comparison src/cpu/sparc/vm/interp_masm_sparc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_interp_masm_sparc.cpp.incl"
27
28 #ifndef CC_INTERP
29 #ifndef FAST_DISPATCH
30 #define FAST_DISPATCH 1
31 #endif
32 #undef FAST_DISPATCH
33
34 // Implementation of InterpreterMacroAssembler
35
36 // This file specializes the assember with interpreter-specific macros
37
38 const Address InterpreterMacroAssembler::l_tmp( FP, 0, (frame::interpreter_frame_l_scratch_fp_offset * wordSize ) + STACK_BIAS);
39 const Address InterpreterMacroAssembler::d_tmp( FP, 0, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
40
41 #else // CC_INTERP
42 #ifndef STATE
43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
44 #endif // STATE
45
46 #endif // CC_INTERP
47
48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
49 // Note: this algorithm is also used by C1's OSR entry sequence.
50 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
51 assert_different_registers(args_size, locals_size);
52 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
53 if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
54 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
55 // Use br/mov combination because it works on both V8 and V9 and is
56 // faster.
57 Label skip_move;
58 br(Assembler::negative, true, Assembler::pt, skip_move);
59 delayed()->mov(G0, delta);
60 bind(skip_move);
61 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
62 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
63 }
64
65 #ifndef CC_INTERP
66
67 // Dispatch code executed in the prolog of a bytecode which does not do it's
68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
70 assert_not_delayed();
71 #ifdef FAST_DISPATCH
72 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
73 // they both use I2.
74 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
75 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
76 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
77 // add offset to correct dispatch table
78 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
79 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
80 #else
81 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
82 // dispatch table to use
83 Address tbl(G3_scratch, (address)Interpreter::dispatch_table(state));
84
85 sethi(tbl);
86 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
87 add(tbl, tbl.base(), 0);
88 ld_ptr( G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
89 #endif
90 }
91
92
93 // Dispatch code executed in the epilog of a bytecode which does not do it's
94 // own dispatch. The dispatch address in IdispatchAddress is used for the
95 // dispatch.
96 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
97 assert_not_delayed();
98 verify_FPU(1, state);
99 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
100 jmp( IdispatchAddress, 0 );
101 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
102 else delayed()->nop();
103 }
104
105
106 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
107 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
108 assert_not_delayed();
109 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
110 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
111 }
112
113
114 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
115 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
116 assert_not_delayed();
117 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
118 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
119 }
120
121
122 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
123 // load current bytecode
124 assert_not_delayed();
125 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
126 dispatch_base(state, table);
127 }
128
129
130 void InterpreterMacroAssembler::call_VM_leaf_base(
131 Register java_thread,
132 address entry_point,
133 int number_of_arguments
134 ) {
135 if (!java_thread->is_valid())
136 java_thread = L7_thread_cache;
137 // super call
138 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
139 }
140
141
142 void InterpreterMacroAssembler::call_VM_base(
143 Register oop_result,
144 Register java_thread,
145 Register last_java_sp,
146 address entry_point,
147 int number_of_arguments,
148 bool check_exception
149 ) {
150 if (!java_thread->is_valid())
151 java_thread = L7_thread_cache;
152 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
153 // takes responsibility for setting its own thread-state on call-out.
154 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
155
156 //save_bcp(); // save bcp
157 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
158 //restore_bcp(); // restore bcp
159 //restore_locals(); // restore locals pointer
160 }
161
162
163 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
164 if (JvmtiExport::can_pop_frame()) {
165 Label L;
166
167 // Check the "pending popframe condition" flag in the current thread
168 Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
169 ld(popframe_condition_addr, scratch_reg);
170
171 // Initiate popframe handling only if it is not already being processed. If the flag
172 // has the popframe_processing bit set, it means that this code is called *during* popframe
173 // handling - we don't want to reenter.
174 btst(JavaThread::popframe_pending_bit, scratch_reg);
175 br(zero, false, pt, L);
176 delayed()->nop();
177 btst(JavaThread::popframe_processing_bit, scratch_reg);
178 br(notZero, false, pt, L);
179 delayed()->nop();
180
181 // Call Interpreter::remove_activation_preserving_args_entry() to get the
182 // address of the same-named entrypoint in the generated interpreter code.
183 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
184
185 // Jump to Interpreter::_remove_activation_preserving_args_entry
186 jmpl(O0, G0, G0);
187 delayed()->nop();
188 bind(L);
189 }
190 }
191
192
193 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
194 Register thr_state = G4_scratch;
195 ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
196 thr_state);
197 const Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
198 const Address oop_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_oop_offset()));
199 const Address val_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_value_offset()));
200 switch (state) {
201 case ltos: ld_long(val_addr, Otos_l); break;
202 case atos: ld_ptr(oop_addr, Otos_l);
203 st_ptr(G0, oop_addr); break;
204 case btos: // fall through
205 case ctos: // fall through
206 case stos: // fall through
207 case itos: ld(val_addr, Otos_l1); break;
208 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
209 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
210 case vtos: /* nothing to do */ break;
211 default : ShouldNotReachHere();
212 }
213 // Clean up tos value in the jvmti thread state
214 or3(G0, ilgl, G3_scratch);
215 stw(G3_scratch, tos_addr);
216 st_long(G0, val_addr);
217 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
218 }
219
220
221 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
222 if (JvmtiExport::can_force_early_return()) {
223 Label L;
224 Register thr_state = G3_scratch;
225 ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
226 thr_state);
227 tst(thr_state);
228 br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
229 delayed()->nop();
230
231 // Initiate earlyret handling only if it is not already being processed.
232 // If the flag has the earlyret_processing bit set, it means that this code
233 // is called *during* earlyret handling - we don't want to reenter.
234 ld(Address(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_state_offset())),
235 G4_scratch);
236 cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
237 br(Assembler::notEqual, false, pt, L);
238 delayed()->nop();
239
240 // Call Interpreter::remove_activation_early_entry() to get the address of the
241 // same-named entrypoint in the generated interpreter code
242 Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
243 ld(tos_addr, Otos_l1);
244 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
245
246 // Jump to Interpreter::_remove_activation_early_entry
247 jmpl(O0, G0, G0);
248 delayed()->nop();
249 bind(L);
250 }
251 }
252
253
254 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
255 mov(arg_1, O0);
256 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
257 }
258 #endif /* CC_INTERP */
259
260
261 #ifndef CC_INTERP
262
263 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
264 assert_not_delayed();
265 dispatch_Lbyte_code(state, table);
266 }
267
268
269 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
270 dispatch_base(state, Interpreter::normal_table(state));
271 }
272
273
274 void InterpreterMacroAssembler::dispatch_only(TosState state) {
275 dispatch_base(state, Interpreter::dispatch_table(state));
276 }
277
278
279 // common code to dispatch and dispatch_only
280 // dispatch value in Lbyte_code and increment Lbcp
281
282 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
283 verify_FPU(1, state);
284 // %%%%% maybe implement +VerifyActivationFrameSize here
285 //verify_thread(); //too slow; we will just verify on method entry & exit
286 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
287 #ifdef FAST_DISPATCH
288 if (table == Interpreter::dispatch_table(state)) {
289 // use IdispatchTables
290 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
291 // add offset to correct dispatch table
292 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
293 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
294 } else {
295 #endif
296 // dispatch table to use
297 Address tbl(G3_scratch, (address)table);
298
299 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
300 load_address(tbl); // compute addr of table
301 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
302 #ifdef FAST_DISPATCH
303 }
304 #endif
305 jmp( G3_scratch, 0 );
306 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
307 else delayed()->nop();
308 }
309
310
311 // Helpers for expression stack
312
313 // Longs and doubles are Category 2 computational types in the
314 // JVM specification (section 3.11.1) and take 2 expression stack or
315 // local slots.
316 // Aligning them on 32 bit with tagged stacks is hard because the code generated
317 // for the dup* bytecodes depends on what types are already on the stack.
318 // If the types are split into the two stack/local slots, that is much easier
319 // (and we can use 0 for non-reference tags).
320
321 // Known good alignment in _LP64 but unknown otherwise
322 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
323 assert_not_delayed();
324
325 #ifdef _LP64
326 ldf(FloatRegisterImpl::D, r1, offset, d);
327 #else
328 ldf(FloatRegisterImpl::S, r1, offset, d);
329 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
330 #endif
331 }
332
333 // Known good alignment in _LP64 but unknown otherwise
334 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
335 assert_not_delayed();
336
337 #ifdef _LP64
338 stf(FloatRegisterImpl::D, d, r1, offset);
339 // store something more useful here
340 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
341 #else
342 stf(FloatRegisterImpl::S, d, r1, offset);
343 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
344 #endif
345 }
346
347
348 // Known good alignment in _LP64 but unknown otherwise
349 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
350 assert_not_delayed();
351 #ifdef _LP64
352 ldx(r1, offset, rd);
353 #else
354 ld(r1, offset, rd);
355 ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
356 #endif
357 }
358
359 // Known good alignment in _LP64 but unknown otherwise
360 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
361 assert_not_delayed();
362
363 #ifdef _LP64
364 stx(l, r1, offset);
365 // store something more useful here
366 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
367 #else
368 st(l, r1, offset);
369 st(l->successor(), r1, offset + Interpreter::stackElementSize());
370 #endif
371 }
372
373 #ifdef ASSERT
374 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
375 Register r,
376 Register scratch) {
377 if (TaggedStackInterpreter) {
378 Label ok, long_ok;
379 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
380 if (t == frame::TagCategory2) {
381 cmp(r, G0);
382 brx(Assembler::equal, false, Assembler::pt, long_ok);
383 delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
384 stop("stack long/double tag value bad");
385 bind(long_ok);
386 cmp(r, G0);
387 } else if (t == frame::TagValue) {
388 cmp(r, G0);
389 } else {
390 assert_different_registers(r, scratch);
391 mov(t, scratch);
392 cmp(r, scratch);
393 }
394 brx(Assembler::equal, false, Assembler::pt, ok);
395 delayed()->nop();
396 // Also compare if the stack value is zero, then the tag might
397 // not have been set coming from deopt.
398 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
399 cmp(r, G0);
400 brx(Assembler::equal, false, Assembler::pt, ok);
401 delayed()->nop();
402 stop("Stack tag value is bad");
403 bind(ok);
404 }
405 }
406 #endif // ASSERT
407
408 void InterpreterMacroAssembler::pop_i(Register r) {
409 assert_not_delayed();
410 // Uses destination register r for scratch
411 debug_only(verify_stack_tag(frame::TagValue, r));
412 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
413 inc(Lesp, Interpreter::stackElementSize());
414 debug_only(verify_esp(Lesp));
415 }
416
417 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
418 assert_not_delayed();
419 // Uses destination register r for scratch
420 debug_only(verify_stack_tag(frame::TagReference, r, scratch));
421 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
422 inc(Lesp, Interpreter::stackElementSize());
423 debug_only(verify_esp(Lesp));
424 }
425
426 void InterpreterMacroAssembler::pop_l(Register r) {
427 assert_not_delayed();
428 // Uses destination register r for scratch
429 debug_only(verify_stack_tag(frame::TagCategory2, r));
430 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
431 inc(Lesp, 2*Interpreter::stackElementSize());
432 debug_only(verify_esp(Lesp));
433 }
434
435
436 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
437 assert_not_delayed();
438 debug_only(verify_stack_tag(frame::TagValue, scratch));
439 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
440 inc(Lesp, Interpreter::stackElementSize());
441 debug_only(verify_esp(Lesp));
442 }
443
444
445 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
446 assert_not_delayed();
447 debug_only(verify_stack_tag(frame::TagCategory2, scratch));
448 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
449 inc(Lesp, 2*Interpreter::stackElementSize());
450 debug_only(verify_esp(Lesp));
451 }
452
453
454 // (Note use register first, then decrement so dec can be done during store stall)
455 void InterpreterMacroAssembler::tag_stack(Register r) {
456 if (TaggedStackInterpreter) {
457 st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
458 }
459 }
460
461 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
462 if (TaggedStackInterpreter) {
463 assert (frame::TagValue == 0, "TagValue must be zero");
464 if (t == frame::TagValue) {
465 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
466 } else if (t == frame::TagCategory2) {
467 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
468 // Tag next slot down too
469 st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
470 } else {
471 assert_different_registers(r, O3);
472 mov(t, O3);
473 st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
474 }
475 }
476 }
477
478 void InterpreterMacroAssembler::push_i(Register r) {
479 assert_not_delayed();
480 debug_only(verify_esp(Lesp));
481 tag_stack(frame::TagValue, r);
482 st( r, Lesp, Interpreter::value_offset_in_bytes());
483 dec( Lesp, Interpreter::stackElementSize());
484 }
485
486 void InterpreterMacroAssembler::push_ptr(Register r) {
487 assert_not_delayed();
488 tag_stack(frame::TagReference, r);
489 st_ptr( r, Lesp, Interpreter::value_offset_in_bytes());
490 dec( Lesp, Interpreter::stackElementSize());
491 }
492
493 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
494 assert_not_delayed();
495 tag_stack(tag);
496 st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
497 dec( Lesp, Interpreter::stackElementSize());
498 }
499
500 // remember: our convention for longs in SPARC is:
501 // O0 (Otos_l1) has high-order part in first word,
502 // O1 (Otos_l2) has low-order part in second word
503
504 void InterpreterMacroAssembler::push_l(Register r) {
505 assert_not_delayed();
506 debug_only(verify_esp(Lesp));
507 tag_stack(frame::TagCategory2, r);
508 // Longs are in stored in memory-correct order, even if unaligned.
509 // and may be separated by stack tags.
510 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
511 store_unaligned_long(r, Lesp, offset);
512 dec(Lesp, 2 * Interpreter::stackElementSize());
513 }
514
515
516 void InterpreterMacroAssembler::push_f(FloatRegister f) {
517 assert_not_delayed();
518 debug_only(verify_esp(Lesp));
519 tag_stack(frame::TagValue, Otos_i);
520 stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
521 dec(Lesp, Interpreter::stackElementSize());
522 }
523
524
525 void InterpreterMacroAssembler::push_d(FloatRegister d) {
526 assert_not_delayed();
527 debug_only(verify_esp(Lesp));
528 tag_stack(frame::TagCategory2, Otos_i);
529 // Longs are in stored in memory-correct order, even if unaligned.
530 // and may be separated by stack tags.
531 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
532 store_unaligned_double(d, Lesp, offset);
533 dec(Lesp, 2 * Interpreter::stackElementSize());
534 }
535
536
537 void InterpreterMacroAssembler::push(TosState state) {
538 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
539 switch (state) {
540 case atos: push_ptr(); break;
541 case btos: push_i(); break;
542 case ctos:
543 case stos: push_i(); break;
544 case itos: push_i(); break;
545 case ltos: push_l(); break;
546 case ftos: push_f(); break;
547 case dtos: push_d(); break;
548 case vtos: /* nothing to do */ break;
549 default : ShouldNotReachHere();
550 }
551 }
552
553
554 void InterpreterMacroAssembler::pop(TosState state) {
555 switch (state) {
556 case atos: pop_ptr(); break;
557 case btos: pop_i(); break;
558 case ctos:
559 case stos: pop_i(); break;
560 case itos: pop_i(); break;
561 case ltos: pop_l(); break;
562 case ftos: pop_f(); break;
563 case dtos: pop_d(); break;
564 case vtos: /* nothing to do */ break;
565 default : ShouldNotReachHere();
566 }
567 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
568 }
569
570
571 // Tagged stack helpers for swap and dup
572 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
573 Register tag) {
574 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
575 if (TaggedStackInterpreter) {
576 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
577 }
578 }
579 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
580 Register tag) {
581 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
582 if (TaggedStackInterpreter) {
583 st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
584 }
585 }
586
587
588 void InterpreterMacroAssembler::load_receiver(Register param_count,
589 Register recv) {
590
591 sll(param_count, Interpreter::logStackElementSize(), param_count);
592 if (TaggedStackInterpreter) {
593 add(param_count, Interpreter::value_offset_in_bytes(), param_count); // get obj address
594 }
595 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
596 }
597
598 void InterpreterMacroAssembler::empty_expression_stack() {
599 // Reset Lesp.
600 sub( Lmonitors, wordSize, Lesp );
601
602 // Reset SP by subtracting more space from Lesp.
603 Label done;
604
605 const Address max_stack (Lmethod, 0, in_bytes(methodOopDesc::max_stack_offset()));
606 const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
607
608 verify_oop(Lmethod);
609
610
611 assert( G4_scratch != Gframe_size,
612 "Only you can prevent register aliasing!");
613
614 // A native does not need to do this, since its callee does not change SP.
615 ld(access_flags, Gframe_size);
616 btst(JVM_ACC_NATIVE, Gframe_size);
617 br(Assembler::notZero, false, Assembler::pt, done);
618 delayed()->nop();
619
620 //
621 // Compute max expression stack+register save area
622 //
623 lduh( max_stack, Gframe_size );
624 if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size); // max_stack * 2 for TAGS
625 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
626
627 //
628 // now set up a stack frame with the size computed above
629 //
630 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
631 sll( Gframe_size, LogBytesPerWord, Gframe_size );
632 sub( Lesp, Gframe_size, Gframe_size );
633 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
634 debug_only(verify_sp(Gframe_size, G4_scratch));
635 #ifdef _LP64
636 sub(Gframe_size, STACK_BIAS, Gframe_size );
637 #endif
638 mov(Gframe_size, SP);
639
640 bind(done);
641 }
642
643
644 #ifdef ASSERT
645 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
646 Label Bad, OK;
647
648 // Saved SP must be aligned.
649 #ifdef _LP64
650 btst(2*BytesPerWord-1, Rsp);
651 #else
652 btst(LongAlignmentMask, Rsp);
653 #endif
654 br(Assembler::notZero, false, Assembler::pn, Bad);
655 delayed()->nop();
656
657 // Saved SP, plus register window size, must not be above FP.
658 add(Rsp, frame::register_save_words * wordSize, Rtemp);
659 #ifdef _LP64
660 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
661 #endif
662 cmp(Rtemp, FP);
663 brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
664 delayed()->nop();
665
666 // Saved SP must not be ridiculously below current SP.
667 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
668 set(maxstack, Rtemp);
669 sub(SP, Rtemp, Rtemp);
670 #ifdef _LP64
671 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
672 #endif
673 cmp(Rsp, Rtemp);
674 brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
675 delayed()->nop();
676
677 br(Assembler::always, false, Assembler::pn, OK);
678 delayed()->nop();
679
680 bind(Bad);
681 stop("on return to interpreted call, restored SP is corrupted");
682
683 bind(OK);
684 }
685
686
687 void InterpreterMacroAssembler::verify_esp(Register Resp) {
688 // about to read or write Resp[0]
689 // make sure it is not in the monitors or the register save area
690 Label OK1, OK2;
691
692 cmp(Resp, Lmonitors);
693 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
694 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
695 stop("too many pops: Lesp points into monitor area");
696 bind(OK1);
697 #ifdef _LP64
698 sub(Resp, STACK_BIAS, Resp);
699 #endif
700 cmp(Resp, SP);
701 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
702 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
703 stop("too many pushes: Lesp points into register window");
704 bind(OK2);
705 }
706 #endif // ASSERT
707
708 // Load compiled (i2c) or interpreter entry when calling from interpreted and
709 // do the call. Centralized so that all interpreter calls will do the same actions.
710 // If jvmti single stepping is on for a thread we must not call compiled code.
711 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
712
713 // Assume we want to go compiled if available
714
715 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
716
717 if (JvmtiExport::can_post_interpreter_events()) {
718 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
719 // compiled code in threads for which the event is enabled. Check here for
720 // interp_only_mode if these events CAN be enabled.
721 verify_thread();
722 Label skip_compiled_code;
723
724 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
725
726 ld(interp_only, scratch);
727 tst(scratch);
728 br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
729 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
730 bind(skip_compiled_code);
731 }
732
733 // the i2c_adapters need methodOop in G5_method (right? %%%)
734 // do the call
735 #ifdef ASSERT
736 {
737 Label ok;
738 br_notnull(target, false, Assembler::pt, ok);
739 delayed()->nop();
740 stop("null entry point");
741 bind(ok);
742 }
743 #endif // ASSERT
744
745 // Adjust Rret first so Llast_SP can be same as Rret
746 add(Rret, -frame::pc_return_offset, O7);
747 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
748 // Record SP so we can remove any stack space allocated by adapter transition
749 jmp(target, 0);
750 delayed()->mov(SP, Llast_SP);
751 }
752
753 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
754 assert_not_delayed();
755
756 Label not_taken;
757 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
758 else br (cc, false, Assembler::pn, not_taken);
759 delayed()->nop();
760
761 TemplateTable::branch(false,false);
762
763 bind(not_taken);
764
765 profile_not_taken_branch(G3_scratch);
766 }
767
768
769 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
770 int bcp_offset,
771 Register Rtmp,
772 Register Rdst,
773 signedOrNot is_signed,
774 setCCOrNot should_set_CC ) {
775 assert(Rtmp != Rdst, "need separate temp register");
776 assert_not_delayed();
777 switch (is_signed) {
778 default: ShouldNotReachHere();
779
780 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
781 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
782 }
783 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
784 sll( Rdst, BitsPerByte, Rdst);
785 switch (should_set_CC ) {
786 default: ShouldNotReachHere();
787
788 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
789 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
790 }
791 }
792
793
794 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
795 int bcp_offset,
796 Register Rtmp,
797 Register Rdst,
798 setCCOrNot should_set_CC ) {
799 assert(Rtmp != Rdst, "need separate temp register");
800 assert_not_delayed();
801 add( Lbcp, bcp_offset, Rtmp);
802 andcc( Rtmp, 3, G0);
803 Label aligned;
804 switch (should_set_CC ) {
805 default: ShouldNotReachHere();
806
807 case set_CC: break;
808 case dont_set_CC: break;
809 }
810
811 br(Assembler::zero, true, Assembler::pn, aligned);
812 #ifdef _LP64
813 delayed()->ldsw(Rtmp, 0, Rdst);
814 #else
815 delayed()->ld(Rtmp, 0, Rdst);
816 #endif
817
818 ldub(Lbcp, bcp_offset + 3, Rdst);
819 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
820 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
821 #ifdef _LP64
822 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
823 #else
824 // Unsigned load is faster than signed on some implementations
825 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
826 #endif
827 or3(Rtmp, Rdst, Rdst );
828
829 bind(aligned);
830 if (should_set_CC == set_CC) tst(Rdst);
831 }
832
833
834 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
835 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
836 assert_different_registers(cache, tmp);
837 assert_not_delayed();
838 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
839 // convert from field index to ConstantPoolCacheEntry index
840 // and from word index to byte offset
841 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
842 add(LcpoolCache, tmp, cache);
843 }
844
845
846 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
847 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
848 assert_different_registers(cache, tmp);
849 assert_not_delayed();
850 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
851 // convert from field index to ConstantPoolCacheEntry index
852 // and from word index to byte offset
853 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
854 // skip past the header
855 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
856 // construct pointer to cache entry
857 add(LcpoolCache, tmp, cache);
858 }
859
860
861 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
862 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
863 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
864 Register Rsuper_klass,
865 Register Rtmp1,
866 Register Rtmp2,
867 Register Rtmp3,
868 Label &ok_is_subtype ) {
869 Label not_subtype, loop;
870
871 // Profile the not-null value's klass.
872 profile_typecheck(Rsub_klass, Rtmp1);
873
874 // Load the super-klass's check offset into Rtmp1
875 ld( Rsuper_klass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1 );
876 // Load from the sub-klass's super-class display list, or a 1-word cache of
877 // the secondary superclass list, or a failing value with a sentinel offset
878 // if the super-klass is an interface or exceptionally deep in the Java
879 // hierarchy and we have to scan the secondary superclass list the hard way.
880 ld_ptr( Rsub_klass, Rtmp1, Rtmp2 );
881 // See if we get an immediate positive hit
882 cmp( Rtmp2, Rsuper_klass );
883 brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
884 // In the delay slot, check for immediate negative hit
885 delayed()->cmp( Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
886 br( Assembler::notEqual, false, Assembler::pt, not_subtype );
887 // In the delay slot, check for self
888 delayed()->cmp( Rsub_klass, Rsuper_klass );
889 brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
890
891 // Now do a linear scan of the secondary super-klass chain.
892 delayed()->ld_ptr( Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), Rtmp2 );
893
894 // Rtmp2 holds the objArrayOop of secondary supers.
895 ld( Rtmp2, arrayOopDesc::length_offset_in_bytes(), Rtmp1 );// Load the array length
896 // Check for empty secondary super list
897 tst(Rtmp1);
898
899 // Top of search loop
900 bind( loop );
901 br( Assembler::equal, false, Assembler::pn, not_subtype );
902 delayed()->nop();
903 // load next super to check
904 ld_ptr( Rtmp2, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rtmp3 );
905
906 // Bump array pointer forward one oop
907 add( Rtmp2, wordSize, Rtmp2 );
908 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
909 cmp( Rtmp3, Rsuper_klass );
910 // A miss means we are NOT a subtype and need to keep looping
911 brx( Assembler::notEqual, false, Assembler::pt, loop );
912 delayed()->deccc( Rtmp1 ); // dec trip counter in delay slot
913 // Falling out the bottom means we found a hit; we ARE a subtype
914 br( Assembler::always, false, Assembler::pt, ok_is_subtype );
915 // Update the cache
916 delayed()->st_ptr( Rsuper_klass, Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
917
918 bind(not_subtype);
919 profile_typecheck_failed(Rtmp1);
920 }
921
922 // Separate these two to allow for delay slot in middle
923 // These are used to do a test and full jump to exception-throwing code.
924
925 // %%%%% Could possibly reoptimize this by testing to see if could use
926 // a single conditional branch (i.e. if span is small enough.
927 // If you go that route, than get rid of the split and give up
928 // on the delay-slot hack.
929
930 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
931 Label& ok ) {
932 assert_not_delayed();
933 br(ok_condition, true, pt, ok);
934 // DELAY SLOT
935 }
936
937 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
938 Label& ok ) {
939 assert_not_delayed();
940 bp( ok_condition, true, Assembler::xcc, pt, ok);
941 // DELAY SLOT
942 }
943
944 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
945 Label& ok ) {
946 assert_not_delayed();
947 brx(ok_condition, true, pt, ok);
948 // DELAY SLOT
949 }
950
951 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
952 Register Rscratch,
953 Label& ok ) {
954 assert(throw_entry_point != NULL, "entry point must be generated by now");
955 Address dest(Rscratch, throw_entry_point);
956 jump_to(dest);
957 delayed()->nop();
958 bind(ok);
959 }
960
961
962 // And if you cannot use the delay slot, here is a shorthand:
963
964 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
965 address throw_entry_point,
966 Register Rscratch ) {
967 Label ok;
968 if (ok_condition != never) {
969 throw_if_not_1_icc( ok_condition, ok);
970 delayed()->nop();
971 }
972 throw_if_not_2( throw_entry_point, Rscratch, ok);
973 }
974 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
975 address throw_entry_point,
976 Register Rscratch ) {
977 Label ok;
978 if (ok_condition != never) {
979 throw_if_not_1_xcc( ok_condition, ok);
980 delayed()->nop();
981 }
982 throw_if_not_2( throw_entry_point, Rscratch, ok);
983 }
984 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
985 address throw_entry_point,
986 Register Rscratch ) {
987 Label ok;
988 if (ok_condition != never) {
989 throw_if_not_1_x( ok_condition, ok);
990 delayed()->nop();
991 }
992 throw_if_not_2( throw_entry_point, Rscratch, ok);
993 }
994
995 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
996 // Note: res is still shy of address by array offset into object.
997
998 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
999 assert_not_delayed();
1000
1001 verify_oop(array);
1002 #ifdef _LP64
1003 // sign extend since tos (index) can be a 32bit value
1004 sra(index, G0, index);
1005 #endif // _LP64
1006
1007 // check array
1008 Label ptr_ok;
1009 tst(array);
1010 throw_if_not_1_x( notZero, ptr_ok );
1011 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
1012 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
1013
1014 Label index_ok;
1015 cmp(index, tmp);
1016 throw_if_not_1_icc( lessUnsigned, index_ok );
1017 if (index_shift > 0) delayed()->sll(index, index_shift, index);
1018 else delayed()->add(array, index, res); // addr - const offset in index
1019 // convention: move aberrant index into G3_scratch for exception message
1020 mov(index, G3_scratch);
1021 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
1022
1023 // add offset if didn't do it in delay slot
1024 if (index_shift > 0) add(array, index, res); // addr - const offset in index
1025 }
1026
1027
1028 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
1029 assert_not_delayed();
1030
1031 // pop array
1032 pop_ptr(array);
1033
1034 // check array
1035 index_check_without_pop(array, index, index_shift, tmp, res);
1036 }
1037
1038
1039 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
1040 ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
1041 }
1042
1043
1044 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
1045 get_constant_pool(Rdst);
1046 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
1047 }
1048
1049
1050 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
1051 get_constant_pool(Rcpool);
1052 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
1053 }
1054
1055
1056 // unlock if synchronized method
1057 //
1058 // Unlock the receiver if this is a synchronized method.
1059 // Unlock any Java monitors from syncronized blocks.
1060 //
1061 // If there are locked Java monitors
1062 // If throw_monitor_exception
1063 // throws IllegalMonitorStateException
1064 // Else if install_monitor_exception
1065 // installs IllegalMonitorStateException
1066 // Else
1067 // no error processing
1068 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
1069 bool throw_monitor_exception,
1070 bool install_monitor_exception) {
1071 Label unlocked, unlock, no_unlock;
1072
1073 // get the value of _do_not_unlock_if_synchronized into G1_scratch
1074 const Address do_not_unlock_if_synchronized(G2_thread, 0,
1075 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1076 ldbool(do_not_unlock_if_synchronized, G1_scratch);
1077 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
1078
1079 // check if synchronized method
1080 const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
1081 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1082 push(state); // save tos
1083 ld(access_flags, G3_scratch);
1084 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1085 br( zero, false, pt, unlocked);
1086 delayed()->nop();
1087
1088 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1089 // is set.
1090 tstbool(G1_scratch);
1091 br(Assembler::notZero, false, pn, no_unlock);
1092 delayed()->nop();
1093
1094 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1095 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1096
1097 //Intel: if (throw_monitor_exception) ... else ...
1098 // Entry already unlocked, need to throw exception
1099 //...
1100
1101 // pass top-most monitor elem
1102 add( top_most_monitor(), O1 );
1103
1104 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1105 br_notnull(G3_scratch, false, pt, unlock);
1106 delayed()->nop();
1107
1108 if (throw_monitor_exception) {
1109 // Entry already unlocked need to throw an exception
1110 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1111 should_not_reach_here();
1112 } else {
1113 // Monitor already unlocked during a stack unroll.
1114 // If requested, install an illegal_monitor_state_exception.
1115 // Continue with stack unrolling.
1116 if (install_monitor_exception) {
1117 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1118 }
1119 ba(false, unlocked);
1120 delayed()->nop();
1121 }
1122
1123 bind(unlock);
1124
1125 unlock_object(O1);
1126
1127 bind(unlocked);
1128
1129 // I0, I1: Might contain return value
1130
1131 // Check that all monitors are unlocked
1132 { Label loop, exception, entry, restart;
1133
1134 Register Rmptr = O0;
1135 Register Rtemp = O1;
1136 Register Rlimit = Lmonitors;
1137 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1138 assert( (delta & LongAlignmentMask) == 0,
1139 "sizeof BasicObjectLock must be even number of doublewords");
1140
1141 #ifdef ASSERT
1142 add(top_most_monitor(), Rmptr, delta);
1143 { Label L;
1144 // ensure that Rmptr starts out above (or at) Rlimit
1145 cmp(Rmptr, Rlimit);
1146 brx(Assembler::greaterEqualUnsigned, false, pn, L);
1147 delayed()->nop();
1148 stop("monitor stack has negative size");
1149 bind(L);
1150 }
1151 #endif
1152 bind(restart);
1153 ba(false, entry);
1154 delayed()->
1155 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
1156
1157 // Entry is still locked, need to throw exception
1158 bind(exception);
1159 if (throw_monitor_exception) {
1160 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1161 should_not_reach_here();
1162 } else {
1163 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1164 // Unlock does not block, so don't have to worry about the frame
1165 unlock_object(Rmptr);
1166 if (install_monitor_exception) {
1167 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1168 }
1169 ba(false, restart);
1170 delayed()->nop();
1171 }
1172
1173 bind(loop);
1174 cmp(Rtemp, G0); // check if current entry is used
1175 brx(Assembler::notEqual, false, pn, exception);
1176 delayed()->
1177 dec(Rmptr, delta); // otherwise advance to next entry
1178 #ifdef ASSERT
1179 { Label L;
1180 // ensure that Rmptr has not somehow stepped below Rlimit
1181 cmp(Rmptr, Rlimit);
1182 brx(Assembler::greaterEqualUnsigned, false, pn, L);
1183 delayed()->nop();
1184 stop("ran off the end of the monitor stack");
1185 bind(L);
1186 }
1187 #endif
1188 bind(entry);
1189 cmp(Rmptr, Rlimit); // check if bottom reached
1190 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
1191 delayed()->
1192 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1193 }
1194
1195 bind(no_unlock);
1196 pop(state);
1197 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1198 }
1199
1200
1201 // remove activation
1202 //
1203 // Unlock the receiver if this is a synchronized method.
1204 // Unlock any Java monitors from syncronized blocks.
1205 // Remove the activation from the stack.
1206 //
1207 // If there are locked Java monitors
1208 // If throw_monitor_exception
1209 // throws IllegalMonitorStateException
1210 // Else if install_monitor_exception
1211 // installs IllegalMonitorStateException
1212 // Else
1213 // no error processing
1214 void InterpreterMacroAssembler::remove_activation(TosState state,
1215 bool throw_monitor_exception,
1216 bool install_monitor_exception) {
1217
1218 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1219
1220 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1221 notify_method_exit(false, state, NotifyJVMTI);
1222
1223 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1224 verify_oop(Lmethod);
1225 verify_thread();
1226
1227 // return tos
1228 assert(Otos_l1 == Otos_i, "adjust code below");
1229 switch (state) {
1230 #ifdef _LP64
1231 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1232 #else
1233 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
1234 #endif
1235 case btos: // fall through
1236 case ctos:
1237 case stos: // fall through
1238 case atos: // fall through
1239 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
1240 case ftos: // fall through
1241 case dtos: // fall through
1242 case vtos: /* nothing to do */ break;
1243 default : ShouldNotReachHere();
1244 }
1245
1246 #if defined(COMPILER2) && !defined(_LP64)
1247 if (state == ltos) {
1248 // C2 expects long results in G1 we can't tell if we're returning to interpreted
1249 // or compiled so just be safe use G1 and O0/O1
1250
1251 // Shift bits into high (msb) of G1
1252 sllx(Otos_l1->after_save(), 32, G1);
1253 // Zero extend low bits
1254 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1255 or3 (Otos_l2->after_save(), G1, G1);
1256 }
1257 #endif /* COMPILER2 */
1258
1259 }
1260 #endif /* CC_INTERP */
1261
1262
1263 // Lock object
1264 //
1265 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1266 // it must be initialized with the object to lock
1267 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1268 if (UseHeavyMonitors) {
1269 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1270 }
1271 else {
1272 Register obj_reg = Object;
1273 Register mark_reg = G4_scratch;
1274 Register temp_reg = G1_scratch;
1275 Address lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
1276 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
1277 Label done;
1278
1279 Label slow_case;
1280
1281 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1282
1283 // load markOop from object into mark_reg
1284 ld_ptr(mark_addr, mark_reg);
1285
1286 if (UseBiasedLocking) {
1287 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1288 }
1289
1290 // get the address of basicLock on stack that will be stored in the object
1291 // we need a temporary register here as we do not want to clobber lock_reg
1292 // (cas clobbers the destination register)
1293 mov(lock_reg, temp_reg);
1294 // set mark reg to be (markOop of object | UNLOCK_VALUE)
1295 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1296 // initialize the box (Must happen before we update the object mark!)
1297 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1298 // compare and exchange object_addr, markOop | 1, stack address of basicLock
1299 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1300 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1301 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1302
1303 // if the compare and exchange succeeded we are done (we saw an unlocked object)
1304 cmp(mark_reg, temp_reg);
1305 brx(Assembler::equal, true, Assembler::pt, done);
1306 delayed()->nop();
1307
1308 // We did not see an unlocked object so try the fast recursive case
1309
1310 // Check if owner is self by comparing the value in the markOop of object
1311 // with the stack pointer
1312 sub(temp_reg, SP, temp_reg);
1313 #ifdef _LP64
1314 sub(temp_reg, STACK_BIAS, temp_reg);
1315 #endif
1316 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1317
1318 // Composite "andcc" test:
1319 // (a) %sp -vs- markword proximity check, and,
1320 // (b) verify mark word LSBs == 0 (Stack-locked).
1321 //
1322 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1323 // Note that the page size used for %sp proximity testing is arbitrary and is
1324 // unrelated to the actual MMU page size. We use a 'logical' page size of
1325 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1326 // field of the andcc instruction.
1327 andcc (temp_reg, 0xFFFFF003, G0) ;
1328
1329 // if condition is true we are done and hence we can store 0 in the displaced
1330 // header indicating it is a recursive lock and be done
1331 brx(Assembler::zero, true, Assembler::pt, done);
1332 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1333
1334 // none of the above fast optimizations worked so we have to get into the
1335 // slow case of monitor enter
1336 bind(slow_case);
1337 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1338
1339 bind(done);
1340 }
1341 }
1342
1343 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1344 //
1345 // Argument - lock_reg points to the BasicObjectLock for lock
1346 // Throw IllegalMonitorException if object is not locked by current thread
1347 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1348 if (UseHeavyMonitors) {
1349 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1350 } else {
1351 Register obj_reg = G3_scratch;
1352 Register mark_reg = G4_scratch;
1353 Register displaced_header_reg = G1_scratch;
1354 Address lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
1355 Address lockobj_addr = Address(lock_reg, 0, BasicObjectLock::obj_offset_in_bytes());
1356 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
1357 Label done;
1358
1359 if (UseBiasedLocking) {
1360 // load the object out of the BasicObjectLock
1361 ld_ptr(lockobj_addr, obj_reg);
1362 biased_locking_exit(mark_addr, mark_reg, done, true);
1363 st_ptr(G0, lockobj_addr); // free entry
1364 }
1365
1366 // Test first if we are in the fast recursive case
1367 ld_ptr(lock_addr, displaced_header_reg, BasicLock::displaced_header_offset_in_bytes());
1368 br_null(displaced_header_reg, true, Assembler::pn, done);
1369 delayed()->st_ptr(G0, lockobj_addr); // free entry
1370
1371 // See if it is still a light weight lock, if so we just unlock
1372 // the object and we are done
1373
1374 if (!UseBiasedLocking) {
1375 // load the object out of the BasicObjectLock
1376 ld_ptr(lockobj_addr, obj_reg);
1377 }
1378
1379 // we have the displaced header in displaced_header_reg
1380 // we expect to see the stack address of the basicLock in case the
1381 // lock is still a light weight lock (lock_reg)
1382 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1383 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1384 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1385 cmp(lock_reg, displaced_header_reg);
1386 brx(Assembler::equal, true, Assembler::pn, done);
1387 delayed()->st_ptr(G0, lockobj_addr); // free entry
1388
1389 // The lock has been converted into a heavy lock and hence
1390 // we need to get into the slow case
1391
1392 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1393
1394 bind(done);
1395 }
1396 }
1397
1398 #ifndef CC_INTERP
1399
1400 // Get the method data pointer from the methodOop and set the
1401 // specified register to its value.
1402
1403 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1404 assert(ProfileInterpreter, "must be profiling interpreter");
1405 Label get_continue;
1406
1407 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1408 test_method_data_pointer(get_continue);
1409 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1410 if (Roff != noreg)
1411 // Roff contains a method data index ("mdi"). It defaults to zero.
1412 add(ImethodDataPtr, Roff, ImethodDataPtr);
1413 bind(get_continue);
1414 }
1415
1416 // Set the method data pointer for the current bcp.
1417
1418 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1419 assert(ProfileInterpreter, "must be profiling interpreter");
1420 Label zero_continue;
1421
1422 // Test MDO to avoid the call if it is NULL.
1423 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1424 test_method_data_pointer(zero_continue);
1425 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1426 set_method_data_pointer_offset(O0);
1427 bind(zero_continue);
1428 }
1429
1430 // Test ImethodDataPtr. If it is null, continue at the specified label
1431
1432 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1433 assert(ProfileInterpreter, "must be profiling interpreter");
1434 #ifdef _LP64
1435 bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1436 #else
1437 tst(ImethodDataPtr);
1438 br(Assembler::zero, false, Assembler::pn, zero_continue);
1439 #endif
1440 delayed()->nop();
1441 }
1442
1443 void InterpreterMacroAssembler::verify_method_data_pointer() {
1444 assert(ProfileInterpreter, "must be profiling interpreter");
1445 #ifdef ASSERT
1446 Label verify_continue;
1447 test_method_data_pointer(verify_continue);
1448
1449 // If the mdp is valid, it will point to a DataLayout header which is
1450 // consistent with the bcp. The converse is highly probable also.
1451 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1452 ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::const_offset())), O5);
1453 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1454 add(G3_scratch, O5, G3_scratch);
1455 cmp(Lbcp, G3_scratch);
1456 brx(Assembler::equal, false, Assembler::pt, verify_continue);
1457
1458 Register temp_reg = O5;
1459 delayed()->mov(ImethodDataPtr, temp_reg);
1460 // %%% should use call_VM_leaf here?
1461 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1462 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1463 Address d_save(FP, 0, -sizeof(jdouble) + STACK_BIAS);
1464 stf(FloatRegisterImpl::D, Ftos_d, d_save);
1465 mov(temp_reg->after_save(), O2);
1466 save_thread(L7_thread_cache);
1467 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1468 delayed()->nop();
1469 restore_thread(L7_thread_cache);
1470 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1471 restore();
1472 bind(verify_continue);
1473 #endif // ASSERT
1474 }
1475
1476 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1477 Register cur_bcp,
1478 Register Rtmp,
1479 Label &profile_continue) {
1480 assert(ProfileInterpreter, "must be profiling interpreter");
1481 // Control will flow to "profile_continue" if the counter is less than the
1482 // limit or if we call profile_method()
1483
1484 Label done;
1485
1486 // if no method data exists, and the counter is high enough, make one
1487 #ifdef _LP64
1488 bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1489 #else
1490 tst(ImethodDataPtr);
1491 br(Assembler::notZero, false, Assembler::pn, done);
1492 #endif
1493
1494 // Test to see if we should create a method data oop
1495 Address profile_limit(Rtmp, (address)&InvocationCounter::InterpreterProfileLimit);
1496 #ifdef _LP64
1497 delayed()->nop();
1498 sethi(profile_limit);
1499 #else
1500 delayed()->sethi(profile_limit);
1501 #endif
1502 ld(profile_limit, Rtmp);
1503 cmp(invocation_count, Rtmp);
1504 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1505 delayed()->nop();
1506
1507 // Build it now.
1508 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1509 set_method_data_pointer_offset(O0);
1510 ba(false, profile_continue);
1511 delayed()->nop();
1512 bind(done);
1513 }
1514
1515 // Store a value at some constant offset from the method data pointer.
1516
1517 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1518 assert(ProfileInterpreter, "must be profiling interpreter");
1519 st_ptr(value, ImethodDataPtr, constant);
1520 }
1521
1522 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1523 Register bumped_count,
1524 bool decrement) {
1525 assert(ProfileInterpreter, "must be profiling interpreter");
1526
1527 // Load the counter.
1528 ld_ptr(counter, bumped_count);
1529
1530 if (decrement) {
1531 // Decrement the register. Set condition codes.
1532 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1533
1534 // If the decrement causes the counter to overflow, stay negative
1535 Label L;
1536 brx(Assembler::negative, true, Assembler::pn, L);
1537
1538 // Store the decremented counter, if it is still negative.
1539 delayed()->st_ptr(bumped_count, counter);
1540 bind(L);
1541 } else {
1542 // Increment the register. Set carry flag.
1543 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1544
1545 // If the increment causes the counter to overflow, pull back by 1.
1546 assert(DataLayout::counter_increment == 1, "subc works");
1547 subc(bumped_count, G0, bumped_count);
1548
1549 // Store the incremented counter.
1550 st_ptr(bumped_count, counter);
1551 }
1552 }
1553
1554 // Increment the value at some constant offset from the method data pointer.
1555
1556 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1557 Register bumped_count,
1558 bool decrement) {
1559 // Locate the counter at a fixed offset from the mdp:
1560 Address counter(ImethodDataPtr, 0, constant);
1561 increment_mdp_data_at(counter, bumped_count, decrement);
1562 }
1563
1564 // Increment the value at some non-fixed (reg + constant) offset from
1565 // the method data pointer.
1566
1567 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1568 int constant,
1569 Register bumped_count,
1570 Register scratch2,
1571 bool decrement) {
1572 // Add the constant to reg to get the offset.
1573 add(ImethodDataPtr, reg, scratch2);
1574 Address counter(scratch2, 0, constant);
1575 increment_mdp_data_at(counter, bumped_count, decrement);
1576 }
1577
1578 // Set a flag value at the current method data pointer position.
1579 // Updates a single byte of the header, to avoid races with other header bits.
1580
1581 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1582 Register scratch) {
1583 assert(ProfileInterpreter, "must be profiling interpreter");
1584 // Load the data header
1585 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1586
1587 // Set the flag
1588 or3(scratch, flag_constant, scratch);
1589
1590 // Store the modified header.
1591 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1592 }
1593
1594 // Test the location at some offset from the method data pointer.
1595 // If it is not equal to value, branch to the not_equal_continue Label.
1596 // Set condition codes to match the nullness of the loaded value.
1597
1598 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1599 Register value,
1600 Label& not_equal_continue,
1601 Register scratch) {
1602 assert(ProfileInterpreter, "must be profiling interpreter");
1603 ld_ptr(ImethodDataPtr, offset, scratch);
1604 cmp(value, scratch);
1605 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1606 delayed()->tst(scratch);
1607 }
1608
1609 // Update the method data pointer by the displacement located at some fixed
1610 // offset from the method data pointer.
1611
1612 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1613 Register scratch) {
1614 assert(ProfileInterpreter, "must be profiling interpreter");
1615 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1616 add(ImethodDataPtr, scratch, ImethodDataPtr);
1617 }
1618
1619 // Update the method data pointer by the displacement located at the
1620 // offset (reg + offset_of_disp).
1621
1622 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1623 int offset_of_disp,
1624 Register scratch) {
1625 assert(ProfileInterpreter, "must be profiling interpreter");
1626 add(reg, offset_of_disp, scratch);
1627 ld_ptr(ImethodDataPtr, scratch, scratch);
1628 add(ImethodDataPtr, scratch, ImethodDataPtr);
1629 }
1630
1631 // Update the method data pointer by a simple constant displacement.
1632
1633 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1634 assert(ProfileInterpreter, "must be profiling interpreter");
1635 add(ImethodDataPtr, constant, ImethodDataPtr);
1636 }
1637
1638 // Update the method data pointer for a _ret bytecode whose target
1639 // was not among our cached targets.
1640
1641 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1642 Register return_bci) {
1643 assert(ProfileInterpreter, "must be profiling interpreter");
1644 push(state);
1645 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
1646 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1647 ld_ptr(l_tmp, return_bci);
1648 pop(state);
1649 }
1650
1651 // Count a taken branch in the bytecodes.
1652
1653 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1654 if (ProfileInterpreter) {
1655 Label profile_continue;
1656
1657 // If no method data exists, go to profile_continue.
1658 test_method_data_pointer(profile_continue);
1659
1660 // We are taking a branch. Increment the taken count.
1661 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1662
1663 // The method data pointer needs to be updated to reflect the new target.
1664 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1665 bind (profile_continue);
1666 }
1667 }
1668
1669
1670 // Count a not-taken branch in the bytecodes.
1671
1672 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1673 if (ProfileInterpreter) {
1674 Label profile_continue;
1675
1676 // If no method data exists, go to profile_continue.
1677 test_method_data_pointer(profile_continue);
1678
1679 // We are taking a branch. Increment the not taken count.
1680 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1681
1682 // The method data pointer needs to be updated to correspond to the
1683 // next bytecode.
1684 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1685 bind (profile_continue);
1686 }
1687 }
1688
1689
1690 // Count a non-virtual call in the bytecodes.
1691
1692 void InterpreterMacroAssembler::profile_call(Register scratch) {
1693 if (ProfileInterpreter) {
1694 Label profile_continue;
1695
1696 // If no method data exists, go to profile_continue.
1697 test_method_data_pointer(profile_continue);
1698
1699 // We are making a call. Increment the count.
1700 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1701
1702 // The method data pointer needs to be updated to reflect the new target.
1703 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1704 bind (profile_continue);
1705 }
1706 }
1707
1708
1709 // Count a final call in the bytecodes.
1710
1711 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1712 if (ProfileInterpreter) {
1713 Label profile_continue;
1714
1715 // If no method data exists, go to profile_continue.
1716 test_method_data_pointer(profile_continue);
1717
1718 // We are making a call. Increment the count.
1719 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1720
1721 // The method data pointer needs to be updated to reflect the new target.
1722 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1723 bind (profile_continue);
1724 }
1725 }
1726
1727
1728 // Count a virtual call in the bytecodes.
1729
1730 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1731 Register scratch) {
1732 if (ProfileInterpreter) {
1733 Label profile_continue;
1734
1735 // If no method data exists, go to profile_continue.
1736 test_method_data_pointer(profile_continue);
1737
1738 // We are making a call. Increment the count.
1739 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1740
1741 // Record the receiver type.
1742 record_klass_in_profile(receiver, scratch);
1743
1744 // The method data pointer needs to be updated to reflect the new target.
1745 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1746 bind (profile_continue);
1747 }
1748 }
1749
1750 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1751 Register receiver, Register scratch,
1752 int start_row, Label& done) {
1753 int last_row = VirtualCallData::row_limit() - 1;
1754 assert(start_row <= last_row, "must be work left to do");
1755 // Test this row for both the receiver and for null.
1756 // Take any of three different outcomes:
1757 // 1. found receiver => increment count and goto done
1758 // 2. found null => keep looking for case 1, maybe allocate this cell
1759 // 3. found something else => keep looking for cases 1 and 2
1760 // Case 3 is handled by a recursive call.
1761 for (int row = start_row; row <= last_row; row++) {
1762 Label next_test;
1763 bool test_for_null_also = (row == start_row);
1764
1765 // See if the receiver is receiver[n].
1766 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1767 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1768
1769 // The receiver is receiver[n]. Increment count[n].
1770 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1771 increment_mdp_data_at(count_offset, scratch);
1772 ba(false, done);
1773 delayed()->nop();
1774 bind(next_test);
1775
1776 if (test_for_null_also) {
1777 // Failed the equality check on receiver[n]... Test for null.
1778 if (start_row == last_row) {
1779 // The only thing left to do is handle the null case.
1780 brx(Assembler::notZero, false, Assembler::pt, done);
1781 delayed()->nop();
1782 break;
1783 }
1784 // Since null is rare, make it be the branch-taken case.
1785 Label found_null;
1786 brx(Assembler::zero, false, Assembler::pn, found_null);
1787 delayed()->nop();
1788
1789 // Put all the "Case 3" tests here.
1790 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);
1791
1792 // Found a null. Keep searching for a matching receiver,
1793 // but remember that this is an empty (unused) slot.
1794 bind(found_null);
1795 }
1796 }
1797
1798 // In the fall-through case, we found no matching receiver, but we
1799 // observed the receiver[start_row] is NULL.
1800
1801 // Fill in the receiver field and increment the count.
1802 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1803 set_mdp_data_at(recvr_offset, receiver);
1804 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1805 mov(DataLayout::counter_increment, scratch);
1806 set_mdp_data_at(count_offset, scratch);
1807 ba(false, done);
1808 delayed()->nop();
1809 }
1810
1811 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1812 Register scratch) {
1813 assert(ProfileInterpreter, "must be profiling");
1814 Label done;
1815
1816 record_klass_in_profile_helper(receiver, scratch, 0, done);
1817
1818 bind (done);
1819 }
1820
1821
1822 // Count a ret in the bytecodes.
1823
1824 void InterpreterMacroAssembler::profile_ret(TosState state,
1825 Register return_bci,
1826 Register scratch) {
1827 if (ProfileInterpreter) {
1828 Label profile_continue;
1829 uint row;
1830
1831 // If no method data exists, go to profile_continue.
1832 test_method_data_pointer(profile_continue);
1833
1834 // Update the total ret count.
1835 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1836
1837 for (row = 0; row < RetData::row_limit(); row++) {
1838 Label next_test;
1839
1840 // See if return_bci is equal to bci[n]:
1841 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1842 return_bci, next_test, scratch);
1843
1844 // return_bci is equal to bci[n]. Increment the count.
1845 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1846
1847 // The method data pointer needs to be updated to reflect the new target.
1848 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1849 ba(false, profile_continue);
1850 delayed()->nop();
1851 bind(next_test);
1852 }
1853
1854 update_mdp_for_ret(state, return_bci);
1855
1856 bind (profile_continue);
1857 }
1858 }
1859
1860 // Profile an unexpected null in the bytecodes.
1861 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1862 if (ProfileInterpreter) {
1863 Label profile_continue;
1864
1865 // If no method data exists, go to profile_continue.
1866 test_method_data_pointer(profile_continue);
1867
1868 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1869
1870 // The method data pointer needs to be updated.
1871 int mdp_delta = in_bytes(BitData::bit_data_size());
1872 if (TypeProfileCasts) {
1873 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1874 }
1875 update_mdp_by_constant(mdp_delta);
1876
1877 bind (profile_continue);
1878 }
1879 }
1880
1881 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1882 Register scratch) {
1883 if (ProfileInterpreter) {
1884 Label profile_continue;
1885
1886 // If no method data exists, go to profile_continue.
1887 test_method_data_pointer(profile_continue);
1888
1889 int mdp_delta = in_bytes(BitData::bit_data_size());
1890 if (TypeProfileCasts) {
1891 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1892
1893 // Record the object type.
1894 record_klass_in_profile(klass, scratch);
1895 }
1896
1897 // The method data pointer needs to be updated.
1898 update_mdp_by_constant(mdp_delta);
1899
1900 bind (profile_continue);
1901 }
1902 }
1903
1904 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1905 if (ProfileInterpreter && TypeProfileCasts) {
1906 Label profile_continue;
1907
1908 // If no method data exists, go to profile_continue.
1909 test_method_data_pointer(profile_continue);
1910
1911 int count_offset = in_bytes(CounterData::count_offset());
1912 // Back up the address, since we have already bumped the mdp.
1913 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1914
1915 // *Decrement* the counter. We expect to see zero or small negatives.
1916 increment_mdp_data_at(count_offset, scratch, true);
1917
1918 bind (profile_continue);
1919 }
1920 }
1921
1922 // Count the default case of a switch construct.
1923
1924 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1925 if (ProfileInterpreter) {
1926 Label profile_continue;
1927
1928 // If no method data exists, go to profile_continue.
1929 test_method_data_pointer(profile_continue);
1930
1931 // Update the default case count
1932 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1933 scratch);
1934
1935 // The method data pointer needs to be updated.
1936 update_mdp_by_offset(
1937 in_bytes(MultiBranchData::default_displacement_offset()),
1938 scratch);
1939
1940 bind (profile_continue);
1941 }
1942 }
1943
1944 // Count the index'th case of a switch construct.
1945
1946 void InterpreterMacroAssembler::profile_switch_case(Register index,
1947 Register scratch,
1948 Register scratch2,
1949 Register scratch3) {
1950 if (ProfileInterpreter) {
1951 Label profile_continue;
1952
1953 // If no method data exists, go to profile_continue.
1954 test_method_data_pointer(profile_continue);
1955
1956 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1957 set(in_bytes(MultiBranchData::per_case_size()), scratch);
1958 smul(index, scratch, scratch);
1959 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1960
1961 // Update the case count
1962 increment_mdp_data_at(scratch,
1963 in_bytes(MultiBranchData::relative_count_offset()),
1964 scratch2,
1965 scratch3);
1966
1967 // The method data pointer needs to be updated.
1968 update_mdp_by_offset(scratch,
1969 in_bytes(MultiBranchData::relative_displacement_offset()),
1970 scratch2);
1971
1972 bind (profile_continue);
1973 }
1974 }
1975
1976 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
1977
1978 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1979 Register Rtemp,
1980 Register Rtemp2 ) {
1981
1982 Register Rlimit = Lmonitors;
1983 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1984 assert( (delta & LongAlignmentMask) == 0,
1985 "sizeof BasicObjectLock must be even number of doublewords");
1986
1987 sub( SP, delta, SP);
1988 sub( Lesp, delta, Lesp);
1989 sub( Lmonitors, delta, Lmonitors);
1990
1991 if (!stack_is_empty) {
1992
1993 // must copy stack contents down
1994
1995 Label start_copying, next;
1996
1997 // untested("monitor stack expansion");
1998 compute_stack_base(Rtemp);
1999 ba( false, start_copying );
2000 delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
2001
2002 // note: must copy from low memory upwards
2003 // On entry to loop,
2004 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2005 // Loop mutates Rtemp
2006
2007 bind( next);
2008
2009 st_ptr(Rtemp2, Rtemp, 0);
2010 inc(Rtemp, wordSize);
2011 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2012
2013 bind( start_copying );
2014
2015 brx( notEqual, true, pn, next );
2016 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2017
2018 // done copying stack
2019 }
2020 }
2021
2022 // Locals
2023 #ifdef ASSERT
2024 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
2025 Register base,
2026 Register scratch,
2027 int n) {
2028 if (TaggedStackInterpreter) {
2029 Label ok, long_ok;
2030 // Use dst for scratch
2031 assert_different_registers(base, scratch);
2032 ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
2033 if (t == frame::TagCategory2) {
2034 cmp(scratch, G0);
2035 brx(Assembler::equal, false, Assembler::pt, long_ok);
2036 delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
2037 stop("local long/double tag value bad");
2038 bind(long_ok);
2039 // compare second half tag
2040 cmp(scratch, G0);
2041 } else if (t == frame::TagValue) {
2042 cmp(scratch, G0);
2043 } else {
2044 assert_different_registers(O3, base, scratch);
2045 mov(t, O3);
2046 cmp(scratch, O3);
2047 }
2048 brx(Assembler::equal, false, Assembler::pt, ok);
2049 delayed()->nop();
2050 // Also compare if the local value is zero, then the tag might
2051 // not have been set coming from deopt.
2052 ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
2053 cmp(scratch, G0);
2054 brx(Assembler::equal, false, Assembler::pt, ok);
2055 delayed()->nop();
2056 stop("Local tag value is bad");
2057 bind(ok);
2058 }
2059 }
2060 #endif // ASSERT
2061
2062 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2063 assert_not_delayed();
2064 sll(index, Interpreter::logStackElementSize(), index);
2065 sub(Llocals, index, index);
2066 debug_only(verify_local_tag(frame::TagReference, index, dst));
2067 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2068 // Note: index must hold the effective address--the iinc template uses it
2069 }
2070
2071 // Just like access_local_ptr but the tag is a returnAddress
2072 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2073 Register dst ) {
2074 assert_not_delayed();
2075 sll(index, Interpreter::logStackElementSize(), index);
2076 sub(Llocals, index, index);
2077 debug_only(verify_local_tag(frame::TagValue, index, dst));
2078 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2079 }
2080
2081 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2082 assert_not_delayed();
2083 sll(index, Interpreter::logStackElementSize(), index);
2084 sub(Llocals, index, index);
2085 debug_only(verify_local_tag(frame::TagValue, index, dst));
2086 ld(index, Interpreter::value_offset_in_bytes(), dst);
2087 // Note: index must hold the effective address--the iinc template uses it
2088 }
2089
2090
2091 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2092 assert_not_delayed();
2093 sll(index, Interpreter::logStackElementSize(), index);
2094 sub(Llocals, index, index);
2095 debug_only(verify_local_tag(frame::TagCategory2, index, dst));
2096 // First half stored at index n+1 (which grows down from Llocals[n])
2097 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2098 }
2099
2100
2101 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2102 assert_not_delayed();
2103 sll(index, Interpreter::logStackElementSize(), index);
2104 sub(Llocals, index, index);
2105 debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
2106 ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
2107 }
2108
2109
2110 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2111 assert_not_delayed();
2112 sll(index, Interpreter::logStackElementSize(), index);
2113 sub(Llocals, index, index);
2114 debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
2115 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2116 }
2117
2118
2119 #ifdef ASSERT
2120 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2121 Label L;
2122
2123 assert(Rindex != Rscratch, "Registers cannot be same");
2124 assert(Rindex != Rscratch1, "Registers cannot be same");
2125 assert(Rlimit != Rscratch, "Registers cannot be same");
2126 assert(Rlimit != Rscratch1, "Registers cannot be same");
2127 assert(Rscratch1 != Rscratch, "Registers cannot be same");
2128
2129 // untested("reg area corruption");
2130 add(Rindex, offset, Rscratch);
2131 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2132 cmp(Rscratch, Rscratch1);
2133 brx(Assembler::greaterEqualUnsigned, false, pn, L);
2134 delayed()->nop();
2135 stop("regsave area is being clobbered");
2136 bind(L);
2137 }
2138 #endif // ASSERT
2139
2140 void InterpreterMacroAssembler::tag_local(frame::Tag t,
2141 Register base,
2142 Register src,
2143 int n) {
2144 if (TaggedStackInterpreter) {
2145 // have to store zero because local slots can be reused (rats!)
2146 if (t == frame::TagValue) {
2147 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2148 } else if (t == frame::TagCategory2) {
2149 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2150 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
2151 } else {
2152 // assert that we don't stomp the value in 'src'
2153 // O3 is arbitrary because it's not used.
2154 assert_different_registers(src, base, O3);
2155 mov( t, O3);
2156 st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
2157 }
2158 }
2159 }
2160
2161
2162 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2163 assert_not_delayed();
2164 sll(index, Interpreter::logStackElementSize(), index);
2165 sub(Llocals, index, index);
2166 debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
2167 tag_local(frame::TagValue, index, src);
2168 st(src, index, Interpreter::value_offset_in_bytes());
2169 }
2170
2171 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
2172 Register tag ) {
2173 assert_not_delayed();
2174 sll(index, Interpreter::logStackElementSize(), index);
2175 sub(Llocals, index, index);
2176 #ifdef ASSERT
2177 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2178 #endif
2179 st_ptr(src, index, Interpreter::value_offset_in_bytes());
2180 // Store tag register directly
2181 if (TaggedStackInterpreter) {
2182 st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
2183 }
2184 }
2185
2186
2187
2188 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
2189 Register tag ) {
2190 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2191 if (TaggedStackInterpreter) {
2192 st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
2193 }
2194 }
2195
2196 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2197 assert_not_delayed();
2198 sll(index, Interpreter::logStackElementSize(), index);
2199 sub(Llocals, index, index);
2200 #ifdef ASSERT
2201 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2202 #endif
2203 tag_local(frame::TagCategory2, index, src);
2204 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2205 }
2206
2207
2208 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2209 assert_not_delayed();
2210 sll(index, Interpreter::logStackElementSize(), index);
2211 sub(Llocals, index, index);
2212 #ifdef ASSERT
2213 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2214 #endif
2215 tag_local(frame::TagValue, index, G1_scratch);
2216 stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
2217 }
2218
2219
2220 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2221 assert_not_delayed();
2222 sll(index, Interpreter::logStackElementSize(), index);
2223 sub(Llocals, index, index);
2224 #ifdef ASSERT
2225 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2226 #endif
2227 tag_local(frame::TagCategory2, index, G1_scratch);
2228 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2229 }
2230
2231
2232 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2233 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2234 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2235 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2236 }
2237
2238
2239 Address InterpreterMacroAssembler::top_most_monitor() {
2240 return Address(FP, 0, top_most_monitor_byte_offset());
2241 }
2242
2243
2244 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2245 add( Lesp, wordSize, Rdest );
2246 }
2247
2248 #endif /* CC_INTERP */
2249
2250 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2251 assert(UseCompiler, "incrementing must be useful");
2252 #ifdef CC_INTERP
2253 Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2254 + InvocationCounter::counter_offset()));
2255 Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2256 + InvocationCounter::counter_offset()));
2257 #else
2258 Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2259 + InvocationCounter::counter_offset()));
2260 Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2261 + InvocationCounter::counter_offset()));
2262 #endif /* CC_INTERP */
2263 int delta = InvocationCounter::count_increment;
2264
2265 // Load each counter in a register
2266 ld( inv_counter, Rtmp );
2267 ld( be_counter, Rtmp2 );
2268
2269 assert( is_simm13( delta ), " delta too large.");
2270
2271 // Add the delta to the invocation counter and store the result
2272 add( Rtmp, delta, Rtmp );
2273
2274 // Mask the backedge counter
2275 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2276
2277 // Store value
2278 st( Rtmp, inv_counter);
2279
2280 // Add invocation counter + backedge counter
2281 add( Rtmp, Rtmp2, Rtmp);
2282
2283 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2284 }
2285
2286 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2287 assert(UseCompiler, "incrementing must be useful");
2288 #ifdef CC_INTERP
2289 Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2290 + InvocationCounter::counter_offset()));
2291 Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2292 + InvocationCounter::counter_offset()));
2293 #else
2294 Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2295 + InvocationCounter::counter_offset()));
2296 Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2297 + InvocationCounter::counter_offset()));
2298 #endif /* CC_INTERP */
2299 int delta = InvocationCounter::count_increment;
2300 // Load each counter in a register
2301 ld( be_counter, Rtmp );
2302 ld( inv_counter, Rtmp2 );
2303
2304 // Add the delta to the backedge counter
2305 add( Rtmp, delta, Rtmp );
2306
2307 // Mask the invocation counter, add to backedge counter
2308 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2309
2310 // and store the result to memory
2311 st( Rtmp, be_counter );
2312
2313 // Add backedge + invocation counter
2314 add( Rtmp, Rtmp2, Rtmp );
2315
2316 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2317 }
2318
2319 #ifndef CC_INTERP
2320 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2321 Register branch_bcp,
2322 Register Rtmp ) {
2323 Label did_not_overflow;
2324 Label overflow_with_error;
2325 assert_different_registers(backedge_count, Rtmp, branch_bcp);
2326 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2327
2328 Address limit(Rtmp, address(&InvocationCounter::InterpreterBackwardBranchLimit));
2329 load_contents(limit, Rtmp);
2330 cmp(backedge_count, Rtmp);
2331 br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2332 delayed()->nop();
2333
2334 // When ProfileInterpreter is on, the backedge_count comes from the
2335 // methodDataOop, which value does not get reset on the call to
2336 // frequency_counter_overflow(). To avoid excessive calls to the overflow
2337 // routine while the method is being compiled, add a second test to make sure
2338 // the overflow function is called only once every overflow_frequency.
2339 if (ProfileInterpreter) {
2340 const int overflow_frequency = 1024;
2341 andcc(backedge_count, overflow_frequency-1, Rtmp);
2342 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2343 delayed()->nop();
2344 }
2345
2346 // overflow in loop, pass branch bytecode
2347 set(6,Rtmp);
2348 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2349
2350 // Was an OSR adapter generated?
2351 // O0 = osr nmethod
2352 tst(O0);
2353 brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2354 delayed()->nop();
2355
2356 // Has the nmethod been invalidated already?
2357 ld(O0, nmethod::entry_bci_offset(), O2);
2358 cmp(O2, InvalidOSREntryBci);
2359 br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2360 delayed()->nop();
2361
2362 // migrate the interpreter frame off of the stack
2363
2364 mov(G2_thread, L7);
2365 // save nmethod
2366 mov(O0, L6);
2367 set_last_Java_frame(SP, noreg);
2368 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2369 reset_last_Java_frame();
2370 mov(L7, G2_thread);
2371
2372 // move OSR nmethod to I1
2373 mov(L6, I1);
2374
2375 // OSR buffer to I0
2376 mov(O0, I0);
2377
2378 // remove the interpreter frame
2379 restore(I5_savedSP, 0, SP);
2380
2381 // Jump to the osr code.
2382 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2383 jmp(O2, G0);
2384 delayed()->nop();
2385
2386 bind(overflow_with_error);
2387
2388 bind(did_not_overflow);
2389 }
2390
2391
2392
2393 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2394 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2395 }
2396
2397
2398 // local helper function for the verify_oop_or_return_address macro
2399 static bool verify_return_address(methodOopDesc* m, int bci) {
2400 #ifndef PRODUCT
2401 address pc = (address)(m->constMethod())
2402 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2403 // assume it is a valid return address if it is inside m and is preceded by a jsr
2404 if (!m->contains(pc)) return false;
2405 address jsr_pc;
2406 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2407 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
2408 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2409 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
2410 #endif // PRODUCT
2411 return false;
2412 }
2413
2414
2415 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2416 if (!VerifyOops) return;
2417 // the VM documentation for the astore[_wide] bytecode allows
2418 // the TOS to be not only an oop but also a return address
2419 Label test;
2420 Label skip;
2421 // See if it is an address (in the current method):
2422
2423 mov(reg, Rtmp);
2424 const int log2_bytecode_size_limit = 16;
2425 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2426 br_notnull( Rtmp, false, pt, test );
2427 delayed()->nop();
2428
2429 // %%% should use call_VM_leaf here?
2430 save_frame_and_mov(0, Lmethod, O0, reg, O1);
2431 save_thread(L7_thread_cache);
2432 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2433 delayed()->nop();
2434 restore_thread(L7_thread_cache);
2435 br_notnull( O0, false, pt, skip );
2436 delayed()->restore();
2437
2438 // Perform a more elaborate out-of-line call
2439 // Not an address; verify it:
2440 bind(test);
2441 verify_oop(reg);
2442 bind(skip);
2443 }
2444
2445
2446 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2447 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2448 }
2449 #endif /* CC_INTERP */
2450
2451 // Inline assembly for:
2452 //
2453 // if (thread is in interp_only_mode) {
2454 // InterpreterRuntime::post_method_entry();
2455 // }
2456 // if (DTraceMethodProbes) {
2457 // SharedRuntime::dtrace_method_entry(method, reciever);
2458 // }
2459
2460 void InterpreterMacroAssembler::notify_method_entry() {
2461
2462 // C++ interpreter only uses this for native methods.
2463
2464 // Whenever JVMTI puts a thread in interp_only_mode, method
2465 // entry/exit events are sent for that thread to track stack
2466 // depth. If it is possible to enter interp_only_mode we add
2467 // the code to check if the event should be sent.
2468 if (JvmtiExport::can_post_interpreter_events()) {
2469 Label L;
2470 Register temp_reg = O5;
2471
2472 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
2473
2474 ld(interp_only, temp_reg);
2475 tst(temp_reg);
2476 br(zero, false, pt, L);
2477 delayed()->nop();
2478 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2479 bind(L);
2480 }
2481
2482 {
2483 Register temp_reg = O5;
2484 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2485 call_VM_leaf(noreg,
2486 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2487 G2_thread, Lmethod);
2488 }
2489 }
2490
2491
2492 // Inline assembly for:
2493 //
2494 // if (thread is in interp_only_mode) {
2495 // // save result
2496 // InterpreterRuntime::post_method_exit();
2497 // // restore result
2498 // }
2499 // if (DTraceMethodProbes) {
2500 // SharedRuntime::dtrace_method_exit(thread, method);
2501 // }
2502 //
2503 // Native methods have their result stored in d_tmp and l_tmp
2504 // Java methods have their result stored in the expression stack
2505
2506 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2507 TosState state,
2508 NotifyMethodExitMode mode) {
2509 // C++ interpreter only uses this for native methods.
2510
2511 // Whenever JVMTI puts a thread in interp_only_mode, method
2512 // entry/exit events are sent for that thread to track stack
2513 // depth. If it is possible to enter interp_only_mode we add
2514 // the code to check if the event should be sent.
2515 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2516 Label L;
2517 Register temp_reg = O5;
2518
2519 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
2520
2521 ld(interp_only, temp_reg);
2522 tst(temp_reg);
2523 br(zero, false, pt, L);
2524 delayed()->nop();
2525
2526 // Note: frame::interpreter_frame_result has a dependency on how the
2527 // method result is saved across the call to post_method_exit. For
2528 // native methods it assumes the result registers are saved to
2529 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2530 // implementation will need to be updated too.
2531
2532 save_return_value(state, is_native_method);
2533 call_VM(noreg,
2534 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2535 restore_return_value(state, is_native_method);
2536 bind(L);
2537 }
2538
2539 {
2540 Register temp_reg = O5;
2541 // Dtrace notification
2542 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2543 save_return_value(state, is_native_method);
2544 call_VM_leaf(
2545 noreg,
2546 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2547 G2_thread, Lmethod);
2548 restore_return_value(state, is_native_method);
2549 }
2550 }
2551
2552 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2553 #ifdef CC_INTERP
2554 // result potentially in O0/O1: save it across calls
2555 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2556 #ifdef _LP64
2557 stx(O0, STATE(_native_lresult));
2558 #else
2559 std(O0, STATE(_native_lresult));
2560 #endif
2561 #else // CC_INTERP
2562 if (is_native_call) {
2563 stf(FloatRegisterImpl::D, F0, d_tmp);
2564 #ifdef _LP64
2565 stx(O0, l_tmp);
2566 #else
2567 std(O0, l_tmp);
2568 #endif
2569 } else {
2570 push(state);
2571 }
2572 #endif // CC_INTERP
2573 }
2574
2575 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2576 #ifdef CC_INTERP
2577 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2578 #ifdef _LP64
2579 ldx(STATE(_native_lresult), O0);
2580 #else
2581 ldd(STATE(_native_lresult), O0);
2582 #endif
2583 #else // CC_INTERP
2584 if (is_native_call) {
2585 ldf(FloatRegisterImpl::D, d_tmp, F0);
2586 #ifdef _LP64
2587 ldx(l_tmp, O0);
2588 #else
2589 ldd(l_tmp, O0);
2590 #endif
2591 } else {
2592 pop(state);
2593 }
2594 #endif // CC_INTERP
2595 }