comparison src/cpu/sparc/vm/c1_LIRGenerator_sparc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_c1_LIRGenerator_sparc.cpp.incl"
27
28 #ifdef ASSERT
29 #define __ gen()->lir(__FILE__, __LINE__)->
30 #else
31 #define __ gen()->lir()->
32 #endif
33
34 void LIRItem::load_byte_item() {
35 // byte loads use same registers as other loads
36 load_item();
37 }
38
39
40 void LIRItem::load_nonconstant() {
41 LIR_Opr r = value()->operand();
42 if (_gen->can_inline_as_constant(value())) {
43 if (!r->is_constant()) {
44 r = LIR_OprFact::value_type(value()->type());
45 }
46 _result = r;
47 } else {
48 load_item();
49 }
50 }
51
52
53 //--------------------------------------------------------------
54 // LIRGenerator
55 //--------------------------------------------------------------
56
57 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::Oexception_opr; }
58 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::Oissuing_pc_opr; }
59 LIR_Opr LIRGenerator::syncTempOpr() { return new_register(T_OBJECT); }
60 LIR_Opr LIRGenerator::getThreadTemp() { return rlock_callee_saved(T_INT); }
61
62 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
63 LIR_Opr opr;
64 switch (type->tag()) {
65 case intTag: opr = callee ? FrameMap::I0_opr : FrameMap::O0_opr; break;
66 case objectTag: opr = callee ? FrameMap::I0_oop_opr : FrameMap::O0_oop_opr; break;
67 case longTag: opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
68 case floatTag: opr = FrameMap::F0_opr; break;
69 case doubleTag: opr = FrameMap::F0_double_opr; break;
70
71 case addressTag:
72 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
73 }
74
75 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
76 return opr;
77 }
78
79 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
80 LIR_Opr reg = new_register(type);
81 set_vreg_flag(reg, callee_saved);
82 return reg;
83 }
84
85
86 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
87 return new_register(T_INT);
88 }
89
90
91
92
93
94 //--------- loading items into registers --------------------------------
95
96 // SPARC cannot inline all constants
97 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
98 if (v->type()->as_IntConstant() != NULL) {
99 return v->type()->as_IntConstant()->value() == 0;
100 } else if (v->type()->as_LongConstant() != NULL) {
101 return v->type()->as_LongConstant()->value() == 0L;
102 } else if (v->type()->as_ObjectConstant() != NULL) {
103 return v->type()->as_ObjectConstant()->value()->is_null_object();
104 } else {
105 return false;
106 }
107 }
108
109
110 // only simm13 constants can be inlined
111 bool LIRGenerator:: can_inline_as_constant(Value i) const {
112 if (i->type()->as_IntConstant() != NULL) {
113 return Assembler::is_simm13(i->type()->as_IntConstant()->value());
114 } else {
115 return can_store_as_constant(i, as_BasicType(i->type()));
116 }
117 }
118
119
120 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
121 if (c->type() == T_INT) {
122 return Assembler::is_simm13(c->as_jint());
123 }
124 return false;
125 }
126
127
128 LIR_Opr LIRGenerator::safepoint_poll_register() {
129 return new_register(T_INT);
130 }
131
132
133
134 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
135 int shift, int disp, BasicType type) {
136 assert(base->is_register(), "must be");
137
138 // accumulate fixed displacements
139 if (index->is_constant()) {
140 disp += index->as_constant_ptr()->as_jint() << shift;
141 index = LIR_OprFact::illegalOpr;
142 }
143
144 if (index->is_register()) {
145 // apply the shift and accumulate the displacement
146 if (shift > 0) {
147 LIR_Opr tmp = new_register(T_INT);
148 __ shift_left(index, shift, tmp);
149 index = tmp;
150 }
151 if (disp != 0) {
152 LIR_Opr tmp = new_register(T_INT);
153 if (Assembler::is_simm13(disp)) {
154 __ add(tmp, LIR_OprFact::intConst(disp), tmp);
155 index = tmp;
156 } else {
157 __ move(LIR_OprFact::intConst(disp), tmp);
158 __ add(tmp, index, tmp);
159 index = tmp;
160 }
161 disp = 0;
162 }
163 } else if (disp != 0 && !Assembler::is_simm13(disp)) {
164 // index is illegal so replace it with the displacement loaded into a register
165 index = new_register(T_INT);
166 __ move(LIR_OprFact::intConst(disp), index);
167 disp = 0;
168 }
169
170 // at this point we either have base + index or base + displacement
171 if (disp == 0) {
172 return new LIR_Address(base, index, type);
173 } else {
174 assert(Assembler::is_simm13(disp), "must be");
175 return new LIR_Address(base, disp, type);
176 }
177 }
178
179
180 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
181 BasicType type, bool needs_card_mark) {
182 int elem_size = type2aelembytes[type];
183 int shift = exact_log2(elem_size);
184
185 LIR_Opr base_opr;
186 int offset = arrayOopDesc::base_offset_in_bytes(type);
187
188 if (index_opr->is_constant()) {
189 int i = index_opr->as_constant_ptr()->as_jint();
190 int array_offset = i * elem_size;
191 if (Assembler::is_simm13(array_offset + offset)) {
192 base_opr = array_opr;
193 offset = array_offset + offset;
194 } else {
195 base_opr = new_pointer_register();
196 if (Assembler::is_simm13(array_offset)) {
197 __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
198 } else {
199 __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
200 __ add(base_opr, array_opr, base_opr);
201 }
202 }
203 } else {
204 #ifdef _LP64
205 if (index_opr->type() == T_INT) {
206 LIR_Opr tmp = new_register(T_LONG);
207 __ convert(Bytecodes::_i2l, index_opr, tmp);
208 index_opr = tmp;
209 }
210 #endif
211
212 base_opr = new_pointer_register();
213 assert (index_opr->is_register(), "Must be register");
214 if (shift > 0) {
215 __ shift_left(index_opr, shift, base_opr);
216 __ add(base_opr, array_opr, base_opr);
217 } else {
218 __ add(index_opr, array_opr, base_opr);
219 }
220 }
221 if (needs_card_mark) {
222 LIR_Opr ptr = new_pointer_register();
223 __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
224 return new LIR_Address(ptr, 0, type);
225 } else {
226 return new LIR_Address(base_opr, offset, type);
227 }
228 }
229
230
231 void LIRGenerator::increment_counter(address counter, int step) {
232 LIR_Opr pointer = new_pointer_register();
233 __ move(LIR_OprFact::intptrConst(counter), pointer);
234 LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
235 increment_counter(addr, step);
236 }
237
238 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
239 LIR_Opr temp = new_register(T_INT);
240 __ move(addr, temp);
241 LIR_Opr c = LIR_OprFact::intConst(step);
242 if (Assembler::is_simm13(step)) {
243 __ add(temp, c, temp);
244 } else {
245 LIR_Opr temp2 = new_register(T_INT);
246 __ move(c, temp2);
247 __ add(temp, temp2, temp);
248 }
249 __ move(temp, addr);
250 }
251
252
253 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
254 LIR_Opr o7opr = FrameMap::O7_opr;
255 __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
256 __ cmp(condition, o7opr, c);
257 }
258
259
260 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
261 LIR_Opr o7opr = FrameMap::O7_opr;
262 __ load(new LIR_Address(base, disp, type), o7opr, info);
263 __ cmp(condition, reg, o7opr);
264 }
265
266
267 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
268 LIR_Opr o7opr = FrameMap::O7_opr;
269 __ load(new LIR_Address(base, disp, type), o7opr, info);
270 __ cmp(condition, reg, o7opr);
271 }
272
273
274 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
275 assert(left != result, "should be different registers");
276 if (is_power_of_2(c + 1)) {
277 __ shift_left(left, log2_intptr(c + 1), result);
278 __ sub(result, left, result);
279 return true;
280 } else if (is_power_of_2(c - 1)) {
281 __ shift_left(left, log2_intptr(c - 1), result);
282 __ add(result, left, result);
283 return true;
284 }
285 return false;
286 }
287
288
289 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
290 BasicType t = item->type();
291 LIR_Opr sp_opr = FrameMap::SP_opr;
292 if ((t == T_LONG || t == T_DOUBLE) &&
293 ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
294 __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
295 } else {
296 __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
297 }
298 }
299
300 //----------------------------------------------------------------------
301 // visitor functions
302 //----------------------------------------------------------------------
303
304
305 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
306 assert(x->is_root(),"");
307 bool needs_range_check = true;
308 bool use_length = x->length() != NULL;
309 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
310 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
311 !get_jobject_constant(x->value())->is_null_object());
312
313 LIRItem array(x->array(), this);
314 LIRItem index(x->index(), this);
315 LIRItem value(x->value(), this);
316 LIRItem length(this);
317
318 array.load_item();
319 index.load_nonconstant();
320
321 if (use_length) {
322 needs_range_check = x->compute_needs_range_check();
323 if (needs_range_check) {
324 length.set_instruction(x->length());
325 length.load_item();
326 }
327 }
328 if (needs_store_check) {
329 value.load_item();
330 } else {
331 value.load_for_store(x->elt_type());
332 }
333
334 set_no_result(x);
335
336 // the CodeEmitInfo must be duplicated for each different
337 // LIR-instruction because spilling can occur anywhere between two
338 // instructions and so the debug information must be different
339 CodeEmitInfo* range_check_info = state_for(x);
340 CodeEmitInfo* null_check_info = NULL;
341 if (x->needs_null_check()) {
342 null_check_info = new CodeEmitInfo(range_check_info);
343 }
344
345 // emit array address setup early so it schedules better
346 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
347
348 if (GenerateRangeChecks && needs_range_check) {
349 if (use_length) {
350 __ cmp(lir_cond_belowEqual, length.result(), index.result());
351 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
352 } else {
353 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
354 // range_check also does the null check
355 null_check_info = NULL;
356 }
357 }
358
359 if (GenerateArrayStoreCheck && needs_store_check) {
360 LIR_Opr tmp1 = FrameMap::G1_opr;
361 LIR_Opr tmp2 = FrameMap::G3_opr;
362 LIR_Opr tmp3 = FrameMap::G5_opr;
363
364 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
365 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
366 }
367
368 __ move(value.result(), array_addr, null_check_info);
369 if (obj_store) {
370 // Is this precise?
371 post_barrier(LIR_OprFact::address(array_addr), value.result());
372 }
373 }
374
375
376 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
377 assert(x->is_root(),"");
378 LIRItem obj(x->obj(), this);
379 obj.load_item();
380
381 set_no_result(x);
382
383 LIR_Opr lock = FrameMap::G1_opr;
384 LIR_Opr scratch = FrameMap::G3_opr;
385 LIR_Opr hdr = FrameMap::G4_opr;
386
387 CodeEmitInfo* info_for_exception = NULL;
388 if (x->needs_null_check()) {
389 info_for_exception = state_for(x, x->lock_stack_before());
390 }
391
392 // this CodeEmitInfo must not have the xhandlers because here the
393 // object is already locked (xhandlers expects object to be unlocked)
394 CodeEmitInfo* info = state_for(x, x->state(), true);
395 monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
396 }
397
398
399 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
400 assert(x->is_root(),"");
401 LIRItem obj(x->obj(), this);
402 obj.dont_load_item();
403
404 set_no_result(x);
405 LIR_Opr lock = FrameMap::G1_opr;
406 LIR_Opr hdr = FrameMap::G3_opr;
407 LIR_Opr obj_temp = FrameMap::G4_opr;
408 monitor_exit(obj_temp, lock, hdr, x->monitor_no());
409 }
410
411
412 // _ineg, _lneg, _fneg, _dneg
413 void LIRGenerator::do_NegateOp(NegateOp* x) {
414 LIRItem value(x->x(), this);
415 value.load_item();
416 LIR_Opr reg = rlock_result(x);
417 __ negate(value.result(), reg);
418 }
419
420
421
422 // for _fadd, _fmul, _fsub, _fdiv, _frem
423 // _dadd, _dmul, _dsub, _ddiv, _drem
424 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
425 switch (x->op()) {
426 case Bytecodes::_fadd:
427 case Bytecodes::_fmul:
428 case Bytecodes::_fsub:
429 case Bytecodes::_fdiv:
430 case Bytecodes::_dadd:
431 case Bytecodes::_dmul:
432 case Bytecodes::_dsub:
433 case Bytecodes::_ddiv: {
434 LIRItem left(x->x(), this);
435 LIRItem right(x->y(), this);
436 left.load_item();
437 right.load_item();
438 rlock_result(x);
439 arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
440 }
441 break;
442
443 case Bytecodes::_frem:
444 case Bytecodes::_drem: {
445 address entry;
446 switch (x->op()) {
447 case Bytecodes::_frem:
448 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
449 break;
450 case Bytecodes::_drem:
451 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
452 break;
453 default:
454 ShouldNotReachHere();
455 }
456 LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
457 set_result(x, result);
458 }
459 break;
460
461 default: ShouldNotReachHere();
462 }
463 }
464
465
466 // for _ladd, _lmul, _lsub, _ldiv, _lrem
467 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
468 switch (x->op()) {
469 case Bytecodes::_lrem:
470 case Bytecodes::_lmul:
471 case Bytecodes::_ldiv: {
472
473 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
474 LIRItem right(x->y(), this);
475 right.load_item();
476
477 CodeEmitInfo* info = state_for(x);
478 LIR_Opr item = right.result();
479 assert(item->is_register(), "must be");
480 __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
481 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
482 }
483
484 address entry;
485 switch (x->op()) {
486 case Bytecodes::_lrem:
487 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
488 break; // check if dividend is 0 is done elsewhere
489 case Bytecodes::_ldiv:
490 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
491 break; // check if dividend is 0 is done elsewhere
492 case Bytecodes::_lmul:
493 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
494 break;
495 default:
496 ShouldNotReachHere();
497 }
498
499 // order of arguments to runtime call is reversed.
500 LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
501 set_result(x, result);
502 break;
503 }
504 case Bytecodes::_ladd:
505 case Bytecodes::_lsub: {
506 LIRItem left(x->x(), this);
507 LIRItem right(x->y(), this);
508 left.load_item();
509 right.load_item();
510 rlock_result(x);
511
512 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
513 break;
514 }
515 default: ShouldNotReachHere();
516 }
517 }
518
519
520 // Returns if item is an int constant that can be represented by a simm13
521 static bool is_simm13(LIR_Opr item) {
522 if (item->is_constant() && item->type() == T_INT) {
523 return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
524 } else {
525 return false;
526 }
527 }
528
529
530 // for: _iadd, _imul, _isub, _idiv, _irem
531 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
532 bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
533 LIRItem left(x->x(), this);
534 LIRItem right(x->y(), this);
535 // missing test if instr is commutative and if we should swap
536 right.load_nonconstant();
537 assert(right.is_constant() || right.is_register(), "wrong state of right");
538 left.load_item();
539 rlock_result(x);
540 if (is_div_rem) {
541 CodeEmitInfo* info = state_for(x);
542 LIR_Opr tmp = FrameMap::G1_opr;
543 if (x->op() == Bytecodes::_irem) {
544 __ irem(left.result(), right.result(), x->operand(), tmp, info);
545 } else if (x->op() == Bytecodes::_idiv) {
546 __ idiv(left.result(), right.result(), x->operand(), tmp, info);
547 }
548 } else {
549 arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
550 }
551 }
552
553
554 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
555 ValueTag tag = x->type()->tag();
556 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
557 switch (tag) {
558 case floatTag:
559 case doubleTag: do_ArithmeticOp_FPU(x); return;
560 case longTag: do_ArithmeticOp_Long(x); return;
561 case intTag: do_ArithmeticOp_Int(x); return;
562 }
563 ShouldNotReachHere();
564 }
565
566
567 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
568 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
569 LIRItem value(x->x(), this);
570 LIRItem count(x->y(), this);
571 // Long shift destroys count register
572 if (value.type()->is_long()) {
573 count.set_destroys_register();
574 }
575 value.load_item();
576 // the old backend doesn't support this
577 if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
578 jint c = count.get_jint_constant() & 0x1f;
579 assert(c >= 0 && c < 32, "should be small");
580 count.dont_load_item();
581 } else {
582 count.load_item();
583 }
584 LIR_Opr reg = rlock_result(x);
585 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
586 }
587
588
589 // _iand, _land, _ior, _lor, _ixor, _lxor
590 void LIRGenerator::do_LogicOp(LogicOp* x) {
591 LIRItem left(x->x(), this);
592 LIRItem right(x->y(), this);
593
594 left.load_item();
595 right.load_nonconstant();
596 LIR_Opr reg = rlock_result(x);
597
598 logic_op(x->op(), reg, left.result(), right.result());
599 }
600
601
602
603 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
604 void LIRGenerator::do_CompareOp(CompareOp* x) {
605 LIRItem left(x->x(), this);
606 LIRItem right(x->y(), this);
607 left.load_item();
608 right.load_item();
609 LIR_Opr reg = rlock_result(x);
610
611 if (x->x()->type()->is_float_kind()) {
612 Bytecodes::Code code = x->op();
613 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
614 } else if (x->x()->type()->tag() == longTag) {
615 __ lcmp2int(left.result(), right.result(), reg);
616 } else {
617 Unimplemented();
618 }
619 }
620
621
622 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
623 assert(x->number_of_arguments() == 3, "wrong type");
624 LIRItem obj (x->argument_at(0), this); // AtomicLong object
625 LIRItem cmp_value (x->argument_at(1), this); // value to compare with field
626 LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value
627
628 obj.load_item();
629 cmp_value.load_item();
630 new_value.load_item();
631
632 // generate compare-and-swap and produce zero condition if swap occurs
633 int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
634 LIR_Opr addr = FrameMap::O7_opr;
635 __ add(obj.result(), LIR_OprFact::intConst(value_offset), addr);
636 LIR_Opr t1 = FrameMap::G1_opr; // temp for 64-bit value
637 LIR_Opr t2 = FrameMap::G3_opr; // temp for 64-bit value
638 __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
639
640 // generate conditional move of boolean result
641 LIR_Opr result = rlock_result(x);
642 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
643 }
644
645
646 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
647 assert(x->number_of_arguments() == 4, "wrong type");
648 LIRItem obj (x->argument_at(0), this); // object
649 LIRItem offset(x->argument_at(1), this); // offset of field
650 LIRItem cmp (x->argument_at(2), this); // value to compare with field
651 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
652
653 // Use temps to avoid kills
654 LIR_Opr t1 = FrameMap::G1_opr;
655 LIR_Opr t2 = FrameMap::G3_opr;
656 LIR_Opr addr = new_pointer_register();
657
658 // get address of field
659 obj.load_item();
660 offset.load_item();
661 cmp.load_item();
662 val.load_item();
663
664 __ add(obj.result(), offset.result(), addr);
665
666 if (type == objectType)
667 __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
668 else if (type == intType)
669 __ cas_int(addr, cmp.result(), val.result(), t1, t2);
670 else if (type == longType)
671 __ cas_long(addr, cmp.result(), val.result(), t1, t2);
672 else {
673 ShouldNotReachHere();
674 }
675
676 // generate conditional move of boolean result
677 LIR_Opr result = rlock_result(x);
678 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
679 if (type == objectType) { // Write-barrier needed for Object fields.
680 post_barrier(obj.result(), val.result());
681 }
682 }
683
684
685 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
686 switch (x->id()) {
687 case vmIntrinsics::_dabs:
688 case vmIntrinsics::_dsqrt: {
689 assert(x->number_of_arguments() == 1, "wrong type");
690 LIRItem value(x->argument_at(0), this);
691 value.load_item();
692 LIR_Opr dst = rlock_result(x);
693
694 switch (x->id()) {
695 case vmIntrinsics::_dsqrt: {
696 __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
697 break;
698 }
699 case vmIntrinsics::_dabs: {
700 __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
701 break;
702 }
703 }
704 break;
705 }
706 case vmIntrinsics::_dlog10: // fall through
707 case vmIntrinsics::_dlog: // fall through
708 case vmIntrinsics::_dsin: // fall through
709 case vmIntrinsics::_dtan: // fall through
710 case vmIntrinsics::_dcos: {
711 assert(x->number_of_arguments() == 1, "wrong type");
712
713 address runtime_entry = NULL;
714 switch (x->id()) {
715 case vmIntrinsics::_dsin:
716 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
717 break;
718 case vmIntrinsics::_dcos:
719 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
720 break;
721 case vmIntrinsics::_dtan:
722 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
723 break;
724 case vmIntrinsics::_dlog:
725 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
726 break;
727 case vmIntrinsics::_dlog10:
728 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
729 break;
730 default:
731 ShouldNotReachHere();
732 }
733
734 LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
735 set_result(x, result);
736 }
737 }
738 }
739
740
741 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
742 assert(x->number_of_arguments() == 5, "wrong type");
743 // Note: spill caller save before setting the item
744 LIRItem src (x->argument_at(0), this);
745 LIRItem src_pos (x->argument_at(1), this);
746 LIRItem dst (x->argument_at(2), this);
747 LIRItem dst_pos (x->argument_at(3), this);
748 LIRItem length (x->argument_at(4), this);
749 // load all values in callee_save_registers, as this makes the
750 // parameter passing to the fast case simpler
751 src.load_item_force (rlock_callee_saved(T_OBJECT));
752 src_pos.load_item_force (rlock_callee_saved(T_INT));
753 dst.load_item_force (rlock_callee_saved(T_OBJECT));
754 dst_pos.load_item_force (rlock_callee_saved(T_INT));
755 length.load_item_force (rlock_callee_saved(T_INT));
756
757 int flags;
758 ciArrayKlass* expected_type;
759 arraycopy_helper(x, &flags, &expected_type);
760
761 CodeEmitInfo* info = state_for(x, x->state());
762 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
763 length.result(), rlock_callee_saved(T_INT),
764 expected_type, flags, info);
765 set_no_result(x);
766 }
767
768 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
769 // _i2b, _i2c, _i2s
770 void LIRGenerator::do_Convert(Convert* x) {
771
772 switch (x->op()) {
773 case Bytecodes::_f2l:
774 case Bytecodes::_d2l:
775 case Bytecodes::_d2i:
776 case Bytecodes::_l2f:
777 case Bytecodes::_l2d: {
778
779 address entry;
780 switch (x->op()) {
781 case Bytecodes::_l2f:
782 entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
783 break;
784 case Bytecodes::_l2d:
785 entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
786 break;
787 case Bytecodes::_f2l:
788 entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
789 break;
790 case Bytecodes::_d2l:
791 entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
792 break;
793 case Bytecodes::_d2i:
794 entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
795 break;
796 default:
797 ShouldNotReachHere();
798 }
799 LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
800 set_result(x, result);
801 break;
802 }
803
804 case Bytecodes::_i2f:
805 case Bytecodes::_i2d: {
806 LIRItem value(x->value(), this);
807
808 LIR_Opr reg = rlock_result(x);
809 // To convert an int to double, we need to load the 32-bit int
810 // from memory into a single precision floating point register
811 // (even numbered). Then the sparc fitod instruction takes care
812 // of the conversion. This is a bit ugly, but is the best way to
813 // get the int value in a single precision floating point register
814 value.load_item();
815 LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
816 __ convert(x->op(), tmp, reg);
817 break;
818 }
819 break;
820
821 case Bytecodes::_i2l:
822 case Bytecodes::_i2b:
823 case Bytecodes::_i2c:
824 case Bytecodes::_i2s:
825 case Bytecodes::_l2i:
826 case Bytecodes::_f2d:
827 case Bytecodes::_d2f: { // inline code
828 LIRItem value(x->value(), this);
829
830 value.load_item();
831 LIR_Opr reg = rlock_result(x);
832 __ convert(x->op(), value.result(), reg, false);
833 }
834 break;
835
836 case Bytecodes::_f2i: {
837 LIRItem value (x->value(), this);
838 value.set_destroys_register();
839 value.load_item();
840 LIR_Opr reg = rlock_result(x);
841 set_vreg_flag(reg, must_start_in_memory);
842 __ convert(x->op(), value.result(), reg, false);
843 }
844 break;
845
846 default: ShouldNotReachHere();
847 }
848 }
849
850
851 void LIRGenerator::do_NewInstance(NewInstance* x) {
852 // This instruction can be deoptimized in the slow path : use
853 // O0 as result register.
854 const LIR_Opr reg = result_register_for(x->type());
855
856 if (PrintNotLoaded && !x->klass()->is_loaded()) {
857 tty->print_cr(" ###class not loaded at new bci %d", x->bci());
858 }
859 CodeEmitInfo* info = state_for(x, x->state());
860 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
861 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
862 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
863 LIR_Opr tmp4 = FrameMap::O1_oop_opr;
864 LIR_Opr klass_reg = FrameMap::G5_oop_opr;
865 new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
866 LIR_Opr result = rlock_result(x);
867 __ move(reg, result);
868 }
869
870
871 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
872 LIRItem length(x->length(), this);
873 length.load_item();
874
875 LIR_Opr reg = result_register_for(x->type());
876 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
877 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
878 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
879 LIR_Opr tmp4 = FrameMap::O1_oop_opr;
880 LIR_Opr klass_reg = FrameMap::G5_oop_opr;
881 LIR_Opr len = length.result();
882 BasicType elem_type = x->elt_type();
883
884 __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
885
886 CodeEmitInfo* info = state_for(x, x->state());
887 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
888 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
889
890 LIR_Opr result = rlock_result(x);
891 __ move(reg, result);
892 }
893
894
895 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
896 LIRItem length(x->length(), this);
897 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
898 // and therefore provide the state before the parameters have been consumed
899 CodeEmitInfo* patching_info = NULL;
900 if (!x->klass()->is_loaded() || PatchALot) {
901 patching_info = state_for(x, x->state_before());
902 }
903
904 length.load_item();
905
906 const LIR_Opr reg = result_register_for(x->type());
907 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
908 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
909 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
910 LIR_Opr tmp4 = FrameMap::O1_oop_opr;
911 LIR_Opr klass_reg = FrameMap::G5_oop_opr;
912 LIR_Opr len = length.result();
913 CodeEmitInfo* info = state_for(x, x->state());
914
915 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
916 ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
917 if (obj == ciEnv::unloaded_ciobjarrayklass()) {
918 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
919 }
920 jobject2reg_with_patching(klass_reg, obj, patching_info);
921 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
922
923 LIR_Opr result = rlock_result(x);
924 __ move(reg, result);
925 }
926
927
928 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
929 Values* dims = x->dims();
930 int i = dims->length();
931 LIRItemList* items = new LIRItemList(dims->length(), NULL);
932 while (i-- > 0) {
933 LIRItem* size = new LIRItem(dims->at(i), this);
934 items->at_put(i, size);
935 }
936
937 // need to get the info before, as the items may become invalid through item_free
938 CodeEmitInfo* patching_info = NULL;
939 if (!x->klass()->is_loaded() || PatchALot) {
940 patching_info = state_for(x, x->state_before());
941
942 // cannot re-use same xhandlers for multiple CodeEmitInfos, so
943 // clone all handlers
944 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
945 }
946
947 i = dims->length();
948 while (i-- > 0) {
949 LIRItem* size = items->at(i);
950 // if a patching_info was generated above then debug information for the state before
951 // the call is going to be emitted. The LIRGenerator calls above may have left some values
952 // in registers and that's been recorded in the CodeEmitInfo. In that case the items
953 // for those values can't simply be freed if they are registers because the values
954 // might be destroyed by store_stack_parameter. So in the case of patching, delay the
955 // freeing of the items that already were in registers
956 size->load_item();
957 store_stack_parameter (size->result(),
958 in_ByteSize(STACK_BIAS +
959 (i + frame::memory_parameter_word_sp_offset) * wordSize));
960 }
961
962 // This instruction can be deoptimized in the slow path : use
963 // O0 as result register.
964 const LIR_Opr reg = result_register_for(x->type());
965 CodeEmitInfo* info = state_for(x, x->state());
966
967 jobject2reg_with_patching(reg, x->klass(), patching_info);
968 LIR_Opr rank = FrameMap::O1_opr;
969 __ move(LIR_OprFact::intConst(x->rank()), rank);
970 LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
971 int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
972 __ add(FrameMap::SP_opr,
973 LIR_OprFact::intptrConst(offset_from_sp),
974 varargs);
975 LIR_OprList* args = new LIR_OprList(3);
976 args->append(reg);
977 args->append(rank);
978 args->append(varargs);
979 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
980 LIR_OprFact::illegalOpr,
981 reg, args, info);
982
983 LIR_Opr result = rlock_result(x);
984 __ move(reg, result);
985 }
986
987
988 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
989 }
990
991
992 void LIRGenerator::do_CheckCast(CheckCast* x) {
993 LIRItem obj(x->obj(), this);
994 CodeEmitInfo* patching_info = NULL;
995 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
996 // must do this before locking the destination register as an oop register,
997 // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
998 patching_info = state_for(x, x->state_before());
999 }
1000 obj.load_item();
1001 LIR_Opr out_reg = rlock_result(x);
1002 CodeStub* stub;
1003 CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
1004
1005 if (x->is_incompatible_class_change_check()) {
1006 assert(patching_info == NULL, "can't patch this");
1007 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1008 } else {
1009 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1010 }
1011 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1012 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1013 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1014 __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1015 x->direct_compare(), info_for_exception, patching_info, stub,
1016 x->profiled_method(), x->profiled_bci());
1017 }
1018
1019
1020 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1021 LIRItem obj(x->obj(), this);
1022 CodeEmitInfo* patching_info = NULL;
1023 if (!x->klass()->is_loaded() || PatchALot) {
1024 patching_info = state_for(x, x->state_before());
1025 }
1026 // ensure the result register is not the input register because the result is initialized before the patching safepoint
1027 obj.load_item();
1028 LIR_Opr out_reg = rlock_result(x);
1029 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1030 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1031 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1032 __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(), patching_info);
1033 }
1034
1035
1036 void LIRGenerator::do_If(If* x) {
1037 assert(x->number_of_sux() == 2, "inconsistency");
1038 ValueTag tag = x->x()->type()->tag();
1039 LIRItem xitem(x->x(), this);
1040 LIRItem yitem(x->y(), this);
1041 LIRItem* xin = &xitem;
1042 LIRItem* yin = &yitem;
1043 If::Condition cond = x->cond();
1044
1045 if (tag == longTag) {
1046 // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1047 // mirror for other conditions
1048 if (cond == If::gtr || cond == If::leq) {
1049 // swap inputs
1050 cond = Instruction::mirror(cond);
1051 xin = &yitem;
1052 yin = &xitem;
1053 }
1054 xin->set_destroys_register();
1055 }
1056
1057 LIR_Opr left = LIR_OprFact::illegalOpr;
1058 LIR_Opr right = LIR_OprFact::illegalOpr;
1059
1060 xin->load_item();
1061 left = xin->result();
1062
1063 if (is_simm13(yin->result())) {
1064 // inline int constants which are small enough to be immediate operands
1065 right = LIR_OprFact::value_type(yin->value()->type());
1066 } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1067 (cond == If::eql || cond == If::neq)) {
1068 // inline long zero
1069 right = LIR_OprFact::value_type(yin->value()->type());
1070 } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1071 right = LIR_OprFact::value_type(yin->value()->type());
1072 } else {
1073 yin->load_item();
1074 right = yin->result();
1075 }
1076 set_no_result(x);
1077
1078 // add safepoint before generating condition code so it can be recomputed
1079 if (x->is_safepoint()) {
1080 // increment backedge counter if needed
1081 increment_backedge_counter(state_for(x, x->state_before()));
1082
1083 __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
1084 }
1085
1086 __ cmp(lir_cond(cond), left, right);
1087 profile_branch(x, cond);
1088 move_to_phi(x->state());
1089 if (x->x()->type()->is_float_kind()) {
1090 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1091 } else {
1092 __ branch(lir_cond(cond), right->type(), x->tsux());
1093 }
1094 assert(x->default_sux() == x->fsux(), "wrong destination above");
1095 __ jump(x->default_sux());
1096 }
1097
1098
1099 LIR_Opr LIRGenerator::getThreadPointer() {
1100 return FrameMap::as_pointer_opr(G2);
1101 }
1102
1103
1104 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1105 __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1106 LIR_OprList* args = new LIR_OprList(1);
1107 args->append(FrameMap::O0_opr);
1108 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1109 __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1110 }
1111
1112
1113 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1114 CodeEmitInfo* info) {
1115 #ifdef _LP64
1116 __ store(value, address, info);
1117 #else
1118 __ volatile_store_mem_reg(value, address, info);
1119 #endif
1120 }
1121
1122 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1123 CodeEmitInfo* info) {
1124 #ifdef _LP64
1125 __ load(address, result, info);
1126 #else
1127 __ volatile_load_mem_reg(address, result, info);
1128 #endif
1129 }
1130
1131
1132 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1133 BasicType type, bool is_volatile) {
1134 LIR_Opr base_op = src;
1135 LIR_Opr index_op = offset;
1136
1137 bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1138 #ifndef _LP64
1139 if (is_volatile && type == T_LONG) {
1140 __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
1141 } else
1142 #endif
1143 {
1144 if (type == T_BOOLEAN) {
1145 type = T_BYTE;
1146 }
1147 LIR_Address* addr;
1148 if (type == T_ARRAY || type == T_OBJECT) {
1149 LIR_Opr tmp = new_pointer_register();
1150 __ add(base_op, index_op, tmp);
1151 addr = new LIR_Address(tmp, 0, type);
1152 } else {
1153 addr = new LIR_Address(base_op, index_op, type);
1154 }
1155
1156 __ move(data, addr);
1157 if (is_obj) {
1158 // This address is precise
1159 post_barrier(LIR_OprFact::address(addr), data);
1160 }
1161 }
1162 }
1163
1164
1165 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1166 BasicType type, bool is_volatile) {
1167 #ifndef _LP64
1168 if (is_volatile && type == T_LONG) {
1169 __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
1170 } else
1171 #endif
1172 {
1173 LIR_Address* addr = new LIR_Address(src, offset, type);
1174 __ load(addr, dst);
1175 }
1176 }