is made to bias an anonymously
2169 // biased lock. In this case a failure will go either to the slow
2170 // case or fall through with the notEqual condition code set with
2171 // the expectation that the slow case in the runtime will be called.
2172 // In the fall-through case where the CAS-based lock is done,
2173 // mark_reg is not destroyed.
2174 void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2175 Label& done, Label* slow_case = NULL,
2176 BiasedLockingCounters* counters = NULL);
2177 // Upon entry, the base register of mark_addr must contain the oop.
2178 // Destroys temp_reg.
2179
2180 // If allow_delay_slot_filling is set to true, the next instruction
2181 // emitted after this one will go in an annulled delay slot if the
2182 // biased locking exit case failed.
2183 void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
2184
2185 // allocation
2186 void eden_allocate(
2187 Register obj, // result: pointer to object after successful allocation
2188 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
2189 int con_size_in_bytes, // object size in bytes if known at compile time
2190 Register t1, // temp register
2191 Register t2, // temp register
2192 Label& slow_case // continuation point if fast allocation fails
2193 );
2194 void tlab_allocate(
2195 Register obj, // result: pointer to object after successful allocation
2196 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
2197 int con_size_in_bytes, // object size in bytes if known at compile time
2198 Register t1, // temp register
2199 Label& slow_case // continuation point if fast allocation fails
2200 );
2201 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
2202
2203 // Stack overflow checking
2204
2205 // Note: this clobbers G3_scratch
2206 void bang_stack_with_offset(int offset) {
2207 // stack grows down, caller passes positive offset
2208 assert(offset > 0, "must bang with negative offset");
2209 set((-offset)+STACK_BIAS, G3_scratch);
2210 st(G0, SP, G3_scratch);
2211 }
2212
2213 // Writes to stack successive pages until offset reached to check for
2214 // stack overflow + shadow pages. Clobbers tsp and scratch registers.
2215 void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
2216
2217 void verify_tlab();
2218
2219 Condition negate_condition(Condition cond);
2220
2221 // Helper functions for statistics gathering.
2222 // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
2223 void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
2224 // Unconditional increment.
2225 void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2);
2226
2227 #undef VIRTUAL
2228
2229 };
2230
2231 /**
2232 * class SkipIfEqual:
2233 *
2234 * Instantiating this class will result in assembly code being output that will
2235 * jump around any code emitted between the creation of the instance and it's
2236 * automatic destruction at the end of a scope block, depending on the value of
2237 * the flag passed to the constructor, which will be checked at run-time.
2238 */
2239 class SkipIfEqual : public StackObj {
2240 private:
2241 MacroAssembler* _masm;
2242 Label _label;
2243
2244 public:
2245 // 'temp' is a temp register that this object can use (and trash)
2246 SkipIfEqual(MacroAssembler*, Register temp,
2247 const bool* flag_addr, Assembler::Condition condition);
2248 ~SkipIfEqual();
2249 };
2250
2251 #ifdef ASSERT
2252 // On RISC, there's no benefit to verifying instruction boundaries.
2253 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
2254 #endif