comparison src/cpu/sparc/vm/sparc.ad @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children dee7a3f3dc9d
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 //
2 // Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 //
5 // This code is free software; you can redistribute it and/or modify it
6 // under the terms of the GNU General Public License version 2 only, as
7 // published by the Free Software Foundation.
8 //
9 // This code is distributed in the hope that it will be useful, but WITHOUT
10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 // version 2 for more details (a copy is included in the LICENSE file that
13 // accompanied this code).
14 //
15 // You should have received a copy of the GNU General Public License version
16 // 2 along with this work; if not, write to the Free Software Foundation,
17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 //
19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 // CA 95054 USA or visit www.sun.com if you need additional information or
21 // have any questions.
22 //
23 //
24
25 // SPARC Architecture Description File
26
27 //----------REGISTER DEFINITION BLOCK------------------------------------------
28 // This information is used by the matcher and the register allocator to
29 // describe individual registers and classes of registers within the target
30 // archtecture.
31 register %{
32 //----------Architecture Description Register Definitions----------------------
33 // General Registers
34 // "reg_def" name ( register save type, C convention save type,
35 // ideal register type, encoding, vm name );
36 // Register Save Types:
37 //
38 // NS = No-Save: The register allocator assumes that these registers
39 // can be used without saving upon entry to the method, &
40 // that they do not need to be saved at call sites.
41 //
42 // SOC = Save-On-Call: The register allocator assumes that these registers
43 // can be used without saving upon entry to the method,
44 // but that they must be saved at call sites.
45 //
46 // SOE = Save-On-Entry: The register allocator assumes that these registers
47 // must be saved before using them upon entry to the
48 // method, but they do not need to be saved at call
49 // sites.
50 //
51 // AS = Always-Save: The register allocator assumes that these registers
52 // must be saved before using them upon entry to the
53 // method, & that they must be saved at call sites.
54 //
55 // Ideal Register Type is used to determine how to save & restore a
56 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
57 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
58 //
59 // The encoding number is the actual bit-pattern placed into the opcodes.
60
61
62 // ----------------------------
63 // Integer/Long Registers
64 // ----------------------------
65
66 // Need to expose the hi/lo aspect of 64-bit registers
67 // This register set is used for both the 64-bit build and
68 // the 32-bit build with 1-register longs.
69
70 // Global Registers 0-7
71 reg_def R_G0H( NS, NS, Op_RegI,128, G0->as_VMReg()->next());
72 reg_def R_G0 ( NS, NS, Op_RegI, 0, G0->as_VMReg());
73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
74 reg_def R_G1 (SOC, SOC, Op_RegI, 1, G1->as_VMReg());
75 reg_def R_G2H( NS, NS, Op_RegI,130, G2->as_VMReg()->next());
76 reg_def R_G2 ( NS, NS, Op_RegI, 2, G2->as_VMReg());
77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
78 reg_def R_G3 (SOC, SOC, Op_RegI, 3, G3->as_VMReg());
79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
80 reg_def R_G4 (SOC, SOC, Op_RegI, 4, G4->as_VMReg());
81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
82 reg_def R_G5 (SOC, SOC, Op_RegI, 5, G5->as_VMReg());
83 reg_def R_G6H( NS, NS, Op_RegI,134, G6->as_VMReg()->next());
84 reg_def R_G6 ( NS, NS, Op_RegI, 6, G6->as_VMReg());
85 reg_def R_G7H( NS, NS, Op_RegI,135, G7->as_VMReg()->next());
86 reg_def R_G7 ( NS, NS, Op_RegI, 7, G7->as_VMReg());
87
88 // Output Registers 0-7
89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
90 reg_def R_O0 (SOC, SOC, Op_RegI, 8, O0->as_VMReg());
91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
92 reg_def R_O1 (SOC, SOC, Op_RegI, 9, O1->as_VMReg());
93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
101 reg_def R_SPH( NS, NS, Op_RegI,142, SP->as_VMReg()->next());
102 reg_def R_SP ( NS, NS, Op_RegI, 14, SP->as_VMReg());
103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
105
106 // Local Registers 0-7
107 reg_def R_L0H( NS, NS, Op_RegI,144, L0->as_VMReg()->next());
108 reg_def R_L0 ( NS, NS, Op_RegI, 16, L0->as_VMReg());
109 reg_def R_L1H( NS, NS, Op_RegI,145, L1->as_VMReg()->next());
110 reg_def R_L1 ( NS, NS, Op_RegI, 17, L1->as_VMReg());
111 reg_def R_L2H( NS, NS, Op_RegI,146, L2->as_VMReg()->next());
112 reg_def R_L2 ( NS, NS, Op_RegI, 18, L2->as_VMReg());
113 reg_def R_L3H( NS, NS, Op_RegI,147, L3->as_VMReg()->next());
114 reg_def R_L3 ( NS, NS, Op_RegI, 19, L3->as_VMReg());
115 reg_def R_L4H( NS, NS, Op_RegI,148, L4->as_VMReg()->next());
116 reg_def R_L4 ( NS, NS, Op_RegI, 20, L4->as_VMReg());
117 reg_def R_L5H( NS, NS, Op_RegI,149, L5->as_VMReg()->next());
118 reg_def R_L5 ( NS, NS, Op_RegI, 21, L5->as_VMReg());
119 reg_def R_L6H( NS, NS, Op_RegI,150, L6->as_VMReg()->next());
120 reg_def R_L6 ( NS, NS, Op_RegI, 22, L6->as_VMReg());
121 reg_def R_L7H( NS, NS, Op_RegI,151, L7->as_VMReg()->next());
122 reg_def R_L7 ( NS, NS, Op_RegI, 23, L7->as_VMReg());
123
124 // Input Registers 0-7
125 reg_def R_I0H( NS, NS, Op_RegI,152, I0->as_VMReg()->next());
126 reg_def R_I0 ( NS, NS, Op_RegI, 24, I0->as_VMReg());
127 reg_def R_I1H( NS, NS, Op_RegI,153, I1->as_VMReg()->next());
128 reg_def R_I1 ( NS, NS, Op_RegI, 25, I1->as_VMReg());
129 reg_def R_I2H( NS, NS, Op_RegI,154, I2->as_VMReg()->next());
130 reg_def R_I2 ( NS, NS, Op_RegI, 26, I2->as_VMReg());
131 reg_def R_I3H( NS, NS, Op_RegI,155, I3->as_VMReg()->next());
132 reg_def R_I3 ( NS, NS, Op_RegI, 27, I3->as_VMReg());
133 reg_def R_I4H( NS, NS, Op_RegI,156, I4->as_VMReg()->next());
134 reg_def R_I4 ( NS, NS, Op_RegI, 28, I4->as_VMReg());
135 reg_def R_I5H( NS, NS, Op_RegI,157, I5->as_VMReg()->next());
136 reg_def R_I5 ( NS, NS, Op_RegI, 29, I5->as_VMReg());
137 reg_def R_FPH( NS, NS, Op_RegI,158, FP->as_VMReg()->next());
138 reg_def R_FP ( NS, NS, Op_RegI, 30, FP->as_VMReg());
139 reg_def R_I7H( NS, NS, Op_RegI,159, I7->as_VMReg()->next());
140 reg_def R_I7 ( NS, NS, Op_RegI, 31, I7->as_VMReg());
141
142 // ----------------------------
143 // Float/Double Registers
144 // ----------------------------
145
146 // Float Registers
147 reg_def R_F0 ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
148 reg_def R_F1 ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
149 reg_def R_F2 ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
150 reg_def R_F3 ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
151 reg_def R_F4 ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
152 reg_def R_F5 ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
153 reg_def R_F6 ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
154 reg_def R_F7 ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
155 reg_def R_F8 ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
156 reg_def R_F9 ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
179
180 // Double Registers
181 // The rules of ADL require that double registers be defined in pairs.
182 // Each pair must be two 32-bit values, but not necessarily a pair of
183 // single float registers. In each pair, ADLC-assigned register numbers
184 // must be adjacent, with the lower number even. Finally, when the
185 // CPU stores such a register pair to memory, the word associated with
186 // the lower ADLC-assigned number must be stored to the lower address.
187
188 // These definitions specify the actual bit encodings of the sparc
189 // double fp register numbers. FloatRegisterImpl in register_sparc.hpp
190 // wants 0-63, so we have to convert every time we want to use fp regs
191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
192 // 255 is a flag meaning 'dont go here'.
193 // I believe we can't handle callee-save doubles D32 and up until
194 // the place in the sparc stack crawler that asserts on the 255 is
195 // fixed up.
196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
197 reg_def R_D32 (SOC, SOC, Op_RegD, 1, F32->as_VMReg()->next());
198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
199 reg_def R_D34 (SOC, SOC, Op_RegD, 3, F34->as_VMReg()->next());
200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
201 reg_def R_D36 (SOC, SOC, Op_RegD, 5, F36->as_VMReg()->next());
202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
203 reg_def R_D38 (SOC, SOC, Op_RegD, 7, F38->as_VMReg()->next());
204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
205 reg_def R_D40 (SOC, SOC, Op_RegD, 9, F40->as_VMReg()->next());
206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
228
229
230 // ----------------------------
231 // Special Registers
232 // Condition Codes Flag Registers
233 // I tried to break out ICC and XCC but it's not very pretty.
234 // Every Sparc instruction which defs/kills one also kills the other.
235 // Hence every compare instruction which defs one kind of flags ends
236 // up needing a kill of the other.
237 reg_def CCR (SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad());
238
239 reg_def FCC0(SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad());
240 reg_def FCC1(SOC, SOC, Op_RegFlags, 1, VMRegImpl::Bad());
241 reg_def FCC2(SOC, SOC, Op_RegFlags, 2, VMRegImpl::Bad());
242 reg_def FCC3(SOC, SOC, Op_RegFlags, 3, VMRegImpl::Bad());
243
244 // ----------------------------
245 // Specify the enum values for the registers. These enums are only used by the
246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
247 // for visibility to the rest of the vm. The order of this enum influences the
248 // register allocator so having the freedom to set this order and not be stuck
249 // with the order that is natural for the rest of the vm is worth it.
250 alloc_class chunk0(
251 R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
252 R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
253 R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
254 R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
255
256 // Note that a register is not allocatable unless it is also mentioned
257 // in a widely-used reg_class below. Thus, R_G7 and R_G0 are outside i_reg.
258
259 alloc_class chunk1(
260 // The first registers listed here are those most likely to be used
261 // as temporaries. We move F0..F7 away from the front of the list,
262 // to reduce the likelihood of interferences with parameters and
263 // return values. Likewise, we avoid using F0/F1 for parameters,
264 // since they are used for return values.
265 // This FPU fine-tuning is worth about 1% on the SPEC geomean.
266 R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
267 R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
268 R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
269 R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
270 R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
271 R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
272 R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
273 R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
274
275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
276
277 //----------Architecture Description Register Classes--------------------------
278 // Several register classes are automatically defined based upon information in
279 // this architecture description.
280 // 1) reg_class inline_cache_reg ( as defined in frame section )
281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
283 //
284
285 // G0 is not included in integer class since it has special meaning.
286 reg_class g0_reg(R_G0);
287
288 // ----------------------------
289 // Integer Register Classes
290 // ----------------------------
291 // Exclusions from i_reg:
292 // R_G0: hardwired zero
293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
294 // R_G6: reserved by Solaris ABI to tools
295 // R_G7: reserved by Solaris ABI to libthread
296 // R_O7: Used as a temp in many encodings
297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
298
299 // Class for all integer registers, except the G registers. This is used for
300 // encodings which use G registers as temps. The regular inputs to such
301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
302 // will not put an input into a temp register.
303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
304
305 reg_class g1_regI(R_G1);
306 reg_class g3_regI(R_G3);
307 reg_class g4_regI(R_G4);
308 reg_class o0_regI(R_O0);
309 reg_class o7_regI(R_O7);
310
311 // ----------------------------
312 // Pointer Register Classes
313 // ----------------------------
314 #ifdef _LP64
315 // 64-bit build means 64-bit pointers means hi/lo pairs
316 reg_class ptr_reg( R_G1H,R_G1, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
317 R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
318 R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
319 R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
320 // Lock encodings use G3 and G4 internally
321 reg_class lock_ptr_reg( R_G1H,R_G1, R_G5H,R_G5,
322 R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
323 R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
324 R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
325 // Special class for storeP instructions, which can store SP or RPC to TLS.
326 // It is also used for memory addressing, allowing direct TLS addressing.
327 reg_class sp_ptr_reg( R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
328 R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
329 R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
330 R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
332 // We use it to save R_G2 across calls out of Java.
333 reg_class l7_regP(R_L7H,R_L7);
334
335 // Other special pointer regs
336 reg_class g1_regP(R_G1H,R_G1);
337 reg_class g2_regP(R_G2H,R_G2);
338 reg_class g3_regP(R_G3H,R_G3);
339 reg_class g4_regP(R_G4H,R_G4);
340 reg_class g5_regP(R_G5H,R_G5);
341 reg_class i0_regP(R_I0H,R_I0);
342 reg_class o0_regP(R_O0H,R_O0);
343 reg_class o1_regP(R_O1H,R_O1);
344 reg_class o2_regP(R_O2H,R_O2);
345 reg_class o7_regP(R_O7H,R_O7);
346
347 #else // _LP64
348 // 32-bit build means 32-bit pointers means 1 register.
349 reg_class ptr_reg( R_G1, R_G3,R_G4,R_G5,
350 R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
351 R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
352 R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
353 // Lock encodings use G3 and G4 internally
354 reg_class lock_ptr_reg(R_G1, R_G5,
355 R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
356 R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
357 R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
358 // Special class for storeP instructions, which can store SP or RPC to TLS.
359 // It is also used for memory addressing, allowing direct TLS addressing.
360 reg_class sp_ptr_reg( R_G1,R_G2,R_G3,R_G4,R_G5,
361 R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
362 R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
363 R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
365 // We use it to save R_G2 across calls out of Java.
366 reg_class l7_regP(R_L7);
367
368 // Other special pointer regs
369 reg_class g1_regP(R_G1);
370 reg_class g2_regP(R_G2);
371 reg_class g3_regP(R_G3);
372 reg_class g4_regP(R_G4);
373 reg_class g5_regP(R_G5);
374 reg_class i0_regP(R_I0);
375 reg_class o0_regP(R_O0);
376 reg_class o1_regP(R_O1);
377 reg_class o2_regP(R_O2);
378 reg_class o7_regP(R_O7);
379 #endif // _LP64
380
381
382 // ----------------------------
383 // Long Register Classes
384 // ----------------------------
385 // Longs in 1 register. Aligned adjacent hi/lo pairs.
386 // Note: O7 is never in this class; it is sometimes used as an encoding temp.
387 reg_class long_reg( R_G1H,R_G1, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
388 ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
389 #ifdef _LP64
390 // 64-bit, longs in 1 register: use all 64-bit integer registers
391 // 32-bit, longs in 1 register: cannot use I's and L's. Restrict to O's and G's.
392 ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
393 ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
394 #endif // _LP64
395 );
396
397 reg_class g1_regL(R_G1H,R_G1);
398 reg_class o2_regL(R_O2H,R_O2);
399 reg_class o7_regL(R_O7H,R_O7);
400
401 // ----------------------------
402 // Special Class for Condition Code Flags Register
403 reg_class int_flags(CCR);
404 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
405 reg_class float_flag0(FCC0);
406
407
408 // ----------------------------
409 // Float Point Register Classes
410 // ----------------------------
411 // Skip F30/F31, they are reserved for mem-mem copies
412 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
413
414 // Paired floating point registers--they show up in the same order as the floats,
415 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
416 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
417 R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
418 /* Use extra V9 double registers; this AD file does not support V8 */
419 R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
420 R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
421 );
422
423 // Paired floating point registers--they show up in the same order as the floats,
424 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
425 // This class is usable for mis-aligned loads as happen in I2C adapters.
426 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
427 R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
428 %}
429
430 //----------DEFINITION BLOCK---------------------------------------------------
431 // Define name --> value mappings to inform the ADLC of an integer valued name
432 // Current support includes integer values in the range [0, 0x7FFFFFFF]
433 // Format:
434 // int_def <name> ( <int_value>, <expression>);
435 // Generated Code in ad_<arch>.hpp
436 // #define <name> (<expression>)
437 // // value == <int_value>
438 // Generated code in ad_<arch>.cpp adlc_verification()
439 // assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
440 //
441 definitions %{
442 // The default cost (of an ALU instruction).
443 int_def DEFAULT_COST ( 100, 100);
444 int_def HUGE_COST (1000000, 1000000);
445
446 // Memory refs are twice as expensive as run-of-the-mill.
447 int_def MEMORY_REF_COST ( 200, DEFAULT_COST * 2);
448
449 // Branches are even more expensive.
450 int_def BRANCH_COST ( 300, DEFAULT_COST * 3);
451 int_def CALL_COST ( 300, DEFAULT_COST * 3);
452 %}
453
454
455 //----------SOURCE BLOCK-------------------------------------------------------
456 // This is a block of C++ code which provides values, functions, and
457 // definitions necessary in the rest of the architecture description
458 source_hpp %{
459 // Must be visible to the DFA in dfa_sparc.cpp
460 extern bool can_branch_register( Node *bol, Node *cmp );
461
462 // Macros to extract hi & lo halves from a long pair.
463 // G0 is not part of any long pair, so assert on that.
464 // Prevents accidently using G1 instead of G0.
465 #define LONG_HI_REG(x) (x)
466 #define LONG_LO_REG(x) (x)
467
468 %}
469
470 source %{
471 #define __ _masm.
472
473 // tertiary op of a LoadP or StoreP encoding
474 #define REGP_OP true
475
476 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
477 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
478 static Register reg_to_register_object(int register_encoding);
479
480 // Used by the DFA in dfa_sparc.cpp.
481 // Check for being able to use a V9 branch-on-register. Requires a
482 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
483 // extended. Doesn't work following an integer ADD, for example, because of
484 // overflow (-1 incremented yields 0 plus a carry in the high-order word). On
485 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
486 // replace them with zero, which could become sign-extension in a different OS
487 // release. There's no obvious reason why an interrupt will ever fill these
488 // bits with non-zero junk (the registers are reloaded with standard LD
489 // instructions which either zero-fill or sign-fill).
490 bool can_branch_register( Node *bol, Node *cmp ) {
491 if( !BranchOnRegister ) return false;
492 #ifdef _LP64
493 if( cmp->Opcode() == Op_CmpP )
494 return true; // No problems with pointer compares
495 #endif
496 if( cmp->Opcode() == Op_CmpL )
497 return true; // No problems with long compares
498
499 if( !SparcV9RegsHiBitsZero ) return false;
500 if( bol->as_Bool()->_test._test != BoolTest::ne &&
501 bol->as_Bool()->_test._test != BoolTest::eq )
502 return false;
503
504 // Check for comparing against a 'safe' value. Any operation which
505 // clears out the high word is safe. Thus, loads and certain shifts
506 // are safe, as are non-negative constants. Any operation which
507 // preserves zero bits in the high word is safe as long as each of its
508 // inputs are safe. Thus, phis and bitwise booleans are safe if their
509 // inputs are safe. At present, the only important case to recognize
510 // seems to be loads. Constants should fold away, and shifts &
511 // logicals can use the 'cc' forms.
512 Node *x = cmp->in(1);
513 if( x->is_Load() ) return true;
514 if( x->is_Phi() ) {
515 for( uint i = 1; i < x->req(); i++ )
516 if( !x->in(i)->is_Load() )
517 return false;
518 return true;
519 }
520 return false;
521 }
522
523 // ****************************************************************************
524
525 // REQUIRED FUNCTIONALITY
526
527 // !!!!! Special hack to get all type of calls to specify the byte offset
528 // from the start of the call to the point where the return address
529 // will point.
530 // The "return address" is the address of the call instruction, plus 8.
531
532 int MachCallStaticJavaNode::ret_addr_offset() {
533 return NativeCall::instruction_size; // call; delay slot
534 }
535
536 int MachCallDynamicJavaNode::ret_addr_offset() {
537 int vtable_index = this->_vtable_index;
538 if (vtable_index < 0) {
539 // must be invalid_vtable_index, not nonvirtual_vtable_index
540 assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
541 return (NativeMovConstReg::instruction_size +
542 NativeCall::instruction_size); // sethi; setlo; call; delay slot
543 } else {
544 assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
545 int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
546 int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
547 if( Assembler::is_simm13(v_off) ) {
548 return (3*BytesPerInstWord + // ld_ptr, ld_ptr, ld_ptr
549 NativeCall::instruction_size); // call; delay slot
550 } else {
551 return (5*BytesPerInstWord + // ld_ptr, set_hi, set, ld_ptr, ld_ptr
552 NativeCall::instruction_size); // call; delay slot
553 }
554 }
555 }
556
557 int MachCallRuntimeNode::ret_addr_offset() {
558 #ifdef _LP64
559 return NativeFarCall::instruction_size; // farcall; delay slot
560 #else
561 return NativeCall::instruction_size; // call; delay slot
562 #endif
563 }
564
565 // Indicate if the safepoint node needs the polling page as an input.
566 // Since Sparc does not have absolute addressing, it does.
567 bool SafePointNode::needs_polling_address_input() {
568 return true;
569 }
570
571 // emit an interrupt that is caught by the debugger (for debugging compiler)
572 void emit_break(CodeBuffer &cbuf) {
573 MacroAssembler _masm(&cbuf);
574 __ breakpoint_trap();
575 }
576
577 #ifndef PRODUCT
578 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
579 st->print("TA");
580 }
581 #endif
582
583 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
584 emit_break(cbuf);
585 }
586
587 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
588 return MachNode::size(ra_);
589 }
590
591 // Traceable jump
592 void emit_jmpl(CodeBuffer &cbuf, int jump_target) {
593 MacroAssembler _masm(&cbuf);
594 Register rdest = reg_to_register_object(jump_target);
595 __ JMP(rdest, 0);
596 __ delayed()->nop();
597 }
598
599 // Traceable jump and set exception pc
600 void emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
601 MacroAssembler _masm(&cbuf);
602 Register rdest = reg_to_register_object(jump_target);
603 __ JMP(rdest, 0);
604 __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
605 }
606
607 void emit_nop(CodeBuffer &cbuf) {
608 MacroAssembler _masm(&cbuf);
609 __ nop();
610 }
611
612 void emit_illtrap(CodeBuffer &cbuf) {
613 MacroAssembler _masm(&cbuf);
614 __ illtrap(0);
615 }
616
617
618 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
619 assert(n->rule() != loadUB_rule, "");
620
621 intptr_t offset = 0;
622 const TypePtr *adr_type = TYPE_PTR_SENTINAL; // Check for base==RegI, disp==immP
623 const Node* addr = n->get_base_and_disp(offset, adr_type);
624 assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
625 assert(addr != NULL && addr != (Node*)-1, "invalid addr");
626 assert(addr->bottom_type()->isa_oopptr() == atype, "");
627 atype = atype->add_offset(offset);
628 assert(disp32 == offset, "wrong disp32");
629 return atype->_offset;
630 }
631
632
633 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
634 assert(n->rule() != loadUB_rule, "");
635
636 intptr_t offset = 0;
637 Node* addr = n->in(2);
638 assert(addr->bottom_type()->isa_oopptr() == atype, "");
639 if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
640 Node* a = addr->in(2/*AddPNode::Address*/);
641 Node* o = addr->in(3/*AddPNode::Offset*/);
642 offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
643 atype = a->bottom_type()->is_ptr()->add_offset(offset);
644 assert(atype->isa_oop_ptr(), "still an oop");
645 }
646 offset = atype->is_ptr()->_offset;
647 if (offset != Type::OffsetBot) offset += disp32;
648 return offset;
649 }
650
651 // Standard Sparc opcode form2 field breakdown
652 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
653 f0 &= (1<<19)-1; // Mask displacement to 19 bits
654 int op = (f30 << 30) |
655 (f29 << 29) |
656 (f25 << 25) |
657 (f22 << 22) |
658 (f20 << 20) |
659 (f19 << 19) |
660 (f0 << 0);
661 *((int*)(cbuf.code_end())) = op;
662 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
663 }
664
665 // Standard Sparc opcode form2 field breakdown
666 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
667 f0 >>= 10; // Drop 10 bits
668 f0 &= (1<<22)-1; // Mask displacement to 22 bits
669 int op = (f30 << 30) |
670 (f25 << 25) |
671 (f22 << 22) |
672 (f0 << 0);
673 *((int*)(cbuf.code_end())) = op;
674 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
675 }
676
677 // Standard Sparc opcode form3 field breakdown
678 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
679 int op = (f30 << 30) |
680 (f25 << 25) |
681 (f19 << 19) |
682 (f14 << 14) |
683 (f5 << 5) |
684 (f0 << 0);
685 *((int*)(cbuf.code_end())) = op;
686 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
687 }
688
689 // Standard Sparc opcode form3 field breakdown
690 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
691 simm13 &= (1<<13)-1; // Mask to 13 bits
692 int op = (f30 << 30) |
693 (f25 << 25) |
694 (f19 << 19) |
695 (f14 << 14) |
696 (1 << 13) | // bit to indicate immediate-mode
697 (simm13<<0);
698 *((int*)(cbuf.code_end())) = op;
699 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
700 }
701
702 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
703 simm10 &= (1<<10)-1; // Mask to 10 bits
704 emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
705 }
706
707 #ifdef ASSERT
708 // Helper function for VerifyOops in emit_form3_mem_reg
709 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
710 warning("VerifyOops encountered unexpected instruction:");
711 n->dump(2);
712 warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
713 }
714 #endif
715
716
717 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
718 int src1_enc, int disp32, int src2_enc, int dst_enc) {
719
720 #ifdef ASSERT
721 // The following code implements the +VerifyOops feature.
722 // It verifies oop values which are loaded into or stored out of
723 // the current method activation. +VerifyOops complements techniques
724 // like ScavengeALot, because it eagerly inspects oops in transit,
725 // as they enter or leave the stack, as opposed to ScavengeALot,
726 // which inspects oops "at rest", in the stack or heap, at safepoints.
727 // For this reason, +VerifyOops can sometimes detect bugs very close
728 // to their point of creation. It can also serve as a cross-check
729 // on the validity of oop maps, when used toegether with ScavengeALot.
730
731 // It would be good to verify oops at other points, especially
732 // when an oop is used as a base pointer for a load or store.
733 // This is presently difficult, because it is hard to know when
734 // a base address is biased or not. (If we had such information,
735 // it would be easy and useful to make a two-argument version of
736 // verify_oop which unbiases the base, and performs verification.)
737
738 assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
739 bool is_verified_oop_base = false;
740 bool is_verified_oop_load = false;
741 bool is_verified_oop_store = false;
742 int tmp_enc = -1;
743 if (VerifyOops && src1_enc != R_SP_enc) {
744 // classify the op, mainly for an assert check
745 int st_op = 0, ld_op = 0;
746 switch (primary) {
747 case Assembler::stb_op3: st_op = Op_StoreB; break;
748 case Assembler::sth_op3: st_op = Op_StoreC; break;
749 case Assembler::stx_op3: // may become StoreP or stay StoreI or StoreD0
750 case Assembler::stw_op3: st_op = Op_StoreI; break;
751 case Assembler::std_op3: st_op = Op_StoreL; break;
752 case Assembler::stf_op3: st_op = Op_StoreF; break;
753 case Assembler::stdf_op3: st_op = Op_StoreD; break;
754
755 case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
756 case Assembler::lduh_op3: ld_op = Op_LoadC; break;
757 case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
758 case Assembler::ldx_op3: // may become LoadP or stay LoadI
759 case Assembler::ldsw_op3: // may become LoadP or stay LoadI
760 case Assembler::lduw_op3: ld_op = Op_LoadI; break;
761 case Assembler::ldd_op3: ld_op = Op_LoadL; break;
762 case Assembler::ldf_op3: ld_op = Op_LoadF; break;
763 case Assembler::lddf_op3: ld_op = Op_LoadD; break;
764 case Assembler::ldub_op3: ld_op = Op_LoadB; break;
765 case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
766
767 default: ShouldNotReachHere();
768 }
769 if (tertiary == REGP_OP) {
770 if (st_op == Op_StoreI) st_op = Op_StoreP;
771 else if (ld_op == Op_LoadI) ld_op = Op_LoadP;
772 else ShouldNotReachHere();
773 if (st_op) {
774 // a store
775 // inputs are (0:control, 1:memory, 2:address, 3:value)
776 Node* n2 = n->in(3);
777 if (n2 != NULL) {
778 const Type* t = n2->bottom_type();
779 is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
780 }
781 } else {
782 // a load
783 const Type* t = n->bottom_type();
784 is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
785 }
786 }
787
788 if (ld_op) {
789 // a Load
790 // inputs are (0:control, 1:memory, 2:address)
791 if (!(n->ideal_Opcode()==ld_op) && // Following are special cases
792 !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
793 !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
794 !(n->ideal_Opcode()==Op_LoadI && ld_op==Op_LoadF) &&
795 !(n->ideal_Opcode()==Op_LoadF && ld_op==Op_LoadI) &&
796 !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
797 !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
798 !(n->ideal_Opcode()==Op_LoadL && ld_op==Op_LoadI) &&
799 !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
800 !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
801 !(n->ideal_Opcode()==Op_ConvI2F && ld_op==Op_LoadF) &&
802 !(n->ideal_Opcode()==Op_ConvI2D && ld_op==Op_LoadF) &&
803 !(n->ideal_Opcode()==Op_PrefetchRead && ld_op==Op_LoadI) &&
804 !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
805 !(n->rule() == loadUB_rule)) {
806 verify_oops_warning(n, n->ideal_Opcode(), ld_op);
807 }
808 } else if (st_op) {
809 // a Store
810 // inputs are (0:control, 1:memory, 2:address, 3:value)
811 if (!(n->ideal_Opcode()==st_op) && // Following are special cases
812 !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
813 !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
814 !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
815 !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
816 !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
817 verify_oops_warning(n, n->ideal_Opcode(), st_op);
818 }
819 }
820
821 if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
822 Node* addr = n->in(2);
823 if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
824 const TypeOopPtr* atype = addr->bottom_type()->isa_instptr(); // %%% oopptr?
825 if (atype != NULL) {
826 intptr_t offset = get_offset_from_base(n, atype, disp32);
827 intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
828 if (offset != offset_2) {
829 get_offset_from_base(n, atype, disp32);
830 get_offset_from_base_2(n, atype, disp32);
831 }
832 assert(offset == offset_2, "different offsets");
833 if (offset == disp32) {
834 // we now know that src1 is a true oop pointer
835 is_verified_oop_base = true;
836 if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
837 if( primary == Assembler::ldd_op3 ) {
838 is_verified_oop_base = false; // Cannot 'ldd' into O7
839 } else {
840 tmp_enc = dst_enc;
841 dst_enc = R_O7_enc; // Load into O7; preserve source oop
842 assert(src1_enc != dst_enc, "");
843 }
844 }
845 }
846 if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
847 || offset == oopDesc::mark_offset_in_bytes())) {
848 // loading the mark should not be allowed either, but
849 // we don't check this since it conflicts with InlineObjectHash
850 // usage of LoadINode to get the mark. We could keep the
851 // check if we create a new LoadMarkNode
852 // but do not verify the object before its header is initialized
853 ShouldNotReachHere();
854 }
855 }
856 }
857 }
858 }
859 #endif
860
861 uint instr;
862 instr = (Assembler::ldst_op << 30)
863 | (dst_enc << 25)
864 | (primary << 19)
865 | (src1_enc << 14);
866
867 uint index = src2_enc;
868 int disp = disp32;
869
870 if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
871 disp += STACK_BIAS;
872
873 // We should have a compiler bailout here rather than a guarantee.
874 // Better yet would be some mechanism to handle variable-size matches correctly.
875 guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
876
877 if( disp == 0 ) {
878 // use reg-reg form
879 // bit 13 is already zero
880 instr |= index;
881 } else {
882 // use reg-imm form
883 instr |= 0x00002000; // set bit 13 to one
884 instr |= disp & 0x1FFF;
885 }
886
887 uint *code = (uint*)cbuf.code_end();
888 *code = instr;
889 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
890
891 #ifdef ASSERT
892 {
893 MacroAssembler _masm(&cbuf);
894 if (is_verified_oop_base) {
895 __ verify_oop(reg_to_register_object(src1_enc));
896 }
897 if (is_verified_oop_store) {
898 __ verify_oop(reg_to_register_object(dst_enc));
899 }
900 if (tmp_enc != -1) {
901 __ mov(O7, reg_to_register_object(tmp_enc));
902 }
903 if (is_verified_oop_load) {
904 __ verify_oop(reg_to_register_object(dst_enc));
905 }
906 }
907 #endif
908 }
909
910 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
911 int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
912
913 uint instr;
914 instr = (Assembler::ldst_op << 30)
915 | (dst_enc << 25)
916 | (primary << 19)
917 | (src1_enc << 14);
918
919 int disp = disp32;
920 int index = src2_enc;
921
922 if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
923 disp += STACK_BIAS;
924
925 // We should have a compiler bailout here rather than a guarantee.
926 // Better yet would be some mechanism to handle variable-size matches correctly.
927 guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
928
929 if( disp != 0 ) {
930 // use reg-reg form
931 // set src2=R_O7 contains offset
932 index = R_O7_enc;
933 emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
934 }
935 instr |= (asi << 5);
936 instr |= index;
937 uint *code = (uint*)cbuf.code_end();
938 *code = instr;
939 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
940 }
941
942 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
943 // The method which records debug information at every safepoint
944 // expects the call to be the first instruction in the snippet as
945 // it creates a PcDesc structure which tracks the offset of a call
946 // from the start of the codeBlob. This offset is computed as
947 // code_end() - code_begin() of the code which has been emitted
948 // so far.
949 // In this particular case we have skirted around the problem by
950 // putting the "mov" instruction in the delay slot but the problem
951 // may bite us again at some other point and a cleaner/generic
952 // solution using relocations would be needed.
953 MacroAssembler _masm(&cbuf);
954 __ set_inst_mark();
955
956 // We flush the current window just so that there is a valid stack copy
957 // the fact that the current window becomes active again instantly is
958 // not a problem there is nothing live in it.
959
960 #ifdef ASSERT
961 int startpos = __ offset();
962 #endif /* ASSERT */
963
964 #ifdef _LP64
965 // Calls to the runtime or native may not be reachable from compiled code,
966 // so we generate the far call sequence on 64 bit sparc.
967 // This code sequence is relocatable to any address, even on LP64.
968 if ( force_far_call ) {
969 __ relocate(rtype);
970 Address dest(O7, (address)entry_point);
971 __ jumpl_to(dest, O7);
972 }
973 else
974 #endif
975 {
976 __ call((address)entry_point, rtype);
977 }
978
979 if (preserve_g2) __ delayed()->mov(G2, L7);
980 else __ delayed()->nop();
981
982 if (preserve_g2) __ mov(L7, G2);
983
984 #ifdef ASSERT
985 if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
986 #ifdef _LP64
987 // Trash argument dump slots.
988 __ set(0xb0b8ac0db0b8ac0d, G1);
989 __ mov(G1, G5);
990 __ stx(G1, SP, STACK_BIAS + 0x80);
991 __ stx(G1, SP, STACK_BIAS + 0x88);
992 __ stx(G1, SP, STACK_BIAS + 0x90);
993 __ stx(G1, SP, STACK_BIAS + 0x98);
994 __ stx(G1, SP, STACK_BIAS + 0xA0);
995 __ stx(G1, SP, STACK_BIAS + 0xA8);
996 #else // _LP64
997 // this is also a native call, so smash the first 7 stack locations,
998 // and the various registers
999
1000 // Note: [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1001 // while [SP+0x44..0x58] are the argument dump slots.
1002 __ set((intptr_t)0xbaadf00d, G1);
1003 __ mov(G1, G5);
1004 __ sllx(G1, 32, G1);
1005 __ or3(G1, G5, G1);
1006 __ mov(G1, G5);
1007 __ stx(G1, SP, 0x40);
1008 __ stx(G1, SP, 0x48);
1009 __ stx(G1, SP, 0x50);
1010 __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1011 #endif // _LP64
1012 }
1013 #endif /*ASSERT*/
1014 }
1015
1016 //=============================================================================
1017 // REQUIRED FUNCTIONALITY for encoding
1018 void emit_lo(CodeBuffer &cbuf, int val) { }
1019 void emit_hi(CodeBuffer &cbuf, int val) { }
1020
1021 void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
1022 MacroAssembler _masm(&cbuf);
1023 if (ForceRelocatable) {
1024 Address addr(reg, (address)val);
1025 __ sethi(addr, ForceRelocatable);
1026 __ add(addr, reg);
1027 } else {
1028 __ set(val, reg);
1029 }
1030 }
1031
1032
1033 //=============================================================================
1034
1035 #ifndef PRODUCT
1036 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1037 Compile* C = ra_->C;
1038
1039 for (int i = 0; i < OptoPrologueNops; i++) {
1040 st->print_cr("NOP"); st->print("\t");
1041 }
1042
1043 if( VerifyThread ) {
1044 st->print_cr("Verify_Thread"); st->print("\t");
1045 }
1046
1047 size_t framesize = C->frame_slots() << LogBytesPerInt;
1048
1049 // Calls to C2R adapters often do not accept exceptional returns.
1050 // We require that their callers must bang for them. But be careful, because
1051 // some VM calls (such as call site linkage) can use several kilobytes of
1052 // stack. But the stack safety zone should account for that.
1053 // See bugs 4446381, 4468289, 4497237.
1054 if (C->need_stack_bang(framesize)) {
1055 st->print_cr("! stack bang"); st->print("\t");
1056 }
1057
1058 if (Assembler::is_simm13(-framesize)) {
1059 st->print ("SAVE R_SP,-%d,R_SP",framesize);
1060 } else {
1061 st->print_cr("SETHI R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1062 st->print_cr("ADD R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1063 st->print ("SAVE R_SP,R_G3,R_SP");
1064 }
1065
1066 }
1067 #endif
1068
1069 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1070 Compile* C = ra_->C;
1071 MacroAssembler _masm(&cbuf);
1072
1073 for (int i = 0; i < OptoPrologueNops; i++) {
1074 __ nop();
1075 }
1076
1077 __ verify_thread();
1078
1079 size_t framesize = C->frame_slots() << LogBytesPerInt;
1080 assert(framesize >= 16*wordSize, "must have room for reg. save area");
1081 assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1082
1083 // Calls to C2R adapters often do not accept exceptional returns.
1084 // We require that their callers must bang for them. But be careful, because
1085 // some VM calls (such as call site linkage) can use several kilobytes of
1086 // stack. But the stack safety zone should account for that.
1087 // See bugs 4446381, 4468289, 4497237.
1088 if (C->need_stack_bang(framesize)) {
1089 __ generate_stack_overflow_check(framesize);
1090 }
1091
1092 if (Assembler::is_simm13(-framesize)) {
1093 __ save(SP, -framesize, SP);
1094 } else {
1095 __ sethi(-framesize & ~0x3ff, G3);
1096 __ add(G3, -framesize & 0x3ff, G3);
1097 __ save(SP, G3, SP);
1098 }
1099 C->set_frame_complete( __ offset() );
1100 }
1101
1102 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1103 return MachNode::size(ra_);
1104 }
1105
1106 int MachPrologNode::reloc() const {
1107 return 10; // a large enough number
1108 }
1109
1110 //=============================================================================
1111 #ifndef PRODUCT
1112 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1113 Compile* C = ra_->C;
1114
1115 if( do_polling() && ra_->C->is_method_compilation() ) {
1116 st->print("SETHI #PollAddr,L0\t! Load Polling address\n\t");
1117 #ifdef _LP64
1118 st->print("LDX [L0],G0\t!Poll for Safepointing\n\t");
1119 #else
1120 st->print("LDUW [L0],G0\t!Poll for Safepointing\n\t");
1121 #endif
1122 }
1123
1124 if( do_polling() )
1125 st->print("RET\n\t");
1126
1127 st->print("RESTORE");
1128 }
1129 #endif
1130
1131 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1132 MacroAssembler _masm(&cbuf);
1133 Compile* C = ra_->C;
1134
1135 __ verify_thread();
1136
1137 // If this does safepoint polling, then do it here
1138 if( do_polling() && ra_->C->is_method_compilation() ) {
1139 Address polling_page(L0, (address)os::get_polling_page());
1140 __ sethi(polling_page, false);
1141 __ relocate(relocInfo::poll_return_type);
1142 __ ld_ptr( L0, 0, G0 );
1143 }
1144
1145 // If this is a return, then stuff the restore in the delay slot
1146 if( do_polling() ) {
1147 __ ret();
1148 __ delayed()->restore();
1149 } else {
1150 __ restore();
1151 }
1152 }
1153
1154 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1155 return MachNode::size(ra_);
1156 }
1157
1158 int MachEpilogNode::reloc() const {
1159 return 16; // a large enough number
1160 }
1161
1162 const Pipeline * MachEpilogNode::pipeline() const {
1163 return MachNode::pipeline_class();
1164 }
1165
1166 int MachEpilogNode::safepoint_offset() const {
1167 assert( do_polling(), "no return for this epilog node");
1168 return MacroAssembler::size_of_sethi(os::get_polling_page());
1169 }
1170
1171 //=============================================================================
1172
1173 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1174 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1175 static enum RC rc_class( OptoReg::Name reg ) {
1176 if( !OptoReg::is_valid(reg) ) return rc_bad;
1177 if (OptoReg::is_stack(reg)) return rc_stack;
1178 VMReg r = OptoReg::as_VMReg(reg);
1179 if (r->is_Register()) return rc_int;
1180 assert(r->is_FloatRegister(), "must be");
1181 return rc_float;
1182 }
1183
1184 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1185 if( cbuf ) {
1186 // Better yet would be some mechanism to handle variable-size matches correctly
1187 if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1188 ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1189 } else {
1190 emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1191 }
1192 }
1193 #ifndef PRODUCT
1194 else if( !do_size ) {
1195 if( size != 0 ) st->print("\n\t");
1196 if( is_load ) st->print("%s [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1197 else st->print("%s R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1198 }
1199 #endif
1200 return size+4;
1201 }
1202
1203 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1204 if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1205 #ifndef PRODUCT
1206 else if( !do_size ) {
1207 if( size != 0 ) st->print("\n\t");
1208 st->print("%s R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1209 }
1210 #endif
1211 return size+4;
1212 }
1213
1214 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1215 PhaseRegAlloc *ra_,
1216 bool do_size,
1217 outputStream* st ) const {
1218 // Get registers to move
1219 OptoReg::Name src_second = ra_->get_reg_second(in(1));
1220 OptoReg::Name src_first = ra_->get_reg_first(in(1));
1221 OptoReg::Name dst_second = ra_->get_reg_second(this );
1222 OptoReg::Name dst_first = ra_->get_reg_first(this );
1223
1224 enum RC src_second_rc = rc_class(src_second);
1225 enum RC src_first_rc = rc_class(src_first);
1226 enum RC dst_second_rc = rc_class(dst_second);
1227 enum RC dst_first_rc = rc_class(dst_first);
1228
1229 assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1230
1231 // Generate spill code!
1232 int size = 0;
1233
1234 if( src_first == dst_first && src_second == dst_second )
1235 return size; // Self copy, no move
1236
1237 // --------------------------------------
1238 // Check for mem-mem move. Load into unused float registers and fall into
1239 // the float-store case.
1240 if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1241 int offset = ra_->reg2offset(src_first);
1242 // Further check for aligned-adjacent pair, so we can use a double load
1243 if( (src_first&1)==0 && src_first+1 == src_second ) {
1244 src_second = OptoReg::Name(R_F31_num);
1245 src_second_rc = rc_float;
1246 size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1247 } else {
1248 size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1249 }
1250 src_first = OptoReg::Name(R_F30_num);
1251 src_first_rc = rc_float;
1252 }
1253
1254 if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1255 int offset = ra_->reg2offset(src_second);
1256 size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1257 src_second = OptoReg::Name(R_F31_num);
1258 src_second_rc = rc_float;
1259 }
1260
1261 // --------------------------------------
1262 // Check for float->int copy; requires a trip through memory
1263 if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1264 int offset = frame::register_save_words*wordSize;
1265 if( cbuf ) {
1266 emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1267 impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1268 impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1269 emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1270 }
1271 #ifndef PRODUCT
1272 else if( !do_size ) {
1273 if( size != 0 ) st->print("\n\t");
1274 st->print( "SUB R_SP,16,R_SP\n");
1275 impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1276 impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1277 st->print("\tADD R_SP,16,R_SP\n");
1278 }
1279 #endif
1280 size += 16;
1281 }
1282
1283 // --------------------------------------
1284 // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1285 // In such cases, I have to do the big-endian swap. For aligned targets, the
1286 // hardware does the flop for me. Doubles are always aligned, so no problem
1287 // there. Misaligned sources only come from native-long-returns (handled
1288 // special below).
1289 #ifndef _LP64
1290 if( src_first_rc == rc_int && // source is already big-endian
1291 src_second_rc != rc_bad && // 64-bit move
1292 ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1293 assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1294 // Do the big-endian flop.
1295 OptoReg::Name tmp = dst_first ; dst_first = dst_second ; dst_second = tmp ;
1296 enum RC tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1297 }
1298 #endif
1299
1300 // --------------------------------------
1301 // Check for integer reg-reg copy
1302 if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1303 #ifndef _LP64
1304 if( src_first == R_O0_num && src_second == R_O1_num ) { // Check for the evil O0/O1 native long-return case
1305 // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1306 // as stored in memory. On a big-endian machine like SPARC, this means that the _second
1307 // operand contains the least significant word of the 64-bit value and vice versa.
1308 OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1309 assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1310 // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1311 if( cbuf ) {
1312 emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1313 emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1314 emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1315 #ifndef PRODUCT
1316 } else if( !do_size ) {
1317 if( size != 0 ) st->print("\n\t");
1318 st->print("SLLX R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1319 st->print("SRL R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1320 st->print("OR R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1321 #endif
1322 }
1323 return size+12;
1324 }
1325 else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1326 // returning a long value in I0/I1
1327 // a SpillCopy must be able to target a return instruction's reg_class
1328 // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1329 // as stored in memory. On a big-endian machine like SPARC, this means that the _second
1330 // operand contains the least significant word of the 64-bit value and vice versa.
1331 OptoReg::Name tdest = dst_first;
1332
1333 if (src_first == dst_first) {
1334 tdest = OptoReg::Name(R_O7_num);
1335 size += 4;
1336 }
1337
1338 if( cbuf ) {
1339 assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1340 // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1341 // ShrL_reg_imm6
1342 emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1343 // ShrR_reg_imm6 src, 0, dst
1344 emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1345 if (tdest != dst_first) {
1346 emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1347 }
1348 }
1349 #ifndef PRODUCT
1350 else if( !do_size ) {
1351 if( size != 0 ) st->print("\n\t"); // %%%%% !!!!!
1352 st->print("SRLX R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1353 st->print("SRL R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1354 if (tdest != dst_first) {
1355 st->print("MOV R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1356 }
1357 }
1358 #endif // PRODUCT
1359 return size+8;
1360 }
1361 #endif // !_LP64
1362 // Else normal reg-reg copy
1363 assert( src_second != dst_first, "smashed second before evacuating it" );
1364 size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV ",size, st);
1365 assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1366 // This moves an aligned adjacent pair.
1367 // See if we are done.
1368 if( src_first+1 == src_second && dst_first+1 == dst_second )
1369 return size;
1370 }
1371
1372 // Check for integer store
1373 if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1374 int offset = ra_->reg2offset(dst_first);
1375 // Further check for aligned-adjacent pair, so we can use a double store
1376 if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1377 return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1378 size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1379 }
1380
1381 // Check for integer load
1382 if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1383 int offset = ra_->reg2offset(src_first);
1384 // Further check for aligned-adjacent pair, so we can use a double load
1385 if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1386 return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1387 size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1388 }
1389
1390 // Check for float reg-reg copy
1391 if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1392 // Further check for aligned-adjacent pair, so we can use a double move
1393 if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1394 return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1395 size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1396 }
1397
1398 // Check for float store
1399 if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1400 int offset = ra_->reg2offset(dst_first);
1401 // Further check for aligned-adjacent pair, so we can use a double store
1402 if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1403 return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1404 size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1405 }
1406
1407 // Check for float load
1408 if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1409 int offset = ra_->reg2offset(src_first);
1410 // Further check for aligned-adjacent pair, so we can use a double load
1411 if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1412 return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1413 size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1414 }
1415
1416 // --------------------------------------------------------------------
1417 // Check for hi bits still needing moving. Only happens for misaligned
1418 // arguments to native calls.
1419 if( src_second == dst_second )
1420 return size; // Self copy; no move
1421 assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1422
1423 #ifndef _LP64
1424 // In the LP64 build, all registers can be moved as aligned/adjacent
1425 // pairs, so there's never any need to move the high bits seperately.
1426 // The 32-bit builds have to deal with the 32-bit ABI which can force
1427 // all sorts of silly alignment problems.
1428
1429 // Check for integer reg-reg copy. Hi bits are stuck up in the top
1430 // 32-bits of a 64-bit register, but are needed in low bits of another
1431 // register (else it's a hi-bits-to-hi-bits copy which should have
1432 // happened already as part of a 64-bit move)
1433 if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1434 assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1435 assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1436 // Shift src_second down to dst_second's low bits.
1437 if( cbuf ) {
1438 emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1439 #ifndef PRODUCT
1440 } else if( !do_size ) {
1441 if( size != 0 ) st->print("\n\t");
1442 st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1443 #endif
1444 }
1445 return size+4;
1446 }
1447
1448 // Check for high word integer store. Must down-shift the hi bits
1449 // into a temp register, then fall into the case of storing int bits.
1450 if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1451 // Shift src_second down to dst_second's low bits.
1452 if( cbuf ) {
1453 emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1454 #ifndef PRODUCT
1455 } else if( !do_size ) {
1456 if( size != 0 ) st->print("\n\t");
1457 st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1458 #endif
1459 }
1460 size+=4;
1461 src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1462 }
1463
1464 // Check for high word integer load
1465 if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1466 return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1467
1468 // Check for high word integer store
1469 if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1470 return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1471
1472 // Check for high word float store
1473 if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1474 return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1475
1476 #endif // !_LP64
1477
1478 Unimplemented();
1479 }
1480
1481 #ifndef PRODUCT
1482 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1483 implementation( NULL, ra_, false, st );
1484 }
1485 #endif
1486
1487 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1488 implementation( &cbuf, ra_, false, NULL );
1489 }
1490
1491 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1492 return implementation( NULL, ra_, true, NULL );
1493 }
1494
1495 //=============================================================================
1496 #ifndef PRODUCT
1497 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1498 st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1499 }
1500 #endif
1501
1502 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1503 MacroAssembler _masm(&cbuf);
1504 for(int i = 0; i < _count; i += 1) {
1505 __ nop();
1506 }
1507 }
1508
1509 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1510 return 4 * _count;
1511 }
1512
1513
1514 //=============================================================================
1515 #ifndef PRODUCT
1516 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1517 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1518 int reg = ra_->get_reg_first(this);
1519 st->print("LEA [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1520 }
1521 #endif
1522
1523 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1524 MacroAssembler _masm(&cbuf);
1525 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1526 int reg = ra_->get_encode(this);
1527
1528 if (Assembler::is_simm13(offset)) {
1529 __ add(SP, offset, reg_to_register_object(reg));
1530 } else {
1531 __ set(offset, O7);
1532 __ add(SP, O7, reg_to_register_object(reg));
1533 }
1534 }
1535
1536 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1537 // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1538 assert(ra_ == ra_->C->regalloc(), "sanity");
1539 return ra_->C->scratch_emit_size(this);
1540 }
1541
1542 //=============================================================================
1543
1544 // emit call stub, compiled java to interpretor
1545 void emit_java_to_interp(CodeBuffer &cbuf ) {
1546
1547 // Stub is fixed up when the corresponding call is converted from calling
1548 // compiled code to calling interpreted code.
1549 // set (empty), G5
1550 // jmp -1
1551
1552 address mark = cbuf.inst_mark(); // get mark within main instrs section
1553
1554 MacroAssembler _masm(&cbuf);
1555
1556 address base =
1557 __ start_a_stub(Compile::MAX_stubs_size);
1558 if (base == NULL) return; // CodeBuffer::expand failed
1559
1560 // static stub relocation stores the instruction address of the call
1561 __ relocate(static_stub_Relocation::spec(mark));
1562
1563 __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1564
1565 __ set_inst_mark();
1566 Address a(G3, (address)-1);
1567 __ JUMP(a, 0);
1568
1569 __ delayed()->nop();
1570
1571 // Update current stubs pointer and restore code_end.
1572 __ end_a_stub();
1573 }
1574
1575 // size of call stub, compiled java to interpretor
1576 uint size_java_to_interp() {
1577 // This doesn't need to be accurate but it must be larger or equal to
1578 // the real size of the stub.
1579 return (NativeMovConstReg::instruction_size + // sethi/setlo;
1580 NativeJump::instruction_size + // sethi; jmp; nop
1581 (TraceJumps ? 20 * BytesPerInstWord : 0) );
1582 }
1583 // relocation entries for call stub, compiled java to interpretor
1584 uint reloc_java_to_interp() {
1585 return 10; // 4 in emit_java_to_interp + 1 in Java_Static_Call
1586 }
1587
1588
1589 //=============================================================================
1590 #ifndef PRODUCT
1591 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1592 st->print_cr("\nUEP:");
1593 #ifdef _LP64
1594 st->print_cr("\tLDX [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1595 st->print_cr("\tCMP R_G5,R_G3" );
1596 st->print ("\tTne xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1597 #else // _LP64
1598 st->print_cr("\tLDUW [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1599 st->print_cr("\tCMP R_G5,R_G3" );
1600 st->print ("\tTne icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1601 #endif // _LP64
1602 }
1603 #endif
1604
1605 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1606 MacroAssembler _masm(&cbuf);
1607 Label L;
1608 Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
1609 Register temp_reg = G3;
1610 assert( G5_ic_reg != temp_reg, "conflicting registers" );
1611
1612 // Load klass from reciever
1613 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
1614 // Compare against expected klass
1615 __ cmp(temp_reg, G5_ic_reg);
1616 // Branch to miss code, checks xcc or icc depending
1617 __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1618 }
1619
1620 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1621 return MachNode::size(ra_);
1622 }
1623
1624
1625 //=============================================================================
1626
1627 uint size_exception_handler() {
1628 if (TraceJumps) {
1629 return (400); // just a guess
1630 }
1631 return ( NativeJump::instruction_size ); // sethi;jmp;nop
1632 }
1633
1634 uint size_deopt_handler() {
1635 if (TraceJumps) {
1636 return (400); // just a guess
1637 }
1638 return ( 4+ NativeJump::instruction_size ); // save;sethi;jmp;restore
1639 }
1640
1641 // Emit exception handler code.
1642 int emit_exception_handler(CodeBuffer& cbuf) {
1643 Register temp_reg = G3;
1644 Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
1645 MacroAssembler _masm(&cbuf);
1646
1647 address base =
1648 __ start_a_stub(size_exception_handler());
1649 if (base == NULL) return 0; // CodeBuffer::expand failed
1650
1651 int offset = __ offset();
1652
1653 __ JUMP(exception_blob, 0); // sethi;jmp
1654 __ delayed()->nop();
1655
1656 assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1657
1658 __ end_a_stub();
1659
1660 return offset;
1661 }
1662
1663 int emit_deopt_handler(CodeBuffer& cbuf) {
1664 // Can't use any of the current frame's registers as we may have deopted
1665 // at a poll and everything (including G3) can be live.
1666 Register temp_reg = L0;
1667 Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
1668 MacroAssembler _masm(&cbuf);
1669
1670 address base =
1671 __ start_a_stub(size_deopt_handler());
1672 if (base == NULL) return 0; // CodeBuffer::expand failed
1673
1674 int offset = __ offset();
1675 __ save_frame(0);
1676 __ JUMP(deopt_blob, 0); // sethi;jmp
1677 __ delayed()->restore();
1678
1679 assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1680
1681 __ end_a_stub();
1682 return offset;
1683
1684 }
1685
1686 // Given a register encoding, produce a Integer Register object
1687 static Register reg_to_register_object(int register_encoding) {
1688 assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1689 return as_Register(register_encoding);
1690 }
1691
1692 // Given a register encoding, produce a single-precision Float Register object
1693 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1694 assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1695 return as_SingleFloatRegister(register_encoding);
1696 }
1697
1698 // Given a register encoding, produce a double-precision Float Register object
1699 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1700 assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1701 assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1702 return as_DoubleFloatRegister(register_encoding);
1703 }
1704
1705 int Matcher::regnum_to_fpu_offset(int regnum) {
1706 return regnum - 32; // The FP registers are in the second chunk
1707 }
1708
1709 #ifdef ASSERT
1710 address last_rethrow = NULL; // debugging aid for Rethrow encoding
1711 #endif
1712
1713 // Vector width in bytes
1714 const uint Matcher::vector_width_in_bytes(void) {
1715 return 8;
1716 }
1717
1718 // Vector ideal reg
1719 const uint Matcher::vector_ideal_reg(void) {
1720 return Op_RegD;
1721 }
1722
1723 // USII supports fxtof through the whole range of number, USIII doesn't
1724 const bool Matcher::convL2FSupported(void) {
1725 return VM_Version::has_fast_fxtof();
1726 }
1727
1728 // Is this branch offset short enough that a short branch can be used?
1729 //
1730 // NOTE: If the platform does not provide any short branch variants, then
1731 // this method should return false for offset 0.
1732 bool Matcher::is_short_branch_offset(int offset) {
1733 return false;
1734 }
1735
1736 const bool Matcher::isSimpleConstant64(jlong value) {
1737 // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1738 // Depends on optimizations in MacroAssembler::setx.
1739 int hi = (int)(value >> 32);
1740 int lo = (int)(value & ~0);
1741 return (hi == 0) || (hi == -1) || (lo == 0);
1742 }
1743
1744 // No scaling for the parameter the ClearArray node.
1745 const bool Matcher::init_array_count_is_in_bytes = true;
1746
1747 // Threshold size for cleararray.
1748 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1749
1750 // Should the Matcher clone shifts on addressing modes, expecting them to
1751 // be subsumed into complex addressing expressions or compute them into
1752 // registers? True for Intel but false for most RISCs
1753 const bool Matcher::clone_shift_expressions = false;
1754
1755 // Is it better to copy float constants, or load them directly from memory?
1756 // Intel can load a float constant from a direct address, requiring no
1757 // extra registers. Most RISCs will have to materialize an address into a
1758 // register first, so they would do better to copy the constant from stack.
1759 const bool Matcher::rematerialize_float_constants = false;
1760
1761 // If CPU can load and store mis-aligned doubles directly then no fixup is
1762 // needed. Else we split the double into 2 integer pieces and move it
1763 // piece-by-piece. Only happens when passing doubles into C code as the
1764 // Java calling convention forces doubles to be aligned.
1765 #ifdef _LP64
1766 const bool Matcher::misaligned_doubles_ok = true;
1767 #else
1768 const bool Matcher::misaligned_doubles_ok = false;
1769 #endif
1770
1771 // No-op on SPARC.
1772 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1773 }
1774
1775 // Advertise here if the CPU requires explicit rounding operations
1776 // to implement the UseStrictFP mode.
1777 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1778
1779 // Do floats take an entire double register or just half?
1780 const bool Matcher::float_in_double = false;
1781
1782 // Do ints take an entire long register or just half?
1783 // Note that we if-def off of _LP64.
1784 // The relevant question is how the int is callee-saved. In _LP64
1785 // the whole long is written but de-opt'ing will have to extract
1786 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1787 #ifdef _LP64
1788 const bool Matcher::int_in_long = true;
1789 #else
1790 const bool Matcher::int_in_long = false;
1791 #endif
1792
1793 // Return whether or not this register is ever used as an argument. This
1794 // function is used on startup to build the trampoline stubs in generateOptoStub.
1795 // Registers not mentioned will be killed by the VM call in the trampoline, and
1796 // arguments in those registers not be available to the callee.
1797 bool Matcher::can_be_java_arg( int reg ) {
1798 // Standard sparc 6 args in registers
1799 if( reg == R_I0_num ||
1800 reg == R_I1_num ||
1801 reg == R_I2_num ||
1802 reg == R_I3_num ||
1803 reg == R_I4_num ||
1804 reg == R_I5_num ) return true;
1805 #ifdef _LP64
1806 // 64-bit builds can pass 64-bit pointers and longs in
1807 // the high I registers
1808 if( reg == R_I0H_num ||
1809 reg == R_I1H_num ||
1810 reg == R_I2H_num ||
1811 reg == R_I3H_num ||
1812 reg == R_I4H_num ||
1813 reg == R_I5H_num ) return true;
1814 #else
1815 // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1816 // Longs cannot be passed in O regs, because O regs become I regs
1817 // after a 'save' and I regs get their high bits chopped off on
1818 // interrupt.
1819 if( reg == R_G1H_num || reg == R_G1_num ) return true;
1820 if( reg == R_G4H_num || reg == R_G4_num ) return true;
1821 #endif
1822 // A few float args in registers
1823 if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1824
1825 return false;
1826 }
1827
1828 bool Matcher::is_spillable_arg( int reg ) {
1829 return can_be_java_arg(reg);
1830 }
1831
1832 // Register for DIVI projection of divmodI
1833 RegMask Matcher::divI_proj_mask() {
1834 ShouldNotReachHere();
1835 return RegMask();
1836 }
1837
1838 // Register for MODI projection of divmodI
1839 RegMask Matcher::modI_proj_mask() {
1840 ShouldNotReachHere();
1841 return RegMask();
1842 }
1843
1844 // Register for DIVL projection of divmodL
1845 RegMask Matcher::divL_proj_mask() {
1846 ShouldNotReachHere();
1847 return RegMask();
1848 }
1849
1850 // Register for MODL projection of divmodL
1851 RegMask Matcher::modL_proj_mask() {
1852 ShouldNotReachHere();
1853 return RegMask();
1854 }
1855
1856 %}
1857
1858
1859 // The intptr_t operand types, defined by textual substitution.
1860 // (Cf. opto/type.hpp. This lets us avoid many, many other ifdefs.)
1861 #ifdef _LP64
1862 #define immX immL
1863 #define immX13 immL13
1864 #define iRegX iRegL
1865 #define g1RegX g1RegL
1866 #else
1867 #define immX immI
1868 #define immX13 immI13
1869 #define iRegX iRegI
1870 #define g1RegX g1RegI
1871 #endif
1872
1873 //----------ENCODING BLOCK-----------------------------------------------------
1874 // This block specifies the encoding classes used by the compiler to output
1875 // byte streams. Encoding classes are parameterized macros used by
1876 // Machine Instruction Nodes in order to generate the bit encoding of the
1877 // instruction. Operands specify their base encoding interface with the
1878 // interface keyword. There are currently supported four interfaces,
1879 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
1880 // operand to generate a function which returns its register number when
1881 // queried. CONST_INTER causes an operand to generate a function which
1882 // returns the value of the constant when queried. MEMORY_INTER causes an
1883 // operand to generate four functions which return the Base Register, the
1884 // Index Register, the Scale Value, and the Offset Value of the operand when
1885 // queried. COND_INTER causes an operand to generate six functions which
1886 // return the encoding code (ie - encoding bits for the instruction)
1887 // associated with each basic boolean condition for a conditional instruction.
1888 //
1889 // Instructions specify two basic values for encoding. Again, a function
1890 // is available to check if the constant displacement is an oop. They use the
1891 // ins_encode keyword to specify their encoding classes (which must be
1892 // a sequence of enc_class names, and their parameters, specified in
1893 // the encoding block), and they use the
1894 // opcode keyword to specify, in order, their primary, secondary, and
1895 // tertiary opcode. Only the opcode sections which a particular instruction
1896 // needs for encoding need to be specified.
1897 encode %{
1898 enc_class enc_untested %{
1899 #ifdef ASSERT
1900 MacroAssembler _masm(&cbuf);
1901 __ untested("encoding");
1902 #endif
1903 %}
1904
1905 enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1906 emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1907 $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1908 %}
1909
1910 enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1911 emit_form3_mem_reg_asi(cbuf, this, $primary, $tertiary,
1912 $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1913 %}
1914
1915 enc_class form3_mem_prefetch_read( memory mem ) %{
1916 emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1917 $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1918 %}
1919
1920 enc_class form3_mem_prefetch_write( memory mem ) %{
1921 emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1922 $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1923 %}
1924
1925 enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1926 assert( Assembler::is_simm13($mem$$disp ), "need disp and disp+4" );
1927 assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1928 guarantee($mem$$index == R_G0_enc, "double index?");
1929 emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1930 emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, R_G0_enc, $reg$$reg );
1931 emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1932 emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1933 %}
1934
1935 enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1936 assert( Assembler::is_simm13($mem$$disp ), "need disp and disp+4" );
1937 assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1938 guarantee($mem$$index == R_G0_enc, "double index?");
1939 // Load long with 2 instructions
1940 emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, R_G0_enc, $reg$$reg+0 );
1941 emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1942 %}
1943
1944 //%%% form3_mem_plus_4_reg is a hack--get rid of it
1945 enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1946 guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1947 emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1948 %}
1949
1950 enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1951 // Encode a reg-reg copy. If it is useless, then empty encoding.
1952 if( $rs2$$reg != $rd$$reg )
1953 emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1954 %}
1955
1956 // Target lo half of long
1957 enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1958 // Encode a reg-reg copy. If it is useless, then empty encoding.
1959 if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1960 emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
1961 %}
1962
1963 // Source lo half of long
1964 enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
1965 // Encode a reg-reg copy. If it is useless, then empty encoding.
1966 if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
1967 emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
1968 %}
1969
1970 // Target hi half of long
1971 enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
1972 emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
1973 %}
1974
1975 // Source lo half of long, and leave it sign extended.
1976 enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
1977 // Sign extend low half
1978 emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
1979 %}
1980
1981 // Source hi half of long, and leave it sign extended.
1982 enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
1983 // Shift high half to low half
1984 emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
1985 %}
1986
1987 // Source hi half of long
1988 enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
1989 // Encode a reg-reg copy. If it is useless, then empty encoding.
1990 if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
1991 emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
1992 %}
1993
1994 enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
1995 emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
1996 %}
1997
1998 enc_class enc_to_bool( iRegI src, iRegI dst ) %{
1999 emit3 ( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, 0, 0, $src$$reg );
2000 emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2001 %}
2002
2003 enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2004 emit3 ( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2005 // clear if nothing else is happening
2006 emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, 0 );
2007 // blt,a,pn done
2008 emit2_19 ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2009 // mov dst,-1 in delay slot
2010 emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2011 %}
2012
2013 enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2014 emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2015 %}
2016
2017 enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2018 emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2019 %}
2020
2021 enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2022 emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2023 %}
2024
2025 enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2026 emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2027 %}
2028
2029 enc_class move_return_pc_to_o1() %{
2030 emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2031 %}
2032
2033 #ifdef _LP64
2034 /* %%% merge with enc_to_bool */
2035 enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2036 MacroAssembler _masm(&cbuf);
2037
2038 Register src_reg = reg_to_register_object($src$$reg);
2039 Register dst_reg = reg_to_register_object($dst$$reg);
2040 __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2041 %}
2042 #endif
2043
2044 enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2045 // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2046 MacroAssembler _masm(&cbuf);
2047
2048 Register p_reg = reg_to_register_object($p$$reg);
2049 Register q_reg = reg_to_register_object($q$$reg);
2050 Register y_reg = reg_to_register_object($y$$reg);
2051 Register tmp_reg = reg_to_register_object($tmp$$reg);
2052
2053 __ subcc( p_reg, q_reg, p_reg );
2054 __ add ( p_reg, y_reg, tmp_reg );
2055 __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2056 %}
2057
2058 enc_class form_d2i_helper(regD src, regF dst) %{
2059 // fcmp %fcc0,$src,$src
2060 emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2061 // branch %fcc0 not-nan, predict taken
2062 emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2063 // fdtoi $src,$dst
2064 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fdtoi_opf, $src$$reg );
2065 // fitos $dst,$dst (if nan)
2066 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fitos_opf, $dst$$reg );
2067 // clear $dst (if nan)
2068 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2069 // carry on here...
2070 %}
2071
2072 enc_class form_d2l_helper(regD src, regD dst) %{
2073 // fcmp %fcc0,$src,$src check for NAN
2074 emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2075 // branch %fcc0 not-nan, predict taken
2076 emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2077 // fdtox $src,$dst convert in delay slot
2078 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fdtox_opf, $src$$reg );
2079 // fxtod $dst,$dst (if nan)
2080 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fxtod_opf, $dst$$reg );
2081 // clear $dst (if nan)
2082 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2083 // carry on here...
2084 %}
2085
2086 enc_class form_f2i_helper(regF src, regF dst) %{
2087 // fcmps %fcc0,$src,$src
2088 emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2089 // branch %fcc0 not-nan, predict taken
2090 emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2091 // fstoi $src,$dst
2092 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fstoi_opf, $src$$reg );
2093 // fitos $dst,$dst (if nan)
2094 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fitos_opf, $dst$$reg );
2095 // clear $dst (if nan)
2096 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2097 // carry on here...
2098 %}
2099
2100 enc_class form_f2l_helper(regF src, regD dst) %{
2101 // fcmps %fcc0,$src,$src
2102 emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2103 // branch %fcc0 not-nan, predict taken
2104 emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2105 // fstox $src,$dst
2106 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fstox_opf, $src$$reg );
2107 // fxtod $dst,$dst (if nan)
2108 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fxtod_opf, $dst$$reg );
2109 // clear $dst (if nan)
2110 emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2111 // carry on here...
2112 %}
2113
2114 enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2115 enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2116 enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2117 enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2118
2119 enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2120
2121 enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2122 enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2123
2124 enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2125 emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2126 %}
2127
2128 enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2129 emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2130 %}
2131
2132 enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2133 emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2134 %}
2135
2136 enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2137 emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2138 %}
2139
2140 enc_class form3_convI2F(regF rs2, regF rd) %{
2141 emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2142 %}
2143
2144 // Encloding class for traceable jumps
2145 enc_class form_jmpl(g3RegP dest) %{
2146 emit_jmpl(cbuf, $dest$$reg);
2147 %}
2148
2149 enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2150 emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2151 %}
2152
2153 enc_class form2_nop() %{
2154 emit_nop(cbuf);
2155 %}
2156
2157 enc_class form2_illtrap() %{
2158 emit_illtrap(cbuf);
2159 %}
2160
2161
2162 // Compare longs and convert into -1, 0, 1.
2163 enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2164 // CMP $src1,$src2
2165 emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2166 // blt,a,pn done
2167 emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2168 // mov dst,-1 in delay slot
2169 emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2170 // bgt,a,pn done
2171 emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2172 // mov dst,1 in delay slot
2173 emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, 1 );
2174 // CLR $dst
2175 emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2176 %}
2177
2178 enc_class enc_PartialSubtypeCheck() %{
2179 MacroAssembler _masm(&cbuf);
2180 __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2181 __ delayed()->nop();
2182 %}
2183
2184 enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2185 MacroAssembler _masm(&cbuf);
2186 Label &L = *($labl$$label);
2187 Assembler::Predict predict_taken =
2188 cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2189
2190 __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2191 __ delayed()->nop();
2192 %}
2193
2194 enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2195 MacroAssembler _masm(&cbuf);
2196 Label &L = *($labl$$label);
2197 Assembler::Predict predict_taken =
2198 cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2199
2200 __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2201 __ delayed()->nop();
2202 %}
2203
2204 enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2205 MacroAssembler _masm(&cbuf);
2206 Label &L = *($labl$$label);
2207 Assembler::Predict predict_taken =
2208 cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2209
2210 __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2211 __ delayed()->nop();
2212 %}
2213
2214 enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2215 MacroAssembler _masm(&cbuf);
2216 Label &L = *($labl$$label);
2217 Assembler::Predict predict_taken =
2218 cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2219
2220 __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2221 __ delayed()->nop();
2222 %}
2223
2224 enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2225 MacroAssembler _masm(&cbuf);
2226
2227 Register switch_reg = as_Register($switch_val$$reg);
2228 Register table_reg = O7;
2229
2230 address table_base = __ address_table_constant(_index2label);
2231 RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2232
2233 // Load table address
2234 Address the_pc(table_reg, table_base, rspec);
2235 __ load_address(the_pc);
2236
2237 // Jump to base address + switch value
2238 __ ld_ptr(table_reg, switch_reg, table_reg);
2239 __ jmp(table_reg, G0);
2240 __ delayed()->nop();
2241
2242 %}
2243
2244 enc_class enc_ba( Label labl ) %{
2245 MacroAssembler _masm(&cbuf);
2246 Label &L = *($labl$$label);
2247 __ ba(false, L);
2248 __ delayed()->nop();
2249 %}
2250
2251 enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2252 MacroAssembler _masm(&cbuf);
2253 Label &L = *$labl$$label;
2254 Assembler::Predict predict_taken =
2255 cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2256
2257 __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2258 __ delayed()->nop();
2259 %}
2260
2261 enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2262 int op = (Assembler::arith_op << 30) |
2263 ($dst$$reg << 25) |
2264 (Assembler::movcc_op3 << 19) |
2265 (1 << 18) | // cc2 bit for 'icc'
2266 ($cmp$$cmpcode << 14) |
2267 (0 << 13) | // select register move
2268 ($pcc$$constant << 11) | // cc1, cc0 bits for 'icc' or 'xcc'
2269 ($src$$reg << 0);
2270 *((int*)(cbuf.code_end())) = op;
2271 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2272 %}
2273
2274 enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2275 int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2276 int op = (Assembler::arith_op << 30) |
2277 ($dst$$reg << 25) |
2278 (Assembler::movcc_op3 << 19) |
2279 (1 << 18) | // cc2 bit for 'icc'
2280 ($cmp$$cmpcode << 14) |
2281 (1 << 13) | // select immediate move
2282 ($pcc$$constant << 11) | // cc1, cc0 bits for 'icc'
2283 (simm11 << 0);
2284 *((int*)(cbuf.code_end())) = op;
2285 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2286 %}
2287
2288 enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2289 int op = (Assembler::arith_op << 30) |
2290 ($dst$$reg << 25) |
2291 (Assembler::movcc_op3 << 19) |
2292 (0 << 18) | // cc2 bit for 'fccX'
2293 ($cmp$$cmpcode << 14) |
2294 (0 << 13) | // select register move
2295 ($fcc$$reg << 11) | // cc1, cc0 bits for fcc0-fcc3
2296 ($src$$reg << 0);
2297 *((int*)(cbuf.code_end())) = op;
2298 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2299 %}
2300
2301 enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2302 int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2303 int op = (Assembler::arith_op << 30) |
2304 ($dst$$reg << 25) |
2305 (Assembler::movcc_op3 << 19) |
2306 (0 << 18) | // cc2 bit for 'fccX'
2307 ($cmp$$cmpcode << 14) |
2308 (1 << 13) | // select immediate move
2309 ($fcc$$reg << 11) | // cc1, cc0 bits for fcc0-fcc3
2310 (simm11 << 0);
2311 *((int*)(cbuf.code_end())) = op;
2312 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2313 %}
2314
2315 enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2316 int op = (Assembler::arith_op << 30) |
2317 ($dst$$reg << 25) |
2318 (Assembler::fpop2_op3 << 19) |
2319 (0 << 18) |
2320 ($cmp$$cmpcode << 14) |
2321 (1 << 13) | // select register move
2322 ($pcc$$constant << 11) | // cc1-cc0 bits for 'icc' or 'xcc'
2323 ($primary << 5) | // select single, double or quad
2324 ($src$$reg << 0);
2325 *((int*)(cbuf.code_end())) = op;
2326 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2327 %}
2328
2329 enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2330 int op = (Assembler::arith_op << 30) |
2331 ($dst$$reg << 25) |
2332 (Assembler::fpop2_op3 << 19) |
2333 (0 << 18) |
2334 ($cmp$$cmpcode << 14) |
2335 ($fcc$$reg << 11) | // cc2-cc0 bits for 'fccX'
2336 ($primary << 5) | // select single, double or quad
2337 ($src$$reg << 0);
2338 *((int*)(cbuf.code_end())) = op;
2339 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2340 %}
2341
2342 // Used by the MIN/MAX encodings. Same as a CMOV, but
2343 // the condition comes from opcode-field instead of an argument.
2344 enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2345 int op = (Assembler::arith_op << 30) |
2346 ($dst$$reg << 25) |
2347 (Assembler::movcc_op3 << 19) |
2348 (1 << 18) | // cc2 bit for 'icc'
2349 ($primary << 14) |
2350 (0 << 13) | // select register move
2351 (0 << 11) | // cc1, cc0 bits for 'icc'
2352 ($src$$reg << 0);
2353 *((int*)(cbuf.code_end())) = op;
2354 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2355 %}
2356
2357 enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2358 int op = (Assembler::arith_op << 30) |
2359 ($dst$$reg << 25) |
2360 (Assembler::movcc_op3 << 19) |
2361 (6 << 16) | // cc2 bit for 'xcc'
2362 ($primary << 14) |
2363 (0 << 13) | // select register move
2364 (0 << 11) | // cc1, cc0 bits for 'icc'
2365 ($src$$reg << 0);
2366 *((int*)(cbuf.code_end())) = op;
2367 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2368 %}
2369
2370 // Utility encoding for loading a 64 bit Pointer into a register
2371 // The 64 bit pointer is stored in the generated code stream
2372 enc_class SetPtr( immP src, iRegP rd ) %{
2373 Register dest = reg_to_register_object($rd$$reg);
2374 // [RGV] This next line should be generated from ADLC
2375 if ( _opnds[1]->constant_is_oop() ) {
2376 intptr_t val = $src$$constant;
2377 MacroAssembler _masm(&cbuf);
2378 __ set_oop_constant((jobject)val, dest);
2379 } else { // non-oop pointers, e.g. card mark base, heap top
2380 emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
2381 }
2382 %}
2383
2384 enc_class Set13( immI13 src, iRegI rd ) %{
2385 emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2386 %}
2387
2388 enc_class SetHi22( immI src, iRegI rd ) %{
2389 emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2390 %}
2391
2392 enc_class Set32( immI src, iRegI rd ) %{
2393 MacroAssembler _masm(&cbuf);
2394 __ set($src$$constant, reg_to_register_object($rd$$reg));
2395 %}
2396
2397 enc_class SetNull( iRegI rd ) %{
2398 emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2399 %}
2400
2401 enc_class call_epilog %{
2402 if( VerifyStackAtCalls ) {
2403 MacroAssembler _masm(&cbuf);
2404 int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2405 Register temp_reg = G3;
2406 __ add(SP, framesize, temp_reg);
2407 __ cmp(temp_reg, FP);
2408 __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2409 }
2410 %}
2411
2412 // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2413 // to G1 so the register allocator will not have to deal with the misaligned register
2414 // pair.
2415 enc_class adjust_long_from_native_call %{
2416 #ifndef _LP64
2417 if (returns_long()) {
2418 // sllx O0,32,O0
2419 emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2420 // srl O1,0,O1
2421 emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2422 // or O0,O1,G1
2423 emit3 ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2424 }
2425 #endif
2426 %}
2427
2428 enc_class Java_To_Runtime (method meth) %{ // CALL Java_To_Runtime
2429 // CALL directly to the runtime
2430 // The user of this is responsible for ensuring that R_L7 is empty (killed).
2431 emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2432 /*preserve_g2=*/true, /*force far call*/true);
2433 %}
2434
2435 enc_class Java_Static_Call (method meth) %{ // JAVA STATIC CALL
2436 // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine
2437 // who we intended to call.
2438 if ( !_method ) {
2439 emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2440 } else if (_optimized_virtual) {
2441 emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2442 } else {
2443 emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2444 }
2445 if( _method ) { // Emit stub for static call
2446 emit_java_to_interp(cbuf);
2447 }
2448 %}
2449
2450 enc_class Java_Dynamic_Call (method meth) %{ // JAVA DYNAMIC CALL
2451 MacroAssembler _masm(&cbuf);
2452 __ set_inst_mark();
2453 int vtable_index = this->_vtable_index;
2454 // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2455 if (vtable_index < 0) {
2456 // must be invalid_vtable_index, not nonvirtual_vtable_index
2457 assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2458 Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2459 assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2460 assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2461 // !!!!!
2462 // Generate "set 0x01, R_G5", placeholder instruction to load oop-info
2463 // emit_call_dynamic_prologue( cbuf );
2464 __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2465
2466 address virtual_call_oop_addr = __ inst_mark();
2467 // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine
2468 // who we intended to call.
2469 __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2470 emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2471 } else {
2472 assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2473 // Just go thru the vtable
2474 // get receiver klass (receiver already checked for non-null)
2475 // If we end up going thru a c2i adapter interpreter expects method in G5
2476 int off = __ offset();
2477 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
2478 int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2479 int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2480 if( __ is_simm13(v_off) ) {
2481 __ ld_ptr(G3, v_off, G5_method);
2482 } else {
2483 // Generate 2 instructions
2484 __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2485 __ or3(G5_method, v_off & 0x3ff, G5_method);
2486 // ld_ptr, set_hi, set
2487 assert(__ offset() - off == 3*BytesPerInstWord, "Unexpected instruction size(s)");
2488 __ ld_ptr(G3, G5_method, G5_method);
2489 }
2490 // NOTE: for vtable dispatches, the vtable entry will never be null.
2491 // However it may very well end up in handle_wrong_method if the
2492 // method is abstract for the particular class.
2493 __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2494 // jump to target (either compiled code or c2iadapter)
2495 __ jmpl(G3_scratch, G0, O7);
2496 __ delayed()->nop();
2497 }
2498 %}
2499
2500 enc_class Java_Compiled_Call (method meth) %{ // JAVA COMPILED CALL
2501 MacroAssembler _masm(&cbuf);
2502
2503 Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2504 Register temp_reg = G3; // caller must kill G3! We cannot reuse G5_ic_reg here because
2505 // we might be calling a C2I adapter which needs it.
2506
2507 assert(temp_reg != G5_ic_reg, "conflicting registers");
2508 // Load nmethod
2509 __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2510
2511 // CALL to compiled java, indirect the contents of G3
2512 __ set_inst_mark();
2513 __ callr(temp_reg, G0);
2514 __ delayed()->nop();
2515 %}
2516
2517 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2518 MacroAssembler _masm(&cbuf);
2519 Register Rdividend = reg_to_register_object($src1$$reg);
2520 Register Rdivisor = reg_to_register_object($src2$$reg);
2521 Register Rresult = reg_to_register_object($dst$$reg);
2522
2523 __ sra(Rdivisor, 0, Rdivisor);
2524 __ sra(Rdividend, 0, Rdividend);
2525 __ sdivx(Rdividend, Rdivisor, Rresult);
2526 %}
2527
2528 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2529 MacroAssembler _masm(&cbuf);
2530
2531 Register Rdividend = reg_to_register_object($src1$$reg);
2532 int divisor = $imm$$constant;
2533 Register Rresult = reg_to_register_object($dst$$reg);
2534
2535 __ sra(Rdividend, 0, Rdividend);
2536 __ sdivx(Rdividend, divisor, Rresult);
2537 %}
2538
2539 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2540 MacroAssembler _masm(&cbuf);
2541 Register Rsrc1 = reg_to_register_object($src1$$reg);
2542 Register Rsrc2 = reg_to_register_object($src2$$reg);
2543 Register Rdst = reg_to_register_object($dst$$reg);
2544
2545 __ sra( Rsrc1, 0, Rsrc1 );
2546 __ sra( Rsrc2, 0, Rsrc2 );
2547 __ mulx( Rsrc1, Rsrc2, Rdst );
2548 __ srlx( Rdst, 32, Rdst );
2549 %}
2550
2551 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2552 MacroAssembler _masm(&cbuf);
2553 Register Rdividend = reg_to_register_object($src1$$reg);
2554 Register Rdivisor = reg_to_register_object($src2$$reg);
2555 Register Rresult = reg_to_register_object($dst$$reg);
2556 Register Rscratch = reg_to_register_object($scratch$$reg);
2557
2558 assert(Rdividend != Rscratch, "");
2559 assert(Rdivisor != Rscratch, "");
2560
2561 __ sra(Rdividend, 0, Rdividend);
2562 __ sra(Rdivisor, 0, Rdivisor);
2563 __ sdivx(Rdividend, Rdivisor, Rscratch);
2564 __ mulx(Rscratch, Rdivisor, Rscratch);
2565 __ sub(Rdividend, Rscratch, Rresult);
2566 %}
2567
2568 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2569 MacroAssembler _masm(&cbuf);
2570
2571 Register Rdividend = reg_to_register_object($src1$$reg);
2572 int divisor = $imm$$constant;
2573 Register Rresult = reg_to_register_object($dst$$reg);
2574 Register Rscratch = reg_to_register_object($scratch$$reg);
2575
2576 assert(Rdividend != Rscratch, "");
2577
2578 __ sra(Rdividend, 0, Rdividend);
2579 __ sdivx(Rdividend, divisor, Rscratch);
2580 __ mulx(Rscratch, divisor, Rscratch);
2581 __ sub(Rdividend, Rscratch, Rresult);
2582 %}
2583
2584 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2585 MacroAssembler _masm(&cbuf);
2586
2587 FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2588 FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2589
2590 __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2591 %}
2592
2593 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2594 MacroAssembler _masm(&cbuf);
2595
2596 FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2597 FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2598
2599 __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2600 %}
2601
2602 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2603 MacroAssembler _masm(&cbuf);
2604
2605 FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2606 FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2607
2608 __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2609 %}
2610
2611 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2612 MacroAssembler _masm(&cbuf);
2613
2614 FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2615 FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2616
2617 __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2618 %}
2619
2620 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2621 MacroAssembler _masm(&cbuf);
2622
2623 FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2624 FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2625
2626 __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2627 %}
2628
2629 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2630 MacroAssembler _masm(&cbuf);
2631
2632 FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2633 FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2634
2635 __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2636 %}
2637
2638 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2639 MacroAssembler _masm(&cbuf);
2640
2641 FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2642 FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2643
2644 __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2645 %}
2646
2647 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2648 MacroAssembler _masm(&cbuf);
2649
2650 Register Roop = reg_to_register_object($oop$$reg);
2651 Register Rbox = reg_to_register_object($box$$reg);
2652 Register Rscratch = reg_to_register_object($scratch$$reg);
2653 Register Rmark = reg_to_register_object($scratch2$$reg);
2654
2655 assert(Roop != Rscratch, "");
2656 assert(Roop != Rmark, "");
2657 assert(Rbox != Rscratch, "");
2658 assert(Rbox != Rmark, "");
2659
2660 __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters);
2661 %}
2662
2663 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2664 MacroAssembler _masm(&cbuf);
2665
2666 Register Roop = reg_to_register_object($oop$$reg);
2667 Register Rbox = reg_to_register_object($box$$reg);
2668 Register Rscratch = reg_to_register_object($scratch$$reg);
2669 Register Rmark = reg_to_register_object($scratch2$$reg);
2670
2671 assert(Roop != Rscratch, "");
2672 assert(Roop != Rmark, "");
2673 assert(Rbox != Rscratch, "");
2674 assert(Rbox != Rmark, "");
2675
2676 __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch);
2677 %}
2678
2679 enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2680 MacroAssembler _masm(&cbuf);
2681 Register Rmem = reg_to_register_object($mem$$reg);
2682 Register Rold = reg_to_register_object($old$$reg);
2683 Register Rnew = reg_to_register_object($new$$reg);
2684
2685 // casx_under_lock picks 1 of 3 encodings:
2686 // For 32-bit pointers you get a 32-bit CAS
2687 // For 64-bit pointers you get a 64-bit CASX
2688 __ casx_under_lock(Rmem, Rold, Rnew, // Swap(*Rmem,Rnew) if *Rmem == Rold
2689 (address) StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2690 __ cmp( Rold, Rnew );
2691 %}
2692
2693 enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2694 Register Rmem = reg_to_register_object($mem$$reg);
2695 Register Rold = reg_to_register_object($old$$reg);
2696 Register Rnew = reg_to_register_object($new$$reg);
2697
2698 MacroAssembler _masm(&cbuf);
2699 __ mov(Rnew, O7);
2700 __ casx(Rmem, Rold, O7);
2701 __ cmp( Rold, O7 );
2702 %}
2703
2704 // raw int cas, used for compareAndSwap
2705 enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2706 Register Rmem = reg_to_register_object($mem$$reg);
2707 Register Rold = reg_to_register_object($old$$reg);
2708 Register Rnew = reg_to_register_object($new$$reg);
2709
2710 MacroAssembler _masm(&cbuf);
2711 __ mov(Rnew, O7);
2712 __ cas(Rmem, Rold, O7);
2713 __ cmp( Rold, O7 );
2714 %}
2715
2716 enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2717 Register Rres = reg_to_register_object($res$$reg);
2718
2719 MacroAssembler _masm(&cbuf);
2720 __ mov(1, Rres);
2721 __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2722 %}
2723
2724 enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2725 Register Rres = reg_to_register_object($res$$reg);
2726
2727 MacroAssembler _masm(&cbuf);
2728 __ mov(1, Rres);
2729 __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2730 %}
2731
2732 enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2733 MacroAssembler _masm(&cbuf);
2734 Register Rdst = reg_to_register_object($dst$$reg);
2735 FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2736 : reg_to_DoubleFloatRegister_object($src1$$reg);
2737 FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2738 : reg_to_DoubleFloatRegister_object($src2$$reg);
2739
2740 // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2741 __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2742 %}
2743
2744 enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{ // Load Immediate
2745 MacroAssembler _masm(&cbuf);
2746 Register dest = reg_to_register_object($dst$$reg);
2747 Register temp = reg_to_register_object($tmp$$reg);
2748 __ set64( $src$$constant, dest, temp );
2749 %}
2750
2751 enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{ // Load Immediate
2752 address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
2753 RelocationHolder rspec = internal_word_Relocation::spec(float_address);
2754 #ifdef _LP64
2755 Register tmp_reg = reg_to_register_object($tmp$$reg);
2756 cbuf.relocate(cbuf.code_end(), rspec, 0);
2757 emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
2758 emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
2759 #else // _LP64
2760 uint *code;
2761 int tmp_reg = $tmp$$reg;
2762
2763 cbuf.relocate(cbuf.code_end(), rspec, 0);
2764 emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
2765
2766 cbuf.relocate(cbuf.code_end(), rspec, 0);
2767 emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
2768 #endif // _LP64
2769 %}
2770
2771 enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{ // Load Immediate
2772 address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
2773 RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2774 #ifdef _LP64
2775 Register tmp_reg = reg_to_register_object($tmp$$reg);
2776 cbuf.relocate(cbuf.code_end(), rspec, 0);
2777 emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
2778 emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
2779 #else // _LP64
2780 uint *code;
2781 int tmp_reg = $tmp$$reg;
2782
2783 cbuf.relocate(cbuf.code_end(), rspec, 0);
2784 emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
2785
2786 cbuf.relocate(cbuf.code_end(), rspec, 0);
2787 emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
2788 #endif // _LP64
2789 %}
2790
2791 enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2792 // Load a constant replicated "count" times with width "width"
2793 int bit_width = $width$$constant * 8;
2794 jlong elt_val = $src$$constant;
2795 elt_val &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2796 jlong val = elt_val;
2797 for (int i = 0; i < $count$$constant - 1; i++) {
2798 val <<= bit_width;
2799 val |= elt_val;
2800 }
2801 jdouble dval = *(jdouble*)&val; // coerce to double type
2802 address double_address = MacroAssembler(&cbuf).double_constant(dval);
2803 RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2804 #ifdef _LP64
2805 Register tmp_reg = reg_to_register_object($tmp$$reg);
2806 cbuf.relocate(cbuf.code_end(), rspec, 0);
2807 emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
2808 emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
2809 #else // _LP64
2810 uint *code;
2811 int tmp_reg = $tmp$$reg;
2812
2813 cbuf.relocate(cbuf.code_end(), rspec, 0);
2814 emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
2815
2816 cbuf.relocate(cbuf.code_end(), rspec, 0);
2817 emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
2818 #endif // _LP64
2819 %}
2820
2821
2822 enc_class ShouldNotEncodeThis ( ) %{
2823 ShouldNotCallThis();
2824 %}
2825
2826 // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2827 enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2828 MacroAssembler _masm(&cbuf);
2829 Register nof_bytes_arg = reg_to_register_object($cnt$$reg);
2830 Register nof_bytes_tmp = reg_to_register_object($temp$$reg);
2831 Register base_pointer_arg = reg_to_register_object($base$$reg);
2832
2833 Label loop;
2834 __ mov(nof_bytes_arg, nof_bytes_tmp);
2835
2836 // Loop and clear, walking backwards through the array.
2837 // nof_bytes_tmp (if >0) is always the number of bytes to zero
2838 __ bind(loop);
2839 __ deccc(nof_bytes_tmp, 8);
2840 __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2841 __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2842 // %%%% this mini-loop must not cross a cache boundary!
2843 %}
2844
2845
2846 enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2847 Label Ldone, Lloop;
2848 MacroAssembler _masm(&cbuf);
2849
2850 Register str1_reg = reg_to_register_object($str1$$reg);
2851 Register str2_reg = reg_to_register_object($str2$$reg);
2852 Register tmp1_reg = reg_to_register_object($tmp1$$reg);
2853 Register tmp2_reg = reg_to_register_object($tmp2$$reg);
2854 Register result_reg = reg_to_register_object($result$$reg);
2855
2856 // Get the first character position in both strings
2857 // [8] char array, [12] offset, [16] count
2858 int value_offset = java_lang_String:: value_offset_in_bytes();
2859 int offset_offset = java_lang_String::offset_offset_in_bytes();
2860 int count_offset = java_lang_String:: count_offset_in_bytes();
2861
2862 // load str1 (jchar*) base address into tmp1_reg
2863 __ ld_ptr(Address(str1_reg, 0, value_offset), tmp1_reg);
2864 __ ld(Address(str1_reg, 0, offset_offset), result_reg);
2865 __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2866 __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
2867 __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2868 __ ld_ptr(Address(str2_reg, 0, value_offset), tmp2_reg); // hoisted
2869 __ add(result_reg, tmp1_reg, tmp1_reg);
2870
2871 // load str2 (jchar*) base address into tmp2_reg
2872 // __ ld_ptr(Address(str2_reg, 0, value_offset), tmp2_reg); // hoisted
2873 __ ld(Address(str2_reg, 0, offset_offset), result_reg);
2874 __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2875 __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
2876 __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2877 __ subcc(str1_reg, str2_reg, O7); // hoisted
2878 __ add(result_reg, tmp2_reg, tmp2_reg);
2879
2880 // Compute the minimum of the string lengths(str1_reg) and the
2881 // difference of the string lengths (stack)
2882
2883 // discard string base pointers, after loading up the lengths
2884 // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
2885 // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
2886
2887 // See if the lengths are different, and calculate min in str1_reg.
2888 // Stash diff in O7 in case we need it for a tie-breaker.
2889 Label Lskip;
2890 // __ subcc(str1_reg, str2_reg, O7); // hoisted
2891 __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2892 __ br(Assembler::greater, true, Assembler::pt, Lskip);
2893 // str2 is shorter, so use its count:
2894 __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2895 __ bind(Lskip);
2896
2897 // reallocate str1_reg, str2_reg, result_reg
2898 // Note: limit_reg holds the string length pre-scaled by 2
2899 Register limit_reg = str1_reg;
2900 Register chr2_reg = str2_reg;
2901 Register chr1_reg = result_reg;
2902 // tmp{12} are the base pointers
2903
2904 // Is the minimum length zero?
2905 __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2906 __ br(Assembler::equal, true, Assembler::pn, Ldone);
2907 __ delayed()->mov(O7, result_reg); // result is difference in lengths
2908
2909 // Load first characters
2910 __ lduh(tmp1_reg, 0, chr1_reg);
2911 __ lduh(tmp2_reg, 0, chr2_reg);
2912
2913 // Compare first characters
2914 __ subcc(chr1_reg, chr2_reg, chr1_reg);
2915 __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2916 assert(chr1_reg == result_reg, "result must be pre-placed");
2917 __ delayed()->nop();
2918
2919 {
2920 // Check after comparing first character to see if strings are equivalent
2921 Label LSkip2;
2922 // Check if the strings start at same location
2923 __ cmp(tmp1_reg, tmp2_reg);
2924 __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2925 __ delayed()->nop();
2926
2927 // Check if the length difference is zero (in O7)
2928 __ cmp(G0, O7);
2929 __ br(Assembler::equal, true, Assembler::pn, Ldone);
2930 __ delayed()->mov(G0, result_reg); // result is zero
2931
2932 // Strings might not be equal
2933 __ bind(LSkip2);
2934 }
2935
2936 __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2937 __ br(Assembler::equal, true, Assembler::pn, Ldone);
2938 __ delayed()->mov(O7, result_reg); // result is difference in lengths
2939
2940 // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
2941 __ add(tmp1_reg, limit_reg, tmp1_reg);
2942 __ add(tmp2_reg, limit_reg, tmp2_reg);
2943 __ neg(chr1_reg, limit_reg); // limit = -(limit-2)
2944
2945 // Compare the rest of the characters
2946 __ lduh(tmp1_reg, limit_reg, chr1_reg);
2947 __ bind(Lloop);
2948 // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2949 __ lduh(tmp2_reg, limit_reg, chr2_reg);
2950 __ subcc(chr1_reg, chr2_reg, chr1_reg);
2951 __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2952 assert(chr1_reg == result_reg, "result must be pre-placed");
2953 __ delayed()->inccc(limit_reg, sizeof(jchar));
2954 // annul LDUH if branch is not taken to prevent access past end of string
2955 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2956 __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2957
2958 // If strings are equal up to min length, return the length difference.
2959 __ mov(O7, result_reg);
2960
2961 // Otherwise, return the difference between the first mismatched chars.
2962 __ bind(Ldone);
2963 %}
2964
2965 enc_class enc_rethrow() %{
2966 cbuf.set_inst_mark();
2967 Register temp_reg = G3;
2968 Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
2969 assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2970 MacroAssembler _masm(&cbuf);
2971 #ifdef ASSERT
2972 __ save_frame(0);
2973 Address last_rethrow_addr(L1, (address)&last_rethrow);
2974 __ sethi(last_rethrow_addr);
2975 __ get_pc(L2);
2976 __ inc(L2, 3 * BytesPerInstWord); // skip this & 2 more insns to point at jump_to
2977 __ st_ptr(L2, last_rethrow_addr);
2978 __ restore();
2979 #endif
2980 __ JUMP(rethrow_stub, 0); // sethi;jmp
2981 __ delayed()->nop();
2982 %}
2983
2984 enc_class emit_mem_nop() %{
2985 // Generates the instruction LDUXA [o6,g0],#0x82,g0
2986 unsigned int *code = (unsigned int*)cbuf.code_end();
2987 *code = (unsigned int)0xc0839040;
2988 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2989 %}
2990
2991 enc_class emit_fadd_nop() %{
2992 // Generates the instruction FMOVS f31,f31
2993 unsigned int *code = (unsigned int*)cbuf.code_end();
2994 *code = (unsigned int)0xbfa0003f;
2995 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2996 %}
2997
2998 enc_class emit_br_nop() %{
2999 // Generates the instruction BPN,PN .
3000 unsigned int *code = (unsigned int*)cbuf.code_end();
3001 *code = (unsigned int)0x00400000;
3002 cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3003 %}
3004
3005 enc_class enc_membar_acquire %{
3006 MacroAssembler _masm(&cbuf);
3007 __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3008 %}
3009
3010 enc_class enc_membar_release %{
3011 MacroAssembler _masm(&cbuf);
3012 __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3013 %}
3014
3015 enc_class enc_membar_volatile %{
3016 MacroAssembler _masm(&cbuf);
3017 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3018 %}
3019 enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3020 MacroAssembler _masm(&cbuf);
3021 Register src_reg = reg_to_register_object($src$$reg);
3022 Register dst_reg = reg_to_register_object($dst$$reg);
3023 __ sllx(src_reg, 56, dst_reg);
3024 __ srlx(dst_reg, 8, O7);
3025 __ or3 (dst_reg, O7, dst_reg);
3026 __ srlx(dst_reg, 16, O7);
3027 __ or3 (dst_reg, O7, dst_reg);
3028 __ srlx(dst_reg, 32, O7);
3029 __ or3 (dst_reg, O7, dst_reg);
3030 %}
3031
3032 enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3033 MacroAssembler _masm(&cbuf);
3034 Register src_reg = reg_to_register_object($src$$reg);
3035 Register dst_reg = reg_to_register_object($dst$$reg);
3036 __ sll(src_reg, 24, dst_reg);
3037 __ srl(dst_reg, 8, O7);
3038 __ or3(dst_reg, O7, dst_reg);
3039 __ srl(dst_reg, 16, O7);
3040 __ or3(dst_reg, O7, dst_reg);
3041 %}
3042
3043 enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3044 MacroAssembler _masm(&cbuf);
3045 Register src_reg = reg_to_register_object($src$$reg);
3046 Register dst_reg = reg_to_register_object($dst$$reg);
3047 __ sllx(src_reg, 48, dst_reg);
3048 __ srlx(dst_reg, 16, O7);
3049 __ or3 (dst_reg, O7, dst_reg);
3050 __ srlx(dst_reg, 32, O7);
3051 __ or3 (dst_reg, O7, dst_reg);
3052 %}
3053
3054 enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3055 MacroAssembler _masm(&cbuf);
3056 Register src_reg = reg_to_register_object($src$$reg);
3057 Register dst_reg = reg_to_register_object($dst$$reg);
3058 __ sllx(src_reg, 32, dst_reg);
3059 __ srlx(dst_reg, 32, O7);
3060 __ or3 (dst_reg, O7, dst_reg);
3061 %}
3062
3063 %}
3064
3065 //----------FRAME--------------------------------------------------------------
3066 // Definition of frame structure and management information.
3067 //
3068 // S T A C K L A Y O U T Allocators stack-slot number
3069 // | (to get allocators register number
3070 // G Owned by | | v add VMRegImpl::stack0)
3071 // r CALLER | |
3072 // o | +--------+ pad to even-align allocators stack-slot
3073 // w V | pad0 | numbers; owned by CALLER
3074 // t -----------+--------+----> Matcher::_in_arg_limit, unaligned
3075 // h ^ | in | 5
3076 // | | args | 4 Holes in incoming args owned by SELF
3077 // | | | | 3
3078 // | | +--------+
3079 // V | | old out| Empty on Intel, window on Sparc
3080 // | old |preserve| Must be even aligned.
3081 // | SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3082 // | | in | 3 area for Intel ret address
3083 // Owned by |preserve| Empty on Sparc.
3084 // SELF +--------+
3085 // | | pad2 | 2 pad to align old SP
3086 // | +--------+ 1
3087 // | | locks | 0
3088 // | +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3089 // | | pad1 | 11 pad to align new SP
3090 // | +--------+
3091 // | | | 10
3092 // | | spills | 9 spills
3093 // V | | 8 (pad0 slot for callee)
3094 // -----------+--------+----> Matcher::_out_arg_limit, unaligned
3095 // ^ | out | 7
3096 // | | args | 6 Holes in outgoing args owned by CALLEE
3097 // Owned by +--------+
3098 // CALLEE | new out| 6 Empty on Intel, window on Sparc
3099 // | new |preserve| Must be even-aligned.
3100 // | SP-+--------+----> Matcher::_new_SP, even aligned
3101 // | | |
3102 //
3103 // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is
3104 // known from SELF's arguments and the Java calling convention.
3105 // Region 6-7 is determined per call site.
3106 // Note 2: If the calling convention leaves holes in the incoming argument
3107 // area, those holes are owned by SELF. Holes in the outgoing area
3108 // are owned by the CALLEE. Holes should not be nessecary in the
3109 // incoming area, as the Java calling convention is completely under
3110 // the control of the AD file. Doubles can be sorted and packed to
3111 // avoid holes. Holes in the outgoing arguments may be nessecary for
3112 // varargs C calling conventions.
3113 // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
3114 // even aligned with pad0 as needed.
3115 // Region 6 is even aligned. Region 6-7 is NOT even aligned;
3116 // region 6-11 is even aligned; it may be padded out more so that
3117 // the region from SP to FP meets the minimum stack alignment.
3118
3119 frame %{
3120 // What direction does stack grow in (assumed to be same for native & Java)
3121 stack_direction(TOWARDS_LOW);
3122
3123 // These two registers define part of the calling convention
3124 // between compiled code and the interpreter.
3125 inline_cache_reg(R_G5); // Inline Cache Register or methodOop for I2C
3126 interpreter_method_oop_reg(R_G5); // Method Oop Register when calling interpreter
3127
3128 // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3129 cisc_spilling_operand_name(indOffset);
3130
3131 // Number of stack slots consumed by a Monitor enter
3132 #ifdef _LP64
3133 sync_stack_slots(2);
3134 #else
3135 sync_stack_slots(1);
3136 #endif
3137
3138 // Compiled code's Frame Pointer
3139 frame_pointer(R_SP);
3140
3141 // Stack alignment requirement
3142 stack_alignment(StackAlignmentInBytes);
3143 // LP64: Alignment size in bytes (128-bit -> 16 bytes)
3144 // !LP64: Alignment size in bytes (64-bit -> 8 bytes)
3145
3146 // Number of stack slots between incoming argument block and the start of
3147 // a new frame. The PROLOG must add this many slots to the stack. The
3148 // EPILOG must remove this many slots.
3149 in_preserve_stack_slots(0);
3150
3151 // Number of outgoing stack slots killed above the out_preserve_stack_slots
3152 // for calls to C. Supports the var-args backing area for register parms.
3153 // ADLC doesn't support parsing expressions, so I folded the math by hand.
3154 #ifdef _LP64
3155 // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3156 varargs_C_out_slots_killed(12);
3157 #else
3158 // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3159 varargs_C_out_slots_killed( 7);
3160 #endif
3161
3162 // The after-PROLOG location of the return address. Location of
3163 // return address specifies a type (REG or STACK) and a number
3164 // representing the register number (i.e. - use a register name) or
3165 // stack slot.
3166 return_addr(REG R_I7); // Ret Addr is in register I7
3167
3168 // Body of function which returns an OptoRegs array locating
3169 // arguments either in registers or in stack slots for calling
3170 // java
3171 calling_convention %{
3172 (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3173
3174 %}
3175
3176 // Body of function which returns an OptoRegs array locating
3177 // arguments either in registers or in stack slots for callin
3178 // C.
3179 c_calling_convention %{
3180 // This is obviously always outgoing
3181 (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3182 %}
3183
3184 // Location of native (C/C++) and interpreter return values. This is specified to
3185 // be the same as Java. In the 32-bit VM, long values are actually returned from
3186 // native calls in O0:O1 and returned to the interpreter in I0:I1. The copying
3187 // to and from the register pairs is done by the appropriate call and epilog
3188 // opcodes. This simplifies the register allocator.
3189 c_return_value %{
3190 assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3191 #ifdef _LP64
3192 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_O0_num };
3193 static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num, OptoReg::Bad, R_F1_num, R_O0H_num};
3194 static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_I0_num };
3195 static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num, OptoReg::Bad, R_F1_num, R_I0H_num};
3196 #else // !_LP64
3197 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_G1_num };
3198 static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3199 static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_G1_num };
3200 static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3201 #endif
3202 return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3203 (is_outgoing?lo_out:lo_in)[ideal_reg] );
3204 %}
3205
3206 // Location of compiled Java return values. Same as C
3207 return_value %{
3208 assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3209 #ifdef _LP64
3210 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_O0_num };
3211 static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num, OptoReg::Bad, R_F1_num, R_O0H_num};
3212 static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_I0_num };
3213 static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num, OptoReg::Bad, R_F1_num, R_I0H_num};
3214 #else // !_LP64
3215 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_G1_num };
3216 static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3217 static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_G1_num };
3218 static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3219 #endif
3220 return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3221 (is_outgoing?lo_out:lo_in)[ideal_reg] );
3222 %}
3223
3224 %}
3225
3226
3227 //----------ATTRIBUTES---------------------------------------------------------
3228 //----------Operand Attributes-------------------------------------------------
3229 op_attrib op_cost(1); // Required cost attribute
3230
3231 //----------Instruction Attributes---------------------------------------------
3232 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3233 ins_attrib ins_size(32); // Required size attribute (in bits)
3234 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3235 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3236 // non-matching short branch variant of some
3237 // long branch?
3238
3239 //----------OPERANDS-----------------------------------------------------------
3240 // Operand definitions must precede instruction definitions for correct parsing
3241 // in the ADLC because operands constitute user defined types which are used in
3242 // instruction definitions.
3243
3244 //----------Simple Operands----------------------------------------------------
3245 // Immediate Operands
3246 // Integer Immediate: 32-bit
3247 operand immI() %{
3248 match(ConI);
3249
3250 op_cost(0);
3251 // formats are generated automatically for constants and base registers
3252 format %{ %}
3253 interface(CONST_INTER);
3254 %}
3255
3256 // Integer Immediate: 13-bit
3257 operand immI13() %{
3258 predicate(Assembler::is_simm13(n->get_int()));
3259 match(ConI);
3260 op_cost(0);
3261
3262 format %{ %}
3263 interface(CONST_INTER);
3264 %}
3265
3266 // Unsigned (positive) Integer Immediate: 13-bit
3267 operand immU13() %{
3268 predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3269 match(ConI);
3270 op_cost(0);
3271
3272 format %{ %}
3273 interface(CONST_INTER);
3274 %}
3275
3276 // Integer Immediate: 6-bit
3277 operand immU6() %{
3278 predicate(n->get_int() >= 0 && n->get_int() <= 63);
3279 match(ConI);
3280 op_cost(0);
3281 format %{ %}
3282 interface(CONST_INTER);
3283 %}
3284
3285 // Integer Immediate: 11-bit
3286 operand immI11() %{
3287 predicate(Assembler::is_simm(n->get_int(),11));
3288 match(ConI);
3289 op_cost(0);
3290 format %{ %}
3291 interface(CONST_INTER);
3292 %}
3293
3294 // Integer Immediate: 0-bit
3295 operand immI0() %{
3296 predicate(n->get_int() == 0);
3297 match(ConI);
3298 op_cost(0);
3299
3300 format %{ %}
3301 interface(CONST_INTER);
3302 %}
3303
3304 // Integer Immediate: the value 10
3305 operand immI10() %{
3306 predicate(n->get_int() == 10);
3307 match(ConI);
3308 op_cost(0);
3309
3310 format %{ %}
3311 interface(CONST_INTER);
3312 %}
3313
3314 // Integer Immediate: the values 0-31
3315 operand immU5() %{
3316 predicate(n->get_int() >= 0 && n->get_int() <= 31);
3317 match(ConI);
3318 op_cost(0);
3319
3320 format %{ %}
3321 interface(CONST_INTER);
3322 %}
3323
3324 // Integer Immediate: the values 1-31
3325 operand immI_1_31() %{
3326 predicate(n->get_int() >= 1 && n->get_int() <= 31);
3327 match(ConI);
3328 op_cost(0);
3329
3330 format %{ %}
3331 interface(CONST_INTER);
3332 %}
3333
3334 // Integer Immediate: the values 32-63
3335 operand immI_32_63() %{
3336 predicate(n->get_int() >= 32 && n->get_int() <= 63);
3337 match(ConI);
3338 op_cost(0);
3339
3340 format %{ %}
3341 interface(CONST_INTER);
3342 %}
3343
3344 // Integer Immediate: the value 255
3345 operand immI_255() %{
3346 predicate( n->get_int() == 255 );
3347 match(ConI);
3348 op_cost(0);
3349
3350 format %{ %}
3351 interface(CONST_INTER);
3352 %}
3353
3354 // Long Immediate: the value FF
3355 operand immL_FF() %{
3356 predicate( n->get_long() == 0xFFL );
3357 match(ConL);
3358 op_cost(0);
3359
3360 format %{ %}
3361 interface(CONST_INTER);
3362 %}
3363
3364 // Long Immediate: the value FFFF
3365 operand immL_FFFF() %{
3366 predicate( n->get_long() == 0xFFFFL );
3367 match(ConL);
3368 op_cost(0);
3369
3370 format %{ %}
3371 interface(CONST_INTER);
3372 %}
3373
3374 // Pointer Immediate: 32 or 64-bit
3375 operand immP() %{
3376 match(ConP);
3377
3378 op_cost(5);
3379 // formats are generated automatically for constants and base registers
3380 format %{ %}
3381 interface(CONST_INTER);
3382 %}
3383
3384 operand immP13() %{
3385 predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3386 match(ConP);
3387 op_cost(0);
3388
3389 format %{ %}
3390 interface(CONST_INTER);
3391 %}
3392
3393 operand immP0() %{
3394 predicate(n->get_ptr() == 0);
3395 match(ConP);
3396 op_cost(0);
3397
3398 format %{ %}
3399 interface(CONST_INTER);
3400 %}
3401
3402 operand immP_poll() %{
3403 predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3404 match(ConP);
3405
3406 // formats are generated automatically for constants and base registers
3407 format %{ %}
3408 interface(CONST_INTER);
3409 %}
3410
3411 operand immL() %{
3412 match(ConL);
3413 op_cost(40);
3414 // formats are generated automatically for constants and base registers
3415 format %{ %}
3416 interface(CONST_INTER);
3417 %}
3418
3419 operand immL0() %{
3420 predicate(n->get_long() == 0L);
3421 match(ConL);
3422 op_cost(0);
3423 // formats are generated automatically for constants and base registers
3424 format %{ %}
3425 interface(CONST_INTER);
3426 %}
3427
3428 // Long Immediate: 13-bit
3429 operand immL13() %{
3430 predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3431 match(ConL);
3432 op_cost(0);
3433
3434 format %{ %}
3435 interface(CONST_INTER);
3436 %}
3437
3438 // Long Immediate: low 32-bit mask
3439 operand immL_32bits() %{
3440 predicate(n->get_long() == 0xFFFFFFFFL);
3441 match(ConL);
3442 op_cost(0);
3443
3444 format %{ %}
3445 interface(CONST_INTER);
3446 %}
3447
3448 // Double Immediate
3449 operand immD() %{
3450 match(ConD);
3451
3452 op_cost(40);
3453 format %{ %}
3454 interface(CONST_INTER);
3455 %}
3456
3457 operand immD0() %{
3458 #ifdef _LP64
3459 // on 64-bit architectures this comparision is faster
3460 predicate(jlong_cast(n->getd()) == 0);
3461 #else
3462 predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3463 #endif
3464 match(ConD);
3465
3466 op_cost(0);
3467 format %{ %}
3468 interface(CONST_INTER);
3469 %}
3470
3471 // Float Immediate
3472 operand immF() %{
3473 match(ConF);
3474
3475 op_cost(20);
3476 format %{ %}
3477 interface(CONST_INTER);
3478 %}
3479
3480 // Float Immediate: 0
3481 operand immF0() %{
3482 predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3483 match(ConF);
3484
3485 op_cost(0);
3486 format %{ %}
3487 interface(CONST_INTER);
3488 %}
3489
3490 // Integer Register Operands
3491 // Integer Register
3492 operand iRegI() %{
3493 constraint(ALLOC_IN_RC(int_reg));
3494 match(RegI);
3495
3496 match(notemp_iRegI);
3497 match(g1RegI);
3498 match(o0RegI);
3499 match(iRegIsafe);
3500
3501 format %{ %}
3502 interface(REG_INTER);
3503 %}
3504
3505 operand notemp_iRegI() %{
3506 constraint(ALLOC_IN_RC(notemp_int_reg));
3507 match(RegI);
3508
3509 match(o0RegI);
3510
3511 format %{ %}
3512 interface(REG_INTER);
3513 %}
3514
3515 operand o0RegI() %{
3516 constraint(ALLOC_IN_RC(o0_regI));
3517 match(iRegI);
3518
3519 format %{ %}
3520 interface(REG_INTER);
3521 %}
3522
3523 // Pointer Register
3524 operand iRegP() %{
3525 constraint(ALLOC_IN_RC(ptr_reg));
3526 match(RegP);
3527
3528 match(lock_ptr_RegP);
3529 match(g1RegP);
3530 match(g2RegP);
3531 match(g3RegP);
3532 match(g4RegP);
3533 match(i0RegP);
3534 match(o0RegP);
3535 match(o1RegP);
3536 match(l7RegP);
3537
3538 format %{ %}
3539 interface(REG_INTER);
3540 %}
3541
3542 operand sp_ptr_RegP() %{
3543 constraint(ALLOC_IN_RC(sp_ptr_reg));
3544 match(RegP);
3545 match(iRegP);
3546
3547 format %{ %}
3548 interface(REG_INTER);
3549 %}
3550
3551 operand lock_ptr_RegP() %{
3552 constraint(ALLOC_IN_RC(lock_ptr_reg));
3553 match(RegP);
3554 match(i0RegP);
3555 match(o0RegP);
3556 match(o1RegP);
3557 match(l7RegP);
3558
3559 format %{ %}
3560 interface(REG_INTER);
3561 %}
3562
3563 operand g1RegP() %{
3564 constraint(ALLOC_IN_RC(g1_regP));
3565 match(iRegP);
3566
3567 format %{ %}
3568 interface(REG_INTER);
3569 %}
3570
3571 operand g2RegP() %{
3572 constraint(ALLOC_IN_RC(g2_regP));
3573 match(iRegP);
3574
3575 format %{ %}
3576 interface(REG_INTER);
3577 %}
3578
3579 operand g3RegP() %{
3580 constraint(ALLOC_IN_RC(g3_regP));
3581 match(iRegP);
3582
3583 format %{ %}
3584 interface(REG_INTER);
3585 %}
3586
3587 operand g1RegI() %{
3588 constraint(ALLOC_IN_RC(g1_regI));
3589 match(iRegI);
3590
3591 format %{ %}
3592 interface(REG_INTER);
3593 %}
3594
3595 operand g3RegI() %{
3596 constraint(ALLOC_IN_RC(g3_regI));
3597 match(iRegI);
3598
3599 format %{ %}
3600 interface(REG_INTER);
3601 %}
3602
3603 operand g4RegI() %{
3604 constraint(ALLOC_IN_RC(g4_regI));
3605 match(iRegI);
3606
3607 format %{ %}
3608 interface(REG_INTER);
3609 %}
3610
3611 operand g4RegP() %{
3612 constraint(ALLOC_IN_RC(g4_regP));
3613 match(iRegP);
3614
3615 format %{ %}
3616 interface(REG_INTER);
3617 %}
3618
3619 operand i0RegP() %{
3620 constraint(ALLOC_IN_RC(i0_regP));
3621 match(iRegP);
3622
3623 format %{ %}
3624 interface(REG_INTER);
3625 %}
3626
3627 operand o0RegP() %{
3628 constraint(ALLOC_IN_RC(o0_regP));
3629 match(iRegP);
3630
3631 format %{ %}
3632 interface(REG_INTER);
3633 %}
3634
3635 operand o1RegP() %{
3636 constraint(ALLOC_IN_RC(o1_regP));
3637 match(iRegP);
3638
3639 format %{ %}
3640 interface(REG_INTER);
3641 %}
3642
3643 operand o2RegP() %{
3644 constraint(ALLOC_IN_RC(o2_regP));
3645 match(iRegP);
3646
3647 format %{ %}
3648 interface(REG_INTER);
3649 %}
3650
3651 operand o7RegP() %{
3652 constraint(ALLOC_IN_RC(o7_regP));
3653 match(iRegP);
3654
3655 format %{ %}
3656 interface(REG_INTER);
3657 %}
3658
3659 operand l7RegP() %{
3660 constraint(ALLOC_IN_RC(l7_regP));
3661 match(iRegP);
3662
3663 format %{ %}
3664 interface(REG_INTER);
3665 %}
3666
3667 operand o7RegI() %{
3668 constraint(ALLOC_IN_RC(o7_regI));
3669 match(iRegI);
3670
3671 format %{ %}
3672 interface(REG_INTER);
3673 %}
3674
3675 // Long Register
3676 operand iRegL() %{
3677 constraint(ALLOC_IN_RC(long_reg));
3678 match(RegL);
3679
3680 format %{ %}
3681 interface(REG_INTER);
3682 %}
3683
3684 operand o2RegL() %{
3685 constraint(ALLOC_IN_RC(o2_regL));
3686 match(iRegL);
3687
3688 format %{ %}
3689 interface(REG_INTER);
3690 %}
3691
3692 operand o7RegL() %{
3693 constraint(ALLOC_IN_RC(o7_regL));
3694 match(iRegL);
3695
3696 format %{ %}
3697 interface(REG_INTER);
3698 %}
3699
3700 operand g1RegL() %{
3701 constraint(ALLOC_IN_RC(g1_regL));
3702 match(iRegL);
3703
3704 format %{ %}
3705 interface(REG_INTER);
3706 %}
3707
3708 // Int Register safe
3709 // This is 64bit safe
3710 operand iRegIsafe() %{
3711 constraint(ALLOC_IN_RC(long_reg));
3712
3713 match(iRegI);
3714
3715 format %{ %}
3716 interface(REG_INTER);
3717 %}
3718
3719 // Condition Code Flag Register
3720 operand flagsReg() %{
3721 constraint(ALLOC_IN_RC(int_flags));
3722 match(RegFlags);
3723
3724 format %{ "ccr" %} // both ICC and XCC
3725 interface(REG_INTER);
3726 %}
3727
3728 // Condition Code Register, unsigned comparisons.
3729 operand flagsRegU() %{
3730 constraint(ALLOC_IN_RC(int_flags));
3731 match(RegFlags);
3732
3733 format %{ "icc_U" %}
3734 interface(REG_INTER);
3735 %}
3736
3737 // Condition Code Register, pointer comparisons.
3738 operand flagsRegP() %{
3739 constraint(ALLOC_IN_RC(int_flags));
3740 match(RegFlags);
3741
3742 #ifdef _LP64
3743 format %{ "xcc_P" %}
3744 #else
3745 format %{ "icc_P" %}
3746 #endif
3747 interface(REG_INTER);
3748 %}
3749
3750 // Condition Code Register, long comparisons.
3751 operand flagsRegL() %{
3752 constraint(ALLOC_IN_RC(int_flags));
3753 match(RegFlags);
3754
3755 format %{ "xcc_L" %}
3756 interface(REG_INTER);
3757 %}
3758
3759 // Condition Code Register, floating comparisons, unordered same as "less".
3760 operand flagsRegF() %{
3761 constraint(ALLOC_IN_RC(float_flags));
3762 match(RegFlags);
3763 match(flagsRegF0);
3764
3765 format %{ %}
3766 interface(REG_INTER);
3767 %}
3768
3769 operand flagsRegF0() %{
3770 constraint(ALLOC_IN_RC(float_flag0));
3771 match(RegFlags);
3772
3773 format %{ %}
3774 interface(REG_INTER);
3775 %}
3776
3777
3778 // Condition Code Flag Register used by long compare
3779 operand flagsReg_long_LTGE() %{
3780 constraint(ALLOC_IN_RC(int_flags));
3781 match(RegFlags);
3782 format %{ "icc_LTGE" %}
3783 interface(REG_INTER);
3784 %}
3785 operand flagsReg_long_EQNE() %{
3786 constraint(ALLOC_IN_RC(int_flags));
3787 match(RegFlags);
3788 format %{ "icc_EQNE" %}
3789 interface(REG_INTER);
3790 %}
3791 operand flagsReg_long_LEGT() %{
3792 constraint(ALLOC_IN_RC(int_flags));
3793 match(RegFlags);
3794 format %{ "icc_LEGT" %}
3795 interface(REG_INTER);
3796 %}
3797
3798
3799 operand regD() %{
3800 constraint(ALLOC_IN_RC(dflt_reg));
3801 match(RegD);
3802
3803 format %{ %}
3804 interface(REG_INTER);
3805 %}
3806
3807 operand regF() %{
3808 constraint(ALLOC_IN_RC(sflt_reg));
3809 match(RegF);
3810
3811 format %{ %}
3812 interface(REG_INTER);
3813 %}
3814
3815 operand regD_low() %{
3816 constraint(ALLOC_IN_RC(dflt_low_reg));
3817 match(RegD);
3818
3819 format %{ %}
3820 interface(REG_INTER);
3821 %}
3822
3823 // Special Registers
3824
3825 // Method Register
3826 operand inline_cache_regP(iRegP reg) %{
3827 constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3828 match(reg);
3829 format %{ %}
3830 interface(REG_INTER);
3831 %}
3832
3833 operand interpreter_method_oop_regP(iRegP reg) %{
3834 constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3835 match(reg);
3836 format %{ %}
3837 interface(REG_INTER);
3838 %}
3839
3840
3841 //----------Complex Operands---------------------------------------------------
3842 // Indirect Memory Reference
3843 operand indirect(sp_ptr_RegP reg) %{
3844 constraint(ALLOC_IN_RC(sp_ptr_reg));
3845 match(reg);
3846
3847 op_cost(100);
3848 format %{ "[$reg]" %}
3849 interface(MEMORY_INTER) %{
3850 base($reg);
3851 index(0x0);
3852 scale(0x0);
3853 disp(0x0);
3854 %}
3855 %}
3856
3857 // Indirect with Offset
3858 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
3859 constraint(ALLOC_IN_RC(sp_ptr_reg));
3860 match(AddP reg offset);
3861
3862 op_cost(100);
3863 format %{ "[$reg + $offset]" %}
3864 interface(MEMORY_INTER) %{
3865 base($reg);
3866 index(0x0);
3867 scale(0x0);
3868 disp($offset);
3869 %}
3870 %}
3871
3872 // Note: Intel has a swapped version also, like this:
3873 //operand indOffsetX(iRegI reg, immP offset) %{
3874 // constraint(ALLOC_IN_RC(int_reg));
3875 // match(AddP offset reg);
3876 //
3877 // op_cost(100);
3878 // format %{ "[$reg + $offset]" %}
3879 // interface(MEMORY_INTER) %{
3880 // base($reg);
3881 // index(0x0);
3882 // scale(0x0);
3883 // disp($offset);
3884 // %}
3885 //%}
3886 //// However, it doesn't make sense for SPARC, since
3887 // we have no particularly good way to embed oops in
3888 // single instructions.
3889
3890 // Indirect with Register Index
3891 operand indIndex(iRegP addr, iRegX index) %{
3892 constraint(ALLOC_IN_RC(ptr_reg));
3893 match(AddP addr index);
3894
3895 op_cost(100);
3896 format %{ "[$addr + $index]" %}
3897 interface(MEMORY_INTER) %{
3898 base($addr);
3899 index($index);
3900 scale(0x0);
3901 disp(0x0);
3902 %}
3903 %}
3904
3905 //----------Special Memory Operands--------------------------------------------
3906 // Stack Slot Operand - This operand is used for loading and storing temporary
3907 // values on the stack where a match requires a value to
3908 // flow through memory.
3909 operand stackSlotI(sRegI reg) %{
3910 constraint(ALLOC_IN_RC(stack_slots));
3911 op_cost(100);
3912 //match(RegI);
3913 format %{ "[$reg]" %}
3914 interface(MEMORY_INTER) %{
3915 base(0xE); // R_SP
3916 index(0x0);
3917 scale(0x0);
3918 disp($reg); // Stack Offset
3919 %}
3920 %}
3921
3922 operand stackSlotP(sRegP reg) %{
3923 constraint(ALLOC_IN_RC(stack_slots));
3924 op_cost(100);
3925 //match(RegP);
3926 format %{ "[$reg]" %}
3927 interface(MEMORY_INTER) %{
3928 base(0xE); // R_SP
3929 index(0x0);
3930 scale(0x0);
3931 disp($reg); // Stack Offset
3932 %}
3933 %}
3934
3935 operand stackSlotF(sRegF reg) %{
3936 constraint(ALLOC_IN_RC(stack_slots));
3937 op_cost(100);
3938 //match(RegF);
3939 format %{ "[$reg]" %}
3940 interface(MEMORY_INTER) %{
3941 base(0xE); // R_SP
3942 index(0x0);
3943 scale(0x0);
3944 disp($reg); // Stack Offset
3945 %}
3946 %}
3947 operand stackSlotD(sRegD reg) %{
3948 constraint(ALLOC_IN_RC(stack_slots));
3949 op_cost(100);
3950 //match(RegD);
3951 format %{ "[$reg]" %}
3952 interface(MEMORY_INTER) %{
3953 base(0xE); // R_SP
3954 index(0x0);
3955 scale(0x0);
3956 disp($reg); // Stack Offset
3957 %}
3958 %}
3959 operand stackSlotL(sRegL reg) %{
3960 constraint(ALLOC_IN_RC(stack_slots));
3961 op_cost(100);
3962 //match(RegL);
3963 format %{ "[$reg]" %}
3964 interface(MEMORY_INTER) %{
3965 base(0xE); // R_SP
3966 index(0x0);
3967 scale(0x0);
3968 disp($reg); // Stack Offset
3969 %}
3970 %}
3971
3972 // Operands for expressing Control Flow
3973 // NOTE: Label is a predefined operand which should not be redefined in
3974 // the AD file. It is generically handled within the ADLC.
3975
3976 //----------Conditional Branch Operands----------------------------------------
3977 // Comparison Op - This is the operation of the comparison, and is limited to
3978 // the following set of codes:
3979 // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
3980 //
3981 // Other attributes of the comparison, such as unsignedness, are specified
3982 // by the comparison instruction that sets a condition code flags register.
3983 // That result is represented by a flags operand whose subtype is appropriate
3984 // to the unsignedness (etc.) of the comparison.
3985 //
3986 // Later, the instruction which matches both the Comparison Op (a Bool) and
3987 // the flags (produced by the Cmp) specifies the coding of the comparison op
3988 // by matching a specific subtype of Bool operand below, such as cmpOpU.
3989
3990 operand cmpOp() %{
3991 match(Bool);
3992
3993 format %{ "" %}
3994 interface(COND_INTER) %{
3995 equal(0x1);
3996 not_equal(0x9);
3997 less(0x3);
3998 greater_equal(0xB);
3999 less_equal(0x2);
4000 greater(0xA);
4001 %}
4002 %}
4003
4004 // Comparison Op, unsigned
4005 operand cmpOpU() %{
4006 match(Bool);
4007
4008 format %{ "u" %}
4009 interface(COND_INTER) %{
4010 equal(0x1);
4011 not_equal(0x9);
4012 less(0x5);
4013 greater_equal(0xD);
4014 less_equal(0x4);
4015 greater(0xC);
4016 %}
4017 %}
4018
4019 // Comparison Op, pointer (same as unsigned)
4020 operand cmpOpP() %{
4021 match(Bool);
4022
4023 format %{ "p" %}
4024 interface(COND_INTER) %{
4025 equal(0x1);
4026 not_equal(0x9);
4027 less(0x5);
4028 greater_equal(0xD);
4029 less_equal(0x4);
4030 greater(0xC);
4031 %}
4032 %}
4033
4034 // Comparison Op, branch-register encoding
4035 operand cmpOp_reg() %{
4036 match(Bool);
4037
4038 format %{ "" %}
4039 interface(COND_INTER) %{
4040 equal (0x1);
4041 not_equal (0x5);
4042 less (0x3);
4043 greater_equal(0x7);
4044 less_equal (0x2);
4045 greater (0x6);
4046 %}
4047 %}
4048
4049 // Comparison Code, floating, unordered same as less
4050 operand cmpOpF() %{
4051 match(Bool);
4052
4053 format %{ "fl" %}
4054 interface(COND_INTER) %{
4055 equal(0x9);
4056 not_equal(0x1);
4057 less(0x3);
4058 greater_equal(0xB);
4059 less_equal(0xE);
4060 greater(0x6);
4061 %}
4062 %}
4063
4064 // Used by long compare
4065 operand cmpOp_commute() %{
4066 match(Bool);
4067
4068 format %{ "" %}
4069 interface(COND_INTER) %{
4070 equal(0x1);
4071 not_equal(0x9);
4072 less(0xA);
4073 greater_equal(0x2);
4074 less_equal(0xB);
4075 greater(0x3);
4076 %}
4077 %}
4078
4079 //----------OPERAND CLASSES----------------------------------------------------
4080 // Operand Classes are groups of operands that are used to simplify
4081 // instruction definitions by not requiring the AD writer to specify seperate
4082 // instructions for every form of operand when the instruction accepts
4083 // multiple operand types with the same basic encoding and format. The classic
4084 // case of this is memory operands.
4085 // Indirect is not included since its use is limited to Compare & Swap
4086 opclass memory( indirect, indOffset13, indIndex );
4087
4088 //----------PIPELINE-----------------------------------------------------------
4089 pipeline %{
4090
4091 //----------ATTRIBUTES---------------------------------------------------------
4092 attributes %{
4093 fixed_size_instructions; // Fixed size instructions
4094 branch_has_delay_slot; // Branch has delay slot following
4095 max_instructions_per_bundle = 4; // Up to 4 instructions per bundle
4096 instruction_unit_size = 4; // An instruction is 4 bytes long
4097 instruction_fetch_unit_size = 16; // The processor fetches one line
4098 instruction_fetch_units = 1; // of 16 bytes
4099
4100 // List of nop instructions
4101 nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4102 %}
4103
4104 //----------RESOURCES----------------------------------------------------------
4105 // Resources are the functional units available to the machine
4106 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4107
4108 //----------PIPELINE DESCRIPTION-----------------------------------------------
4109 // Pipeline Description specifies the stages in the machine's pipeline
4110
4111 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4112
4113 //----------PIPELINE CLASSES---------------------------------------------------
4114 // Pipeline Classes describe the stages in which input and output are
4115 // referenced by the hardware pipeline.
4116
4117 // Integer ALU reg-reg operation
4118 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4119 single_instruction;
4120 dst : E(write);
4121 src1 : R(read);
4122 src2 : R(read);
4123 IALU : R;
4124 %}
4125
4126 // Integer ALU reg-reg long operation
4127 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4128 instruction_count(2);
4129 dst : E(write);
4130 src1 : R(read);
4131 src2 : R(read);
4132 IALU : R;
4133 IALU : R;
4134 %}
4135
4136 // Integer ALU reg-reg long dependent operation
4137 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4138 instruction_count(1); multiple_bundles;
4139 dst : E(write);
4140 src1 : R(read);
4141 src2 : R(read);
4142 cr : E(write);
4143 IALU : R(2);
4144 %}
4145
4146 // Integer ALU reg-imm operaion
4147 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4148 single_instruction;
4149 dst : E(write);
4150 src1 : R(read);
4151 IALU : R;
4152 %}
4153
4154 // Integer ALU reg-reg operation with condition code
4155 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4156 single_instruction;
4157 dst : E(write);
4158 cr : E(write);
4159 src1 : R(read);
4160 src2 : R(read);
4161 IALU : R;
4162 %}
4163
4164 // Integer ALU reg-imm operation with condition code
4165 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4166 single_instruction;
4167 dst : E(write);
4168 cr : E(write);
4169 src1 : R(read);
4170 IALU : R;
4171 %}
4172
4173 // Integer ALU zero-reg operation
4174 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4175 single_instruction;
4176 dst : E(write);
4177 src2 : R(read);
4178 IALU : R;
4179 %}
4180
4181 // Integer ALU zero-reg operation with condition code only
4182 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4183 single_instruction;
4184 cr : E(write);
4185 src : R(read);
4186 IALU : R;
4187 %}
4188
4189 // Integer ALU reg-reg operation with condition code only
4190 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4191 single_instruction;
4192 cr : E(write);
4193 src1 : R(read);
4194 src2 : R(read);
4195 IALU : R;
4196 %}
4197
4198 // Integer ALU reg-imm operation with condition code only
4199 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4200 single_instruction;
4201 cr : E(write);
4202 src1 : R(read);
4203 IALU : R;
4204 %}
4205
4206 // Integer ALU reg-reg-zero operation with condition code only
4207 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4208 single_instruction;
4209 cr : E(write);
4210 src1 : R(read);
4211 src2 : R(read);
4212 IALU : R;
4213 %}
4214
4215 // Integer ALU reg-imm-zero operation with condition code only
4216 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4217 single_instruction;
4218 cr : E(write);
4219 src1 : R(read);
4220 IALU : R;
4221 %}
4222
4223 // Integer ALU reg-reg operation with condition code, src1 modified
4224 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4225 single_instruction;
4226 cr : E(write);
4227 src1 : E(write);
4228 src1 : R(read);
4229 src2 : R(read);
4230 IALU : R;
4231 %}
4232
4233 // Integer ALU reg-imm operation with condition code, src1 modified
4234 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4235 single_instruction;
4236 cr : E(write);
4237 src1 : E(write);
4238 src1 : R(read);
4239 IALU : R;
4240 %}
4241
4242 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4243 multiple_bundles;
4244 dst : E(write)+4;
4245 cr : E(write);
4246 src1 : R(read);
4247 src2 : R(read);
4248 IALU : R(3);
4249 BR : R(2);
4250 %}
4251
4252 // Integer ALU operation
4253 pipe_class ialu_none(iRegI dst) %{
4254 single_instruction;
4255 dst : E(write);
4256 IALU : R;
4257 %}
4258
4259 // Integer ALU reg operation
4260 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4261 single_instruction; may_have_no_code;
4262 dst : E(write);
4263 src : R(read);
4264 IALU : R;
4265 %}
4266
4267 // Integer ALU reg conditional operation
4268 // This instruction has a 1 cycle stall, and cannot execute
4269 // in the same cycle as the instruction setting the condition
4270 // code. We kludge this by pretending to read the condition code
4271 // 1 cycle earlier, and by marking the functional units as busy
4272 // for 2 cycles with the result available 1 cycle later than
4273 // is really the case.
4274 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4275 single_instruction;
4276 op2_out : C(write);
4277 op1 : R(read);
4278 cr : R(read); // This is really E, with a 1 cycle stall
4279 BR : R(2);
4280 MS : R(2);
4281 %}
4282
4283 #ifdef _LP64
4284 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4285 instruction_count(1); multiple_bundles;
4286 dst : C(write)+1;
4287 src : R(read)+1;
4288 IALU : R(1);
4289 BR : E(2);
4290 MS : E(2);
4291 %}
4292 #endif
4293
4294 // Integer ALU reg operation
4295 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4296 single_instruction; may_have_no_code;
4297 dst : E(write);
4298 src : R(read);
4299 IALU : R;
4300 %}
4301 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4302 single_instruction; may_have_no_code;
4303 dst : E(write);
4304 src : R(read);
4305 IALU : R;
4306 %}
4307
4308 // Two integer ALU reg operations
4309 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4310 instruction_count(2);
4311 dst : E(write);
4312 src : R(read);
4313 A0 : R;
4314 A1 : R;
4315 %}
4316
4317 // Two integer ALU reg operations
4318 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4319 instruction_count(2); may_have_no_code;
4320 dst : E(write);
4321 src : R(read);
4322 A0 : R;
4323 A1 : R;
4324 %}
4325
4326 // Integer ALU imm operation
4327 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4328 single_instruction;
4329 dst : E(write);
4330 IALU : R;
4331 %}
4332
4333 // Integer ALU reg-reg with carry operation
4334 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4335 single_instruction;
4336 dst : E(write);
4337 src1 : R(read);
4338 src2 : R(read);
4339 IALU : R;
4340 %}
4341
4342 // Integer ALU cc operation
4343 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4344 single_instruction;
4345 dst : E(write);
4346 cc : R(read);
4347 IALU : R;
4348 %}
4349
4350 // Integer ALU cc / second IALU operation
4351 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4352 instruction_count(1); multiple_bundles;
4353 dst : E(write)+1;
4354 src : R(read);
4355 IALU : R;
4356 %}
4357
4358 // Integer ALU cc / second IALU operation
4359 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4360 instruction_count(1); multiple_bundles;
4361 dst : E(write)+1;
4362 p : R(read);
4363 q : R(read);
4364 IALU : R;
4365 %}
4366
4367 // Integer ALU hi-lo-reg operation
4368 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4369 instruction_count(1); multiple_bundles;
4370 dst : E(write)+1;
4371 IALU : R(2);
4372 %}
4373
4374 // Float ALU hi-lo-reg operation (with temp)
4375 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4376 instruction_count(1); multiple_bundles;
4377 dst : E(write)+1;
4378 IALU : R(2);
4379 %}
4380
4381 // Long Constant
4382 pipe_class loadConL( iRegL dst, immL src ) %{
4383 instruction_count(2); multiple_bundles;
4384 dst : E(write)+1;
4385 IALU : R(2);
4386 IALU : R(2);
4387 %}
4388
4389 // Pointer Constant
4390 pipe_class loadConP( iRegP dst, immP src ) %{
4391 instruction_count(0); multiple_bundles;
4392 fixed_latency(6);
4393 %}
4394
4395 // Polling Address
4396 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4397 #ifdef _LP64
4398 instruction_count(0); multiple_bundles;
4399 fixed_latency(6);
4400 #else
4401 dst : E(write);
4402 IALU : R;
4403 #endif
4404 %}
4405
4406 // Long Constant small
4407 pipe_class loadConLlo( iRegL dst, immL src ) %{
4408 instruction_count(2);
4409 dst : E(write);
4410 IALU : R;
4411 IALU : R;
4412 %}
4413
4414 // [PHH] This is wrong for 64-bit. See LdImmF/D.
4415 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4416 instruction_count(1); multiple_bundles;
4417 src : R(read);
4418 dst : M(write)+1;
4419 IALU : R;
4420 MS : E;
4421 %}
4422
4423 // Integer ALU nop operation
4424 pipe_class ialu_nop() %{
4425 single_instruction;
4426 IALU : R;
4427 %}
4428
4429 // Integer ALU nop operation
4430 pipe_class ialu_nop_A0() %{
4431 single_instruction;
4432 A0 : R;
4433 %}
4434
4435 // Integer ALU nop operation
4436 pipe_class ialu_nop_A1() %{
4437 single_instruction;
4438 A1 : R;
4439 %}
4440
4441 // Integer Multiply reg-reg operation
4442 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4443 single_instruction;
4444 dst : E(write);
4445 src1 : R(read);
4446 src2 : R(read);
4447 MS : R(5);
4448 %}
4449
4450 // Integer Multiply reg-imm operation
4451 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4452 single_instruction;
4453 dst : E(write);
4454 src1 : R(read);
4455 MS : R(5);
4456 %}
4457
4458 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4459 single_instruction;
4460 dst : E(write)+4;
4461 src1 : R(read);
4462 src2 : R(read);
4463 MS : R(6);
4464 %}
4465
4466 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4467 single_instruction;
4468 dst : E(write)+4;
4469 src1 : R(read);
4470 MS : R(6);
4471 %}
4472
4473 // Integer Divide reg-reg
4474 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4475 instruction_count(1); multiple_bundles;
4476 dst : E(write);
4477 temp : E(write);
4478 src1 : R(read);
4479 src2 : R(read);
4480 temp : R(read);
4481 MS : R(38);
4482 %}
4483
4484 // Integer Divide reg-imm
4485 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4486 instruction_count(1); multiple_bundles;
4487 dst : E(write);
4488 temp : E(write);
4489 src1 : R(read);
4490 temp : R(read);
4491 MS : R(38);
4492 %}
4493
4494 // Long Divide
4495 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4496 dst : E(write)+71;
4497 src1 : R(read);
4498 src2 : R(read)+1;
4499 MS : R(70);
4500 %}
4501
4502 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4503 dst : E(write)+71;
4504 src1 : R(read);
4505 MS : R(70);
4506 %}
4507
4508 // Floating Point Add Float
4509 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4510 single_instruction;
4511 dst : X(write);
4512 src1 : E(read);
4513 src2 : E(read);
4514 FA : R;
4515 %}
4516
4517 // Floating Point Add Double
4518 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4519 single_instruction;
4520 dst : X(write);
4521 src1 : E(read);
4522 src2 : E(read);
4523 FA : R;
4524 %}
4525
4526 // Floating Point Conditional Move based on integer flags
4527 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4528 single_instruction;
4529 dst : X(write);
4530 src : E(read);
4531 cr : R(read);
4532 FA : R(2);
4533 BR : R(2);
4534 %}
4535
4536 // Floating Point Conditional Move based on integer flags
4537 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4538 single_instruction;
4539 dst : X(write);
4540 src : E(read);
4541 cr : R(read);
4542 FA : R(2);
4543 BR : R(2);
4544 %}
4545
4546 // Floating Point Multiply Float
4547 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4548 single_instruction;
4549 dst : X(write);
4550 src1 : E(read);
4551 src2 : E(read);
4552 FM : R;
4553 %}
4554
4555 // Floating Point Multiply Double
4556 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4557 single_instruction;
4558 dst : X(write);
4559 src1 : E(read);
4560 src2 : E(read);
4561 FM : R;
4562 %}
4563
4564 // Floating Point Divide Float
4565 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4566 single_instruction;
4567 dst : X(write);
4568 src1 : E(read);
4569 src2 : E(read);
4570 FM : R;
4571 FDIV : C(14);
4572 %}
4573
4574 // Floating Point Divide Double
4575 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4576 single_instruction;
4577 dst : X(write);
4578 src1 : E(read);
4579 src2 : E(read);
4580 FM : R;
4581 FDIV : C(17);
4582 %}
4583
4584 // Floating Point Move/Negate/Abs Float
4585 pipe_class faddF_reg(regF dst, regF src) %{
4586 single_instruction;
4587 dst : W(write);
4588 src : E(read);
4589 FA : R(1);
4590 %}
4591
4592 // Floating Point Move/Negate/Abs Double
4593 pipe_class faddD_reg(regD dst, regD src) %{
4594 single_instruction;
4595 dst : W(write);
4596 src : E(read);
4597 FA : R;
4598 %}
4599
4600 // Floating Point Convert F->D
4601 pipe_class fcvtF2D(regD dst, regF src) %{
4602 single_instruction;
4603 dst : X(write);
4604 src : E(read);
4605 FA : R;
4606 %}
4607
4608 // Floating Point Convert I->D
4609 pipe_class fcvtI2D(regD dst, regF src) %{
4610 single_instruction;
4611 dst : X(write);
4612 src : E(read);
4613 FA : R;
4614 %}
4615
4616 // Floating Point Convert LHi->D
4617 pipe_class fcvtLHi2D(regD dst, regD src) %{
4618 single_instruction;
4619 dst : X(write);
4620 src : E(read);
4621 FA : R;
4622 %}
4623
4624 // Floating Point Convert L->D
4625 pipe_class fcvtL2D(regD dst, regF src) %{
4626 single_instruction;
4627 dst : X(write);
4628 src : E(read);
4629 FA : R;
4630 %}
4631
4632 // Floating Point Convert L->F
4633 pipe_class fcvtL2F(regD dst, regF src) %{
4634 single_instruction;
4635 dst : X(write);
4636 src : E(read);
4637 FA : R;
4638 %}
4639
4640 // Floating Point Convert D->F
4641 pipe_class fcvtD2F(regD dst, regF src) %{
4642 single_instruction;
4643 dst : X(write);
4644 src : E(read);
4645 FA : R;
4646 %}
4647
4648 // Floating Point Convert I->L
4649 pipe_class fcvtI2L(regD dst, regF src) %{
4650 single_instruction;
4651 dst : X(write);
4652 src : E(read);
4653 FA : R;
4654 %}
4655
4656 // Floating Point Convert D->F
4657 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4658 instruction_count(1); multiple_bundles;
4659 dst : X(write)+6;
4660 src : E(read);
4661 FA : R;
4662 %}
4663
4664 // Floating Point Convert D->L
4665 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4666 instruction_count(1); multiple_bundles;
4667 dst : X(write)+6;
4668 src : E(read);
4669 FA : R;
4670 %}
4671
4672 // Floating Point Convert F->I
4673 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4674 instruction_count(1); multiple_bundles;
4675 dst : X(write)+6;
4676 src : E(read);
4677 FA : R;
4678 %}
4679
4680 // Floating Point Convert F->L
4681 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4682 instruction_count(1); multiple_bundles;
4683 dst : X(write)+6;
4684 src : E(read);
4685 FA : R;
4686 %}
4687
4688 // Floating Point Convert I->F
4689 pipe_class fcvtI2F(regF dst, regF src) %{
4690 single_instruction;
4691 dst : X(write);
4692 src : E(read);
4693 FA : R;
4694 %}
4695
4696 // Floating Point Compare
4697 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4698 single_instruction;
4699 cr : X(write);
4700 src1 : E(read);
4701 src2 : E(read);
4702 FA : R;
4703 %}
4704
4705 // Floating Point Compare
4706 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4707 single_instruction;
4708 cr : X(write);
4709 src1 : E(read);
4710 src2 : E(read);
4711 FA : R;
4712 %}
4713
4714 // Floating Add Nop
4715 pipe_class fadd_nop() %{
4716 single_instruction;
4717 FA : R;
4718 %}
4719
4720 // Integer Store to Memory
4721 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4722 single_instruction;
4723 mem : R(read);
4724 src : C(read);
4725 MS : R;
4726 %}
4727
4728 // Integer Store to Memory
4729 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4730 single_instruction;
4731 mem : R(read);
4732 src : C(read);
4733 MS : R;
4734 %}
4735
4736 // Integer Store Zero to Memory
4737 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4738 single_instruction;
4739 mem : R(read);
4740 MS : R;
4741 %}
4742
4743 // Special Stack Slot Store
4744 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4745 single_instruction;
4746 stkSlot : R(read);
4747 src : C(read);
4748 MS : R;
4749 %}
4750
4751 // Special Stack Slot Store
4752 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4753 instruction_count(2); multiple_bundles;
4754 stkSlot : R(read);
4755 src : C(read);
4756 MS : R(2);
4757 %}
4758
4759 // Float Store
4760 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4761 single_instruction;
4762 mem : R(read);
4763 src : C(read);
4764 MS : R;
4765 %}
4766
4767 // Float Store
4768 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4769 single_instruction;
4770 mem : R(read);
4771 MS : R;
4772 %}
4773
4774 // Double Store
4775 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4776 instruction_count(1);
4777 mem : R(read);
4778 src : C(read);
4779 MS : R;
4780 %}
4781
4782 // Double Store
4783 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4784 single_instruction;
4785 mem : R(read);
4786 MS : R;
4787 %}
4788
4789 // Special Stack Slot Float Store
4790 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4791 single_instruction;
4792 stkSlot : R(read);
4793 src : C(read);
4794 MS : R;
4795 %}
4796
4797 // Special Stack Slot Double Store
4798 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4799 single_instruction;
4800 stkSlot : R(read);
4801 src : C(read);
4802 MS : R;
4803 %}
4804
4805 // Integer Load (when sign bit propagation not needed)
4806 pipe_class iload_mem(iRegI dst, memory mem) %{
4807 single_instruction;
4808 mem : R(read);
4809 dst : C(write);
4810 MS : R;
4811 %}
4812
4813 // Integer Load from stack operand
4814 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4815 single_instruction;
4816 mem : R(read);
4817 dst : C(write);
4818 MS : R;
4819 %}
4820
4821 // Integer Load (when sign bit propagation or masking is needed)
4822 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
4823 single_instruction;
4824 mem : R(read);
4825 dst : M(write);
4826 MS : R;
4827 %}
4828
4829 // Float Load
4830 pipe_class floadF_mem(regF dst, memory mem) %{
4831 single_instruction;
4832 mem : R(read);
4833 dst : M(write);
4834 MS : R;
4835 %}
4836
4837 // Float Load
4838 pipe_class floadD_mem(regD dst, memory mem) %{
4839 instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
4840 mem : R(read);
4841 dst : M(write);
4842 MS : R;
4843 %}
4844
4845 // Float Load
4846 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
4847 single_instruction;
4848 stkSlot : R(read);
4849 dst : M(write);
4850 MS : R;
4851 %}
4852
4853 // Float Load
4854 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
4855 single_instruction;
4856 stkSlot : R(read);
4857 dst : M(write);
4858 MS : R;
4859 %}
4860
4861 // Memory Nop
4862 pipe_class mem_nop() %{
4863 single_instruction;
4864 MS : R;
4865 %}
4866
4867 pipe_class sethi(iRegP dst, immI src) %{
4868 single_instruction;
4869 dst : E(write);
4870 IALU : R;
4871 %}
4872
4873 pipe_class loadPollP(iRegP poll) %{
4874 single_instruction;
4875 poll : R(read);
4876 MS : R;
4877 %}
4878
4879 pipe_class br(Universe br, label labl) %{
4880 single_instruction_with_delay_slot;
4881 BR : R;
4882 %}
4883
4884 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
4885 single_instruction_with_delay_slot;
4886 cr : E(read);
4887 BR : R;
4888 %}
4889
4890 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
4891 single_instruction_with_delay_slot;
4892 op1 : E(read);
4893 BR : R;
4894 MS : R;
4895 %}
4896
4897 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
4898 single_instruction_with_delay_slot;
4899 cr : E(read);
4900 BR : R;
4901 %}
4902
4903 pipe_class br_nop() %{
4904 single_instruction;
4905 BR : R;
4906 %}
4907
4908 pipe_class simple_call(method meth) %{
4909 instruction_count(2); multiple_bundles; force_serialization;
4910 fixed_latency(100);
4911 BR : R(1);
4912 MS : R(1);
4913 A0 : R(1);
4914 %}
4915
4916 pipe_class compiled_call(method meth) %{
4917 instruction_count(1); multiple_bundles; force_serialization;
4918 fixed_latency(100);
4919 MS : R(1);
4920 %}
4921
4922 pipe_class call(method meth) %{
4923 instruction_count(0); multiple_bundles; force_serialization;
4924 fixed_latency(100);
4925 %}
4926
4927 pipe_class tail_call(Universe ignore, label labl) %{
4928 single_instruction; has_delay_slot;
4929 fixed_latency(100);
4930 BR : R(1);
4931 MS : R(1);
4932 %}
4933
4934 pipe_class ret(Universe ignore) %{
4935 single_instruction; has_delay_slot;
4936 BR : R(1);
4937 MS : R(1);
4938 %}
4939
4940 pipe_class ret_poll(g3RegP poll) %{
4941 instruction_count(3); has_delay_slot;
4942 poll : E(read);
4943 MS : R;
4944 %}
4945
4946 // The real do-nothing guy
4947 pipe_class empty( ) %{
4948 instruction_count(0);
4949 %}
4950
4951 pipe_class long_memory_op() %{
4952 instruction_count(0); multiple_bundles; force_serialization;
4953 fixed_latency(25);
4954 MS : R(1);
4955 %}
4956
4957 // Check-cast
4958 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
4959 array : R(read);
4960 match : R(read);
4961 IALU : R(2);
4962 BR : R(2);
4963 MS : R;
4964 %}
4965
4966 // Convert FPU flags into +1,0,-1
4967 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
4968 src1 : E(read);
4969 src2 : E(read);
4970 dst : E(write);
4971 FA : R;
4972 MS : R(2);
4973 BR : R(2);
4974 %}
4975
4976 // Compare for p < q, and conditionally add y
4977 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
4978 p : E(read);
4979 q : E(read);
4980 y : E(read);
4981 IALU : R(3)
4982 %}
4983
4984 // Perform a compare, then move conditionally in a branch delay slot.
4985 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
4986 src2 : E(read);
4987 srcdst : E(read);
4988 IALU : R;
4989 BR : R;
4990 %}
4991
4992 // Define the class for the Nop node
4993 define %{
4994 MachNop = ialu_nop;
4995 %}
4996
4997 %}
4998
4999 //----------INSTRUCTIONS-------------------------------------------------------
5000
5001 //------------Special Stack Slot instructions - no match rules-----------------
5002 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5003 // No match rule to avoid chain rule match.
5004 effect(DEF dst, USE src);
5005 ins_cost(MEMORY_REF_COST);
5006 size(4);
5007 format %{ "LDF $src,$dst\t! stkI to regF" %}
5008 opcode(Assembler::ldf_op3);
5009 ins_encode(form3_mem_reg(src, dst));
5010 ins_pipe(floadF_stk);
5011 %}
5012
5013 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5014 // No match rule to avoid chain rule match.
5015 effect(DEF dst, USE src);
5016 ins_cost(MEMORY_REF_COST);
5017 size(4);
5018 format %{ "LDDF $src,$dst\t! stkL to regD" %}
5019 opcode(Assembler::lddf_op3);
5020 ins_encode(form3_mem_reg(src, dst));
5021 ins_pipe(floadD_stk);
5022 %}
5023
5024 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5025 // No match rule to avoid chain rule match.
5026 effect(DEF dst, USE src);
5027 ins_cost(MEMORY_REF_COST);
5028 size(4);
5029 format %{ "STF $src,$dst\t! regF to stkI" %}
5030 opcode(Assembler::stf_op3);
5031 ins_encode(form3_mem_reg(dst, src));
5032 ins_pipe(fstoreF_stk_reg);
5033 %}
5034
5035 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5036 // No match rule to avoid chain rule match.
5037 effect(DEF dst, USE src);
5038 ins_cost(MEMORY_REF_COST);
5039 size(4);
5040 format %{ "STDF $src,$dst\t! regD to stkL" %}
5041 opcode(Assembler::stdf_op3);
5042 ins_encode(form3_mem_reg(dst, src));
5043 ins_pipe(fstoreD_stk_reg);
5044 %}
5045
5046 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5047 effect(DEF dst, USE src);
5048 ins_cost(MEMORY_REF_COST*2);
5049 size(8);
5050 format %{ "STW $src,$dst.hi\t! long\n\t"
5051 "STW R_G0,$dst.lo" %}
5052 opcode(Assembler::stw_op3);
5053 ins_encode(form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5054 ins_pipe(lstoreI_stk_reg);
5055 %}
5056
5057 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5058 // No match rule to avoid chain rule match.
5059 effect(DEF dst, USE src);
5060 ins_cost(MEMORY_REF_COST);
5061 size(4);
5062 format %{ "STX $src,$dst\t! regL to stkD" %}
5063 opcode(Assembler::stx_op3);
5064 ins_encode( form3_mem_reg( dst, src ) );
5065 ins_pipe(istore_stk_reg);
5066 %}
5067
5068 //---------- Chain stack slots between similar types --------
5069
5070 // Load integer from stack slot
5071 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5072 match(Set dst src);
5073 ins_cost(MEMORY_REF_COST);
5074
5075 size(4);
5076 format %{ "LDUW $src,$dst\t!stk" %}
5077 opcode(Assembler::lduw_op3);
5078 ins_encode( form3_mem_reg( src, dst ) );
5079 ins_pipe(iload_mem);
5080 %}
5081
5082 // Store integer to stack slot
5083 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5084 match(Set dst src);
5085 ins_cost(MEMORY_REF_COST);
5086
5087 size(4);
5088 format %{ "STW $src,$dst\t!stk" %}
5089 opcode(Assembler::stw_op3);
5090 ins_encode( form3_mem_reg( dst, src ) );
5091 ins_pipe(istore_mem_reg);
5092 %}
5093
5094 // Load long from stack slot
5095 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5096 match(Set dst src);
5097
5098 ins_cost(MEMORY_REF_COST);
5099 size(4);
5100 format %{ "LDX $src,$dst\t! long" %}
5101 opcode(Assembler::ldx_op3);
5102 ins_encode( form3_mem_reg( src, dst ) );
5103 ins_pipe(iload_mem);
5104 %}
5105
5106 // Store long to stack slot
5107 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5108 match(Set dst src);
5109
5110 ins_cost(MEMORY_REF_COST);
5111 size(4);
5112 format %{ "STX $src,$dst\t! long" %}
5113 opcode(Assembler::stx_op3);
5114 ins_encode( form3_mem_reg( dst, src ) );
5115 ins_pipe(istore_mem_reg);
5116 %}
5117
5118 #ifdef _LP64
5119 // Load pointer from stack slot, 64-bit encoding
5120 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5121 match(Set dst src);
5122 ins_cost(MEMORY_REF_COST);
5123 size(4);
5124 format %{ "LDX $src,$dst\t!ptr" %}
5125 opcode(Assembler::ldx_op3);
5126 ins_encode( form3_mem_reg( src, dst ) );
5127 ins_pipe(iload_mem);
5128 %}
5129
5130 // Store pointer to stack slot
5131 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5132 match(Set dst src);
5133 ins_cost(MEMORY_REF_COST);
5134 size(4);
5135 format %{ "STX $src,$dst\t!ptr" %}
5136 opcode(Assembler::stx_op3);
5137 ins_encode( form3_mem_reg( dst, src ) );
5138 ins_pipe(istore_mem_reg);
5139 %}
5140 #else // _LP64
5141 // Load pointer from stack slot, 32-bit encoding
5142 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5143 match(Set dst src);
5144 ins_cost(MEMORY_REF_COST);
5145 format %{ "LDUW $src,$dst\t!ptr" %}
5146 opcode(Assembler::lduw_op3, Assembler::ldst_op);
5147 ins_encode( form3_mem_reg( src, dst ) );
5148 ins_pipe(iload_mem);
5149 %}
5150
5151 // Store pointer to stack slot
5152 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5153 match(Set dst src);
5154 ins_cost(MEMORY_REF_COST);
5155 format %{ "STW $src,$dst\t!ptr" %}
5156 opcode(Assembler::stw_op3, Assembler::ldst_op);
5157 ins_encode( form3_mem_reg( dst, src ) );
5158 ins_pipe(istore_mem_reg);
5159 %}
5160 #endif // _LP64
5161
5162 //------------Special Nop instructions for bundling - no match rules-----------
5163 // Nop using the A0 functional unit
5164 instruct Nop_A0() %{
5165 ins_cost(0);
5166
5167 format %{ "NOP ! Alu Pipeline" %}
5168 opcode(Assembler::or_op3, Assembler::arith_op);
5169 ins_encode( form2_nop() );
5170 ins_pipe(ialu_nop_A0);
5171 %}
5172
5173 // Nop using the A1 functional unit
5174 instruct Nop_A1( ) %{
5175 ins_cost(0);
5176
5177 format %{ "NOP ! Alu Pipeline" %}
5178 opcode(Assembler::or_op3, Assembler::arith_op);
5179 ins_encode( form2_nop() );
5180 ins_pipe(ialu_nop_A1);
5181 %}
5182
5183 // Nop using the memory functional unit
5184 instruct Nop_MS( ) %{
5185 ins_cost(0);
5186
5187 format %{ "NOP ! Memory Pipeline" %}
5188 ins_encode( emit_mem_nop );
5189 ins_pipe(mem_nop);
5190 %}
5191
5192 // Nop using the floating add functional unit
5193 instruct Nop_FA( ) %{
5194 ins_cost(0);
5195
5196 format %{ "NOP ! Floating Add Pipeline" %}
5197 ins_encode( emit_fadd_nop );
5198 ins_pipe(fadd_nop);
5199 %}
5200
5201 // Nop using the branch functional unit
5202 instruct Nop_BR( ) %{
5203 ins_cost(0);
5204
5205 format %{ "NOP ! Branch Pipeline" %}
5206 ins_encode( emit_br_nop );
5207 ins_pipe(br_nop);
5208 %}
5209
5210 //----------Load/Store/Move Instructions---------------------------------------
5211 //----------Load Instructions--------------------------------------------------
5212 // Load Byte (8bit signed)
5213 instruct loadB(iRegI dst, memory mem) %{
5214 match(Set dst (LoadB mem));
5215 ins_cost(MEMORY_REF_COST);
5216
5217 size(4);
5218 format %{ "LDSB $mem,$dst" %}
5219 opcode(Assembler::ldsb_op3);
5220 ins_encode( form3_mem_reg( mem, dst ) );
5221 ins_pipe(iload_mask_mem);
5222 %}
5223
5224 // Load Byte (8bit UNsigned) into an int reg
5225 instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{
5226 match(Set dst (AndI (LoadB mem) bytemask));
5227 ins_cost(MEMORY_REF_COST);
5228
5229 size(4);
5230 format %{ "LDUB $mem,$dst" %}
5231 opcode(Assembler::ldub_op3);
5232 ins_encode( form3_mem_reg( mem, dst ) );
5233 ins_pipe(iload_mask_mem);
5234 %}
5235
5236 // Load Byte (8bit UNsigned) into a Long Register
5237 instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
5238 match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask));
5239 ins_cost(MEMORY_REF_COST);
5240
5241 size(4);
5242 format %{ "LDUB $mem,$dst" %}
5243 opcode(Assembler::ldub_op3);
5244 ins_encode( form3_mem_reg( mem, dst ) );
5245 ins_pipe(iload_mask_mem);
5246 %}
5247
5248 // Load Char (16bit UNsigned) into a Long Register
5249 instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
5250 match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask));
5251 ins_cost(MEMORY_REF_COST);
5252
5253 size(4);
5254 format %{ "LDUH $mem,$dst" %}
5255 opcode(Assembler::lduh_op3);
5256 ins_encode( form3_mem_reg( mem, dst ) );
5257 ins_pipe(iload_mask_mem);
5258 %}
5259
5260 // Load Char (16bit unsigned)
5261 instruct loadC(iRegI dst, memory mem) %{
5262 match(Set dst (LoadC mem));
5263 ins_cost(MEMORY_REF_COST);
5264
5265 size(4);
5266 format %{ "LDUH $mem,$dst" %}
5267 opcode(Assembler::lduh_op3);
5268 ins_encode( form3_mem_reg( mem, dst ) );
5269 ins_pipe(iload_mask_mem);
5270 %}
5271
5272 // Load Integer
5273 instruct loadI(iRegI dst, memory mem) %{
5274 match(Set dst (LoadI mem));
5275 ins_cost(MEMORY_REF_COST);
5276 size(4);
5277
5278 format %{ "LDUW $mem,$dst" %}
5279 opcode(Assembler::lduw_op3);
5280 ins_encode( form3_mem_reg( mem, dst ) );
5281 ins_pipe(iload_mem);
5282 %}
5283
5284 // Load Long - aligned
5285 instruct loadL(iRegL dst, memory mem ) %{
5286 match(Set dst (LoadL mem));
5287 ins_cost(MEMORY_REF_COST);
5288 size(4);
5289 format %{ "LDX $mem,$dst\t! long" %}
5290 opcode(Assembler::ldx_op3);
5291 ins_encode( form3_mem_reg( mem, dst ) );
5292 ins_pipe(iload_mem);
5293 %}
5294
5295 // Load Long - UNaligned
5296 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5297 match(Set dst (LoadL_unaligned mem));
5298 effect(KILL tmp);
5299 ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5300 size(16);
5301 format %{ "LDUW $mem+4,R_O7\t! misaligned long\n"
5302 "\tLDUW $mem ,$dst\n"
5303 "\tSLLX #32, $dst, $dst\n"
5304 "\tOR $dst, R_O7, $dst" %}
5305 opcode(Assembler::lduw_op3);
5306 ins_encode( form3_mem_reg_long_unaligned_marshal( mem, dst ));
5307 ins_pipe(iload_mem);
5308 %}
5309
5310 // Load Aligned Packed Byte into a Double Register
5311 instruct loadA8B(regD dst, memory mem) %{
5312 match(Set dst (Load8B mem));
5313 ins_cost(MEMORY_REF_COST);
5314 size(4);
5315 format %{ "LDDF $mem,$dst\t! packed8B" %}
5316 opcode(Assembler::lddf_op3);
5317 ins_encode( form3_mem_reg( mem, dst ) );
5318 ins_pipe(floadD_mem);
5319 %}
5320
5321 // Load Aligned Packed Char into a Double Register
5322 instruct loadA4C(regD dst, memory mem) %{
5323 match(Set dst (Load4C mem));
5324 ins_cost(MEMORY_REF_COST);
5325 size(4);
5326 format %{ "LDDF $mem,$dst\t! packed4C" %}
5327 opcode(Assembler::lddf_op3);
5328 ins_encode( form3_mem_reg( mem, dst ) );
5329 ins_pipe(floadD_mem);
5330 %}
5331
5332 // Load Aligned Packed Short into a Double Register
5333 instruct loadA4S(regD dst, memory mem) %{
5334 match(Set dst (Load4S mem));
5335 ins_cost(MEMORY_REF_COST);
5336 size(4);
5337 format %{ "LDDF $mem,$dst\t! packed4S" %}
5338 opcode(Assembler::lddf_op3);
5339 ins_encode( form3_mem_reg( mem, dst ) );
5340 ins_pipe(floadD_mem);
5341 %}
5342
5343 // Load Aligned Packed Int into a Double Register
5344 instruct loadA2I(regD dst, memory mem) %{
5345 match(Set dst (Load2I mem));
5346 ins_cost(MEMORY_REF_COST);
5347 size(4);
5348 format %{ "LDDF $mem,$dst\t! packed2I" %}
5349 opcode(Assembler::lddf_op3);
5350 ins_encode( form3_mem_reg( mem, dst ) );
5351 ins_pipe(floadD_mem);
5352 %}
5353
5354 // Load Range
5355 instruct loadRange(iRegI dst, memory mem) %{
5356 match(Set dst (LoadRange mem));
5357 ins_cost(MEMORY_REF_COST);
5358
5359 size(4);
5360 format %{ "LDUW $mem,$dst\t! range" %}
5361 opcode(Assembler::lduw_op3);
5362 ins_encode( form3_mem_reg( mem, dst ) );
5363 ins_pipe(iload_mem);
5364 %}
5365
5366 // Load Integer into %f register (for fitos/fitod)
5367 instruct loadI_freg(regF dst, memory mem) %{
5368 match(Set dst (LoadI mem));
5369 ins_cost(MEMORY_REF_COST);
5370 size(4);
5371
5372 format %{ "LDF $mem,$dst\t! for fitos/fitod" %}
5373 opcode(Assembler::ldf_op3);
5374 ins_encode( form3_mem_reg( mem, dst ) );
5375 ins_pipe(floadF_mem);
5376 %}
5377
5378 // Load Pointer
5379 instruct loadP(iRegP dst, memory mem) %{
5380 match(Set dst (LoadP mem));
5381 ins_cost(MEMORY_REF_COST);
5382 size(4);
5383
5384 #ifndef _LP64
5385 format %{ "LDUW $mem,$dst\t! ptr" %}
5386 opcode(Assembler::lduw_op3, 0, REGP_OP);
5387 #else
5388 format %{ "LDX $mem,$dst\t! ptr" %}
5389 opcode(Assembler::ldx_op3, 0, REGP_OP);
5390 #endif
5391 ins_encode( form3_mem_reg( mem, dst ) );
5392 ins_pipe(iload_mem);
5393 %}
5394
5395 // Load Klass Pointer
5396 instruct loadKlass(iRegP dst, memory mem) %{
5397 match(Set dst (LoadKlass mem));
5398 ins_cost(MEMORY_REF_COST);
5399 size(4);
5400
5401 #ifndef _LP64
5402 format %{ "LDUW $mem,$dst\t! klass ptr" %}
5403 opcode(Assembler::lduw_op3, 0, REGP_OP);
5404 #else
5405 format %{ "LDX $mem,$dst\t! klass ptr" %}
5406 opcode(Assembler::ldx_op3, 0, REGP_OP);
5407 #endif
5408 ins_encode( form3_mem_reg( mem, dst ) );
5409 ins_pipe(iload_mem);
5410 %}
5411
5412 // Load Short (16bit signed)
5413 instruct loadS(iRegI dst, memory mem) %{
5414 match(Set dst (LoadS mem));
5415 ins_cost(MEMORY_REF_COST);
5416
5417 size(4);
5418 format %{ "LDSH $mem,$dst" %}
5419 opcode(Assembler::ldsh_op3);
5420 ins_encode( form3_mem_reg( mem, dst ) );
5421 ins_pipe(iload_mask_mem);
5422 %}
5423
5424 // Load Double
5425 instruct loadD(regD dst, memory mem) %{
5426 match(Set dst (LoadD mem));
5427 ins_cost(MEMORY_REF_COST);
5428
5429 size(4);
5430 format %{ "LDDF $mem,$dst" %}
5431 opcode(Assembler::lddf_op3);
5432 ins_encode( form3_mem_reg( mem, dst ) );
5433 ins_pipe(floadD_mem);
5434 %}
5435
5436 // Load Double - UNaligned
5437 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5438 match(Set dst (LoadD_unaligned mem));
5439 ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5440 size(8);
5441 format %{ "LDF $mem ,$dst.hi\t! misaligned double\n"
5442 "\tLDF $mem+4,$dst.lo\t!" %}
5443 opcode(Assembler::ldf_op3);
5444 ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5445 ins_pipe(iload_mem);
5446 %}
5447
5448 // Load Float
5449 instruct loadF(regF dst, memory mem) %{
5450 match(Set dst (LoadF mem));
5451 ins_cost(MEMORY_REF_COST);
5452
5453 size(4);
5454 format %{ "LDF $mem,$dst" %}
5455 opcode(Assembler::ldf_op3);
5456 ins_encode( form3_mem_reg( mem, dst ) );
5457 ins_pipe(floadF_mem);
5458 %}
5459
5460 // Load Constant
5461 instruct loadConI( iRegI dst, immI src ) %{
5462 match(Set dst src);
5463 ins_cost(DEFAULT_COST * 3/2);
5464 format %{ "SET $src,$dst" %}
5465 ins_encode( Set32(src, dst) );
5466 ins_pipe(ialu_hi_lo_reg);
5467 %}
5468
5469 instruct loadConI13( iRegI dst, immI13 src ) %{
5470 match(Set dst src);
5471
5472 size(4);
5473 format %{ "MOV $src,$dst" %}
5474 ins_encode( Set13( src, dst ) );
5475 ins_pipe(ialu_imm);
5476 %}
5477
5478 instruct loadConP(iRegP dst, immP src) %{
5479 match(Set dst src);
5480 ins_cost(DEFAULT_COST * 3/2);
5481 format %{ "SET $src,$dst\t!ptr" %}
5482 // This rule does not use "expand" unlike loadConI because then
5483 // the result type is not known to be an Oop. An ADLC
5484 // enhancement will be needed to make that work - not worth it!
5485
5486 ins_encode( SetPtr( src, dst ) );
5487 ins_pipe(loadConP);
5488
5489 %}
5490
5491 instruct loadConP0(iRegP dst, immP0 src) %{
5492 match(Set dst src);
5493
5494 size(4);
5495 format %{ "CLR $dst\t!ptr" %}
5496 ins_encode( SetNull( dst ) );
5497 ins_pipe(ialu_imm);
5498 %}
5499
5500 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5501 match(Set dst src);
5502 ins_cost(DEFAULT_COST);
5503 format %{ "SET $src,$dst\t!ptr" %}
5504 ins_encode %{
5505 Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
5506 __ sethi(polling_page, false );
5507 %}
5508 ins_pipe(loadConP_poll);
5509 %}
5510
5511 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
5512 // %%% maybe this should work like loadConD
5513 match(Set dst src);
5514 effect(KILL tmp);
5515 ins_cost(DEFAULT_COST * 4);
5516 format %{ "SET64 $src,$dst KILL $tmp\t! long" %}
5517 ins_encode( LdImmL(src, dst, tmp) );
5518 ins_pipe(loadConL);
5519 %}
5520
5521 instruct loadConL0( iRegL dst, immL0 src ) %{
5522 match(Set dst src);
5523 ins_cost(DEFAULT_COST);
5524 size(4);
5525 format %{ "CLR $dst\t! long" %}
5526 ins_encode( Set13( src, dst ) );
5527 ins_pipe(ialu_imm);
5528 %}
5529
5530 instruct loadConL13( iRegL dst, immL13 src ) %{
5531 match(Set dst src);
5532 ins_cost(DEFAULT_COST * 2);
5533
5534 size(4);
5535 format %{ "MOV $src,$dst\t! long" %}
5536 ins_encode( Set13( src, dst ) );
5537 ins_pipe(ialu_imm);
5538 %}
5539
5540 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
5541 match(Set dst src);
5542 effect(KILL tmp);
5543
5544 #ifdef _LP64
5545 size(36);
5546 #else
5547 size(8);
5548 #endif
5549
5550 format %{ "SETHI hi(&$src),$tmp\t!get float $src from table\n\t"
5551 "LDF [$tmp+lo(&$src)],$dst" %}
5552 ins_encode( LdImmF(src, dst, tmp) );
5553 ins_pipe(loadConFD);
5554 %}
5555
5556 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
5557 match(Set dst src);
5558 effect(KILL tmp);
5559
5560 #ifdef _LP64
5561 size(36);
5562 #else
5563 size(8);
5564 #endif
5565
5566 format %{ "SETHI hi(&$src),$tmp\t!get double $src from table\n\t"
5567 "LDDF [$tmp+lo(&$src)],$dst" %}
5568 ins_encode( LdImmD(src, dst, tmp) );
5569 ins_pipe(loadConFD);
5570 %}
5571
5572 // Prefetch instructions.
5573 // Must be safe to execute with invalid address (cannot fault).
5574
5575 instruct prefetchr( memory mem ) %{
5576 match( PrefetchRead mem );
5577 ins_cost(MEMORY_REF_COST);
5578
5579 format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
5580 opcode(Assembler::prefetch_op3);
5581 ins_encode( form3_mem_prefetch_read( mem ) );
5582 ins_pipe(iload_mem);
5583 %}
5584
5585 instruct prefetchw( memory mem ) %{
5586 match( PrefetchWrite mem );
5587 ins_cost(MEMORY_REF_COST);
5588
5589 format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
5590 opcode(Assembler::prefetch_op3);
5591 ins_encode( form3_mem_prefetch_write( mem ) );
5592 ins_pipe(iload_mem);
5593 %}
5594
5595
5596 //----------Store Instructions-------------------------------------------------
5597 // Store Byte
5598 instruct storeB(memory mem, iRegI src) %{
5599 match(Set mem (StoreB mem src));
5600 ins_cost(MEMORY_REF_COST);
5601
5602 size(4);
5603 format %{ "STB $src,$mem\t! byte" %}
5604 opcode(Assembler::stb_op3);
5605 ins_encode( form3_mem_reg( mem, src ) );
5606 ins_pipe(istore_mem_reg);
5607 %}
5608
5609 instruct storeB0(memory mem, immI0 src) %{
5610 match(Set mem (StoreB mem src));
5611 ins_cost(MEMORY_REF_COST);
5612
5613 size(4);
5614 format %{ "STB $src,$mem\t! byte" %}
5615 opcode(Assembler::stb_op3);
5616 ins_encode( form3_mem_reg( mem, R_G0 ) );
5617 ins_pipe(istore_mem_zero);
5618 %}
5619
5620 instruct storeCM0(memory mem, immI0 src) %{
5621 match(Set mem (StoreCM mem src));
5622 ins_cost(MEMORY_REF_COST);
5623
5624 size(4);
5625 format %{ "STB $src,$mem\t! CMS card-mark byte 0" %}
5626 opcode(Assembler::stb_op3);
5627 ins_encode( form3_mem_reg( mem, R_G0 ) );
5628 ins_pipe(istore_mem_zero);
5629 %}
5630
5631 // Store Char/Short
5632 instruct storeC(memory mem, iRegI src) %{
5633 match(Set mem (StoreC mem src));
5634 ins_cost(MEMORY_REF_COST);
5635
5636 size(4);
5637 format %{ "STH $src,$mem\t! short" %}
5638 opcode(Assembler::sth_op3);
5639 ins_encode( form3_mem_reg( mem, src ) );
5640 ins_pipe(istore_mem_reg);
5641 %}
5642
5643 instruct storeC0(memory mem, immI0 src) %{
5644 match(Set mem (StoreC mem src));
5645 ins_cost(MEMORY_REF_COST);
5646
5647 size(4);
5648 format %{ "STH $src,$mem\t! short" %}
5649 opcode(Assembler::sth_op3);
5650 ins_encode( form3_mem_reg( mem, R_G0 ) );
5651 ins_pipe(istore_mem_zero);
5652 %}
5653
5654 // Store Integer
5655 instruct storeI(memory mem, iRegI src) %{
5656 match(Set mem (StoreI mem src));
5657 ins_cost(MEMORY_REF_COST);
5658
5659 size(4);
5660 format %{ "STW $src,$mem" %}
5661 opcode(Assembler::stw_op3);
5662 ins_encode( form3_mem_reg( mem, src ) );
5663 ins_pipe(istore_mem_reg);
5664 %}
5665
5666 // Store Long
5667 instruct storeL(memory mem, iRegL src) %{
5668 match(Set mem (StoreL mem src));
5669 ins_cost(MEMORY_REF_COST);
5670 size(4);
5671 format %{ "STX $src,$mem\t! long" %}
5672 opcode(Assembler::stx_op3);
5673 ins_encode( form3_mem_reg( mem, src ) );
5674 ins_pipe(istore_mem_reg);
5675 %}
5676
5677 instruct storeI0(memory mem, immI0 src) %{
5678 match(Set mem (StoreI mem src));
5679 ins_cost(MEMORY_REF_COST);
5680
5681 size(4);
5682 format %{ "STW $src,$mem" %}
5683 opcode(Assembler::stw_op3);
5684 ins_encode( form3_mem_reg( mem, R_G0 ) );
5685 ins_pipe(istore_mem_zero);
5686 %}
5687
5688 instruct storeL0(memory mem, immL0 src) %{
5689 match(Set mem (StoreL mem src));
5690 ins_cost(MEMORY_REF_COST);
5691
5692 size(4);
5693 format %{ "STX $src,$mem" %}
5694 opcode(Assembler::stx_op3);
5695 ins_encode( form3_mem_reg( mem, R_G0 ) );
5696 ins_pipe(istore_mem_zero);
5697 %}
5698
5699 // Store Integer from float register (used after fstoi)
5700 instruct storeI_Freg(memory mem, regF src) %{
5701 match(Set mem (StoreI mem src));
5702 ins_cost(MEMORY_REF_COST);
5703
5704 size(4);
5705 format %{ "STF $src,$mem\t! after fstoi/fdtoi" %}
5706 opcode(Assembler::stf_op3);
5707 ins_encode( form3_mem_reg( mem, src ) );
5708 ins_pipe(fstoreF_mem_reg);
5709 %}
5710
5711 // Store Pointer
5712 instruct storeP(memory dst, sp_ptr_RegP src) %{
5713 match(Set dst (StoreP dst src));
5714 ins_cost(MEMORY_REF_COST);
5715 size(4);
5716
5717 #ifndef _LP64
5718 format %{ "STW $src,$dst\t! ptr" %}
5719 opcode(Assembler::stw_op3, 0, REGP_OP);
5720 #else
5721 format %{ "STX $src,$dst\t! ptr" %}
5722 opcode(Assembler::stx_op3, 0, REGP_OP);
5723 #endif
5724 ins_encode( form3_mem_reg( dst, src ) );
5725 ins_pipe(istore_mem_spORreg);
5726 %}
5727
5728 instruct storeP0(memory dst, immP0 src) %{
5729 match(Set dst (StoreP dst src));
5730 ins_cost(MEMORY_REF_COST);
5731 size(4);
5732
5733 #ifndef _LP64
5734 format %{ "STW $src,$dst\t! ptr" %}
5735 opcode(Assembler::stw_op3, 0, REGP_OP);
5736 #else
5737 format %{ "STX $src,$dst\t! ptr" %}
5738 opcode(Assembler::stx_op3, 0, REGP_OP);
5739 #endif
5740 ins_encode( form3_mem_reg( dst, R_G0 ) );
5741 ins_pipe(istore_mem_zero);
5742 %}
5743
5744 // Store Double
5745 instruct storeD( memory mem, regD src) %{
5746 match(Set mem (StoreD mem src));
5747 ins_cost(MEMORY_REF_COST);
5748
5749 size(4);
5750 format %{ "STDF $src,$mem" %}
5751 opcode(Assembler::stdf_op3);
5752 ins_encode( form3_mem_reg( mem, src ) );
5753 ins_pipe(fstoreD_mem_reg);
5754 %}
5755
5756 instruct storeD0( memory mem, immD0 src) %{
5757 match(Set mem (StoreD mem src));
5758 ins_cost(MEMORY_REF_COST);
5759
5760 size(4);
5761 format %{ "STX $src,$mem" %}
5762 opcode(Assembler::stx_op3);
5763 ins_encode( form3_mem_reg( mem, R_G0 ) );
5764 ins_pipe(fstoreD_mem_zero);
5765 %}
5766
5767 // Store Float
5768 instruct storeF( memory mem, regF src) %{
5769 match(Set mem (StoreF mem src));
5770 ins_cost(MEMORY_REF_COST);
5771
5772 size(4);
5773 format %{ "STF $src,$mem" %}
5774 opcode(Assembler::stf_op3);
5775 ins_encode( form3_mem_reg( mem, src ) );
5776 ins_pipe(fstoreF_mem_reg);
5777 %}
5778
5779 instruct storeF0( memory mem, immF0 src) %{
5780 match(Set mem (StoreF mem src));
5781 ins_cost(MEMORY_REF_COST);
5782
5783 size(4);
5784 format %{ "STW $src,$mem\t! storeF0" %}
5785 opcode(Assembler::stw_op3);
5786 ins_encode( form3_mem_reg( mem, R_G0 ) );
5787 ins_pipe(fstoreF_mem_zero);
5788 %}
5789
5790 // Store Aligned Packed Bytes in Double register to memory
5791 instruct storeA8B(memory mem, regD src) %{
5792 match(Set mem (Store8B mem src));
5793 ins_cost(MEMORY_REF_COST);
5794 size(4);
5795 format %{ "STDF $src,$mem\t! packed8B" %}
5796 opcode(Assembler::stdf_op3);
5797 ins_encode( form3_mem_reg( mem, src ) );
5798 ins_pipe(fstoreD_mem_reg);
5799 %}
5800
5801 // Store Zero into Aligned Packed Bytes
5802 instruct storeA8B0(memory mem, immI0 zero) %{
5803 match(Set mem (Store8B mem zero));
5804 ins_cost(MEMORY_REF_COST);
5805 size(4);
5806 format %{ "STX $zero,$mem\t! packed8B" %}
5807 opcode(Assembler::stx_op3);
5808 ins_encode( form3_mem_reg( mem, R_G0 ) );
5809 ins_pipe(fstoreD_mem_zero);
5810 %}
5811
5812 // Store Aligned Packed Chars/Shorts in Double register to memory
5813 instruct storeA4C(memory mem, regD src) %{
5814 match(Set mem (Store4C mem src));
5815 ins_cost(MEMORY_REF_COST);
5816 size(4);
5817 format %{ "STDF $src,$mem\t! packed4C" %}
5818 opcode(Assembler::stdf_op3);
5819 ins_encode( form3_mem_reg( mem, src ) );
5820 ins_pipe(fstoreD_mem_reg);
5821 %}
5822
5823 // Store Zero into Aligned Packed Chars/Shorts
5824 instruct storeA4C0(memory mem, immI0 zero) %{
5825 match(Set mem (Store4C mem (Replicate4C zero)));
5826 ins_cost(MEMORY_REF_COST);
5827 size(4);
5828 format %{ "STX $zero,$mem\t! packed4C" %}
5829 opcode(Assembler::stx_op3);
5830 ins_encode( form3_mem_reg( mem, R_G0 ) );
5831 ins_pipe(fstoreD_mem_zero);
5832 %}
5833
5834 // Store Aligned Packed Ints in Double register to memory
5835 instruct storeA2I(memory mem, regD src) %{
5836 match(Set mem (Store2I mem src));
5837 ins_cost(MEMORY_REF_COST);
5838 size(4);
5839 format %{ "STDF $src,$mem\t! packed2I" %}
5840 opcode(Assembler::stdf_op3);
5841 ins_encode( form3_mem_reg( mem, src ) );
5842 ins_pipe(fstoreD_mem_reg);
5843 %}
5844
5845 // Store Zero into Aligned Packed Ints
5846 instruct storeA2I0(memory mem, immI0 zero) %{
5847 match(Set mem (Store2I mem zero));
5848 ins_cost(MEMORY_REF_COST);
5849 size(4);
5850 format %{ "STX $zero,$mem\t! packed2I" %}
5851 opcode(Assembler::stx_op3);
5852 ins_encode( form3_mem_reg( mem, R_G0 ) );
5853 ins_pipe(fstoreD_mem_zero);
5854 %}
5855
5856
5857 //----------MemBar Instructions-----------------------------------------------
5858 // Memory barrier flavors
5859
5860 instruct membar_acquire() %{
5861 match(MemBarAcquire);
5862 ins_cost(4*MEMORY_REF_COST);
5863
5864 size(0);
5865 format %{ "MEMBAR-acquire" %}
5866 ins_encode( enc_membar_acquire );
5867 ins_pipe(long_memory_op);
5868 %}
5869
5870 instruct membar_acquire_lock() %{
5871 match(MemBarAcquire);
5872 predicate(Matcher::prior_fast_lock(n));
5873 ins_cost(0);
5874
5875 size(0);
5876 format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
5877 ins_encode( );
5878 ins_pipe(empty);
5879 %}
5880
5881 instruct membar_release() %{
5882 match(MemBarRelease);
5883 ins_cost(4*MEMORY_REF_COST);
5884
5885 size(0);
5886 format %{ "MEMBAR-release" %}
5887 ins_encode( enc_membar_release );
5888 ins_pipe(long_memory_op);
5889 %}
5890
5891 instruct membar_release_lock() %{
5892 match(MemBarRelease);
5893 predicate(Matcher::post_fast_unlock(n));
5894 ins_cost(0);
5895
5896 size(0);
5897 format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
5898 ins_encode( );
5899 ins_pipe(empty);
5900 %}
5901
5902 instruct membar_volatile() %{
5903 match(MemBarVolatile);
5904 ins_cost(4*MEMORY_REF_COST);
5905
5906 size(4);
5907 format %{ "MEMBAR-volatile" %}
5908 ins_encode( enc_membar_volatile );
5909 ins_pipe(long_memory_op);
5910 %}
5911
5912 instruct unnecessary_membar_volatile() %{
5913 match(MemBarVolatile);
5914 predicate(Matcher::post_store_load_barrier(n));
5915 ins_cost(0);
5916
5917 size(0);
5918 format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
5919 ins_encode( );
5920 ins_pipe(empty);
5921 %}
5922
5923 //----------Register Move Instructions-----------------------------------------
5924 instruct roundDouble_nop(regD dst) %{
5925 match(Set dst (RoundDouble dst));
5926 ins_cost(0);
5927 // SPARC results are already "rounded" (i.e., normal-format IEEE)
5928 ins_encode( );
5929 ins_pipe(empty);
5930 %}
5931
5932
5933 instruct roundFloat_nop(regF dst) %{
5934 match(Set dst (RoundFloat dst));
5935 ins_cost(0);
5936 // SPARC results are already "rounded" (i.e., normal-format IEEE)
5937 ins_encode( );
5938 ins_pipe(empty);
5939 %}
5940
5941
5942 // Cast Index to Pointer for unsafe natives
5943 instruct castX2P(iRegX src, iRegP dst) %{
5944 match(Set dst (CastX2P src));
5945
5946 format %{ "MOV $src,$dst\t! IntX->Ptr" %}
5947 ins_encode( form3_g0_rs2_rd_move( src, dst ) );
5948 ins_pipe(ialu_reg);
5949 %}
5950
5951 // Cast Pointer to Index for unsafe natives
5952 instruct castP2X(iRegP src, iRegX dst) %{
5953 match(Set dst (CastP2X src));
5954
5955 format %{ "MOV $src,$dst\t! Ptr->IntX" %}
5956 ins_encode( form3_g0_rs2_rd_move( src, dst ) );
5957 ins_pipe(ialu_reg);
5958 %}
5959
5960 instruct stfSSD(stackSlotD stkSlot, regD src) %{
5961 // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
5962 match(Set stkSlot src); // chain rule
5963 ins_cost(MEMORY_REF_COST);
5964 format %{ "STDF $src,$stkSlot\t!stk" %}
5965 opcode(Assembler::stdf_op3);
5966 ins_encode(form3_mem_reg(stkSlot, src));
5967 ins_pipe(fstoreD_stk_reg);
5968 %}
5969
5970 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
5971 // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
5972 match(Set dst stkSlot); // chain rule
5973 ins_cost(MEMORY_REF_COST);
5974 format %{ "LDDF $stkSlot,$dst\t!stk" %}
5975 opcode(Assembler::lddf_op3);
5976 ins_encode(form3_mem_reg(stkSlot, dst));
5977 ins_pipe(floadD_stk);
5978 %}
5979
5980 instruct stfSSF(stackSlotF stkSlot, regF src) %{
5981 // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
5982 match(Set stkSlot src); // chain rule
5983 ins_cost(MEMORY_REF_COST);
5984 format %{ "STF $src,$stkSlot\t!stk" %}
5985 opcode(Assembler::stf_op3);
5986 ins_encode(form3_mem_reg(stkSlot, src));
5987 ins_pipe(fstoreF_stk_reg);
5988 %}
5989
5990 //----------Conditional Move---------------------------------------------------
5991 // Conditional move
5992 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
5993 match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
5994 ins_cost(150);
5995 format %{ "MOV$cmp $pcc,$src,$dst" %}
5996 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
5997 ins_pipe(ialu_reg);
5998 %}
5999
6000 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6001 match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6002 ins_cost(140);
6003 format %{ "MOV$cmp $pcc,$src,$dst" %}
6004 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6005 ins_pipe(ialu_imm);
6006 %}
6007
6008 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6009 match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6010 ins_cost(150);
6011 size(4);
6012 format %{ "MOV$cmp $icc,$src,$dst" %}
6013 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6014 ins_pipe(ialu_reg);
6015 %}
6016
6017 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6018 match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6019 ins_cost(140);
6020 size(4);
6021 format %{ "MOV$cmp $icc,$src,$dst" %}
6022 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6023 ins_pipe(ialu_imm);
6024 %}
6025
6026 instruct cmovII_U_reg(cmpOp cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6027 match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6028 ins_cost(150);
6029 size(4);
6030 format %{ "MOV$cmp $icc,$src,$dst" %}
6031 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6032 ins_pipe(ialu_reg);
6033 %}
6034
6035 instruct cmovII_U_imm(cmpOp cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6036 match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6037 ins_cost(140);
6038 size(4);
6039 format %{ "MOV$cmp $icc,$src,$dst" %}
6040 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6041 ins_pipe(ialu_imm);
6042 %}
6043
6044 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6045 match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6046 ins_cost(150);
6047 size(4);
6048 format %{ "MOV$cmp $fcc,$src,$dst" %}
6049 ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6050 ins_pipe(ialu_reg);
6051 %}
6052
6053 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6054 match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6055 ins_cost(140);
6056 size(4);
6057 format %{ "MOV$cmp $fcc,$src,$dst" %}
6058 ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6059 ins_pipe(ialu_imm);
6060 %}
6061
6062 // Conditional move
6063 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6064 match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6065 ins_cost(150);
6066 format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6067 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6068 ins_pipe(ialu_reg);
6069 %}
6070
6071 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6072 match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6073 ins_cost(140);
6074 format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6075 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6076 ins_pipe(ialu_imm);
6077 %}
6078
6079 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6080 match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6081 ins_cost(150);
6082
6083 size(4);
6084 format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %}
6085 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6086 ins_pipe(ialu_reg);
6087 %}
6088
6089 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6090 match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6091 ins_cost(140);
6092
6093 size(4);
6094 format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %}
6095 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6096 ins_pipe(ialu_imm);
6097 %}
6098
6099 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6100 match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6101 ins_cost(150);
6102 size(4);
6103 format %{ "MOV$cmp $fcc,$src,$dst" %}
6104 ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6105 ins_pipe(ialu_imm);
6106 %}
6107
6108 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6109 match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6110 ins_cost(140);
6111 size(4);
6112 format %{ "MOV$cmp $fcc,$src,$dst" %}
6113 ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6114 ins_pipe(ialu_imm);
6115 %}
6116
6117 // Conditional move
6118 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6119 match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6120 ins_cost(150);
6121 opcode(0x101);
6122 format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6123 ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6124 ins_pipe(int_conditional_float_move);
6125 %}
6126
6127 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6128 match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6129 ins_cost(150);
6130
6131 size(4);
6132 format %{ "FMOVS$cmp $icc,$src,$dst" %}
6133 opcode(0x101);
6134 ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6135 ins_pipe(int_conditional_float_move);
6136 %}
6137
6138 // Conditional move,
6139 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6140 match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6141 ins_cost(150);
6142 size(4);
6143 format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6144 opcode(0x1);
6145 ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6146 ins_pipe(int_conditional_double_move);
6147 %}
6148
6149 // Conditional move
6150 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6151 match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6152 ins_cost(150);
6153 size(4);
6154 opcode(0x102);
6155 format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6156 ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6157 ins_pipe(int_conditional_double_move);
6158 %}
6159
6160 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6161 match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6162 ins_cost(150);
6163
6164 size(4);
6165 format %{ "FMOVD$cmp $icc,$src,$dst" %}
6166 opcode(0x102);
6167 ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6168 ins_pipe(int_conditional_double_move);
6169 %}
6170
6171 // Conditional move,
6172 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6173 match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6174 ins_cost(150);
6175 size(4);
6176 format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6177 opcode(0x2);
6178 ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6179 ins_pipe(int_conditional_double_move);
6180 %}
6181
6182 // Conditional move
6183 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6184 match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6185 ins_cost(150);
6186 format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6187 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6188 ins_pipe(ialu_reg);
6189 %}
6190
6191 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6192 match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6193 ins_cost(140);
6194 format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6195 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6196 ins_pipe(ialu_imm);
6197 %}
6198
6199 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6200 match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6201 ins_cost(150);
6202
6203 size(4);
6204 format %{ "MOV$cmp $icc,$src,$dst\t! long" %}
6205 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6206 ins_pipe(ialu_reg);
6207 %}
6208
6209
6210 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6211 match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6212 ins_cost(150);
6213
6214 size(4);
6215 format %{ "MOV$cmp $fcc,$src,$dst\t! long" %}
6216 ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6217 ins_pipe(ialu_reg);
6218 %}
6219
6220
6221
6222 //----------OS and Locking Instructions----------------------------------------
6223
6224 // This name is KNOWN by the ADLC and cannot be changed.
6225 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6226 // for this guy.
6227 instruct tlsLoadP(g2RegP dst) %{
6228 match(Set dst (ThreadLocal));
6229
6230 size(0);
6231 ins_cost(0);
6232 format %{ "# TLS is in G2" %}
6233 ins_encode( /*empty encoding*/ );
6234 ins_pipe(ialu_none);
6235 %}
6236
6237 instruct checkCastPP( iRegP dst ) %{
6238 match(Set dst (CheckCastPP dst));
6239
6240 size(0);
6241 format %{ "# checkcastPP of $dst" %}
6242 ins_encode( /*empty encoding*/ );
6243 ins_pipe(empty);
6244 %}
6245
6246
6247 instruct castPP( iRegP dst ) %{
6248 match(Set dst (CastPP dst));
6249 format %{ "# castPP of $dst" %}
6250 ins_encode( /*empty encoding*/ );
6251 ins_pipe(empty);
6252 %}
6253
6254 instruct castII( iRegI dst ) %{
6255 match(Set dst (CastII dst));
6256 format %{ "# castII of $dst" %}
6257 ins_encode( /*empty encoding*/ );
6258 ins_cost(0);
6259 ins_pipe(empty);
6260 %}
6261
6262 //----------Arithmetic Instructions--------------------------------------------
6263 // Addition Instructions
6264 // Register Addition
6265 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6266 match(Set dst (AddI src1 src2));
6267
6268 size(4);
6269 format %{ "ADD $src1,$src2,$dst" %}
6270 ins_encode %{
6271 __ add($src1$$Register, $src2$$Register, $dst$$Register);
6272 %}
6273 ins_pipe(ialu_reg_reg);
6274 %}
6275
6276 // Immediate Addition
6277 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6278 match(Set dst (AddI src1 src2));
6279
6280 size(4);
6281 format %{ "ADD $src1,$src2,$dst" %}
6282 opcode(Assembler::add_op3, Assembler::arith_op);
6283 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6284 ins_pipe(ialu_reg_imm);
6285 %}
6286
6287 // Pointer Register Addition
6288 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6289 match(Set dst (AddP src1 src2));
6290
6291 size(4);
6292 format %{ "ADD $src1,$src2,$dst" %}
6293 opcode(Assembler::add_op3, Assembler::arith_op);
6294 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6295 ins_pipe(ialu_reg_reg);
6296 %}
6297
6298 // Pointer Immediate Addition
6299 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6300 match(Set dst (AddP src1 src2));
6301
6302 size(4);
6303 format %{ "ADD $src1,$src2,$dst" %}
6304 opcode(Assembler::add_op3, Assembler::arith_op);
6305 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6306 ins_pipe(ialu_reg_imm);
6307 %}
6308
6309 // Long Addition
6310 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6311 match(Set dst (AddL src1 src2));
6312
6313 size(4);
6314 format %{ "ADD $src1,$src2,$dst\t! long" %}
6315 opcode(Assembler::add_op3, Assembler::arith_op);
6316 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6317 ins_pipe(ialu_reg_reg);
6318 %}
6319
6320 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6321 match(Set dst (AddL src1 con));
6322
6323 size(4);
6324 format %{ "ADD $src1,$con,$dst" %}
6325 opcode(Assembler::add_op3, Assembler::arith_op);
6326 ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6327 ins_pipe(ialu_reg_imm);
6328 %}
6329
6330 //----------Conditional_store--------------------------------------------------
6331 // Conditional-store of the updated heap-top.
6332 // Used during allocation of the shared heap.
6333 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
6334
6335 // LoadP-locked. Same as a regular pointer load when used with a compare-swap
6336 instruct loadPLocked(iRegP dst, memory mem) %{
6337 match(Set dst (LoadPLocked mem));
6338 ins_cost(MEMORY_REF_COST);
6339
6340 #ifndef _LP64
6341 size(4);
6342 format %{ "LDUW $mem,$dst\t! ptr" %}
6343 opcode(Assembler::lduw_op3, 0, REGP_OP);
6344 #else
6345 format %{ "LDX $mem,$dst\t! ptr" %}
6346 opcode(Assembler::ldx_op3, 0, REGP_OP);
6347 #endif
6348 ins_encode( form3_mem_reg( mem, dst ) );
6349 ins_pipe(iload_mem);
6350 %}
6351
6352 // LoadL-locked. Same as a regular long load when used with a compare-swap
6353 instruct loadLLocked(iRegL dst, memory mem) %{
6354 match(Set dst (LoadLLocked mem));
6355 ins_cost(MEMORY_REF_COST);
6356 size(4);
6357 format %{ "LDX $mem,$dst\t! long" %}
6358 opcode(Assembler::ldx_op3);
6359 ins_encode( form3_mem_reg( mem, dst ) );
6360 ins_pipe(iload_mem);
6361 %}
6362
6363 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6364 match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6365 effect( KILL newval );
6366 format %{ "CASA [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6367 "CMP R_G3,$oldval\t\t! See if we made progress" %}
6368 ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6369 ins_pipe( long_memory_op );
6370 %}
6371
6372 instruct storeLConditional_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6373 match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
6374 effect( USE mem_ptr, KILL ccr, KILL tmp1);
6375 // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
6376 format %{
6377 "MOV $newval,R_O7\n\t"
6378 "CASXA [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
6379 "CMP $oldval,R_O7\t\t! See if we made progress\n\t"
6380 "MOV 1,$res\n\t"
6381 "MOVne xcc,R_G0,$res"
6382 %}
6383 ins_encode( enc_casx(mem_ptr, oldval, newval),
6384 enc_lflags_ne_to_boolean(res) );
6385 ins_pipe( long_memory_op );
6386 %}
6387
6388 instruct storeLConditional_flags(iRegP mem_ptr, iRegL oldval, iRegL newval, flagsRegL xcc, o7RegI tmp1, immI0 zero) %{
6389 match(Set xcc (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
6390 effect( USE mem_ptr, KILL tmp1);
6391 // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
6392 format %{
6393 "MOV $newval,R_O7\n\t"
6394 "CASXA [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
6395 "CMP $oldval,R_O7\t\t! See if we made progress"
6396 %}
6397 ins_encode( enc_casx(mem_ptr, oldval, newval));
6398 ins_pipe( long_memory_op );
6399 %}
6400
6401 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6402
6403 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6404 match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6405 effect( USE mem_ptr, KILL ccr, KILL tmp1);
6406 format %{
6407 "MOV $newval,O7\n\t"
6408 "CASXA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6409 "CMP $oldval,O7\t\t! See if we made progress\n\t"
6410 "MOV 1,$res\n\t"
6411 "MOVne xcc,R_G0,$res"
6412 %}
6413 ins_encode( enc_casx(mem_ptr, oldval, newval),
6414 enc_lflags_ne_to_boolean(res) );
6415 ins_pipe( long_memory_op );
6416 %}
6417
6418
6419 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6420 match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6421 effect( USE mem_ptr, KILL ccr, KILL tmp1);
6422 format %{
6423 "MOV $newval,O7\n\t"
6424 "CASA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6425 "CMP $oldval,O7\t\t! See if we made progress\n\t"
6426 "MOV 1,$res\n\t"
6427 "MOVne icc,R_G0,$res"
6428 %}
6429 ins_encode( enc_casi(mem_ptr, oldval, newval),
6430 enc_iflags_ne_to_boolean(res) );
6431 ins_pipe( long_memory_op );
6432 %}
6433
6434 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6435 match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6436 effect( USE mem_ptr, KILL ccr, KILL tmp1);
6437 #ifdef _LP64
6438 format %{
6439 "MOV $newval,O7\n\t"
6440 "CASXA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6441 "CMP $oldval,O7\t\t! See if we made progress\n\t"
6442 "MOV 1,$res\n\t"
6443 "MOVne xcc,R_G0,$res"
6444 %}
6445 ins_encode( enc_casx(mem_ptr, oldval, newval),
6446 enc_lflags_ne_to_boolean(res) );
6447 #else
6448 format %{
6449 "MOV $newval,O7\n\t"
6450 "CASA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6451 "CMP $oldval,O7\t\t! See if we made progress\n\t"
6452 "MOV 1,$res\n\t"
6453 "MOVne icc,R_G0,$res"
6454 %}
6455 ins_encode( enc_casi(mem_ptr, oldval, newval),
6456 enc_iflags_ne_to_boolean(res) );
6457 #endif
6458 ins_pipe( long_memory_op );
6459 %}
6460
6461 //---------------------
6462 // Subtraction Instructions
6463 // Register Subtraction
6464 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6465 match(Set dst (SubI src1 src2));
6466
6467 size(4);
6468 format %{ "SUB $src1,$src2,$dst" %}
6469 opcode(Assembler::sub_op3, Assembler::arith_op);
6470 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6471 ins_pipe(ialu_reg_reg);
6472 %}
6473
6474 // Immediate Subtraction
6475 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6476 match(Set dst (SubI src1 src2));
6477
6478 size(4);
6479 format %{ "SUB $src1,$src2,$dst" %}
6480 opcode(Assembler::sub_op3, Assembler::arith_op);
6481 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6482 ins_pipe(ialu_reg_imm);
6483 %}
6484
6485 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
6486 match(Set dst (SubI zero src2));
6487
6488 size(4);
6489 format %{ "NEG $src2,$dst" %}
6490 opcode(Assembler::sub_op3, Assembler::arith_op);
6491 ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6492 ins_pipe(ialu_zero_reg);
6493 %}
6494
6495 // Long subtraction
6496 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6497 match(Set dst (SubL src1 src2));
6498
6499 size(4);
6500 format %{ "SUB $src1,$src2,$dst\t! long" %}
6501 opcode(Assembler::sub_op3, Assembler::arith_op);
6502 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6503 ins_pipe(ialu_reg_reg);
6504 %}
6505
6506 // Immediate Subtraction
6507 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6508 match(Set dst (SubL src1 con));
6509
6510 size(4);
6511 format %{ "SUB $src1,$con,$dst\t! long" %}
6512 opcode(Assembler::sub_op3, Assembler::arith_op);
6513 ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6514 ins_pipe(ialu_reg_imm);
6515 %}
6516
6517 // Long negation
6518 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
6519 match(Set dst (SubL zero src2));
6520
6521 size(4);
6522 format %{ "NEG $src2,$dst\t! long" %}
6523 opcode(Assembler::sub_op3, Assembler::arith_op);
6524 ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6525 ins_pipe(ialu_zero_reg);
6526 %}
6527
6528 // Multiplication Instructions
6529 // Integer Multiplication
6530 // Register Multiplication
6531 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6532 match(Set dst (MulI src1 src2));
6533
6534 size(4);
6535 format %{ "MULX $src1,$src2,$dst" %}
6536 opcode(Assembler::mulx_op3, Assembler::arith_op);
6537 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6538 ins_pipe(imul_reg_reg);
6539 %}
6540
6541 // Immediate Multiplication
6542 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6543 match(Set dst (MulI src1 src2));
6544
6545 size(4);
6546 format %{ "MULX $src1,$src2,$dst" %}
6547 opcode(Assembler::mulx_op3, Assembler::arith_op);
6548 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6549 ins_pipe(imul_reg_imm);
6550 %}
6551
6552 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6553 match(Set dst (MulL src1 src2));
6554 ins_cost(DEFAULT_COST * 5);
6555 size(4);
6556 format %{ "MULX $src1,$src2,$dst\t! long" %}
6557 opcode(Assembler::mulx_op3, Assembler::arith_op);
6558 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6559 ins_pipe(mulL_reg_reg);
6560 %}
6561
6562 // Immediate Multiplication
6563 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
6564 match(Set dst (MulL src1 src2));
6565 ins_cost(DEFAULT_COST * 5);
6566 size(4);
6567 format %{ "MULX $src1,$src2,$dst" %}
6568 opcode(Assembler::mulx_op3, Assembler::arith_op);
6569 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6570 ins_pipe(mulL_reg_imm);
6571 %}
6572
6573 // Integer Division
6574 // Register Division
6575 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
6576 match(Set dst (DivI src1 src2));
6577 ins_cost((2+71)*DEFAULT_COST);
6578
6579 format %{ "SRA $src2,0,$src2\n\t"
6580 "SRA $src1,0,$src1\n\t"
6581 "SDIVX $src1,$src2,$dst" %}
6582 ins_encode( idiv_reg( src1, src2, dst ) );
6583 ins_pipe(sdiv_reg_reg);
6584 %}
6585
6586 // Immediate Division
6587 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
6588 match(Set dst (DivI src1 src2));
6589 ins_cost((2+71)*DEFAULT_COST);
6590
6591 format %{ "SRA $src1,0,$src1\n\t"
6592 "SDIVX $src1,$src2,$dst" %}
6593 ins_encode( idiv_imm( src1, src2, dst ) );
6594 ins_pipe(sdiv_reg_imm);
6595 %}
6596
6597 //----------Div-By-10-Expansion------------------------------------------------
6598 // Extract hi bits of a 32x32->64 bit multiply.
6599 // Expand rule only, not matched
6600 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
6601 effect( DEF dst, USE src1, USE src2 );
6602 format %{ "MULX $src1,$src2,$dst\t! Used in div-by-10\n\t"
6603 "SRLX $dst,#32,$dst\t\t! Extract only hi word of result" %}
6604 ins_encode( enc_mul_hi(dst,src1,src2));
6605 ins_pipe(sdiv_reg_reg);
6606 %}
6607
6608 // Magic constant, reciprical of 10
6609 instruct loadConI_x66666667(iRegIsafe dst) %{
6610 effect( DEF dst );
6611
6612 size(8);
6613 format %{ "SET 0x66666667,$dst\t! Used in div-by-10" %}
6614 ins_encode( Set32(0x66666667, dst) );
6615 ins_pipe(ialu_hi_lo_reg);
6616 %}
6617
6618 // Register Shift Right Arithmatic Long by 32-63
6619 instruct sra_31( iRegI dst, iRegI src ) %{
6620 effect( DEF dst, USE src );
6621 format %{ "SRA $src,31,$dst\t! Used in div-by-10" %}
6622 ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
6623 ins_pipe(ialu_reg_reg);
6624 %}
6625
6626 // Arithmetic Shift Right by 8-bit immediate
6627 instruct sra_reg_2( iRegI dst, iRegI src ) %{
6628 effect( DEF dst, USE src );
6629 format %{ "SRA $src,2,$dst\t! Used in div-by-10" %}
6630 opcode(Assembler::sra_op3, Assembler::arith_op);
6631 ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
6632 ins_pipe(ialu_reg_imm);
6633 %}
6634
6635 // Integer DIV with 10
6636 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
6637 match(Set dst (DivI src div));
6638 ins_cost((6+6)*DEFAULT_COST);
6639 expand %{
6640 iRegIsafe tmp1; // Killed temps;
6641 iRegIsafe tmp2; // Killed temps;
6642 iRegI tmp3; // Killed temps;
6643 iRegI tmp4; // Killed temps;
6644 loadConI_x66666667( tmp1 ); // SET 0x66666667 -> tmp1
6645 mul_hi( tmp2, src, tmp1 ); // MUL hibits(src * tmp1) -> tmp2
6646 sra_31( tmp3, src ); // SRA src,31 -> tmp3
6647 sra_reg_2( tmp4, tmp2 ); // SRA tmp2,2 -> tmp4
6648 subI_reg_reg( dst,tmp4,tmp3); // SUB tmp4 - tmp3 -> dst
6649 %}
6650 %}
6651
6652 // Register Long Division
6653 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6654 match(Set dst (DivL src1 src2));
6655 ins_cost(DEFAULT_COST*71);
6656 size(4);
6657 format %{ "SDIVX $src1,$src2,$dst\t! long" %}
6658 opcode(Assembler::sdivx_op3, Assembler::arith_op);
6659 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6660 ins_pipe(divL_reg_reg);
6661 %}
6662
6663 // Register Long Division
6664 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
6665 match(Set dst (DivL src1 src2));
6666 ins_cost(DEFAULT_COST*71);
6667 size(4);
6668 format %{ "SDIVX $src1,$src2,$dst\t! long" %}
6669 opcode(Assembler::sdivx_op3, Assembler::arith_op);
6670 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6671 ins_pipe(divL_reg_imm);
6672 %}
6673
6674 // Integer Remainder
6675 // Register Remainder
6676 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
6677 match(Set dst (ModI src1 src2));
6678 effect( KILL ccr, KILL temp);
6679
6680 format %{ "SREM $src1,$src2,$dst" %}
6681 ins_encode( irem_reg(src1, src2, dst, temp) );
6682 ins_pipe(sdiv_reg_reg);
6683 %}
6684
6685 // Immediate Remainder
6686 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
6687 match(Set dst (ModI src1 src2));
6688 effect( KILL ccr, KILL temp);
6689
6690 format %{ "SREM $src1,$src2,$dst" %}
6691 ins_encode( irem_imm(src1, src2, dst, temp) );
6692 ins_pipe(sdiv_reg_imm);
6693 %}
6694
6695 // Register Long Remainder
6696 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
6697 effect(DEF dst, USE src1, USE src2);
6698 size(4);
6699 format %{ "SDIVX $src1,$src2,$dst\t! long" %}
6700 opcode(Assembler::sdivx_op3, Assembler::arith_op);
6701 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6702 ins_pipe(divL_reg_reg);
6703 %}
6704
6705 // Register Long Division
6706 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
6707 effect(DEF dst, USE src1, USE src2);
6708 size(4);
6709 format %{ "SDIVX $src1,$src2,$dst\t! long" %}
6710 opcode(Assembler::sdivx_op3, Assembler::arith_op);
6711 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6712 ins_pipe(divL_reg_imm);
6713 %}
6714
6715 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
6716 effect(DEF dst, USE src1, USE src2);
6717 size(4);
6718 format %{ "MULX $src1,$src2,$dst\t! long" %}
6719 opcode(Assembler::mulx_op3, Assembler::arith_op);
6720 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6721 ins_pipe(mulL_reg_reg);
6722 %}
6723
6724 // Immediate Multiplication
6725 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
6726 effect(DEF dst, USE src1, USE src2);
6727 size(4);
6728 format %{ "MULX $src1,$src2,$dst" %}
6729 opcode(Assembler::mulx_op3, Assembler::arith_op);
6730 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6731 ins_pipe(mulL_reg_imm);
6732 %}
6733
6734 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
6735 effect(DEF dst, USE src1, USE src2);
6736 size(4);
6737 format %{ "SUB $src1,$src2,$dst\t! long" %}
6738 opcode(Assembler::sub_op3, Assembler::arith_op);
6739 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6740 ins_pipe(ialu_reg_reg);
6741 %}
6742
6743 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
6744 effect(DEF dst, USE src1, USE src2);
6745 size(4);
6746 format %{ "SUB $src1,$src2,$dst\t! long" %}
6747 opcode(Assembler::sub_op3, Assembler::arith_op);
6748 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6749 ins_pipe(ialu_reg_reg);
6750 %}
6751
6752 // Register Long Remainder
6753 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6754 match(Set dst (ModL src1 src2));
6755 ins_cost(DEFAULT_COST*(71 + 6 + 1));
6756 expand %{
6757 iRegL tmp1;
6758 iRegL tmp2;
6759 divL_reg_reg_1(tmp1, src1, src2);
6760 mulL_reg_reg_1(tmp2, tmp1, src2);
6761 subL_reg_reg_1(dst, src1, tmp2);
6762 %}
6763 %}
6764
6765 // Register Long Remainder
6766 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
6767 match(Set dst (ModL src1 src2));
6768 ins_cost(DEFAULT_COST*(71 + 6 + 1));
6769 expand %{
6770 iRegL tmp1;
6771 iRegL tmp2;
6772 divL_reg_imm13_1(tmp1, src1, src2);
6773 mulL_reg_imm13_1(tmp2, tmp1, src2);
6774 subL_reg_reg_2 (dst, src1, tmp2);
6775 %}
6776 %}
6777
6778 // Integer Shift Instructions
6779 // Register Shift Left
6780 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6781 match(Set dst (LShiftI src1 src2));
6782
6783 size(4);
6784 format %{ "SLL $src1,$src2,$dst" %}
6785 opcode(Assembler::sll_op3, Assembler::arith_op);
6786 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6787 ins_pipe(ialu_reg_reg);
6788 %}
6789
6790 // Register Shift Left Immediate
6791 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
6792 match(Set dst (LShiftI src1 src2));
6793
6794 size(4);
6795 format %{ "SLL $src1,$src2,$dst" %}
6796 opcode(Assembler::sll_op3, Assembler::arith_op);
6797 ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
6798 ins_pipe(ialu_reg_imm);
6799 %}
6800
6801 // Register Shift Left
6802 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
6803 match(Set dst (LShiftL src1 src2));
6804
6805 size(4);
6806 format %{ "SLLX $src1,$src2,$dst" %}
6807 opcode(Assembler::sllx_op3, Assembler::arith_op);
6808 ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
6809 ins_pipe(ialu_reg_reg);
6810 %}
6811
6812 // Register Shift Left Immediate
6813 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
6814 match(Set dst (LShiftL src1 src2));
6815
6816 size(4);
6817 format %{ "SLLX $src1,$src2,$dst" %}
6818 opcode(Assembler::sllx_op3, Assembler::arith_op);
6819 ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
6820 ins_pipe(ialu_reg_imm);
6821 %}
6822
6823 // Register Arithmetic Shift Right
6824 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6825 match(Set dst (RShiftI src1 src2));
6826 size(4);
6827 format %{ "SRA $src1,$src2,$dst" %}
6828 opcode(Assembler::sra_op3, Assembler::arith_op);
6829 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6830 ins_pipe(ialu_reg_reg);
6831 %}
6832
6833 // Register Arithmetic Shift Right Immediate
6834 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
6835 match(Set dst (RShiftI src1 src2));
6836
6837 size(4);
6838 format %{ "SRA $src1,$src2,$dst" %}
6839 opcode(Assembler::sra_op3, Assembler::arith_op);
6840 ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
6841 ins_pipe(ialu_reg_imm);
6842 %}
6843
6844 // Register Shift Right Arithmatic Long
6845 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
6846 match(Set dst (RShiftL src1 src2));
6847
6848 size(4);
6849 format %{ "SRAX $src1,$src2,$dst" %}
6850 opcode(Assembler::srax_op3, Assembler::arith_op);
6851 ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
6852 ins_pipe(ialu_reg_reg);
6853 %}
6854
6855 // Register Shift Left Immediate
6856 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
6857 match(Set dst (RShiftL src1 src2));
6858
6859 size(4);
6860 format %{ "SRAX $src1,$src2,$dst" %}
6861 opcode(Assembler::srax_op3, Assembler::arith_op);
6862 ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
6863 ins_pipe(ialu_reg_imm);
6864 %}
6865
6866 // Register Shift Right
6867 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6868 match(Set dst (URShiftI src1 src2));
6869
6870 size(4);
6871 format %{ "SRL $src1,$src2,$dst" %}
6872 opcode(Assembler::srl_op3, Assembler::arith_op);
6873 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6874 ins_pipe(ialu_reg_reg);
6875 %}
6876
6877 // Register Shift Right Immediate
6878 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
6879 match(Set dst (URShiftI src1 src2));
6880
6881 size(4);
6882 format %{ "SRL $src1,$src2,$dst" %}
6883 opcode(Assembler::srl_op3, Assembler::arith_op);
6884 ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
6885 ins_pipe(ialu_reg_imm);
6886 %}
6887
6888 // Register Shift Right
6889 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
6890 match(Set dst (URShiftL src1 src2));
6891
6892 size(4);
6893 format %{ "SRLX $src1,$src2,$dst" %}
6894 opcode(Assembler::srlx_op3, Assembler::arith_op);
6895 ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
6896 ins_pipe(ialu_reg_reg);
6897 %}
6898
6899 // Register Shift Right Immediate
6900 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
6901 match(Set dst (URShiftL src1 src2));
6902
6903 size(4);
6904 format %{ "SRLX $src1,$src2,$dst" %}
6905 opcode(Assembler::srlx_op3, Assembler::arith_op);
6906 ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
6907 ins_pipe(ialu_reg_imm);
6908 %}
6909
6910 // Register Shift Right Immediate with a CastP2X
6911 #ifdef _LP64
6912 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
6913 match(Set dst (URShiftL (CastP2X src1) src2));
6914 size(4);
6915 format %{ "SRLX $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
6916 opcode(Assembler::srlx_op3, Assembler::arith_op);
6917 ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
6918 ins_pipe(ialu_reg_imm);
6919 %}
6920 #else
6921 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
6922 match(Set dst (URShiftI (CastP2X src1) src2));
6923 size(4);
6924 format %{ "SRL $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
6925 opcode(Assembler::srl_op3, Assembler::arith_op);
6926 ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
6927 ins_pipe(ialu_reg_imm);
6928 %}
6929 #endif
6930
6931
6932 //----------Floating Point Arithmetic Instructions-----------------------------
6933
6934 // Add float single precision
6935 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
6936 match(Set dst (AddF src1 src2));
6937
6938 size(4);
6939 format %{ "FADDS $src1,$src2,$dst" %}
6940 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
6941 ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
6942 ins_pipe(faddF_reg_reg);
6943 %}
6944
6945 // Add float double precision
6946 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
6947 match(Set dst (AddD src1 src2));
6948
6949 size(4);
6950 format %{ "FADDD $src1,$src2,$dst" %}
6951 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
6952 ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
6953 ins_pipe(faddD_reg_reg);
6954 %}
6955
6956 // Sub float single precision
6957 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
6958 match(Set dst (SubF src1 src2));
6959
6960 size(4);
6961 format %{ "FSUBS $src1,$src2,$dst" %}
6962 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
6963 ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
6964 ins_pipe(faddF_reg_reg);
6965 %}
6966
6967 // Sub float double precision
6968 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
6969 match(Set dst (SubD src1 src2));
6970
6971 size(4);
6972 format %{ "FSUBD $src1,$src2,$dst" %}
6973 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
6974 ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
6975 ins_pipe(faddD_reg_reg);
6976 %}
6977
6978 // Mul float single precision
6979 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
6980 match(Set dst (MulF src1 src2));
6981
6982 size(4);
6983 format %{ "FMULS $src1,$src2,$dst" %}
6984 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
6985 ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
6986 ins_pipe(fmulF_reg_reg);
6987 %}
6988
6989 // Mul float double precision
6990 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
6991 match(Set dst (MulD src1 src2));
6992
6993 size(4);
6994 format %{ "FMULD $src1,$src2,$dst" %}
6995 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
6996 ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
6997 ins_pipe(fmulD_reg_reg);
6998 %}
6999
7000 // Div float single precision
7001 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7002 match(Set dst (DivF src1 src2));
7003
7004 size(4);
7005 format %{ "FDIVS $src1,$src2,$dst" %}
7006 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7007 ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7008 ins_pipe(fdivF_reg_reg);
7009 %}
7010
7011 // Div float double precision
7012 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7013 match(Set dst (DivD src1 src2));
7014
7015 size(4);
7016 format %{ "FDIVD $src1,$src2,$dst" %}
7017 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7018 ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7019 ins_pipe(fdivD_reg_reg);
7020 %}
7021
7022 // Absolute float double precision
7023 instruct absD_reg(regD dst, regD src) %{
7024 match(Set dst (AbsD src));
7025
7026 format %{ "FABSd $src,$dst" %}
7027 ins_encode(fabsd(dst, src));
7028 ins_pipe(faddD_reg);
7029 %}
7030
7031 // Absolute float single precision
7032 instruct absF_reg(regF dst, regF src) %{
7033 match(Set dst (AbsF src));
7034
7035 format %{ "FABSs $src,$dst" %}
7036 ins_encode(fabss(dst, src));
7037 ins_pipe(faddF_reg);
7038 %}
7039
7040 instruct negF_reg(regF dst, regF src) %{
7041 match(Set dst (NegF src));
7042
7043 size(4);
7044 format %{ "FNEGs $src,$dst" %}
7045 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7046 ins_encode(form3_opf_rs2F_rdF(src, dst));
7047 ins_pipe(faddF_reg);
7048 %}
7049
7050 instruct negD_reg(regD dst, regD src) %{
7051 match(Set dst (NegD src));
7052
7053 format %{ "FNEGd $src,$dst" %}
7054 ins_encode(fnegd(dst, src));
7055 ins_pipe(faddD_reg);
7056 %}
7057
7058 // Sqrt float double precision
7059 instruct sqrtF_reg_reg(regF dst, regF src) %{
7060 match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7061
7062 size(4);
7063 format %{ "FSQRTS $src,$dst" %}
7064 ins_encode(fsqrts(dst, src));
7065 ins_pipe(fdivF_reg_reg);
7066 %}
7067
7068 // Sqrt float double precision
7069 instruct sqrtD_reg_reg(regD dst, regD src) %{
7070 match(Set dst (SqrtD src));
7071
7072 size(4);
7073 format %{ "FSQRTD $src,$dst" %}
7074 ins_encode(fsqrtd(dst, src));
7075 ins_pipe(fdivD_reg_reg);
7076 %}
7077
7078 //----------Logical Instructions-----------------------------------------------
7079 // And Instructions
7080 // Register And
7081 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7082 match(Set dst (AndI src1 src2));
7083
7084 size(4);
7085 format %{ "AND $src1,$src2,$dst" %}
7086 opcode(Assembler::and_op3, Assembler::arith_op);
7087 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7088 ins_pipe(ialu_reg_reg);
7089 %}
7090
7091 // Immediate And
7092 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7093 match(Set dst (AndI src1 src2));
7094
7095 size(4);
7096 format %{ "AND $src1,$src2,$dst" %}
7097 opcode(Assembler::and_op3, Assembler::arith_op);
7098 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7099 ins_pipe(ialu_reg_imm);
7100 %}
7101
7102 // Register And Long
7103 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7104 match(Set dst (AndL src1 src2));
7105
7106 ins_cost(DEFAULT_COST);
7107 size(4);
7108 format %{ "AND $src1,$src2,$dst\t! long" %}
7109 opcode(Assembler::and_op3, Assembler::arith_op);
7110 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7111 ins_pipe(ialu_reg_reg);
7112 %}
7113
7114 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7115 match(Set dst (AndL src1 con));
7116
7117 ins_cost(DEFAULT_COST);
7118 size(4);
7119 format %{ "AND $src1,$con,$dst\t! long" %}
7120 opcode(Assembler::and_op3, Assembler::arith_op);
7121 ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7122 ins_pipe(ialu_reg_imm);
7123 %}
7124
7125 // Or Instructions
7126 // Register Or
7127 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7128 match(Set dst (OrI src1 src2));
7129
7130 size(4);
7131 format %{ "OR $src1,$src2,$dst" %}
7132 opcode(Assembler::or_op3, Assembler::arith_op);
7133 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7134 ins_pipe(ialu_reg_reg);
7135 %}
7136
7137 // Immediate Or
7138 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7139 match(Set dst (OrI src1 src2));
7140
7141 size(4);
7142 format %{ "OR $src1,$src2,$dst" %}
7143 opcode(Assembler::or_op3, Assembler::arith_op);
7144 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7145 ins_pipe(ialu_reg_imm);
7146 %}
7147
7148 // Register Or Long
7149 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7150 match(Set dst (OrL src1 src2));
7151
7152 ins_cost(DEFAULT_COST);
7153 size(4);
7154 format %{ "OR $src1,$src2,$dst\t! long" %}
7155 opcode(Assembler::or_op3, Assembler::arith_op);
7156 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7157 ins_pipe(ialu_reg_reg);
7158 %}
7159
7160 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7161 match(Set dst (OrL src1 con));
7162 ins_cost(DEFAULT_COST*2);
7163
7164 ins_cost(DEFAULT_COST);
7165 size(4);
7166 format %{ "OR $src1,$con,$dst\t! long" %}
7167 opcode(Assembler::or_op3, Assembler::arith_op);
7168 ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7169 ins_pipe(ialu_reg_imm);
7170 %}
7171
7172 // Xor Instructions
7173 // Register Xor
7174 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7175 match(Set dst (XorI src1 src2));
7176
7177 size(4);
7178 format %{ "XOR $src1,$src2,$dst" %}
7179 opcode(Assembler::xor_op3, Assembler::arith_op);
7180 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7181 ins_pipe(ialu_reg_reg);
7182 %}
7183
7184 // Immediate Xor
7185 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7186 match(Set dst (XorI src1 src2));
7187
7188 size(4);
7189 format %{ "XOR $src1,$src2,$dst" %}
7190 opcode(Assembler::xor_op3, Assembler::arith_op);
7191 ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7192 ins_pipe(ialu_reg_imm);
7193 %}
7194
7195 // Register Xor Long
7196 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7197 match(Set dst (XorL src1 src2));
7198
7199 ins_cost(DEFAULT_COST);
7200 size(4);
7201 format %{ "XOR $src1,$src2,$dst\t! long" %}
7202 opcode(Assembler::xor_op3, Assembler::arith_op);
7203 ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7204 ins_pipe(ialu_reg_reg);
7205 %}
7206
7207 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7208 match(Set dst (XorL src1 con));
7209
7210 ins_cost(DEFAULT_COST);
7211 size(4);
7212 format %{ "XOR $src1,$con,$dst\t! long" %}
7213 opcode(Assembler::xor_op3, Assembler::arith_op);
7214 ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7215 ins_pipe(ialu_reg_imm);
7216 %}
7217
7218 //----------Convert to Boolean-------------------------------------------------
7219 // Nice hack for 32-bit tests but doesn't work for
7220 // 64-bit pointers.
7221 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7222 match(Set dst (Conv2B src));
7223 effect( KILL ccr );
7224 ins_cost(DEFAULT_COST*2);
7225 format %{ "CMP R_G0,$src\n\t"
7226 "ADDX R_G0,0,$dst" %}
7227 ins_encode( enc_to_bool( src, dst ) );
7228 ins_pipe(ialu_reg_ialu);
7229 %}
7230
7231 #ifndef _LP64
7232 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7233 match(Set dst (Conv2B src));
7234 effect( KILL ccr );
7235 ins_cost(DEFAULT_COST*2);
7236 format %{ "CMP R_G0,$src\n\t"
7237 "ADDX R_G0,0,$dst" %}
7238 ins_encode( enc_to_bool( src, dst ) );
7239 ins_pipe(ialu_reg_ialu);
7240 %}
7241 #else
7242 instruct convP2B( iRegI dst, iRegP src ) %{
7243 match(Set dst (Conv2B src));
7244 ins_cost(DEFAULT_COST*2);
7245 format %{ "MOV $src,$dst\n\t"
7246 "MOVRNZ $src,1,$dst" %}
7247 ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7248 ins_pipe(ialu_clr_and_mover);
7249 %}
7250 #endif
7251
7252 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7253 match(Set dst (CmpLTMask p q));
7254 effect( KILL ccr );
7255 ins_cost(DEFAULT_COST*4);
7256 format %{ "CMP $p,$q\n\t"
7257 "MOV #0,$dst\n\t"
7258 "BLT,a .+8\n\t"
7259 "MOV #-1,$dst" %}
7260 ins_encode( enc_ltmask(p,q,dst) );
7261 ins_pipe(ialu_reg_reg_ialu);
7262 %}
7263
7264 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7265 match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7266 effect(KILL ccr, TEMP tmp);
7267 ins_cost(DEFAULT_COST*3);
7268
7269 format %{ "SUBcc $p,$q,$p\t! p' = p-q\n\t"
7270 "ADD $p,$y,$tmp\t! g3=p-q+y\n\t"
7271 "MOVl $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7272 ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7273 ins_pipe( cadd_cmpltmask );
7274 %}
7275
7276 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7277 match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
7278 effect( KILL ccr, TEMP tmp);
7279 ins_cost(DEFAULT_COST*3);
7280
7281 format %{ "SUBcc $p,$q,$p\t! p' = p-q\n\t"
7282 "ADD $p,$y,$tmp\t! g3=p-q+y\n\t"
7283 "MOVl $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7284 ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7285 ins_pipe( cadd_cmpltmask );
7286 %}
7287
7288 //----------Arithmetic Conversion Instructions---------------------------------
7289 // The conversions operations are all Alpha sorted. Please keep it that way!
7290
7291 instruct convD2F_reg(regF dst, regD src) %{
7292 match(Set dst (ConvD2F src));
7293 size(4);
7294 format %{ "FDTOS $src,$dst" %}
7295 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7296 ins_encode(form3_opf_rs2D_rdF(src, dst));
7297 ins_pipe(fcvtD2F);
7298 %}
7299
7300
7301 // Convert a double to an int in a float register.
7302 // If the double is a NAN, stuff a zero in instead.
7303 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
7304 effect(DEF dst, USE src, KILL fcc0);
7305 format %{ "FCMPd fcc0,$src,$src\t! check for NAN\n\t"
7306 "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7307 "FDTOI $src,$dst\t! convert in delay slot\n\t"
7308 "FITOS $dst,$dst\t! change NaN/max-int to valid float\n\t"
7309 "FSUBs $dst,$dst,$dst\t! cleared only if nan\n"
7310 "skip:" %}
7311 ins_encode(form_d2i_helper(src,dst));
7312 ins_pipe(fcvtD2I);
7313 %}
7314
7315 instruct convD2I_reg(stackSlotI dst, regD src) %{
7316 match(Set dst (ConvD2I src));
7317 ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7318 expand %{
7319 regF tmp;
7320 convD2I_helper(tmp, src);
7321 regF_to_stkI(dst, tmp);
7322 %}
7323 %}
7324
7325 // Convert a double to a long in a double register.
7326 // If the double is a NAN, stuff a zero in instead.
7327 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
7328 effect(DEF dst, USE src, KILL fcc0);
7329 format %{ "FCMPd fcc0,$src,$src\t! check for NAN\n\t"
7330 "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7331 "FDTOX $src,$dst\t! convert in delay slot\n\t"
7332 "FXTOD $dst,$dst\t! change NaN/max-long to valid double\n\t"
7333 "FSUBd $dst,$dst,$dst\t! cleared only if nan\n"
7334 "skip:" %}
7335 ins_encode(form_d2l_helper(src,dst));
7336 ins_pipe(fcvtD2L);
7337 %}
7338
7339
7340 // Double to Long conversion
7341 instruct convD2L_reg(stackSlotL dst, regD src) %{
7342 match(Set dst (ConvD2L src));
7343 ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7344 expand %{
7345 regD tmp;
7346 convD2L_helper(tmp, src);
7347 regD_to_stkL(dst, tmp);
7348 %}
7349 %}
7350
7351
7352 instruct convF2D_reg(regD dst, regF src) %{
7353 match(Set dst (ConvF2D src));
7354 format %{ "FSTOD $src,$dst" %}
7355 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
7356 ins_encode(form3_opf_rs2F_rdD(src, dst));
7357 ins_pipe(fcvtF2D);
7358 %}
7359
7360
7361 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
7362 effect(DEF dst, USE src, KILL fcc0);
7363 format %{ "FCMPs fcc0,$src,$src\t! check for NAN\n\t"
7364 "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7365 "FSTOI $src,$dst\t! convert in delay slot\n\t"
7366 "FITOS $dst,$dst\t! change NaN/max-int to valid float\n\t"
7367 "FSUBs $dst,$dst,$dst\t! cleared only if nan\n"
7368 "skip:" %}
7369 ins_encode(form_f2i_helper(src,dst));
7370 ins_pipe(fcvtF2I);
7371 %}
7372
7373 instruct convF2I_reg(stackSlotI dst, regF src) %{
7374 match(Set dst (ConvF2I src));
7375 ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7376 expand %{
7377 regF tmp;
7378 convF2I_helper(tmp, src);
7379 regF_to_stkI(dst, tmp);
7380 %}
7381 %}
7382
7383
7384 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
7385 effect(DEF dst, USE src, KILL fcc0);
7386 format %{ "FCMPs fcc0,$src,$src\t! check for NAN\n\t"
7387 "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7388 "FSTOX $src,$dst\t! convert in delay slot\n\t"
7389 "FXTOD $dst,$dst\t! change NaN/max-long to valid double\n\t"
7390 "FSUBd $dst,$dst,$dst\t! cleared only if nan\n"
7391 "skip:" %}
7392 ins_encode(form_f2l_helper(src,dst));
7393 ins_pipe(fcvtF2L);
7394 %}
7395
7396 // Float to Long conversion
7397 instruct convF2L_reg(stackSlotL dst, regF src) %{
7398 match(Set dst (ConvF2L src));
7399 ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7400 expand %{
7401 regD tmp;
7402 convF2L_helper(tmp, src);
7403 regD_to_stkL(dst, tmp);
7404 %}
7405 %}
7406
7407
7408 instruct convI2D_helper(regD dst, regF tmp) %{
7409 effect(USE tmp, DEF dst);
7410 format %{ "FITOD $tmp,$dst" %}
7411 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
7412 ins_encode(form3_opf_rs2F_rdD(tmp, dst));
7413 ins_pipe(fcvtI2D);
7414 %}
7415
7416 instruct convI2D_reg(stackSlotI src, regD dst) %{
7417 match(Set dst (ConvI2D src));
7418 ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7419 expand %{
7420 regF tmp;
7421 stkI_to_regF( tmp, src);
7422 convI2D_helper( dst, tmp);
7423 %}
7424 %}
7425
7426 instruct convI2D_mem( regD_low dst, memory mem ) %{
7427 match(Set dst (ConvI2D (LoadI mem)));
7428 ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7429 size(8);
7430 format %{ "LDF $mem,$dst\n\t"
7431 "FITOD $dst,$dst" %}
7432 opcode(Assembler::ldf_op3, Assembler::fitod_opf);
7433 ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7434 ins_pipe(floadF_mem);
7435 %}
7436
7437
7438 instruct convI2F_helper(regF dst, regF tmp) %{
7439 effect(DEF dst, USE tmp);
7440 format %{ "FITOS $tmp,$dst" %}
7441 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
7442 ins_encode(form3_opf_rs2F_rdF(tmp, dst));
7443 ins_pipe(fcvtI2F);
7444 %}
7445
7446 instruct convI2F_reg( regF dst, stackSlotI src ) %{
7447 match(Set dst (ConvI2F src));
7448 ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7449 expand %{
7450 regF tmp;
7451 stkI_to_regF(tmp,src);
7452 convI2F_helper(dst, tmp);
7453 %}
7454 %}
7455
7456 instruct convI2F_mem( regF dst, memory mem ) %{
7457 match(Set dst (ConvI2F (LoadI mem)));
7458 ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7459 size(8);
7460 format %{ "LDF $mem,$dst\n\t"
7461 "FITOS $dst,$dst" %}
7462 opcode(Assembler::ldf_op3, Assembler::fitos_opf);
7463 ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7464 ins_pipe(floadF_mem);
7465 %}
7466
7467
7468 instruct convI2L_reg(iRegL dst, iRegI src) %{
7469 match(Set dst (ConvI2L src));
7470 size(4);
7471 format %{ "SRA $src,0,$dst\t! int->long" %}
7472 opcode(Assembler::sra_op3, Assembler::arith_op);
7473 ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7474 ins_pipe(ialu_reg_reg);
7475 %}
7476
7477 // Zero-extend convert int to long
7478 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
7479 match(Set dst (AndL (ConvI2L src) mask) );
7480 size(4);
7481 format %{ "SRL $src,0,$dst\t! zero-extend int to long" %}
7482 opcode(Assembler::srl_op3, Assembler::arith_op);
7483 ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7484 ins_pipe(ialu_reg_reg);
7485 %}
7486
7487 // Zero-extend long
7488 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
7489 match(Set dst (AndL src mask) );
7490 size(4);
7491 format %{ "SRL $src,0,$dst\t! zero-extend long" %}
7492 opcode(Assembler::srl_op3, Assembler::arith_op);
7493 ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7494 ins_pipe(ialu_reg_reg);
7495 %}
7496
7497 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
7498 match(Set dst (MoveF2I src));
7499 effect(DEF dst, USE src);
7500 ins_cost(MEMORY_REF_COST);
7501
7502 size(4);
7503 format %{ "LDUW $src,$dst\t! MoveF2I" %}
7504 opcode(Assembler::lduw_op3);
7505 ins_encode( form3_mem_reg( src, dst ) );
7506 ins_pipe(iload_mem);
7507 %}
7508
7509 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
7510 match(Set dst (MoveI2F src));
7511 effect(DEF dst, USE src);
7512 ins_cost(MEMORY_REF_COST);
7513
7514 size(4);
7515 format %{ "LDF $src,$dst\t! MoveI2F" %}
7516 opcode(Assembler::ldf_op3);
7517 ins_encode(form3_mem_reg(src, dst));
7518 ins_pipe(floadF_stk);
7519 %}
7520
7521 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
7522 match(Set dst (MoveD2L src));
7523 effect(DEF dst, USE src);
7524 ins_cost(MEMORY_REF_COST);
7525
7526 size(4);
7527 format %{ "LDX $src,$dst\t! MoveD2L" %}
7528 opcode(Assembler::ldx_op3);
7529 ins_encode( form3_mem_reg( src, dst ) );
7530 ins_pipe(iload_mem);
7531 %}
7532
7533 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
7534 match(Set dst (MoveL2D src));
7535 effect(DEF dst, USE src);
7536 ins_cost(MEMORY_REF_COST);
7537
7538 size(4);
7539 format %{ "LDDF $src,$dst\t! MoveL2D" %}
7540 opcode(Assembler::lddf_op3);
7541 ins_encode(form3_mem_reg(src, dst));
7542 ins_pipe(floadD_stk);
7543 %}
7544
7545 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
7546 match(Set dst (MoveF2I src));
7547 effect(DEF dst, USE src);
7548 ins_cost(MEMORY_REF_COST);
7549
7550 size(4);
7551 format %{ "STF $src,$dst\t!MoveF2I" %}
7552 opcode(Assembler::stf_op3);
7553 ins_encode(form3_mem_reg(dst, src));
7554 ins_pipe(fstoreF_stk_reg);
7555 %}
7556
7557 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
7558 match(Set dst (MoveI2F src));
7559 effect(DEF dst, USE src);
7560 ins_cost(MEMORY_REF_COST);
7561
7562 size(4);
7563 format %{ "STW $src,$dst\t!MoveI2F" %}
7564 opcode(Assembler::stw_op3);
7565 ins_encode( form3_mem_reg( dst, src ) );
7566 ins_pipe(istore_mem_reg);
7567 %}
7568
7569 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
7570 match(Set dst (MoveD2L src));
7571 effect(DEF dst, USE src);
7572 ins_cost(MEMORY_REF_COST);
7573
7574 size(4);
7575 format %{ "STDF $src,$dst\t!MoveD2L" %}
7576 opcode(Assembler::stdf_op3);
7577 ins_encode(form3_mem_reg(dst, src));
7578 ins_pipe(fstoreD_stk_reg);
7579 %}
7580
7581 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
7582 match(Set dst (MoveL2D src));
7583 effect(DEF dst, USE src);
7584 ins_cost(MEMORY_REF_COST);
7585
7586 size(4);
7587 format %{ "STX $src,$dst\t!MoveL2D" %}
7588 opcode(Assembler::stx_op3);
7589 ins_encode( form3_mem_reg( dst, src ) );
7590 ins_pipe(istore_mem_reg);
7591 %}
7592
7593
7594 //-----------
7595 // Long to Double conversion using V8 opcodes.
7596 // Still useful because cheetah traps and becomes
7597 // amazingly slow for some common numbers.
7598
7599 // Magic constant, 0x43300000
7600 instruct loadConI_x43300000(iRegI dst) %{
7601 effect(DEF dst);
7602 size(4);
7603 format %{ "SETHI HI(0x43300000),$dst\t! 2^52" %}
7604 ins_encode(SetHi22(0x43300000, dst));
7605 ins_pipe(ialu_none);
7606 %}
7607
7608 // Magic constant, 0x41f00000
7609 instruct loadConI_x41f00000(iRegI dst) %{
7610 effect(DEF dst);
7611 size(4);
7612 format %{ "SETHI HI(0x41f00000),$dst\t! 2^32" %}
7613 ins_encode(SetHi22(0x41f00000, dst));
7614 ins_pipe(ialu_none);
7615 %}
7616
7617 // Construct a double from two float halves
7618 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
7619 effect(DEF dst, USE src1, USE src2);
7620 size(8);
7621 format %{ "FMOVS $src1.hi,$dst.hi\n\t"
7622 "FMOVS $src2.lo,$dst.lo" %}
7623 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
7624 ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
7625 ins_pipe(faddD_reg_reg);
7626 %}
7627
7628 // Convert integer in high half of a double register (in the lower half of
7629 // the double register file) to double
7630 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
7631 effect(DEF dst, USE src);
7632 size(4);
7633 format %{ "FITOD $src,$dst" %}
7634 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
7635 ins_encode(form3_opf_rs2D_rdD(src, dst));
7636 ins_pipe(fcvtLHi2D);
7637 %}
7638
7639 // Add float double precision
7640 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
7641 effect(DEF dst, USE src1, USE src2);
7642 size(4);
7643 format %{ "FADDD $src1,$src2,$dst" %}
7644 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7645 ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7646 ins_pipe(faddD_reg_reg);
7647 %}
7648
7649 // Sub float double precision
7650 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
7651 effect(DEF dst, USE src1, USE src2);
7652 size(4);
7653 format %{ "FSUBD $src1,$src2,$dst" %}
7654 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7655 ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7656 ins_pipe(faddD_reg_reg);
7657 %}
7658
7659 // Mul float double precision
7660 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
7661 effect(DEF dst, USE src1, USE src2);
7662 size(4);
7663 format %{ "FMULD $src1,$src2,$dst" %}
7664 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7665 ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7666 ins_pipe(fmulD_reg_reg);
7667 %}
7668
7669 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
7670 match(Set dst (ConvL2D src));
7671 ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
7672
7673 expand %{
7674 regD_low tmpsrc;
7675 iRegI ix43300000;
7676 iRegI ix41f00000;
7677 stackSlotL lx43300000;
7678 stackSlotL lx41f00000;
7679 regD_low dx43300000;
7680 regD dx41f00000;
7681 regD tmp1;
7682 regD_low tmp2;
7683 regD tmp3;
7684 regD tmp4;
7685
7686 stkL_to_regD(tmpsrc, src);
7687
7688 loadConI_x43300000(ix43300000);
7689 loadConI_x41f00000(ix41f00000);
7690 regI_to_stkLHi(lx43300000, ix43300000);
7691 regI_to_stkLHi(lx41f00000, ix41f00000);
7692 stkL_to_regD(dx43300000, lx43300000);
7693 stkL_to_regD(dx41f00000, lx41f00000);
7694
7695 convI2D_regDHi_regD(tmp1, tmpsrc);
7696 regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
7697 subD_regD_regD(tmp3, tmp2, dx43300000);
7698 mulD_regD_regD(tmp4, tmp1, dx41f00000);
7699 addD_regD_regD(dst, tmp3, tmp4);
7700 %}
7701 %}
7702
7703 // Long to Double conversion using fast fxtof
7704 instruct convL2D_helper(regD dst, regD tmp) %{
7705 effect(DEF dst, USE tmp);
7706 size(4);
7707 format %{ "FXTOD $tmp,$dst" %}
7708 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
7709 ins_encode(form3_opf_rs2D_rdD(tmp, dst));
7710 ins_pipe(fcvtL2D);
7711 %}
7712
7713 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
7714 predicate(VM_Version::has_fast_fxtof());
7715 match(Set dst (ConvL2D src));
7716 ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
7717 expand %{
7718 regD tmp;
7719 stkL_to_regD(tmp, src);
7720 convL2D_helper(dst, tmp);
7721 %}
7722 %}
7723
7724 //-----------
7725 // Long to Float conversion using V8 opcodes.
7726 // Still useful because cheetah traps and becomes
7727 // amazingly slow for some common numbers.
7728
7729 // Long to Float conversion using fast fxtof
7730 instruct convL2F_helper(regF dst, regD tmp) %{
7731 effect(DEF dst, USE tmp);
7732 size(4);
7733 format %{ "FXTOS $tmp,$dst" %}
7734 opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
7735 ins_encode(form3_opf_rs2D_rdF(tmp, dst));
7736 ins_pipe(fcvtL2F);
7737 %}
7738
7739 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
7740 match(Set dst (ConvL2F src));
7741 ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7742 expand %{
7743 regD tmp;
7744 stkL_to_regD(tmp, src);
7745 convL2F_helper(dst, tmp);
7746 %}
7747 %}
7748 //-----------
7749
7750 instruct convL2I_reg(iRegI dst, iRegL src) %{
7751 match(Set dst (ConvL2I src));
7752 #ifndef _LP64
7753 format %{ "MOV $src.lo,$dst\t! long->int" %}
7754 ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
7755 ins_pipe(ialu_move_reg_I_to_L);
7756 #else
7757 size(4);
7758 format %{ "SRA $src,R_G0,$dst\t! long->int" %}
7759 ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
7760 ins_pipe(ialu_reg);
7761 #endif
7762 %}
7763
7764 // Register Shift Right Immediate
7765 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
7766 match(Set dst (ConvL2I (RShiftL src cnt)));
7767
7768 size(4);
7769 format %{ "SRAX $src,$cnt,$dst" %}
7770 opcode(Assembler::srax_op3, Assembler::arith_op);
7771 ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
7772 ins_pipe(ialu_reg_imm);
7773 %}
7774
7775 // Replicate scalar to packed byte values in Double register
7776 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
7777 effect(DEF dst, USE src);
7778 format %{ "SLLX $src,56,$dst\n\t"
7779 "SRLX $dst, 8,O7\n\t"
7780 "OR $dst,O7,$dst\n\t"
7781 "SRLX $dst,16,O7\n\t"
7782 "OR $dst,O7,$dst\n\t"
7783 "SRLX $dst,32,O7\n\t"
7784 "OR $dst,O7,$dst\t! replicate8B" %}
7785 ins_encode( enc_repl8b(src, dst));
7786 ins_pipe(ialu_reg);
7787 %}
7788
7789 // Replicate scalar to packed byte values in Double register
7790 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
7791 match(Set dst (Replicate8B src));
7792 expand %{
7793 iRegL tmp;
7794 Repl8B_reg_helper(tmp, src);
7795 regL_to_stkD(dst, tmp);
7796 %}
7797 %}
7798
7799 // Replicate scalar constant to packed byte values in Double register
7800 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
7801 match(Set dst (Replicate8B src));
7802 #ifdef _LP64
7803 size(36);
7804 #else
7805 size(8);
7806 #endif
7807 format %{ "SETHI hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
7808 "LDDF [$tmp+lo(&Repl8($src))],$dst" %}
7809 ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
7810 ins_pipe(loadConFD);
7811 %}
7812
7813 // Replicate scalar to packed char values into stack slot
7814 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
7815 effect(DEF dst, USE src);
7816 format %{ "SLLX $src,48,$dst\n\t"
7817 "SRLX $dst,16,O7\n\t"
7818 "OR $dst,O7,$dst\n\t"
7819 "SRLX $dst,32,O7\n\t"
7820 "OR $dst,O7,$dst\t! replicate4C" %}
7821 ins_encode( enc_repl4s(src, dst) );
7822 ins_pipe(ialu_reg);
7823 %}
7824
7825 // Replicate scalar to packed char values into stack slot
7826 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
7827 match(Set dst (Replicate4C src));
7828 expand %{
7829 iRegL tmp;
7830 Repl4C_reg_helper(tmp, src);
7831 regL_to_stkD(dst, tmp);
7832 %}
7833 %}
7834
7835 // Replicate scalar constant to packed char values in Double register
7836 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
7837 match(Set dst (Replicate4C src));
7838 #ifdef _LP64
7839 size(36);
7840 #else
7841 size(8);
7842 #endif
7843 format %{ "SETHI hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
7844 "LDDF [$tmp+lo(&Repl4($src))],$dst" %}
7845 ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
7846 ins_pipe(loadConFD);
7847 %}
7848
7849 // Replicate scalar to packed short values into stack slot
7850 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
7851 effect(DEF dst, USE src);
7852 format %{ "SLLX $src,48,$dst\n\t"
7853 "SRLX $dst,16,O7\n\t"
7854 "OR $dst,O7,$dst\n\t"
7855 "SRLX $dst,32,O7\n\t"
7856 "OR $dst,O7,$dst\t! replicate4S" %}
7857 ins_encode( enc_repl4s(src, dst) );
7858 ins_pipe(ialu_reg);
7859 %}
7860
7861 // Replicate scalar to packed short values into stack slot
7862 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
7863 match(Set dst (Replicate4S src));
7864 expand %{
7865 iRegL tmp;
7866 Repl4S_reg_helper(tmp, src);
7867 regL_to_stkD(dst, tmp);
7868 %}
7869 %}
7870
7871 // Replicate scalar constant to packed short values in Double register
7872 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
7873 match(Set dst (Replicate4S src));
7874 #ifdef _LP64
7875 size(36);
7876 #else
7877 size(8);
7878 #endif
7879 format %{ "SETHI hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
7880 "LDDF [$tmp+lo(&Repl4($src))],$dst" %}
7881 ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
7882 ins_pipe(loadConFD);
7883 %}
7884
7885 // Replicate scalar to packed int values in Double register
7886 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
7887 effect(DEF dst, USE src);
7888 format %{ "SLLX $src,32,$dst\n\t"
7889 "SRLX $dst,32,O7\n\t"
7890 "OR $dst,O7,$dst\t! replicate2I" %}
7891 ins_encode( enc_repl2i(src, dst));
7892 ins_pipe(ialu_reg);
7893 %}
7894
7895 // Replicate scalar to packed int values in Double register
7896 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
7897 match(Set dst (Replicate2I src));
7898 expand %{
7899 iRegL tmp;
7900 Repl2I_reg_helper(tmp, src);
7901 regL_to_stkD(dst, tmp);
7902 %}
7903 %}
7904
7905 // Replicate scalar zero constant to packed int values in Double register
7906 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
7907 match(Set dst (Replicate2I src));
7908 #ifdef _LP64
7909 size(36);
7910 #else
7911 size(8);
7912 #endif
7913 format %{ "SETHI hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
7914 "LDDF [$tmp+lo(&Repl2($src))],$dst" %}
7915 ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
7916 ins_pipe(loadConFD);
7917 %}
7918
7919 //----------Control Flow Instructions------------------------------------------
7920 // Compare Instructions
7921 // Compare Integers
7922 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
7923 match(Set icc (CmpI op1 op2));
7924 effect( DEF icc, USE op1, USE op2 );
7925
7926 size(4);
7927 format %{ "CMP $op1,$op2" %}
7928 opcode(Assembler::subcc_op3, Assembler::arith_op);
7929 ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
7930 ins_pipe(ialu_cconly_reg_reg);
7931 %}
7932
7933 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
7934 match(Set icc (CmpU op1 op2));
7935
7936 size(4);
7937 format %{ "CMP $op1,$op2\t! unsigned" %}
7938 opcode(Assembler::subcc_op3, Assembler::arith_op);
7939 ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
7940 ins_pipe(ialu_cconly_reg_reg);
7941 %}
7942
7943 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
7944 match(Set icc (CmpI op1 op2));
7945 effect( DEF icc, USE op1 );
7946
7947 size(4);
7948 format %{ "CMP $op1,$op2" %}
7949 opcode(Assembler::subcc_op3, Assembler::arith_op);
7950 ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
7951 ins_pipe(ialu_cconly_reg_imm);
7952 %}
7953
7954 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
7955 match(Set icc (CmpI (AndI op1 op2) zero));
7956
7957 size(4);
7958 format %{ "BTST $op2,$op1" %}
7959 opcode(Assembler::andcc_op3, Assembler::arith_op);
7960 ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
7961 ins_pipe(ialu_cconly_reg_reg_zero);
7962 %}
7963
7964 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
7965 match(Set icc (CmpI (AndI op1 op2) zero));
7966
7967 size(4);
7968 format %{ "BTST $op2,$op1" %}
7969 opcode(Assembler::andcc_op3, Assembler::arith_op);
7970 ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
7971 ins_pipe(ialu_cconly_reg_imm_zero);
7972 %}
7973
7974 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
7975 match(Set xcc (CmpL op1 op2));
7976 effect( DEF xcc, USE op1, USE op2 );
7977
7978 size(4);
7979 format %{ "CMP $op1,$op2\t\t! long" %}
7980 opcode(Assembler::subcc_op3, Assembler::arith_op);
7981 ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
7982 ins_pipe(ialu_cconly_reg_reg);
7983 %}
7984
7985 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
7986 match(Set xcc (CmpL op1 con));
7987 effect( DEF xcc, USE op1, USE con );
7988
7989 size(4);
7990 format %{ "CMP $op1,$con\t\t! long" %}
7991 opcode(Assembler::subcc_op3, Assembler::arith_op);
7992 ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
7993 ins_pipe(ialu_cconly_reg_reg);
7994 %}
7995
7996 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
7997 match(Set xcc (CmpL (AndL op1 op2) zero));
7998 effect( DEF xcc, USE op1, USE op2 );
7999
8000 size(4);
8001 format %{ "BTST $op1,$op2\t\t! long" %}
8002 opcode(Assembler::andcc_op3, Assembler::arith_op);
8003 ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8004 ins_pipe(ialu_cconly_reg_reg);
8005 %}
8006
8007 // useful for checking the alignment of a pointer:
8008 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8009 match(Set xcc (CmpL (AndL op1 con) zero));
8010 effect( DEF xcc, USE op1, USE con );
8011
8012 size(4);
8013 format %{ "BTST $op1,$con\t\t! long" %}
8014 opcode(Assembler::andcc_op3, Assembler::arith_op);
8015 ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8016 ins_pipe(ialu_cconly_reg_reg);
8017 %}
8018
8019 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8020 match(Set icc (CmpU op1 op2));
8021
8022 size(4);
8023 format %{ "CMP $op1,$op2\t! unsigned" %}
8024 opcode(Assembler::subcc_op3, Assembler::arith_op);
8025 ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8026 ins_pipe(ialu_cconly_reg_imm);
8027 %}
8028
8029 // Compare Pointers
8030 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8031 match(Set pcc (CmpP op1 op2));
8032
8033 size(4);
8034 format %{ "CMP $op1,$op2\t! ptr" %}
8035 opcode(Assembler::subcc_op3, Assembler::arith_op);
8036 ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8037 ins_pipe(ialu_cconly_reg_reg);
8038 %}
8039
8040 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8041 match(Set pcc (CmpP op1 op2));
8042
8043 size(4);
8044 format %{ "CMP $op1,$op2\t! ptr" %}
8045 opcode(Assembler::subcc_op3, Assembler::arith_op);
8046 ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8047 ins_pipe(ialu_cconly_reg_imm);
8048 %}
8049
8050 //----------Max and Min--------------------------------------------------------
8051 // Min Instructions
8052 // Conditional move for min
8053 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8054 effect( USE_DEF op2, USE op1, USE icc );
8055
8056 size(4);
8057 format %{ "MOVlt icc,$op1,$op2\t! min" %}
8058 opcode(Assembler::less);
8059 ins_encode( enc_cmov_reg_minmax(op2,op1) );
8060 ins_pipe(ialu_reg_flags);
8061 %}
8062
8063 // Min Register with Register.
8064 instruct minI_eReg(iRegI op1, iRegI op2) %{
8065 match(Set op2 (MinI op1 op2));
8066 ins_cost(DEFAULT_COST*2);
8067 expand %{
8068 flagsReg icc;
8069 compI_iReg(icc,op1,op2);
8070 cmovI_reg_lt(op2,op1,icc);
8071 %}
8072 %}
8073
8074 // Max Instructions
8075 // Conditional move for max
8076 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8077 effect( USE_DEF op2, USE op1, USE icc );
8078 format %{ "MOVgt icc,$op1,$op2\t! max" %}
8079 opcode(Assembler::greater);
8080 ins_encode( enc_cmov_reg_minmax(op2,op1) );
8081 ins_pipe(ialu_reg_flags);
8082 %}
8083
8084 // Max Register with Register
8085 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8086 match(Set op2 (MaxI op1 op2));
8087 ins_cost(DEFAULT_COST*2);
8088 expand %{
8089 flagsReg icc;
8090 compI_iReg(icc,op1,op2);
8091 cmovI_reg_gt(op2,op1,icc);
8092 %}
8093 %}
8094
8095
8096 //----------Float Compares----------------------------------------------------
8097 // Compare floating, generate condition code
8098 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8099 match(Set fcc (CmpF src1 src2));
8100
8101 size(4);
8102 format %{ "FCMPs $fcc,$src1,$src2" %}
8103 opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8104 ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8105 ins_pipe(faddF_fcc_reg_reg_zero);
8106 %}
8107
8108 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8109 match(Set fcc (CmpD src1 src2));
8110
8111 size(4);
8112 format %{ "FCMPd $fcc,$src1,$src2" %}
8113 opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8114 ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8115 ins_pipe(faddD_fcc_reg_reg_zero);
8116 %}
8117
8118
8119 // Compare floating, generate -1,0,1
8120 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8121 match(Set dst (CmpF3 src1 src2));
8122 effect(KILL fcc0);
8123 ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8124 format %{ "fcmpl $dst,$src1,$src2" %}
8125 // Primary = float
8126 opcode( true );
8127 ins_encode( floating_cmp( dst, src1, src2 ) );
8128 ins_pipe( floating_cmp );
8129 %}
8130
8131 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8132 match(Set dst (CmpD3 src1 src2));
8133 effect(KILL fcc0);
8134 ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8135 format %{ "dcmpl $dst,$src1,$src2" %}
8136 // Primary = double (not float)
8137 opcode( false );
8138 ins_encode( floating_cmp( dst, src1, src2 ) );
8139 ins_pipe( floating_cmp );
8140 %}
8141
8142 //----------Branches---------------------------------------------------------
8143 // Jump
8144 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8145 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8146 match(Jump switch_val);
8147
8148 ins_cost(350);
8149
8150 format %{ "SETHI [hi(table_base)],O7\n\t"
8151 "ADD O7, lo(table_base), O7\n\t"
8152 "LD [O7+$switch_val], O7\n\t"
8153 "JUMP O7"
8154 %}
8155 ins_encode( jump_enc( switch_val, table) );
8156 ins_pc_relative(1);
8157 ins_pipe(ialu_reg_reg);
8158 %}
8159
8160 // Direct Branch. Use V8 version with longer range.
8161 instruct branch(label labl) %{
8162 match(Goto);
8163 effect(USE labl);
8164
8165 size(8);
8166 ins_cost(BRANCH_COST);
8167 format %{ "BA $labl" %}
8168 // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8169 opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8170 ins_encode( enc_ba( labl ) );
8171 ins_pc_relative(1);
8172 ins_pipe(br);
8173 %}
8174
8175 // Conditional Direct Branch
8176 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8177 match(If cmp icc);
8178 effect(USE labl);
8179
8180 size(8);
8181 ins_cost(BRANCH_COST);
8182 format %{ "BP$cmp $icc,$labl" %}
8183 // Prim = bits 24-22, Secnd = bits 31-30
8184 ins_encode( enc_bp( labl, cmp, icc ) );
8185 ins_pc_relative(1);
8186 ins_pipe(br_cc);
8187 %}
8188
8189 // Branch-on-register tests all 64 bits. We assume that values
8190 // in 64-bit registers always remains zero or sign extended
8191 // unless our code munges the high bits. Interrupts can chop
8192 // the high order bits to zero or sign at any time.
8193 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8194 match(If cmp (CmpI op1 zero));
8195 predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8196 effect(USE labl);
8197
8198 size(8);
8199 ins_cost(BRANCH_COST);
8200 format %{ "BR$cmp $op1,$labl" %}
8201 ins_encode( enc_bpr( labl, cmp, op1 ) );
8202 ins_pc_relative(1);
8203 ins_pipe(br_reg);
8204 %}
8205
8206 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8207 match(If cmp (CmpP op1 null));
8208 predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8209 effect(USE labl);
8210
8211 size(8);
8212 ins_cost(BRANCH_COST);
8213 format %{ "BR$cmp $op1,$labl" %}
8214 ins_encode( enc_bpr( labl, cmp, op1 ) );
8215 ins_pc_relative(1);
8216 ins_pipe(br_reg);
8217 %}
8218
8219 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8220 match(If cmp (CmpL op1 zero));
8221 predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8222 effect(USE labl);
8223
8224 size(8);
8225 ins_cost(BRANCH_COST);
8226 format %{ "BR$cmp $op1,$labl" %}
8227 ins_encode( enc_bpr( labl, cmp, op1 ) );
8228 ins_pc_relative(1);
8229 ins_pipe(br_reg);
8230 %}
8231
8232 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8233 match(If cmp icc);
8234 effect(USE labl);
8235
8236 format %{ "BP$cmp $icc,$labl" %}
8237 // Prim = bits 24-22, Secnd = bits 31-30
8238 ins_encode( enc_bp( labl, cmp, icc ) );
8239 ins_pc_relative(1);
8240 ins_pipe(br_cc);
8241 %}
8242
8243 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8244 match(If cmp pcc);
8245 effect(USE labl);
8246
8247 size(8);
8248 ins_cost(BRANCH_COST);
8249 format %{ "BP$cmp $pcc,$labl" %}
8250 // Prim = bits 24-22, Secnd = bits 31-30
8251 ins_encode( enc_bpx( labl, cmp, pcc ) );
8252 ins_pc_relative(1);
8253 ins_pipe(br_cc);
8254 %}
8255
8256 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8257 match(If cmp fcc);
8258 effect(USE labl);
8259
8260 size(8);
8261 ins_cost(BRANCH_COST);
8262 format %{ "FBP$cmp $fcc,$labl" %}
8263 // Prim = bits 24-22, Secnd = bits 31-30
8264 ins_encode( enc_fbp( labl, cmp, fcc ) );
8265 ins_pc_relative(1);
8266 ins_pipe(br_fcc);
8267 %}
8268
8269 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8270 match(CountedLoopEnd cmp icc);
8271 effect(USE labl);
8272
8273 size(8);
8274 ins_cost(BRANCH_COST);
8275 format %{ "BP$cmp $icc,$labl\t! Loop end" %}
8276 // Prim = bits 24-22, Secnd = bits 31-30
8277 ins_encode( enc_bp( labl, cmp, icc ) );
8278 ins_pc_relative(1);
8279 ins_pipe(br_cc);
8280 %}
8281
8282 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8283 match(CountedLoopEnd cmp icc);
8284 effect(USE labl);
8285
8286 size(8);
8287 ins_cost(BRANCH_COST);
8288 format %{ "BP$cmp $icc,$labl\t! Loop end" %}
8289 // Prim = bits 24-22, Secnd = bits 31-30
8290 ins_encode( enc_bp( labl, cmp, icc ) );
8291 ins_pc_relative(1);
8292 ins_pipe(br_cc);
8293 %}
8294
8295 // ============================================================================
8296 // Long Compare
8297 //
8298 // Currently we hold longs in 2 registers. Comparing such values efficiently
8299 // is tricky. The flavor of compare used depends on whether we are testing
8300 // for LT, LE, or EQ. For a simple LT test we can check just the sign bit.
8301 // The GE test is the negated LT test. The LE test can be had by commuting
8302 // the operands (yielding a GE test) and then negating; negate again for the
8303 // GT test. The EQ test is done by ORcc'ing the high and low halves, and the
8304 // NE test is negated from that.
8305
8306 // Due to a shortcoming in the ADLC, it mixes up expressions like:
8307 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)). Note the
8308 // difference between 'Y' and '0L'. The tree-matches for the CmpI sections
8309 // are collapsed internally in the ADLC's dfa-gen code. The match for
8310 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
8311 // foo match ends up with the wrong leaf. One fix is to not match both
8312 // reg-reg and reg-zero forms of long-compare. This is unfortunate because
8313 // both forms beat the trinary form of long-compare and both are very useful
8314 // on Intel which has so few registers.
8315
8316 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
8317 match(If cmp xcc);
8318 effect(USE labl);
8319
8320 size(8);
8321 ins_cost(BRANCH_COST);
8322 format %{ "BP$cmp $xcc,$labl" %}
8323 // Prim = bits 24-22, Secnd = bits 31-30
8324 ins_encode( enc_bpl( labl, cmp, xcc ) );
8325 ins_pc_relative(1);
8326 ins_pipe(br_cc);
8327 %}
8328
8329 // Manifest a CmpL3 result in an integer register. Very painful.
8330 // This is the test to avoid.
8331 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
8332 match(Set dst (CmpL3 src1 src2) );
8333 effect( KILL ccr );
8334 ins_cost(6*DEFAULT_COST);
8335 size(24);
8336 format %{ "CMP $src1,$src2\t\t! long\n"
8337 "\tBLT,a,pn done\n"
8338 "\tMOV -1,$dst\t! delay slot\n"
8339 "\tBGT,a,pn done\n"
8340 "\tMOV 1,$dst\t! delay slot\n"
8341 "\tCLR $dst\n"
8342 "done:" %}
8343 ins_encode( cmpl_flag(src1,src2,dst) );
8344 ins_pipe(cmpL_reg);
8345 %}
8346
8347 // Conditional move
8348 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
8349 match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8350 ins_cost(150);
8351 format %{ "MOV$cmp $xcc,$src,$dst\t! long" %}
8352 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8353 ins_pipe(ialu_reg);
8354 %}
8355
8356 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
8357 match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8358 ins_cost(140);
8359 format %{ "MOV$cmp $xcc,$src,$dst\t! long" %}
8360 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8361 ins_pipe(ialu_imm);
8362 %}
8363
8364 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
8365 match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8366 ins_cost(150);
8367 format %{ "MOV$cmp $xcc,$src,$dst" %}
8368 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8369 ins_pipe(ialu_reg);
8370 %}
8371
8372 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
8373 match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8374 ins_cost(140);
8375 format %{ "MOV$cmp $xcc,$src,$dst" %}
8376 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8377 ins_pipe(ialu_imm);
8378 %}
8379
8380 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
8381 match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8382 ins_cost(150);
8383 format %{ "MOV$cmp $xcc,$src,$dst" %}
8384 ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8385 ins_pipe(ialu_reg);
8386 %}
8387
8388 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
8389 match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8390 ins_cost(140);
8391 format %{ "MOV$cmp $xcc,$src,$dst" %}
8392 ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8393 ins_pipe(ialu_imm);
8394 %}
8395
8396 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
8397 match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
8398 ins_cost(150);
8399 opcode(0x101);
8400 format %{ "FMOVS$cmp $xcc,$src,$dst" %}
8401 ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8402 ins_pipe(int_conditional_float_move);
8403 %}
8404
8405 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
8406 match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
8407 ins_cost(150);
8408 opcode(0x102);
8409 format %{ "FMOVD$cmp $xcc,$src,$dst" %}
8410 ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8411 ins_pipe(int_conditional_float_move);
8412 %}
8413
8414 // ============================================================================
8415 // Safepoint Instruction
8416 instruct safePoint_poll(iRegP poll) %{
8417 match(SafePoint poll);
8418 effect(USE poll);
8419
8420 size(4);
8421 #ifdef _LP64
8422 format %{ "LDX [$poll],R_G0\t! Safepoint: poll for GC" %}
8423 #else
8424 format %{ "LDUW [$poll],R_G0\t! Safepoint: poll for GC" %}
8425 #endif
8426 ins_encode %{
8427 __ relocate(relocInfo::poll_type);
8428 __ ld_ptr($poll$$Register, 0, G0);
8429 %}
8430 ins_pipe(loadPollP);
8431 %}
8432
8433 // ============================================================================
8434 // Call Instructions
8435 // Call Java Static Instruction
8436 instruct CallStaticJavaDirect( method meth ) %{
8437 match(CallStaticJava);
8438 effect(USE meth);
8439
8440 size(8);
8441 ins_cost(CALL_COST);
8442 format %{ "CALL,static ; NOP ==> " %}
8443 ins_encode( Java_Static_Call( meth ), call_epilog );
8444 ins_pc_relative(1);
8445 ins_pipe(simple_call);
8446 %}
8447
8448 // Call Java Dynamic Instruction
8449 instruct CallDynamicJavaDirect( method meth ) %{
8450 match(CallDynamicJava);
8451 effect(USE meth);
8452
8453 ins_cost(CALL_COST);
8454 format %{ "SET (empty),R_G5\n\t"
8455 "CALL,dynamic ; NOP ==> " %}
8456 ins_encode( Java_Dynamic_Call( meth ), call_epilog );
8457 ins_pc_relative(1);
8458 ins_pipe(call);
8459 %}
8460
8461 // Call Runtime Instruction
8462 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
8463 match(CallRuntime);
8464 effect(USE meth, KILL l7);
8465 ins_cost(CALL_COST);
8466 format %{ "CALL,runtime" %}
8467 ins_encode( Java_To_Runtime( meth ),
8468 call_epilog, adjust_long_from_native_call );
8469 ins_pc_relative(1);
8470 ins_pipe(simple_call);
8471 %}
8472
8473 // Call runtime without safepoint - same as CallRuntime
8474 instruct CallLeafDirect(method meth, l7RegP l7) %{
8475 match(CallLeaf);
8476 effect(USE meth, KILL l7);
8477 ins_cost(CALL_COST);
8478 format %{ "CALL,runtime leaf" %}
8479 ins_encode( Java_To_Runtime( meth ),
8480 call_epilog,
8481 adjust_long_from_native_call );
8482 ins_pc_relative(1);
8483 ins_pipe(simple_call);
8484 %}
8485
8486 // Call runtime without safepoint - same as CallLeaf
8487 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
8488 match(CallLeafNoFP);
8489 effect(USE meth, KILL l7);
8490 ins_cost(CALL_COST);
8491 format %{ "CALL,runtime leaf nofp" %}
8492 ins_encode( Java_To_Runtime( meth ),
8493 call_epilog,
8494 adjust_long_from_native_call );
8495 ins_pc_relative(1);
8496 ins_pipe(simple_call);
8497 %}
8498
8499 // Tail Call; Jump from runtime stub to Java code.
8500 // Also known as an 'interprocedural jump'.
8501 // Target of jump will eventually return to caller.
8502 // TailJump below removes the return address.
8503 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
8504 match(TailCall jump_target method_oop );
8505
8506 ins_cost(CALL_COST);
8507 format %{ "Jmp $jump_target ; NOP \t! $method_oop holds method oop" %}
8508 ins_encode(form_jmpl(jump_target));
8509 ins_pipe(tail_call);
8510 %}
8511
8512
8513 // Return Instruction
8514 instruct Ret() %{
8515 match(Return);
8516
8517 // The epilogue node did the ret already.
8518 size(0);
8519 format %{ "! return" %}
8520 ins_encode();
8521 ins_pipe(empty);
8522 %}
8523
8524
8525 // Tail Jump; remove the return address; jump to target.
8526 // TailCall above leaves the return address around.
8527 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
8528 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
8529 // "restore" before this instruction (in Epilogue), we need to materialize it
8530 // in %i0.
8531 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
8532 match( TailJump jump_target ex_oop );
8533 ins_cost(CALL_COST);
8534 format %{ "! discard R_O7\n\t"
8535 "Jmp $jump_target ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
8536 ins_encode(form_jmpl_set_exception_pc(jump_target));
8537 // opcode(Assembler::jmpl_op3, Assembler::arith_op);
8538 // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
8539 // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
8540 ins_pipe(tail_call);
8541 %}
8542
8543 // Create exception oop: created by stack-crawling runtime code.
8544 // Created exception is now available to this handler, and is setup
8545 // just prior to jumping to this handler. No code emitted.
8546 instruct CreateException( o0RegP ex_oop )
8547 %{
8548 match(Set ex_oop (CreateEx));
8549 ins_cost(0);
8550
8551 size(0);
8552 // use the following format syntax
8553 format %{ "! exception oop is in R_O0; no code emitted" %}
8554 ins_encode();
8555 ins_pipe(empty);
8556 %}
8557
8558
8559 // Rethrow exception:
8560 // The exception oop will come in the first argument position.
8561 // Then JUMP (not call) to the rethrow stub code.
8562 instruct RethrowException()
8563 %{
8564 match(Rethrow);
8565 ins_cost(CALL_COST);
8566
8567 // use the following format syntax
8568 format %{ "Jmp rethrow_stub" %}
8569 ins_encode(enc_rethrow);
8570 ins_pipe(tail_call);
8571 %}
8572
8573
8574 // Die now
8575 instruct ShouldNotReachHere( )
8576 %{
8577 match(Halt);
8578 ins_cost(CALL_COST);
8579
8580 size(4);
8581 // Use the following format syntax
8582 format %{ "ILLTRAP ; ShouldNotReachHere" %}
8583 ins_encode( form2_illtrap() );
8584 ins_pipe(tail_call);
8585 %}
8586
8587 // ============================================================================
8588 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
8589 // array for an instance of the superklass. Set a hidden internal cache on a
8590 // hit (cache is checked with exposed code in gen_subtype_check()). Return
8591 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
8592 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
8593 match(Set index (PartialSubtypeCheck sub super));
8594 effect( KILL pcc, KILL o7 );
8595 ins_cost(DEFAULT_COST*10);
8596 format %{ "CALL PartialSubtypeCheck\n\tNOP" %}
8597 ins_encode( enc_PartialSubtypeCheck() );
8598 ins_pipe(partial_subtype_check_pipe);
8599 %}
8600
8601 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
8602 match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
8603 effect( KILL idx, KILL o7 );
8604 ins_cost(DEFAULT_COST*10);
8605 format %{ "CALL PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
8606 ins_encode( enc_PartialSubtypeCheck() );
8607 ins_pipe(partial_subtype_check_pipe);
8608 %}
8609
8610 // ============================================================================
8611 // inlined locking and unlocking
8612
8613 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
8614 match(Set pcc (FastLock object box));
8615
8616 effect(KILL scratch, TEMP scratch2);
8617 ins_cost(100);
8618
8619 size(4*112); // conservative overestimation ...
8620 format %{ "FASTLOCK $object, $box; KILL $scratch, $scratch2, $box" %}
8621 ins_encode( Fast_Lock(object, box, scratch, scratch2) );
8622 ins_pipe(long_memory_op);
8623 %}
8624
8625
8626 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
8627 match(Set pcc (FastUnlock object box));
8628 effect(KILL scratch, TEMP scratch2);
8629 ins_cost(100);
8630
8631 size(4*120); // conservative overestimation ...
8632 format %{ "FASTUNLOCK $object, $box; KILL $scratch, $scratch2, $box" %}
8633 ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
8634 ins_pipe(long_memory_op);
8635 %}
8636
8637 // Count and Base registers are fixed because the allocator cannot
8638 // kill unknown registers. The encodings are generic.
8639 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
8640 match(Set dummy (ClearArray cnt base));
8641 effect(TEMP temp, KILL ccr);
8642 ins_cost(300);
8643 format %{ "MOV $cnt,$temp\n"
8644 "loop: SUBcc $temp,8,$temp\t! Count down a dword of bytes\n"
8645 " BRge loop\t\t! Clearing loop\n"
8646 " STX G0,[$base+$temp]\t! delay slot" %}
8647 ins_encode( enc_Clear_Array(cnt, base, temp) );
8648 ins_pipe(long_memory_op);
8649 %}
8650
8651 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result, flagsReg ccr) %{
8652 match(Set result (StrComp str1 str2));
8653 effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr);
8654 ins_cost(300);
8655 format %{ "String Compare $str1,$str2 -> $result" %}
8656 ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
8657 ins_pipe(long_memory_op);
8658 %}
8659
8660 // ============================================================================
8661 //------------Bytes reverse--------------------------------------------------
8662
8663 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
8664 match(Set dst (ReverseBytesI src));
8665 effect(DEF dst, USE src);
8666
8667 // Op cost is artificially doubled to make sure that load or store
8668 // instructions are preferred over this one which requires a spill
8669 // onto a stack slot.
8670 ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
8671 size(8);
8672 format %{ "LDUWA $src, $dst\t!asi=primary_little" %}
8673 opcode(Assembler::lduwa_op3);
8674 ins_encode( form3_mem_reg_little(src, dst) );
8675 ins_pipe( iload_mem );
8676 %}
8677
8678 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
8679 match(Set dst (ReverseBytesL src));
8680 effect(DEF dst, USE src);
8681
8682 // Op cost is artificially doubled to make sure that load or store
8683 // instructions are preferred over this one which requires a spill
8684 // onto a stack slot.
8685 ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
8686 size(8);
8687 format %{ "LDXA $src, $dst\t!asi=primary_little" %}
8688
8689 opcode(Assembler::ldxa_op3);
8690 ins_encode( form3_mem_reg_little(src, dst) );
8691 ins_pipe( iload_mem );
8692 %}
8693
8694 // Load Integer reversed byte order
8695 instruct loadI_reversed(iRegI dst, memory src) %{
8696 match(Set dst (ReverseBytesI (LoadI src)));
8697
8698 ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8699 size(8);
8700 format %{ "LDUWA $src, $dst\t!asi=primary_little" %}
8701
8702 opcode(Assembler::lduwa_op3);
8703 ins_encode( form3_mem_reg_little( src, dst) );
8704 ins_pipe(iload_mem);
8705 %}
8706
8707 // Load Long - aligned and reversed
8708 instruct loadL_reversed(iRegL dst, memory src) %{
8709 match(Set dst (ReverseBytesL (LoadL src)));
8710
8711 ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8712 size(8);
8713 format %{ "LDXA $src, $dst\t!asi=primary_little" %}
8714
8715 opcode(Assembler::ldxa_op3);
8716 ins_encode( form3_mem_reg_little( src, dst ) );
8717 ins_pipe(iload_mem);
8718 %}
8719
8720 // Store Integer reversed byte order
8721 instruct storeI_reversed(memory dst, iRegI src) %{
8722 match(Set dst (StoreI dst (ReverseBytesI src)));
8723
8724 ins_cost(MEMORY_REF_COST);
8725 size(8);
8726 format %{ "STWA $src, $dst\t!asi=primary_little" %}
8727
8728 opcode(Assembler::stwa_op3);
8729 ins_encode( form3_mem_reg_little( dst, src) );
8730 ins_pipe(istore_mem_reg);
8731 %}
8732
8733 // Store Long reversed byte order
8734 instruct storeL_reversed(memory dst, iRegL src) %{
8735 match(Set dst (StoreL dst (ReverseBytesL src)));
8736
8737 ins_cost(MEMORY_REF_COST);
8738 size(8);
8739 format %{ "STXA $src, $dst\t!asi=primary_little" %}
8740
8741 opcode(Assembler::stxa_op3);
8742 ins_encode( form3_mem_reg_little( dst, src) );
8743 ins_pipe(istore_mem_reg);
8744 %}
8745
8746 //----------PEEPHOLE RULES-----------------------------------------------------
8747 // These must follow all instruction definitions as they use the names
8748 // defined in the instructions definitions.
8749 //
8750 // peepmatch ( root_instr_name [preceeding_instruction]* );
8751 //
8752 // peepconstraint %{
8753 // (instruction_number.operand_name relational_op instruction_number.operand_name
8754 // [, ...] );
8755 // // instruction numbers are zero-based using left to right order in peepmatch
8756 //
8757 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
8758 // // provide an instruction_number.operand_name for each operand that appears
8759 // // in the replacement instruction's match rule
8760 //
8761 // ---------VM FLAGS---------------------------------------------------------
8762 //
8763 // All peephole optimizations can be turned off using -XX:-OptoPeephole
8764 //
8765 // Each peephole rule is given an identifying number starting with zero and
8766 // increasing by one in the order seen by the parser. An individual peephole
8767 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
8768 // on the command-line.
8769 //
8770 // ---------CURRENT LIMITATIONS----------------------------------------------
8771 //
8772 // Only match adjacent instructions in same basic block
8773 // Only equality constraints
8774 // Only constraints between operands, not (0.dest_reg == EAX_enc)
8775 // Only one replacement instruction
8776 //
8777 // ---------EXAMPLE----------------------------------------------------------
8778 //
8779 // // pertinent parts of existing instructions in architecture description
8780 // instruct movI(eRegI dst, eRegI src) %{
8781 // match(Set dst (CopyI src));
8782 // %}
8783 //
8784 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8785 // match(Set dst (AddI dst src));
8786 // effect(KILL cr);
8787 // %}
8788 //
8789 // // Change (inc mov) to lea
8790 // peephole %{
8791 // // increment preceeded by register-register move
8792 // peepmatch ( incI_eReg movI );
8793 // // require that the destination register of the increment
8794 // // match the destination register of the move
8795 // peepconstraint ( 0.dst == 1.dst );
8796 // // construct a replacement instruction that sets
8797 // // the destination to ( move's source register + one )
8798 // peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
8799 // %}
8800 //
8801
8802 // // Change load of spilled value to only a spill
8803 // instruct storeI(memory mem, eRegI src) %{
8804 // match(Set mem (StoreI mem src));
8805 // %}
8806 //
8807 // instruct loadI(eRegI dst, memory mem) %{
8808 // match(Set dst (LoadI mem));
8809 // %}
8810 //
8811 // peephole %{
8812 // peepmatch ( loadI storeI );
8813 // peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
8814 // peepreplace ( storeI( 1.mem 1.mem 1.src ) );
8815 // %}
8816
8817 //----------SMARTSPILL RULES---------------------------------------------------
8818 // These must follow all instruction definitions as they use the names
8819 // defined in the instructions definitions.
8820 //
8821 // SPARC will probably not have any of these rules due to RISC instruction set.
8822
8823 //----------PIPELINE-----------------------------------------------------------
8824 // Rules which define the behavior of the target architectures pipeline.