comparison src/cpu/x86/vm/c1_LIRAssembler_x86.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
27
28
29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
30 // instructions, to allow sign-masking or sign-bit flipping. They allow
31 // fast versions of NegF/NegD and AbsF/AbsD.
32
33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
36 // of 128-bits operands for SSE instructions.
37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
38 // Store the value to a 128-bits operand.
39 operand[0] = lo;
40 operand[1] = hi;
41 return operand;
42 }
43
44 // Buffer for 128-bits masks used by SSE instructions.
45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
46
47 // Static initialization during VM startup.
48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
52
53
54
55 NEEDS_CLEANUP // remove this definitions ?
56 const Register IC_Klass = rax; // where the IC klass is cached
57 const Register SYNC_header = rax; // synchronization header
58 const Register SHIFT_count = rcx; // where count for shift operations must be
59
60 #define __ _masm->
61
62
63 static void select_different_registers(Register preserve,
64 Register extra,
65 Register &tmp1,
66 Register &tmp2) {
67 if (tmp1 == preserve) {
68 assert_different_registers(tmp1, tmp2, extra);
69 tmp1 = extra;
70 } else if (tmp2 == preserve) {
71 assert_different_registers(tmp1, tmp2, extra);
72 tmp2 = extra;
73 }
74 assert_different_registers(preserve, tmp1, tmp2);
75 }
76
77
78
79 static void select_different_registers(Register preserve,
80 Register extra,
81 Register &tmp1,
82 Register &tmp2,
83 Register &tmp3) {
84 if (tmp1 == preserve) {
85 assert_different_registers(tmp1, tmp2, tmp3, extra);
86 tmp1 = extra;
87 } else if (tmp2 == preserve) {
88 assert_different_registers(tmp1, tmp2, tmp3, extra);
89 tmp2 = extra;
90 } else if (tmp3 == preserve) {
91 assert_different_registers(tmp1, tmp2, tmp3, extra);
92 tmp3 = extra;
93 }
94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
95 }
96
97
98
99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
100 if (opr->is_constant()) {
101 LIR_Const* constant = opr->as_constant_ptr();
102 switch (constant->type()) {
103 case T_INT: {
104 return true;
105 }
106
107 default:
108 return false;
109 }
110 }
111 return false;
112 }
113
114
115 LIR_Opr LIR_Assembler::receiverOpr() {
116 return FrameMap::rcx_oop_opr;
117 }
118
119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
120 return receiverOpr();
121 }
122
123 LIR_Opr LIR_Assembler::osrBufferPointer() {
124 return FrameMap::rcx_opr;
125 }
126
127 //--------------fpu register translations-----------------------
128
129
130 address LIR_Assembler::float_constant(float f) {
131 address const_addr = __ float_constant(f);
132 if (const_addr == NULL) {
133 bailout("const section overflow");
134 return __ code()->consts()->start();
135 } else {
136 return const_addr;
137 }
138 }
139
140
141 address LIR_Assembler::double_constant(double d) {
142 address const_addr = __ double_constant(d);
143 if (const_addr == NULL) {
144 bailout("const section overflow");
145 return __ code()->consts()->start();
146 } else {
147 return const_addr;
148 }
149 }
150
151
152 void LIR_Assembler::set_24bit_FPU() {
153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
154 }
155
156 void LIR_Assembler::reset_FPU() {
157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
158 }
159
160 void LIR_Assembler::fpop() {
161 __ fpop();
162 }
163
164 void LIR_Assembler::fxch(int i) {
165 __ fxch(i);
166 }
167
168 void LIR_Assembler::fld(int i) {
169 __ fld_s(i);
170 }
171
172 void LIR_Assembler::ffree(int i) {
173 __ ffree(i);
174 }
175
176 void LIR_Assembler::breakpoint() {
177 __ int3();
178 }
179
180 void LIR_Assembler::push(LIR_Opr opr) {
181 if (opr->is_single_cpu()) {
182 __ push_reg(opr->as_register());
183 } else if (opr->is_double_cpu()) {
184 __ push_reg(opr->as_register_hi());
185 __ push_reg(opr->as_register_lo());
186 } else if (opr->is_stack()) {
187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
188 } else if (opr->is_constant()) {
189 LIR_Const* const_opr = opr->as_constant_ptr();
190 if (const_opr->type() == T_OBJECT) {
191 __ push_oop(const_opr->as_jobject());
192 } else if (const_opr->type() == T_INT) {
193 __ push_jint(const_opr->as_jint());
194 } else {
195 ShouldNotReachHere();
196 }
197
198 } else {
199 ShouldNotReachHere();
200 }
201 }
202
203 void LIR_Assembler::pop(LIR_Opr opr) {
204 if (opr->is_single_cpu()) {
205 __ pop(opr->as_register());
206 } else {
207 ShouldNotReachHere();
208 }
209 }
210
211 //-------------------------------------------
212 Address LIR_Assembler::as_Address(LIR_Address* addr) {
213 if (addr->base()->is_illegal()) {
214 assert(addr->index()->is_illegal(), "must be illegal too");
215 //return Address(addr->disp(), relocInfo::none);
216 // hack for now since this should really return an AddressLiteral
217 // which will have to await 64bit c1 changes.
218 return Address(noreg, addr->disp());
219 }
220
221 Register base = addr->base()->as_register();
222
223 if (addr->index()->is_illegal()) {
224 return Address( base, addr->disp());
225 } else if (addr->index()->is_single_cpu()) {
226 Register index = addr->index()->as_register();
227 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
228 } else if (addr->index()->is_constant()) {
229 int addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
230
231 return Address(base, addr_offset);
232 } else {
233 Unimplemented();
234 return Address();
235 }
236 }
237
238
239 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
240 Address base = as_Address(addr);
241 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
242 }
243
244
245 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
246 return as_Address(addr);
247 }
248
249
250 void LIR_Assembler::osr_entry() {
251 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
252 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
253 ValueStack* entry_state = osr_entry->state();
254 int number_of_locks = entry_state->locks_size();
255
256 // we jump here if osr happens with the interpreter
257 // state set up to continue at the beginning of the
258 // loop that triggered osr - in particular, we have
259 // the following registers setup:
260 //
261 // rcx: osr buffer
262 //
263
264 // build frame
265 ciMethod* m = compilation()->method();
266 __ build_frame(initial_frame_size_in_bytes());
267
268 // OSR buffer is
269 //
270 // locals[nlocals-1..0]
271 // monitors[0..number_of_locks]
272 //
273 // locals is a direct copy of the interpreter frame so in the osr buffer
274 // so first slot in the local array is the last local from the interpreter
275 // and last slot is local[0] (receiver) from the interpreter
276 //
277 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
278 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
279 // in the interpreter frame (the method lock if a sync method)
280
281 // Initialize monitors in the compiled activation.
282 // rcx: pointer to osr buffer
283 //
284 // All other registers are dead at this point and the locals will be
285 // copied into place by code emitted in the IR.
286
287 Register OSR_buf = osrBufferPointer()->as_register();
288 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
289 int monitor_offset = BytesPerWord * method()->max_locals() +
290 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
291 for (int i = 0; i < number_of_locks; i++) {
292 int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
293 #ifdef ASSERT
294 // verify the interpreter's monitor has a non-null object
295 {
296 Label L;
297 __ cmpl(Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
298 __ jcc(Assembler::notZero, L);
299 __ stop("locked object is NULL");
300 __ bind(L);
301 }
302 #endif
303 __ movl(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::lock_offset_in_bytes()));
304 __ movl(frame_map()->address_for_monitor_lock(i), rbx);
305 __ movl(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()));
306 __ movl(frame_map()->address_for_monitor_object(i), rbx);
307 }
308 }
309 }
310
311
312 // inline cache check; done before the frame is built.
313 int LIR_Assembler::check_icache() {
314 Register receiver = FrameMap::receiver_opr->as_register();
315 Register ic_klass = IC_Klass;
316
317 if (!VerifyOops) {
318 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
319 while ((__ offset() + 9) % CodeEntryAlignment != 0) {
320 __ nop();
321 }
322 }
323 int offset = __ offset();
324 __ inline_cache_check(receiver, IC_Klass);
325 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
326 if (VerifyOops) {
327 // force alignment after the cache check.
328 // It's been verified to be aligned if !VerifyOops
329 __ align(CodeEntryAlignment);
330 }
331 return offset;
332 }
333
334
335 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
336 jobject o = NULL;
337 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
338 __ movoop(reg, o);
339 patching_epilog(patch, lir_patch_normal, reg, info);
340 }
341
342
343 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
344 if (exception->is_valid()) {
345 // preserve exception
346 // note: the monitor_exit runtime call is a leaf routine
347 // and cannot block => no GC can happen
348 // The slow case (MonitorAccessStub) uses the first two stack slots
349 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
350 __ movl (Address(rsp, 2*wordSize), exception);
351 }
352
353 Register obj_reg = obj_opr->as_register();
354 Register lock_reg = lock_opr->as_register();
355
356 // setup registers (lock_reg must be rax, for lock_object)
357 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
358 Register hdr = lock_reg;
359 assert(new_hdr == SYNC_header, "wrong register");
360 lock_reg = new_hdr;
361 // compute pointer to BasicLock
362 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
363 __ leal(lock_reg, lock_addr);
364 // unlock object
365 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
366 // _slow_case_stubs->append(slow_case);
367 // temporary fix: must be created after exceptionhandler, therefore as call stub
368 _slow_case_stubs->append(slow_case);
369 if (UseFastLocking) {
370 // try inlined fast unlocking first, revert to slow locking if it fails
371 // note: lock_reg points to the displaced header since the displaced header offset is 0!
372 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
373 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
374 } else {
375 // always do slow unlocking
376 // note: the slow unlocking code could be inlined here, however if we use
377 // slow unlocking, speed doesn't matter anyway and this solution is
378 // simpler and requires less duplicated code - additionally, the
379 // slow unlocking code is the same in either case which simplifies
380 // debugging
381 __ jmp(*slow_case->entry());
382 }
383 // done
384 __ bind(*slow_case->continuation());
385
386 if (exception->is_valid()) {
387 // restore exception
388 __ movl (exception, Address(rsp, 2 * wordSize));
389 }
390 }
391
392 // This specifies the rsp decrement needed to build the frame
393 int LIR_Assembler::initial_frame_size_in_bytes() {
394 // if rounding, must let FrameMap know!
395 return (frame_map()->framesize() - 2) * BytesPerWord; // subtract two words to account for return address and link
396 }
397
398
399 void LIR_Assembler::emit_exception_handler() {
400 // if the last instruction is a call (typically to do a throw which
401 // is coming at the end after block reordering) the return address
402 // must still point into the code area in order to avoid assertion
403 // failures when searching for the corresponding bci => add a nop
404 // (was bug 5/14/1999 - gri)
405
406 __ nop();
407
408 // generate code for exception handler
409 address handler_base = __ start_a_stub(exception_handler_size);
410 if (handler_base == NULL) {
411 // not enough space left for the handler
412 bailout("exception handler overflow");
413 return;
414 }
415 #ifdef ASSERT
416 int offset = code_offset();
417 #endif // ASSERT
418
419 compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
420
421 // if the method does not have an exception handler, then there is
422 // no reason to search for one
423 if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
424 // the exception oop and pc are in rax, and rdx
425 // no other registers need to be preserved, so invalidate them
426 __ invalidate_registers(false, true, true, false, true, true);
427
428 // check that there is really an exception
429 __ verify_not_null_oop(rax);
430
431 // search an exception handler (rax: exception oop, rdx: throwing pc)
432 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
433
434 // if the call returns here, then the exception handler for particular
435 // exception doesn't exist -> unwind activation and forward exception to caller
436 }
437
438 // the exception oop is in rax,
439 // no other registers need to be preserved, so invalidate them
440 __ invalidate_registers(false, true, true, true, true, true);
441
442 // check that there is really an exception
443 __ verify_not_null_oop(rax);
444
445 // unlock the receiver/klass if necessary
446 // rax,: exception
447 ciMethod* method = compilation()->method();
448 if (method->is_synchronized() && GenerateSynchronizationCode) {
449 monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
450 }
451
452 // unwind activation and forward exception to caller
453 // rax,: exception
454 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
455
456 assert(code_offset() - offset <= exception_handler_size, "overflow");
457
458 __ end_a_stub();
459 }
460
461 void LIR_Assembler::emit_deopt_handler() {
462 // if the last instruction is a call (typically to do a throw which
463 // is coming at the end after block reordering) the return address
464 // must still point into the code area in order to avoid assertion
465 // failures when searching for the corresponding bci => add a nop
466 // (was bug 5/14/1999 - gri)
467
468 __ nop();
469
470 // generate code for exception handler
471 address handler_base = __ start_a_stub(deopt_handler_size);
472 if (handler_base == NULL) {
473 // not enough space left for the handler
474 bailout("deopt handler overflow");
475 return;
476 }
477 #ifdef ASSERT
478 int offset = code_offset();
479 #endif // ASSERT
480
481 compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
482
483 InternalAddress here(__ pc());
484 __ pushptr(here.addr());
485
486 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
487
488 assert(code_offset() - offset <= deopt_handler_size, "overflow");
489
490 __ end_a_stub();
491
492 }
493
494
495 // This is the fast version of java.lang.String.compare; it has not
496 // OSR-entry and therefore, we generate a slow version for OSR's
497 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
498 __ movl (rbx, rcx); // receiver is in rcx
499 __ movl (rax, arg1->as_register());
500
501 // Get addresses of first characters from both Strings
502 __ movl (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
503 __ movl (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
504 __ leal (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
505
506
507 // rbx, may be NULL
508 add_debug_info_for_null_check_here(info);
509 __ movl (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
510 __ movl (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
511 __ leal (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
512
513 // compute minimum length (in rax) and difference of lengths (on top of stack)
514 if (VM_Version::supports_cmov()) {
515 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
516 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
517 __ movl (rcx, rbx);
518 __ subl (rbx, rax); // subtract lengths
519 __ pushl(rbx); // result
520 __ cmovl(Assembler::lessEqual, rax, rcx);
521 } else {
522 Label L;
523 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
524 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
525 __ movl (rax, rbx);
526 __ subl (rbx, rcx);
527 __ pushl(rbx);
528 __ jcc (Assembler::lessEqual, L);
529 __ movl (rax, rcx);
530 __ bind (L);
531 }
532 // is minimum length 0?
533 Label noLoop, haveResult;
534 __ testl (rax, rax);
535 __ jcc (Assembler::zero, noLoop);
536
537 // compare first characters
538 __ load_unsigned_word(rcx, Address(rdi, 0));
539 __ load_unsigned_word(rbx, Address(rsi, 0));
540 __ subl(rcx, rbx);
541 __ jcc(Assembler::notZero, haveResult);
542 // starting loop
543 __ decrement(rax); // we already tested index: skip one
544 __ jcc(Assembler::zero, noLoop);
545
546 // set rsi.edi to the end of the arrays (arrays have same length)
547 // negate the index
548
549 __ leal(rsi, Address(rsi, rax, Address::times_2, type2aelembytes[T_CHAR]));
550 __ leal(rdi, Address(rdi, rax, Address::times_2, type2aelembytes[T_CHAR]));
551 __ negl(rax);
552
553 // compare the strings in a loop
554
555 Label loop;
556 __ align(wordSize);
557 __ bind(loop);
558 __ load_unsigned_word(rcx, Address(rdi, rax, Address::times_2, 0));
559 __ load_unsigned_word(rbx, Address(rsi, rax, Address::times_2, 0));
560 __ subl(rcx, rbx);
561 __ jcc(Assembler::notZero, haveResult);
562 __ increment(rax);
563 __ jcc(Assembler::notZero, loop);
564
565 // strings are equal up to min length
566
567 __ bind(noLoop);
568 __ popl(rax);
569 return_op(LIR_OprFact::illegalOpr);
570
571 __ bind(haveResult);
572 // leave instruction is going to discard the TOS value
573 __ movl (rax, rcx); // result of call is in rax,
574 }
575
576
577 void LIR_Assembler::return_op(LIR_Opr result) {
578 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
579 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
580 assert(result->fpu() == 0, "result must already be on TOS");
581 }
582
583 // Pop the stack before the safepoint code
584 __ leave();
585
586 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
587
588 // Note: we do not need to round double result; float result has the right precision
589 // the poll sets the condition code, but no data registers
590 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
591 relocInfo::poll_return_type);
592 __ test32(rax, polling_page);
593
594 __ ret(0);
595 }
596
597
598 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
599 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
600 relocInfo::poll_type);
601
602 if (info != NULL) {
603 add_debug_info_for_branch(info);
604 } else {
605 ShouldNotReachHere();
606 }
607
608 int offset = __ offset();
609 __ test32(rax, polling_page);
610 return offset;
611 }
612
613
614 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
615 if (from_reg != to_reg) __ movl(to_reg, from_reg);
616 }
617
618 void LIR_Assembler::swap_reg(Register a, Register b) {
619 __ xchgl(a, b);
620 }
621
622
623 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
624 assert(src->is_constant(), "should not call otherwise");
625 assert(dest->is_register(), "should not call otherwise");
626 LIR_Const* c = src->as_constant_ptr();
627
628 switch (c->type()) {
629 case T_INT: {
630 assert(patch_code == lir_patch_none, "no patching handled here");
631 __ movl(dest->as_register(), c->as_jint());
632 break;
633 }
634
635 case T_LONG: {
636 assert(patch_code == lir_patch_none, "no patching handled here");
637 __ movl(dest->as_register_lo(), c->as_jint_lo());
638 __ movl(dest->as_register_hi(), c->as_jint_hi());
639 break;
640 }
641
642 case T_OBJECT: {
643 if (patch_code != lir_patch_none) {
644 jobject2reg_with_patching(dest->as_register(), info);
645 } else {
646 __ movoop(dest->as_register(), c->as_jobject());
647 }
648 break;
649 }
650
651 case T_FLOAT: {
652 if (dest->is_single_xmm()) {
653 if (c->is_zero_float()) {
654 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
655 } else {
656 __ movflt(dest->as_xmm_float_reg(),
657 InternalAddress(float_constant(c->as_jfloat())));
658 }
659 } else {
660 assert(dest->is_single_fpu(), "must be");
661 assert(dest->fpu_regnr() == 0, "dest must be TOS");
662 if (c->is_zero_float()) {
663 __ fldz();
664 } else if (c->is_one_float()) {
665 __ fld1();
666 } else {
667 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
668 }
669 }
670 break;
671 }
672
673 case T_DOUBLE: {
674 if (dest->is_double_xmm()) {
675 if (c->is_zero_double()) {
676 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
677 } else {
678 __ movdbl(dest->as_xmm_double_reg(),
679 InternalAddress(double_constant(c->as_jdouble())));
680 }
681 } else {
682 assert(dest->is_double_fpu(), "must be");
683 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
684 if (c->is_zero_double()) {
685 __ fldz();
686 } else if (c->is_one_double()) {
687 __ fld1();
688 } else {
689 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
690 }
691 }
692 break;
693 }
694
695 default:
696 ShouldNotReachHere();
697 }
698 }
699
700 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
701 assert(src->is_constant(), "should not call otherwise");
702 assert(dest->is_stack(), "should not call otherwise");
703 LIR_Const* c = src->as_constant_ptr();
704
705 switch (c->type()) {
706 case T_INT: // fall through
707 case T_FLOAT:
708 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
709 break;
710
711 case T_OBJECT:
712 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
713 break;
714
715 case T_LONG: // fall through
716 case T_DOUBLE:
717 __ movl(frame_map()->address_for_slot(dest->double_stack_ix(),
718 lo_word_offset_in_bytes), c->as_jint_lo_bits());
719 __ movl(frame_map()->address_for_slot(dest->double_stack_ix(),
720 hi_word_offset_in_bytes), c->as_jint_hi_bits());
721 break;
722
723 default:
724 ShouldNotReachHere();
725 }
726 }
727
728 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
729 assert(src->is_constant(), "should not call otherwise");
730 assert(dest->is_address(), "should not call otherwise");
731 LIR_Const* c = src->as_constant_ptr();
732 LIR_Address* addr = dest->as_address_ptr();
733
734 if (info != NULL) add_debug_info_for_null_check_here(info);
735 switch (type) {
736 case T_INT: // fall through
737 case T_FLOAT:
738 __ movl(as_Address(addr), c->as_jint_bits());
739 break;
740
741 case T_OBJECT: // fall through
742 case T_ARRAY:
743 if (c->as_jobject() == NULL) {
744 __ movl(as_Address(addr), NULL_WORD);
745 } else {
746 __ movoop(as_Address(addr), c->as_jobject());
747 }
748 break;
749
750 case T_LONG: // fall through
751 case T_DOUBLE:
752 __ movl(as_Address_hi(addr), c->as_jint_hi_bits());
753 __ movl(as_Address_lo(addr), c->as_jint_lo_bits());
754 break;
755
756 case T_BOOLEAN: // fall through
757 case T_BYTE:
758 __ movb(as_Address(addr), c->as_jint() & 0xFF);
759 break;
760
761 case T_CHAR: // fall through
762 case T_SHORT:
763 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
764 break;
765
766 default:
767 ShouldNotReachHere();
768 };
769 }
770
771
772 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
773 assert(src->is_register(), "should not call otherwise");
774 assert(dest->is_register(), "should not call otherwise");
775
776 // move between cpu-registers
777 if (dest->is_single_cpu()) {
778 assert(src->is_single_cpu(), "must match");
779 if (src->type() == T_OBJECT) {
780 __ verify_oop(src->as_register());
781 }
782 move_regs(src->as_register(), dest->as_register());
783
784 } else if (dest->is_double_cpu()) {
785 assert(src->is_double_cpu(), "must match");
786 Register f_lo = src->as_register_lo();
787 Register f_hi = src->as_register_hi();
788 Register t_lo = dest->as_register_lo();
789 Register t_hi = dest->as_register_hi();
790 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
791
792 if (f_lo == t_hi && f_hi == t_lo) {
793 swap_reg(f_lo, f_hi);
794 } else if (f_hi == t_lo) {
795 assert(f_lo != t_hi, "overwriting register");
796 move_regs(f_hi, t_hi);
797 move_regs(f_lo, t_lo);
798 } else {
799 assert(f_hi != t_lo, "overwriting register");
800 move_regs(f_lo, t_lo);
801 move_regs(f_hi, t_hi);
802 }
803
804 // special moves from fpu-register to xmm-register
805 // necessary for method results
806 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
807 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
808 __ fld_s(Address(rsp, 0));
809 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
810 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
811 __ fld_d(Address(rsp, 0));
812 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
813 __ fstp_s(Address(rsp, 0));
814 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
815 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
816 __ fstp_d(Address(rsp, 0));
817 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
818
819 // move between xmm-registers
820 } else if (dest->is_single_xmm()) {
821 assert(src->is_single_xmm(), "must match");
822 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
823 } else if (dest->is_double_xmm()) {
824 assert(src->is_double_xmm(), "must match");
825 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
826
827 // move between fpu-registers (no instruction necessary because of fpu-stack)
828 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
829 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
830 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
831 } else {
832 ShouldNotReachHere();
833 }
834 }
835
836 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
837 assert(src->is_register(), "should not call otherwise");
838 assert(dest->is_stack(), "should not call otherwise");
839
840 if (src->is_single_cpu()) {
841 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
842 if (type == T_OBJECT || type == T_ARRAY) {
843 __ verify_oop(src->as_register());
844 }
845 __ movl (dst, src->as_register());
846
847 } else if (src->is_double_cpu()) {
848 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
849 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
850 __ movl (dstLO, src->as_register_lo());
851 __ movl (dstHI, src->as_register_hi());
852
853 } else if (src->is_single_xmm()) {
854 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
855 __ movflt(dst_addr, src->as_xmm_float_reg());
856
857 } else if (src->is_double_xmm()) {
858 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
859 __ movdbl(dst_addr, src->as_xmm_double_reg());
860
861 } else if (src->is_single_fpu()) {
862 assert(src->fpu_regnr() == 0, "argument must be on TOS");
863 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
864 if (pop_fpu_stack) __ fstp_s (dst_addr);
865 else __ fst_s (dst_addr);
866
867 } else if (src->is_double_fpu()) {
868 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
869 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
870 if (pop_fpu_stack) __ fstp_d (dst_addr);
871 else __ fst_d (dst_addr);
872
873 } else {
874 ShouldNotReachHere();
875 }
876 }
877
878
879 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
880 LIR_Address* to_addr = dest->as_address_ptr();
881 PatchingStub* patch = NULL;
882
883 if (type == T_ARRAY || type == T_OBJECT) {
884 __ verify_oop(src->as_register());
885 }
886 if (patch_code != lir_patch_none) {
887 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
888 }
889 if (info != NULL) {
890 add_debug_info_for_null_check_here(info);
891 }
892
893 switch (type) {
894 case T_FLOAT: {
895 if (src->is_single_xmm()) {
896 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
897 } else {
898 assert(src->is_single_fpu(), "must be");
899 assert(src->fpu_regnr() == 0, "argument must be on TOS");
900 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
901 else __ fst_s (as_Address(to_addr));
902 }
903 break;
904 }
905
906 case T_DOUBLE: {
907 if (src->is_double_xmm()) {
908 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
909 } else {
910 assert(src->is_double_fpu(), "must be");
911 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
912 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
913 else __ fst_d (as_Address(to_addr));
914 }
915 break;
916 }
917
918 case T_ADDRESS: // fall through
919 case T_ARRAY: // fall through
920 case T_OBJECT: // fall through
921 case T_INT:
922 __ movl(as_Address(to_addr), src->as_register());
923 break;
924
925 case T_LONG: {
926 Register from_lo = src->as_register_lo();
927 Register from_hi = src->as_register_hi();
928 Register base = to_addr->base()->as_register();
929 Register index = noreg;
930 if (to_addr->index()->is_register()) {
931 index = to_addr->index()->as_register();
932 }
933 if (base == from_lo || index == from_lo) {
934 assert(base != from_hi, "can't be");
935 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
936 __ movl(as_Address_hi(to_addr), from_hi);
937 if (patch != NULL) {
938 patching_epilog(patch, lir_patch_high, base, info);
939 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
940 patch_code = lir_patch_low;
941 }
942 __ movl(as_Address_lo(to_addr), from_lo);
943 } else {
944 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
945 __ movl(as_Address_lo(to_addr), from_lo);
946 if (patch != NULL) {
947 patching_epilog(patch, lir_patch_low, base, info);
948 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
949 patch_code = lir_patch_high;
950 }
951 __ movl(as_Address_hi(to_addr), from_hi);
952 }
953 break;
954 }
955
956 case T_BYTE: // fall through
957 case T_BOOLEAN: {
958 Register src_reg = src->as_register();
959 Address dst_addr = as_Address(to_addr);
960 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
961 __ movb(dst_addr, src_reg);
962 break;
963 }
964
965 case T_CHAR: // fall through
966 case T_SHORT:
967 __ movw(as_Address(to_addr), src->as_register());
968 break;
969
970 default:
971 ShouldNotReachHere();
972 }
973
974 if (patch_code != lir_patch_none) {
975 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
976 }
977 }
978
979
980 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
981 assert(src->is_stack(), "should not call otherwise");
982 assert(dest->is_register(), "should not call otherwise");
983
984 if (dest->is_single_cpu()) {
985 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
986 if (type == T_ARRAY || type == T_OBJECT) {
987 __ verify_oop(dest->as_register());
988 }
989
990 } else if (dest->is_double_cpu()) {
991 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
992 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
993 __ movl(dest->as_register_hi(), src_addr_HI);
994 __ movl(dest->as_register_lo(), src_addr_LO);
995
996 } else if (dest->is_single_xmm()) {
997 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
998 __ movflt(dest->as_xmm_float_reg(), src_addr);
999
1000 } else if (dest->is_double_xmm()) {
1001 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1002 __ movdbl(dest->as_xmm_double_reg(), src_addr);
1003
1004 } else if (dest->is_single_fpu()) {
1005 assert(dest->fpu_regnr() == 0, "dest must be TOS");
1006 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1007 __ fld_s(src_addr);
1008
1009 } else if (dest->is_double_fpu()) {
1010 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1011 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1012 __ fld_d(src_addr);
1013
1014 } else {
1015 ShouldNotReachHere();
1016 }
1017 }
1018
1019
1020 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1021 if (src->is_single_stack()) {
1022 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1023 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1024
1025 } else if (src->is_double_stack()) {
1026 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1027 // push and pop the part at src + 4, adding 4 for the previous push
1028 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 4 + 4));
1029 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 4 + 4));
1030 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1031
1032 } else {
1033 ShouldNotReachHere();
1034 }
1035 }
1036
1037
1038 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
1039 assert(src->is_address(), "should not call otherwise");
1040 assert(dest->is_register(), "should not call otherwise");
1041
1042 LIR_Address* addr = src->as_address_ptr();
1043 Address from_addr = as_Address(addr);
1044
1045 switch (type) {
1046 case T_BOOLEAN: // fall through
1047 case T_BYTE: // fall through
1048 case T_CHAR: // fall through
1049 case T_SHORT:
1050 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1051 // on pre P6 processors we may get partial register stalls
1052 // so blow away the value of to_rinfo before loading a
1053 // partial word into it. Do it here so that it precedes
1054 // the potential patch point below.
1055 __ xorl(dest->as_register(), dest->as_register());
1056 }
1057 break;
1058 }
1059
1060 PatchingStub* patch = NULL;
1061 if (patch_code != lir_patch_none) {
1062 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1063 }
1064 if (info != NULL) {
1065 add_debug_info_for_null_check_here(info);
1066 }
1067
1068 switch (type) {
1069 case T_FLOAT: {
1070 if (dest->is_single_xmm()) {
1071 __ movflt(dest->as_xmm_float_reg(), from_addr);
1072 } else {
1073 assert(dest->is_single_fpu(), "must be");
1074 assert(dest->fpu_regnr() == 0, "dest must be TOS");
1075 __ fld_s(from_addr);
1076 }
1077 break;
1078 }
1079
1080 case T_DOUBLE: {
1081 if (dest->is_double_xmm()) {
1082 __ movdbl(dest->as_xmm_double_reg(), from_addr);
1083 } else {
1084 assert(dest->is_double_fpu(), "must be");
1085 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1086 __ fld_d(from_addr);
1087 }
1088 break;
1089 }
1090
1091 case T_ADDRESS: // fall through
1092 case T_OBJECT: // fall through
1093 case T_ARRAY: // fall through
1094 case T_INT:
1095 __ movl(dest->as_register(), from_addr);
1096 break;
1097
1098 case T_LONG: {
1099 Register to_lo = dest->as_register_lo();
1100 Register to_hi = dest->as_register_hi();
1101 Register base = addr->base()->as_register();
1102 Register index = noreg;
1103 if (addr->index()->is_register()) {
1104 index = addr->index()->as_register();
1105 }
1106 if ((base == to_lo && index == to_hi) ||
1107 (base == to_hi && index == to_lo)) {
1108 // addresses with 2 registers are only formed as a result of
1109 // array access so this code will never have to deal with
1110 // patches or null checks.
1111 assert(info == NULL && patch == NULL, "must be");
1112 __ leal(to_hi, as_Address(addr));
1113 __ movl(to_lo, Address(to_hi, 0));
1114 __ movl(to_hi, Address(to_hi, BytesPerWord));
1115 } else if (base == to_lo || index == to_lo) {
1116 assert(base != to_hi, "can't be");
1117 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1118 __ movl(to_hi, as_Address_hi(addr));
1119 if (patch != NULL) {
1120 patching_epilog(patch, lir_patch_high, base, info);
1121 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1122 patch_code = lir_patch_low;
1123 }
1124 __ movl(to_lo, as_Address_lo(addr));
1125 } else {
1126 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1127 __ movl(to_lo, as_Address_lo(addr));
1128 if (patch != NULL) {
1129 patching_epilog(patch, lir_patch_low, base, info);
1130 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1131 patch_code = lir_patch_high;
1132 }
1133 __ movl(to_hi, as_Address_hi(addr));
1134 }
1135 break;
1136 }
1137
1138 case T_BOOLEAN: // fall through
1139 case T_BYTE: {
1140 Register dest_reg = dest->as_register();
1141 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1142 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1143 __ movsxb(dest_reg, from_addr);
1144 } else {
1145 __ movb(dest_reg, from_addr);
1146 __ shll(dest_reg, 24);
1147 __ sarl(dest_reg, 24);
1148 }
1149 break;
1150 }
1151
1152 case T_CHAR: {
1153 Register dest_reg = dest->as_register();
1154 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1155 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1156 __ movzxw(dest_reg, from_addr);
1157 } else {
1158 __ movw(dest_reg, from_addr);
1159 }
1160 break;
1161 }
1162
1163 case T_SHORT: {
1164 Register dest_reg = dest->as_register();
1165 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1166 __ movsxw(dest_reg, from_addr);
1167 } else {
1168 __ movw(dest_reg, from_addr);
1169 __ shll(dest_reg, 16);
1170 __ sarl(dest_reg, 16);
1171 }
1172 break;
1173 }
1174
1175 default:
1176 ShouldNotReachHere();
1177 }
1178
1179 if (patch != NULL) {
1180 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1181 }
1182
1183 if (type == T_ARRAY || type == T_OBJECT) {
1184 __ verify_oop(dest->as_register());
1185 }
1186 }
1187
1188
1189 void LIR_Assembler::prefetchr(LIR_Opr src) {
1190 LIR_Address* addr = src->as_address_ptr();
1191 Address from_addr = as_Address(addr);
1192
1193 if (VM_Version::supports_sse()) {
1194 switch (ReadPrefetchInstr) {
1195 case 0:
1196 __ prefetchnta(from_addr); break;
1197 case 1:
1198 __ prefetcht0(from_addr); break;
1199 case 2:
1200 __ prefetcht2(from_addr); break;
1201 default:
1202 ShouldNotReachHere(); break;
1203 }
1204 } else if (VM_Version::supports_3dnow()) {
1205 __ prefetchr(from_addr);
1206 }
1207 }
1208
1209
1210 void LIR_Assembler::prefetchw(LIR_Opr src) {
1211 LIR_Address* addr = src->as_address_ptr();
1212 Address from_addr = as_Address(addr);
1213
1214 if (VM_Version::supports_sse()) {
1215 switch (AllocatePrefetchInstr) {
1216 case 0:
1217 __ prefetchnta(from_addr); break;
1218 case 1:
1219 __ prefetcht0(from_addr); break;
1220 case 2:
1221 __ prefetcht2(from_addr); break;
1222 case 3:
1223 __ prefetchw(from_addr); break;
1224 default:
1225 ShouldNotReachHere(); break;
1226 }
1227 } else if (VM_Version::supports_3dnow()) {
1228 __ prefetchw(from_addr);
1229 }
1230 }
1231
1232
1233 NEEDS_CLEANUP; // This could be static?
1234 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1235 int elem_size = type2aelembytes[type];
1236 switch (elem_size) {
1237 case 1: return Address::times_1;
1238 case 2: return Address::times_2;
1239 case 4: return Address::times_4;
1240 case 8: return Address::times_8;
1241 }
1242 ShouldNotReachHere();
1243 return Address::no_scale;
1244 }
1245
1246
1247 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1248 switch (op->code()) {
1249 case lir_idiv:
1250 case lir_irem:
1251 arithmetic_idiv(op->code(),
1252 op->in_opr1(),
1253 op->in_opr2(),
1254 op->in_opr3(),
1255 op->result_opr(),
1256 op->info());
1257 break;
1258 default: ShouldNotReachHere(); break;
1259 }
1260 }
1261
1262 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1263 #ifdef ASSERT
1264 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1265 if (op->block() != NULL) _branch_target_blocks.append(op->block());
1266 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1267 #endif
1268
1269 if (op->cond() == lir_cond_always) {
1270 if (op->info() != NULL) add_debug_info_for_branch(op->info());
1271 __ jmp (*(op->label()));
1272 } else {
1273 Assembler::Condition acond = Assembler::zero;
1274 if (op->code() == lir_cond_float_branch) {
1275 assert(op->ublock() != NULL, "must have unordered successor");
1276 __ jcc(Assembler::parity, *(op->ublock()->label()));
1277 switch(op->cond()) {
1278 case lir_cond_equal: acond = Assembler::equal; break;
1279 case lir_cond_notEqual: acond = Assembler::notEqual; break;
1280 case lir_cond_less: acond = Assembler::below; break;
1281 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
1282 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1283 case lir_cond_greater: acond = Assembler::above; break;
1284 default: ShouldNotReachHere();
1285 }
1286 } else {
1287 switch (op->cond()) {
1288 case lir_cond_equal: acond = Assembler::equal; break;
1289 case lir_cond_notEqual: acond = Assembler::notEqual; break;
1290 case lir_cond_less: acond = Assembler::less; break;
1291 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
1292 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1293 case lir_cond_greater: acond = Assembler::greater; break;
1294 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
1295 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
1296 default: ShouldNotReachHere();
1297 }
1298 }
1299 __ jcc(acond,*(op->label()));
1300 }
1301 }
1302
1303 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1304 LIR_Opr src = op->in_opr();
1305 LIR_Opr dest = op->result_opr();
1306
1307 switch (op->bytecode()) {
1308 case Bytecodes::_i2l:
1309 move_regs(src->as_register(), dest->as_register_lo());
1310 move_regs(src->as_register(), dest->as_register_hi());
1311 __ sarl(dest->as_register_hi(), 31);
1312 break;
1313
1314 case Bytecodes::_l2i:
1315 move_regs(src->as_register_lo(), dest->as_register());
1316 break;
1317
1318 case Bytecodes::_i2b:
1319 move_regs(src->as_register(), dest->as_register());
1320 __ sign_extend_byte(dest->as_register());
1321 break;
1322
1323 case Bytecodes::_i2c:
1324 move_regs(src->as_register(), dest->as_register());
1325 __ andl(dest->as_register(), 0xFFFF);
1326 break;
1327
1328 case Bytecodes::_i2s:
1329 move_regs(src->as_register(), dest->as_register());
1330 __ sign_extend_short(dest->as_register());
1331 break;
1332
1333
1334 case Bytecodes::_f2d:
1335 case Bytecodes::_d2f:
1336 if (dest->is_single_xmm()) {
1337 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1338 } else if (dest->is_double_xmm()) {
1339 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1340 } else {
1341 assert(src->fpu() == dest->fpu(), "register must be equal");
1342 // do nothing (float result is rounded later through spilling)
1343 }
1344 break;
1345
1346 case Bytecodes::_i2f:
1347 case Bytecodes::_i2d:
1348 if (dest->is_single_xmm()) {
1349 __ cvtsi2ss(dest->as_xmm_float_reg(), src->as_register());
1350 } else if (dest->is_double_xmm()) {
1351 __ cvtsi2sd(dest->as_xmm_double_reg(), src->as_register());
1352 } else {
1353 assert(dest->fpu() == 0, "result must be on TOS");
1354 __ movl(Address(rsp, 0), src->as_register());
1355 __ fild_s(Address(rsp, 0));
1356 }
1357 break;
1358
1359 case Bytecodes::_f2i:
1360 case Bytecodes::_d2i:
1361 if (src->is_single_xmm()) {
1362 __ cvttss2si(dest->as_register(), src->as_xmm_float_reg());
1363 } else if (src->is_double_xmm()) {
1364 __ cvttsd2si(dest->as_register(), src->as_xmm_double_reg());
1365 } else {
1366 assert(src->fpu() == 0, "input must be on TOS");
1367 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1368 __ fist_s(Address(rsp, 0));
1369 __ movl(dest->as_register(), Address(rsp, 0));
1370 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1371 }
1372
1373 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1374 assert(op->stub() != NULL, "stub required");
1375 __ cmpl(dest->as_register(), 0x80000000);
1376 __ jcc(Assembler::equal, *op->stub()->entry());
1377 __ bind(*op->stub()->continuation());
1378 break;
1379
1380 case Bytecodes::_l2f:
1381 case Bytecodes::_l2d:
1382 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1383 assert(dest->fpu() == 0, "result must be on TOS");
1384
1385 __ movl(Address(rsp, 0), src->as_register_lo());
1386 __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1387 __ fild_d(Address(rsp, 0));
1388 // float result is rounded later through spilling
1389 break;
1390
1391 case Bytecodes::_f2l:
1392 case Bytecodes::_d2l:
1393 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1394 assert(src->fpu() == 0, "input must be on TOS");
1395 assert(dest == FrameMap::rax_rdx_long_opr, "runtime stub places result in these registers");
1396
1397 // instruction sequence too long to inline it here
1398 {
1399 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1400 }
1401 break;
1402
1403 default: ShouldNotReachHere();
1404 }
1405 }
1406
1407 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1408 if (op->init_check()) {
1409 __ cmpl(Address(op->klass()->as_register(),
1410 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1411 instanceKlass::fully_initialized);
1412 add_debug_info_for_null_check_here(op->stub()->info());
1413 __ jcc(Assembler::notEqual, *op->stub()->entry());
1414 }
1415 __ allocate_object(op->obj()->as_register(),
1416 op->tmp1()->as_register(),
1417 op->tmp2()->as_register(),
1418 op->header_size(),
1419 op->object_size(),
1420 op->klass()->as_register(),
1421 *op->stub()->entry());
1422 __ bind(*op->stub()->continuation());
1423 }
1424
1425 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1426 if (UseSlowPath ||
1427 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1428 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1429 __ jmp(*op->stub()->entry());
1430 } else {
1431 Register len = op->len()->as_register();
1432 Register tmp1 = op->tmp1()->as_register();
1433 Register tmp2 = op->tmp2()->as_register();
1434 Register tmp3 = op->tmp3()->as_register();
1435 if (len == tmp1) {
1436 tmp1 = tmp3;
1437 } else if (len == tmp2) {
1438 tmp2 = tmp3;
1439 } else if (len == tmp3) {
1440 // everything is ok
1441 } else {
1442 __ movl(tmp3, len);
1443 }
1444 __ allocate_array(op->obj()->as_register(),
1445 len,
1446 tmp1,
1447 tmp2,
1448 arrayOopDesc::header_size(op->type()),
1449 array_element_size(op->type()),
1450 op->klass()->as_register(),
1451 *op->stub()->entry());
1452 }
1453 __ bind(*op->stub()->continuation());
1454 }
1455
1456
1457
1458 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1459 LIR_Code code = op->code();
1460 if (code == lir_store_check) {
1461 Register value = op->object()->as_register();
1462 Register array = op->array()->as_register();
1463 Register k_RInfo = op->tmp1()->as_register();
1464 Register klass_RInfo = op->tmp2()->as_register();
1465 Register Rtmp1 = op->tmp3()->as_register();
1466
1467 CodeStub* stub = op->stub();
1468 Label done;
1469 __ cmpl(value, 0);
1470 __ jcc(Assembler::equal, done);
1471 add_debug_info_for_null_check_here(op->info_for_exception());
1472 __ movl(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
1473 __ movl(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
1474
1475 // get instance klass
1476 __ movl(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1477 // get super_check_offset
1478 __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
1479 // See if we get an immediate positive hit
1480 __ cmpl(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
1481 __ jcc(Assembler::equal, done);
1482 // check for immediate negative hit
1483 __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
1484 __ jcc(Assembler::notEqual, *stub->entry());
1485 // check for self
1486 __ cmpl(klass_RInfo, k_RInfo);
1487 __ jcc(Assembler::equal, done);
1488
1489 __ pushl(klass_RInfo);
1490 __ pushl(k_RInfo);
1491 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1492 __ popl(klass_RInfo);
1493 __ popl(k_RInfo);
1494 __ cmpl(k_RInfo, 0);
1495 __ jcc(Assembler::equal, *stub->entry());
1496 __ bind(done);
1497 } else if (op->code() == lir_checkcast) {
1498 // we always need a stub for the failure case.
1499 CodeStub* stub = op->stub();
1500 Register obj = op->object()->as_register();
1501 Register k_RInfo = op->tmp1()->as_register();
1502 Register klass_RInfo = op->tmp2()->as_register();
1503 Register dst = op->result_opr()->as_register();
1504 ciKlass* k = op->klass();
1505 Register Rtmp1 = noreg;
1506
1507 Label done;
1508 if (obj == k_RInfo) {
1509 k_RInfo = dst;
1510 } else if (obj == klass_RInfo) {
1511 klass_RInfo = dst;
1512 }
1513 if (k->is_loaded()) {
1514 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1515 } else {
1516 Rtmp1 = op->tmp3()->as_register();
1517 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1518 }
1519
1520 assert_different_registers(obj, k_RInfo, klass_RInfo);
1521 if (!k->is_loaded()) {
1522 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1523 } else {
1524 k_RInfo = noreg;
1525 }
1526 assert(obj != k_RInfo, "must be different");
1527 __ cmpl(obj, 0);
1528 if (op->profiled_method() != NULL) {
1529 ciMethod* method = op->profiled_method();
1530 int bci = op->profiled_bci();
1531
1532 Label profile_done;
1533 __ jcc(Assembler::notEqual, profile_done);
1534 // Object is null; update methodDataOop
1535 ciMethodData* md = method->method_data();
1536 if (md == NULL) {
1537 bailout("out of memory building methodDataOop");
1538 return;
1539 }
1540 ciProfileData* data = md->bci_to_data(bci);
1541 assert(data != NULL, "need data for checkcast");
1542 assert(data->is_BitData(), "need BitData for checkcast");
1543 Register mdo = klass_RInfo;
1544 __ movoop(mdo, md->encoding());
1545 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1546 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1547 __ orl(data_addr, header_bits);
1548 __ jmp(done);
1549 __ bind(profile_done);
1550 } else {
1551 __ jcc(Assembler::equal, done);
1552 }
1553 __ verify_oop(obj);
1554
1555 if (op->fast_check()) {
1556 // get object classo
1557 // not a safepoint as obj null check happens earlier
1558 if (k->is_loaded()) {
1559 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding());
1560 } else {
1561 __ cmpl(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1562
1563 }
1564 __ jcc(Assembler::notEqual, *stub->entry());
1565 __ bind(done);
1566 } else {
1567 // get object class
1568 // not a safepoint as obj null check happens earlier
1569 __ movl(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1570 if (k->is_loaded()) {
1571 // See if we get an immediate positive hit
1572 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
1573 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1574 __ jcc(Assembler::notEqual, *stub->entry());
1575 } else {
1576 // See if we get an immediate positive hit
1577 __ jcc(Assembler::equal, done);
1578 // check for self
1579 __ cmpoop(klass_RInfo, k->encoding());
1580 __ jcc(Assembler::equal, done);
1581
1582 __ pushl(klass_RInfo);
1583 __ pushoop(k->encoding());
1584 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1585 __ popl(klass_RInfo);
1586 __ popl(klass_RInfo);
1587 __ cmpl(klass_RInfo, 0);
1588 __ jcc(Assembler::equal, *stub->entry());
1589 }
1590 __ bind(done);
1591 } else {
1592 __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
1593 // See if we get an immediate positive hit
1594 __ cmpl(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
1595 __ jcc(Assembler::equal, done);
1596 // check for immediate negative hit
1597 __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
1598 __ jcc(Assembler::notEqual, *stub->entry());
1599 // check for self
1600 __ cmpl(klass_RInfo, k_RInfo);
1601 __ jcc(Assembler::equal, done);
1602
1603 __ pushl(klass_RInfo);
1604 __ pushl(k_RInfo);
1605 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1606 __ popl(klass_RInfo);
1607 __ popl(k_RInfo);
1608 __ cmpl(k_RInfo, 0);
1609 __ jcc(Assembler::equal, *stub->entry());
1610 __ bind(done);
1611 }
1612
1613 }
1614 if (dst != obj) {
1615 __ movl(dst, obj);
1616 }
1617 } else if (code == lir_instanceof) {
1618 Register obj = op->object()->as_register();
1619 Register k_RInfo = op->tmp1()->as_register();
1620 Register klass_RInfo = op->tmp2()->as_register();
1621 Register dst = op->result_opr()->as_register();
1622 ciKlass* k = op->klass();
1623
1624 Label done;
1625 Label zero;
1626 Label one;
1627 if (obj == k_RInfo) {
1628 k_RInfo = klass_RInfo;
1629 klass_RInfo = obj;
1630 }
1631 // patching may screw with our temporaries on sparc,
1632 // so let's do it before loading the class
1633 if (!k->is_loaded()) {
1634 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1635 }
1636 assert(obj != k_RInfo, "must be different");
1637
1638 __ verify_oop(obj);
1639 if (op->fast_check()) {
1640 __ cmpl(obj, 0);
1641 __ jcc(Assembler::equal, zero);
1642 // get object class
1643 // not a safepoint as obj null check happens earlier
1644 if (k->is_loaded()) {
1645 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding());
1646 k_RInfo = noreg;
1647 } else {
1648 __ cmpl(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1649
1650 }
1651 __ jcc(Assembler::equal, one);
1652 } else {
1653 // get object class
1654 // not a safepoint as obj null check happens earlier
1655 __ cmpl(obj, 0);
1656 __ jcc(Assembler::equal, zero);
1657 __ movl(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1658 if (k->is_loaded()) {
1659 // See if we get an immediate positive hit
1660 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
1661 __ jcc(Assembler::equal, one);
1662 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
1663 // check for self
1664 __ cmpoop(klass_RInfo, k->encoding());
1665 __ jcc(Assembler::equal, one);
1666 __ pushl(klass_RInfo);
1667 __ pushoop(k->encoding());
1668 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1669 __ popl(klass_RInfo);
1670 __ popl(dst);
1671 __ jmp(done);
1672 }
1673 } else {
1674 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
1675
1676 __ movl(dst, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
1677 // See if we get an immediate positive hit
1678 __ cmpl(k_RInfo, Address(klass_RInfo, dst, Address::times_1));
1679 __ jcc(Assembler::equal, one);
1680 // check for immediate negative hit
1681 __ cmpl(dst, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
1682 __ jcc(Assembler::notEqual, zero);
1683 // check for self
1684 __ cmpl(klass_RInfo, k_RInfo);
1685 __ jcc(Assembler::equal, one);
1686
1687 __ pushl(klass_RInfo);
1688 __ pushl(k_RInfo);
1689 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1690 __ popl(klass_RInfo);
1691 __ popl(dst);
1692 __ jmp(done);
1693 }
1694 }
1695 __ bind(zero);
1696 __ xorl(dst, dst);
1697 __ jmp(done);
1698 __ bind(one);
1699 __ movl(dst, 1);
1700 __ bind(done);
1701 } else {
1702 ShouldNotReachHere();
1703 }
1704
1705 }
1706
1707
1708 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1709 if (op->code() == lir_cas_long) {
1710 assert(VM_Version::supports_cx8(), "wrong machine");
1711 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1712 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1713 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1714 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1715 Register addr = op->addr()->as_register();
1716 if (os::is_MP()) {
1717 __ lock();
1718 }
1719 __ cmpxchg8(Address(addr, 0));
1720
1721 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
1722 Register addr = op->addr()->as_register();
1723 Register newval = op->new_value()->as_register();
1724 Register cmpval = op->cmp_value()->as_register();
1725 assert(cmpval == rax, "wrong register");
1726 assert(newval != NULL, "new val must be register");
1727 assert(cmpval != newval, "cmp and new values must be in different registers");
1728 assert(cmpval != addr, "cmp and addr must be in different registers");
1729 assert(newval != addr, "new value and addr must be in different registers");
1730 if (os::is_MP()) {
1731 __ lock();
1732 }
1733 __ cmpxchg(newval, Address(addr, 0));
1734 } else {
1735 Unimplemented();
1736 }
1737 }
1738
1739
1740 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1741 Assembler::Condition acond, ncond;
1742 switch (condition) {
1743 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
1744 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
1745 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
1746 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
1747 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
1748 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
1749 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
1750 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
1751 default: ShouldNotReachHere();
1752 }
1753
1754 if (opr1->is_cpu_register()) {
1755 reg2reg(opr1, result);
1756 } else if (opr1->is_stack()) {
1757 stack2reg(opr1, result, result->type());
1758 } else if (opr1->is_constant()) {
1759 const2reg(opr1, result, lir_patch_none, NULL);
1760 } else {
1761 ShouldNotReachHere();
1762 }
1763
1764 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1765 // optimized version that does not require a branch
1766 if (opr2->is_single_cpu()) {
1767 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1768 __ cmovl(ncond, result->as_register(), opr2->as_register());
1769 } else if (opr2->is_double_cpu()) {
1770 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1771 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1772 __ cmovl(ncond, result->as_register_lo(), opr2->as_register_lo());
1773 __ cmovl(ncond, result->as_register_hi(), opr2->as_register_hi());
1774 } else if (opr2->is_single_stack()) {
1775 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1776 } else if (opr2->is_double_stack()) {
1777 __ cmovl(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1778 __ cmovl(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));
1779 } else {
1780 ShouldNotReachHere();
1781 }
1782
1783 } else {
1784 Label skip;
1785 __ jcc (acond, skip);
1786 if (opr2->is_cpu_register()) {
1787 reg2reg(opr2, result);
1788 } else if (opr2->is_stack()) {
1789 stack2reg(opr2, result, result->type());
1790 } else if (opr2->is_constant()) {
1791 const2reg(opr2, result, lir_patch_none, NULL);
1792 } else {
1793 ShouldNotReachHere();
1794 }
1795 __ bind(skip);
1796 }
1797 }
1798
1799
1800 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1801 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1802
1803 if (left->is_single_cpu()) {
1804 assert(left == dest, "left and dest must be equal");
1805 Register lreg = left->as_register();
1806
1807 if (right->is_single_cpu()) {
1808 // cpu register - cpu register
1809 Register rreg = right->as_register();
1810 switch (code) {
1811 case lir_add: __ addl (lreg, rreg); break;
1812 case lir_sub: __ subl (lreg, rreg); break;
1813 case lir_mul: __ imull(lreg, rreg); break;
1814 default: ShouldNotReachHere();
1815 }
1816
1817 } else if (right->is_stack()) {
1818 // cpu register - stack
1819 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1820 switch (code) {
1821 case lir_add: __ addl(lreg, raddr); break;
1822 case lir_sub: __ subl(lreg, raddr); break;
1823 default: ShouldNotReachHere();
1824 }
1825
1826 } else if (right->is_constant()) {
1827 // cpu register - constant
1828 jint c = right->as_constant_ptr()->as_jint();
1829 switch (code) {
1830 case lir_add: {
1831 __ increment(lreg, c);
1832 break;
1833 }
1834 case lir_sub: {
1835 __ decrement(lreg, c);
1836 break;
1837 }
1838 default: ShouldNotReachHere();
1839 }
1840
1841 } else {
1842 ShouldNotReachHere();
1843 }
1844
1845 } else if (left->is_double_cpu()) {
1846 assert(left == dest, "left and dest must be equal");
1847 Register lreg_lo = left->as_register_lo();
1848 Register lreg_hi = left->as_register_hi();
1849
1850 if (right->is_double_cpu()) {
1851 // cpu register - cpu register
1852 Register rreg_lo = right->as_register_lo();
1853 Register rreg_hi = right->as_register_hi();
1854 assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi);
1855 switch (code) {
1856 case lir_add:
1857 __ addl(lreg_lo, rreg_lo);
1858 __ adcl(lreg_hi, rreg_hi);
1859 break;
1860 case lir_sub:
1861 __ subl(lreg_lo, rreg_lo);
1862 __ sbbl(lreg_hi, rreg_hi);
1863 break;
1864 case lir_mul:
1865 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
1866 __ imull(lreg_hi, rreg_lo);
1867 __ imull(rreg_hi, lreg_lo);
1868 __ addl (rreg_hi, lreg_hi);
1869 __ mull (rreg_lo);
1870 __ addl (lreg_hi, rreg_hi);
1871 break;
1872 default:
1873 ShouldNotReachHere();
1874 }
1875
1876 } else if (right->is_constant()) {
1877 // cpu register - constant
1878 jint c_lo = right->as_constant_ptr()->as_jint_lo();
1879 jint c_hi = right->as_constant_ptr()->as_jint_hi();
1880 switch (code) {
1881 case lir_add:
1882 __ addl(lreg_lo, c_lo);
1883 __ adcl(lreg_hi, c_hi);
1884 break;
1885 case lir_sub:
1886 __ subl(lreg_lo, c_lo);
1887 __ sbbl(lreg_hi, c_hi);
1888 break;
1889 default:
1890 ShouldNotReachHere();
1891 }
1892
1893 } else {
1894 ShouldNotReachHere();
1895 }
1896
1897 } else if (left->is_single_xmm()) {
1898 assert(left == dest, "left and dest must be equal");
1899 XMMRegister lreg = left->as_xmm_float_reg();
1900
1901 if (right->is_single_xmm()) {
1902 XMMRegister rreg = right->as_xmm_float_reg();
1903 switch (code) {
1904 case lir_add: __ addss(lreg, rreg); break;
1905 case lir_sub: __ subss(lreg, rreg); break;
1906 case lir_mul_strictfp: // fall through
1907 case lir_mul: __ mulss(lreg, rreg); break;
1908 case lir_div_strictfp: // fall through
1909 case lir_div: __ divss(lreg, rreg); break;
1910 default: ShouldNotReachHere();
1911 }
1912 } else {
1913 Address raddr;
1914 if (right->is_single_stack()) {
1915 raddr = frame_map()->address_for_slot(right->single_stack_ix());
1916 } else if (right->is_constant()) {
1917 // hack for now
1918 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
1919 } else {
1920 ShouldNotReachHere();
1921 }
1922 switch (code) {
1923 case lir_add: __ addss(lreg, raddr); break;
1924 case lir_sub: __ subss(lreg, raddr); break;
1925 case lir_mul_strictfp: // fall through
1926 case lir_mul: __ mulss(lreg, raddr); break;
1927 case lir_div_strictfp: // fall through
1928 case lir_div: __ divss(lreg, raddr); break;
1929 default: ShouldNotReachHere();
1930 }
1931 }
1932
1933 } else if (left->is_double_xmm()) {
1934 assert(left == dest, "left and dest must be equal");
1935
1936 XMMRegister lreg = left->as_xmm_double_reg();
1937 if (right->is_double_xmm()) {
1938 XMMRegister rreg = right->as_xmm_double_reg();
1939 switch (code) {
1940 case lir_add: __ addsd(lreg, rreg); break;
1941 case lir_sub: __ subsd(lreg, rreg); break;
1942 case lir_mul_strictfp: // fall through
1943 case lir_mul: __ mulsd(lreg, rreg); break;
1944 case lir_div_strictfp: // fall through
1945 case lir_div: __ divsd(lreg, rreg); break;
1946 default: ShouldNotReachHere();
1947 }
1948 } else {
1949 Address raddr;
1950 if (right->is_double_stack()) {
1951 raddr = frame_map()->address_for_slot(right->double_stack_ix());
1952 } else if (right->is_constant()) {
1953 // hack for now
1954 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
1955 } else {
1956 ShouldNotReachHere();
1957 }
1958 switch (code) {
1959 case lir_add: __ addsd(lreg, raddr); break;
1960 case lir_sub: __ subsd(lreg, raddr); break;
1961 case lir_mul_strictfp: // fall through
1962 case lir_mul: __ mulsd(lreg, raddr); break;
1963 case lir_div_strictfp: // fall through
1964 case lir_div: __ divsd(lreg, raddr); break;
1965 default: ShouldNotReachHere();
1966 }
1967 }
1968
1969 } else if (left->is_single_fpu()) {
1970 assert(dest->is_single_fpu(), "fpu stack allocation required");
1971
1972 if (right->is_single_fpu()) {
1973 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
1974
1975 } else {
1976 assert(left->fpu_regnr() == 0, "left must be on TOS");
1977 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
1978
1979 Address raddr;
1980 if (right->is_single_stack()) {
1981 raddr = frame_map()->address_for_slot(right->single_stack_ix());
1982 } else if (right->is_constant()) {
1983 address const_addr = float_constant(right->as_jfloat());
1984 assert(const_addr != NULL, "incorrect float/double constant maintainance");
1985 // hack for now
1986 raddr = __ as_Address(InternalAddress(const_addr));
1987 } else {
1988 ShouldNotReachHere();
1989 }
1990
1991 switch (code) {
1992 case lir_add: __ fadd_s(raddr); break;
1993 case lir_sub: __ fsub_s(raddr); break;
1994 case lir_mul_strictfp: // fall through
1995 case lir_mul: __ fmul_s(raddr); break;
1996 case lir_div_strictfp: // fall through
1997 case lir_div: __ fdiv_s(raddr); break;
1998 default: ShouldNotReachHere();
1999 }
2000 }
2001
2002 } else if (left->is_double_fpu()) {
2003 assert(dest->is_double_fpu(), "fpu stack allocation required");
2004
2005 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2006 // Double values require special handling for strictfp mul/div on x86
2007 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2008 __ fmulp(left->fpu_regnrLo() + 1);
2009 }
2010
2011 if (right->is_double_fpu()) {
2012 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2013
2014 } else {
2015 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2016 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2017
2018 Address raddr;
2019 if (right->is_double_stack()) {
2020 raddr = frame_map()->address_for_slot(right->double_stack_ix());
2021 } else if (right->is_constant()) {
2022 // hack for now
2023 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2024 } else {
2025 ShouldNotReachHere();
2026 }
2027
2028 switch (code) {
2029 case lir_add: __ fadd_d(raddr); break;
2030 case lir_sub: __ fsub_d(raddr); break;
2031 case lir_mul_strictfp: // fall through
2032 case lir_mul: __ fmul_d(raddr); break;
2033 case lir_div_strictfp: // fall through
2034 case lir_div: __ fdiv_d(raddr); break;
2035 default: ShouldNotReachHere();
2036 }
2037 }
2038
2039 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2040 // Double values require special handling for strictfp mul/div on x86
2041 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2042 __ fmulp(dest->fpu_regnrLo() + 1);
2043 }
2044
2045 } else if (left->is_single_stack() || left->is_address()) {
2046 assert(left == dest, "left and dest must be equal");
2047
2048 Address laddr;
2049 if (left->is_single_stack()) {
2050 laddr = frame_map()->address_for_slot(left->single_stack_ix());
2051 } else if (left->is_address()) {
2052 laddr = as_Address(left->as_address_ptr());
2053 } else {
2054 ShouldNotReachHere();
2055 }
2056
2057 if (right->is_single_cpu()) {
2058 Register rreg = right->as_register();
2059 switch (code) {
2060 case lir_add: __ addl(laddr, rreg); break;
2061 case lir_sub: __ subl(laddr, rreg); break;
2062 default: ShouldNotReachHere();
2063 }
2064 } else if (right->is_constant()) {
2065 jint c = right->as_constant_ptr()->as_jint();
2066 switch (code) {
2067 case lir_add: {
2068 __ increment(laddr, c);
2069 break;
2070 }
2071 case lir_sub: {
2072 __ decrement(laddr, c);
2073 break;
2074 }
2075 default: ShouldNotReachHere();
2076 }
2077 } else {
2078 ShouldNotReachHere();
2079 }
2080
2081 } else {
2082 ShouldNotReachHere();
2083 }
2084 }
2085
2086 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2087 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
2088 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2089 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2090
2091 bool left_is_tos = (left_index == 0);
2092 bool dest_is_tos = (dest_index == 0);
2093 int non_tos_index = (left_is_tos ? right_index : left_index);
2094
2095 switch (code) {
2096 case lir_add:
2097 if (pop_fpu_stack) __ faddp(non_tos_index);
2098 else if (dest_is_tos) __ fadd (non_tos_index);
2099 else __ fadda(non_tos_index);
2100 break;
2101
2102 case lir_sub:
2103 if (left_is_tos) {
2104 if (pop_fpu_stack) __ fsubrp(non_tos_index);
2105 else if (dest_is_tos) __ fsub (non_tos_index);
2106 else __ fsubra(non_tos_index);
2107 } else {
2108 if (pop_fpu_stack) __ fsubp (non_tos_index);
2109 else if (dest_is_tos) __ fsubr (non_tos_index);
2110 else __ fsuba (non_tos_index);
2111 }
2112 break;
2113
2114 case lir_mul_strictfp: // fall through
2115 case lir_mul:
2116 if (pop_fpu_stack) __ fmulp(non_tos_index);
2117 else if (dest_is_tos) __ fmul (non_tos_index);
2118 else __ fmula(non_tos_index);
2119 break;
2120
2121 case lir_div_strictfp: // fall through
2122 case lir_div:
2123 if (left_is_tos) {
2124 if (pop_fpu_stack) __ fdivrp(non_tos_index);
2125 else if (dest_is_tos) __ fdiv (non_tos_index);
2126 else __ fdivra(non_tos_index);
2127 } else {
2128 if (pop_fpu_stack) __ fdivp (non_tos_index);
2129 else if (dest_is_tos) __ fdivr (non_tos_index);
2130 else __ fdiva (non_tos_index);
2131 }
2132 break;
2133
2134 case lir_rem:
2135 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2136 __ fremr(noreg);
2137 break;
2138
2139 default:
2140 ShouldNotReachHere();
2141 }
2142 }
2143
2144
2145 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2146 if (value->is_double_xmm()) {
2147 switch(code) {
2148 case lir_abs :
2149 {
2150 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2151 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2152 }
2153 __ andpd(dest->as_xmm_double_reg(),
2154 ExternalAddress((address)double_signmask_pool));
2155 }
2156 break;
2157
2158 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2159 // all other intrinsics are not available in the SSE instruction set, so FPU is used
2160 default : ShouldNotReachHere();
2161 }
2162
2163 } else if (value->is_double_fpu()) {
2164 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2165 switch(code) {
2166 case lir_log : __ flog() ; break;
2167 case lir_log10 : __ flog10() ; break;
2168 case lir_abs : __ fabs() ; break;
2169 case lir_sqrt : __ fsqrt(); break;
2170 case lir_sin :
2171 // Should consider not saving rbx, if not necessary
2172 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2173 break;
2174 case lir_cos :
2175 // Should consider not saving rbx, if not necessary
2176 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2177 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2178 break;
2179 case lir_tan :
2180 // Should consider not saving rbx, if not necessary
2181 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2182 break;
2183 default : ShouldNotReachHere();
2184 }
2185 } else {
2186 Unimplemented();
2187 }
2188 }
2189
2190 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2191 // assert(left->destroys_register(), "check");
2192 if (left->is_single_cpu()) {
2193 Register reg = left->as_register();
2194 if (right->is_constant()) {
2195 int val = right->as_constant_ptr()->as_jint();
2196 switch (code) {
2197 case lir_logic_and: __ andl (reg, val); break;
2198 case lir_logic_or: __ orl (reg, val); break;
2199 case lir_logic_xor: __ xorl (reg, val); break;
2200 default: ShouldNotReachHere();
2201 }
2202 } else if (right->is_stack()) {
2203 // added support for stack operands
2204 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2205 switch (code) {
2206 case lir_logic_and: __ andl (reg, raddr); break;
2207 case lir_logic_or: __ orl (reg, raddr); break;
2208 case lir_logic_xor: __ xorl (reg, raddr); break;
2209 default: ShouldNotReachHere();
2210 }
2211 } else {
2212 Register rright = right->as_register();
2213 switch (code) {
2214 case lir_logic_and: __ andl (reg, rright); break;
2215 case lir_logic_or : __ orl (reg, rright); break;
2216 case lir_logic_xor: __ xorl (reg, rright); break;
2217 default: ShouldNotReachHere();
2218 }
2219 }
2220 move_regs(reg, dst->as_register());
2221 } else {
2222 Register l_lo = left->as_register_lo();
2223 Register l_hi = left->as_register_hi();
2224 if (right->is_constant()) {
2225 int r_lo = right->as_constant_ptr()->as_jint_lo();
2226 int r_hi = right->as_constant_ptr()->as_jint_hi();
2227 switch (code) {
2228 case lir_logic_and:
2229 __ andl(l_lo, r_lo);
2230 __ andl(l_hi, r_hi);
2231 break;
2232 case lir_logic_or:
2233 __ orl(l_lo, r_lo);
2234 __ orl(l_hi, r_hi);
2235 break;
2236 case lir_logic_xor:
2237 __ xorl(l_lo, r_lo);
2238 __ xorl(l_hi, r_hi);
2239 break;
2240 default: ShouldNotReachHere();
2241 }
2242 } else {
2243 Register r_lo = right->as_register_lo();
2244 Register r_hi = right->as_register_hi();
2245 assert(l_lo != r_hi, "overwriting registers");
2246 switch (code) {
2247 case lir_logic_and:
2248 __ andl(l_lo, r_lo);
2249 __ andl(l_hi, r_hi);
2250 break;
2251 case lir_logic_or:
2252 __ orl(l_lo, r_lo);
2253 __ orl(l_hi, r_hi);
2254 break;
2255 case lir_logic_xor:
2256 __ xorl(l_lo, r_lo);
2257 __ xorl(l_hi, r_hi);
2258 break;
2259 default: ShouldNotReachHere();
2260 }
2261 }
2262
2263 Register dst_lo = dst->as_register_lo();
2264 Register dst_hi = dst->as_register_hi();
2265
2266 if (dst_lo == l_hi) {
2267 assert(dst_hi != l_lo, "overwriting registers");
2268 move_regs(l_hi, dst_hi);
2269 move_regs(l_lo, dst_lo);
2270 } else {
2271 assert(dst_lo != l_hi, "overwriting registers");
2272 move_regs(l_lo, dst_lo);
2273 move_regs(l_hi, dst_hi);
2274 }
2275 }
2276 }
2277
2278
2279 // we assume that rax, and rdx can be overwritten
2280 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2281
2282 assert(left->is_single_cpu(), "left must be register");
2283 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
2284 assert(result->is_single_cpu(), "result must be register");
2285
2286 // assert(left->destroys_register(), "check");
2287 // assert(right->destroys_register(), "check");
2288
2289 Register lreg = left->as_register();
2290 Register dreg = result->as_register();
2291
2292 if (right->is_constant()) {
2293 int divisor = right->as_constant_ptr()->as_jint();
2294 assert(divisor > 0 && is_power_of_2(divisor), "must be");
2295 if (code == lir_idiv) {
2296 assert(lreg == rax, "must be rax,");
2297 assert(temp->as_register() == rdx, "tmp register must be rdx");
2298 __ cdql(); // sign extend into rdx:rax
2299 if (divisor == 2) {
2300 __ subl(lreg, rdx);
2301 } else {
2302 __ andl(rdx, divisor - 1);
2303 __ addl(lreg, rdx);
2304 }
2305 __ sarl(lreg, log2_intptr(divisor));
2306 move_regs(lreg, dreg);
2307 } else if (code == lir_irem) {
2308 Label done;
2309 __ movl(dreg, lreg);
2310 __ andl(dreg, 0x80000000 | (divisor - 1));
2311 __ jcc(Assembler::positive, done);
2312 __ decrement(dreg);
2313 __ orl(dreg, ~(divisor - 1));
2314 __ increment(dreg);
2315 __ bind(done);
2316 } else {
2317 ShouldNotReachHere();
2318 }
2319 } else {
2320 Register rreg = right->as_register();
2321 assert(lreg == rax, "left register must be rax,");
2322 assert(rreg != rdx, "right register must not be rdx");
2323 assert(temp->as_register() == rdx, "tmp register must be rdx");
2324
2325 move_regs(lreg, rax);
2326
2327 int idivl_offset = __ corrected_idivl(rreg);
2328 add_debug_info_for_div0(idivl_offset, info);
2329 if (code == lir_irem) {
2330 move_regs(rdx, dreg); // result is in rdx
2331 } else {
2332 move_regs(rax, dreg);
2333 }
2334 }
2335 }
2336
2337
2338 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2339 if (opr1->is_single_cpu()) {
2340 Register reg1 = opr1->as_register();
2341 if (opr2->is_single_cpu()) {
2342 // cpu register - cpu register
2343 __ cmpl(reg1, opr2->as_register());
2344 } else if (opr2->is_stack()) {
2345 // cpu register - stack
2346 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2347 } else if (opr2->is_constant()) {
2348 // cpu register - constant
2349 LIR_Const* c = opr2->as_constant_ptr();
2350 if (c->type() == T_INT) {
2351 __ cmpl(reg1, c->as_jint());
2352 } else if (c->type() == T_OBJECT) {
2353 jobject o = c->as_jobject();
2354 if (o == NULL) {
2355 __ cmpl(reg1, NULL_WORD);
2356 } else {
2357 __ cmpoop(reg1, c->as_jobject());
2358 }
2359 } else {
2360 ShouldNotReachHere();
2361 }
2362 // cpu register - address
2363 } else if (opr2->is_address()) {
2364 if (op->info() != NULL) {
2365 add_debug_info_for_null_check_here(op->info());
2366 }
2367 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2368 } else {
2369 ShouldNotReachHere();
2370 }
2371
2372 } else if(opr1->is_double_cpu()) {
2373 Register xlo = opr1->as_register_lo();
2374 Register xhi = opr1->as_register_hi();
2375 if (opr2->is_double_cpu()) {
2376 // cpu register - cpu register
2377 Register ylo = opr2->as_register_lo();
2378 Register yhi = opr2->as_register_hi();
2379 __ subl(xlo, ylo);
2380 __ sbbl(xhi, yhi);
2381 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2382 __ orl(xhi, xlo);
2383 }
2384 } else if (opr2->is_constant()) {
2385 // cpu register - constant 0
2386 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2387 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2388 __ orl(xhi, xlo);
2389 } else {
2390 ShouldNotReachHere();
2391 }
2392
2393 } else if (opr1->is_single_xmm()) {
2394 XMMRegister reg1 = opr1->as_xmm_float_reg();
2395 if (opr2->is_single_xmm()) {
2396 // xmm register - xmm register
2397 __ ucomiss(reg1, opr2->as_xmm_float_reg());
2398 } else if (opr2->is_stack()) {
2399 // xmm register - stack
2400 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2401 } else if (opr2->is_constant()) {
2402 // xmm register - constant
2403 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2404 } else if (opr2->is_address()) {
2405 // xmm register - address
2406 if (op->info() != NULL) {
2407 add_debug_info_for_null_check_here(op->info());
2408 }
2409 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2410 } else {
2411 ShouldNotReachHere();
2412 }
2413
2414 } else if (opr1->is_double_xmm()) {
2415 XMMRegister reg1 = opr1->as_xmm_double_reg();
2416 if (opr2->is_double_xmm()) {
2417 // xmm register - xmm register
2418 __ ucomisd(reg1, opr2->as_xmm_double_reg());
2419 } else if (opr2->is_stack()) {
2420 // xmm register - stack
2421 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2422 } else if (opr2->is_constant()) {
2423 // xmm register - constant
2424 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2425 } else if (opr2->is_address()) {
2426 // xmm register - address
2427 if (op->info() != NULL) {
2428 add_debug_info_for_null_check_here(op->info());
2429 }
2430 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2431 } else {
2432 ShouldNotReachHere();
2433 }
2434
2435 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2436 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2437 assert(opr2->is_fpu_register(), "both must be registers");
2438 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2439
2440 } else if (opr1->is_address() && opr2->is_constant()) {
2441 if (op->info() != NULL) {
2442 add_debug_info_for_null_check_here(op->info());
2443 }
2444 // special case: address - constant
2445 LIR_Address* addr = opr1->as_address_ptr();
2446 LIR_Const* c = opr2->as_constant_ptr();
2447 if (c->type() == T_INT) {
2448 __ cmpl(as_Address(addr), c->as_jint());
2449 } else if (c->type() == T_OBJECT) {
2450 __ cmpoop(as_Address(addr), c->as_jobject());
2451 } else {
2452 ShouldNotReachHere();
2453 }
2454
2455 } else {
2456 ShouldNotReachHere();
2457 }
2458 }
2459
2460 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2461 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2462 if (left->is_single_xmm()) {
2463 assert(right->is_single_xmm(), "must match");
2464 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2465 } else if (left->is_double_xmm()) {
2466 assert(right->is_double_xmm(), "must match");
2467 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2468
2469 } else {
2470 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2471 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2472
2473 assert(left->fpu() == 0, "left must be on TOS");
2474 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2475 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2476 }
2477 } else {
2478 assert(code == lir_cmp_l2i, "check");
2479 __ lcmp2int(left->as_register_hi(),
2480 left->as_register_lo(),
2481 right->as_register_hi(),
2482 right->as_register_lo());
2483 move_regs(left->as_register_hi(), dst->as_register());
2484 }
2485 }
2486
2487
2488 void LIR_Assembler::align_call(LIR_Code code) {
2489 if (os::is_MP()) {
2490 // make sure that the displacement word of the call ends up word aligned
2491 int offset = __ offset();
2492 switch (code) {
2493 case lir_static_call:
2494 case lir_optvirtual_call:
2495 offset += NativeCall::displacement_offset;
2496 break;
2497 case lir_icvirtual_call:
2498 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2499 break;
2500 case lir_virtual_call: // currently, sparc-specific for niagara
2501 default: ShouldNotReachHere();
2502 }
2503 while (offset++ % BytesPerWord != 0) {
2504 __ nop();
2505 }
2506 }
2507 }
2508
2509
2510 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
2511 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2512 "must be aligned");
2513 __ call(AddressLiteral(entry, rtype));
2514 add_call_info(code_offset(), info);
2515 }
2516
2517
2518 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
2519 RelocationHolder rh = virtual_call_Relocation::spec(pc());
2520 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2521 assert(!os::is_MP() ||
2522 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2523 "must be aligned");
2524 __ call(AddressLiteral(entry, rh));
2525 add_call_info(code_offset(), info);
2526 }
2527
2528
2529 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2530 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
2531 ShouldNotReachHere();
2532 }
2533
2534 void LIR_Assembler::emit_static_call_stub() {
2535 address call_pc = __ pc();
2536 address stub = __ start_a_stub(call_stub_size);
2537 if (stub == NULL) {
2538 bailout("static call stub overflow");
2539 return;
2540 }
2541
2542 int start = __ offset();
2543 if (os::is_MP()) {
2544 // make sure that the displacement word of the call ends up word aligned
2545 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2546 while (offset++ % BytesPerWord != 0) {
2547 __ nop();
2548 }
2549 }
2550 __ relocate(static_stub_Relocation::spec(call_pc));
2551 __ movoop(rbx, (jobject)NULL);
2552 // must be set to -1 at code generation time
2553 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2554 __ jump(RuntimeAddress((address)-1));
2555
2556 assert(__ offset() - start <= call_stub_size, "stub too big")
2557 __ end_a_stub();
2558 }
2559
2560
2561 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
2562 assert(exceptionOop->as_register() == rax, "must match");
2563 assert(unwind || exceptionPC->as_register() == rdx, "must match");
2564
2565 // exception object is not added to oop map by LinearScan
2566 // (LinearScan assumes that no oops are in fixed registers)
2567 info->add_register_oop(exceptionOop);
2568 Runtime1::StubID unwind_id;
2569
2570 if (!unwind) {
2571 // get current pc information
2572 // pc is only needed if the method has an exception handler, the unwind code does not need it.
2573 int pc_for_athrow_offset = __ offset();
2574 InternalAddress pc_for_athrow(__ pc());
2575 __ lea(exceptionPC->as_register(), pc_for_athrow);
2576 add_call_info(pc_for_athrow_offset, info); // for exception handler
2577
2578 __ verify_not_null_oop(rax);
2579 // search an exception handler (rax: exception oop, rdx: throwing pc)
2580 if (compilation()->has_fpu_code()) {
2581 unwind_id = Runtime1::handle_exception_id;
2582 } else {
2583 unwind_id = Runtime1::handle_exception_nofpu_id;
2584 }
2585 } else {
2586 unwind_id = Runtime1::unwind_exception_id;
2587 }
2588 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2589
2590 // enough room for two byte trap
2591 __ nop();
2592 }
2593
2594
2595 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2596
2597 // optimized version for linear scan:
2598 // * count must be already in ECX (guaranteed by LinearScan)
2599 // * left and dest must be equal
2600 // * tmp must be unused
2601 assert(count->as_register() == SHIFT_count, "count must be in ECX");
2602 assert(left == dest, "left and dest must be equal");
2603 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2604
2605 if (left->is_single_cpu()) {
2606 Register value = left->as_register();
2607 assert(value != SHIFT_count, "left cannot be ECX");
2608
2609 switch (code) {
2610 case lir_shl: __ shll(value); break;
2611 case lir_shr: __ sarl(value); break;
2612 case lir_ushr: __ shrl(value); break;
2613 default: ShouldNotReachHere();
2614 }
2615 } else if (left->is_double_cpu()) {
2616 Register lo = left->as_register_lo();
2617 Register hi = left->as_register_hi();
2618 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2619
2620 switch (code) {
2621 case lir_shl: __ lshl(hi, lo); break;
2622 case lir_shr: __ lshr(hi, lo, true); break;
2623 case lir_ushr: __ lshr(hi, lo, false); break;
2624 default: ShouldNotReachHere();
2625 }
2626 } else {
2627 ShouldNotReachHere();
2628 }
2629 }
2630
2631
2632 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2633 if (dest->is_single_cpu()) {
2634 // first move left into dest so that left is not destroyed by the shift
2635 Register value = dest->as_register();
2636 count = count & 0x1F; // Java spec
2637
2638 move_regs(left->as_register(), value);
2639 switch (code) {
2640 case lir_shl: __ shll(value, count); break;
2641 case lir_shr: __ sarl(value, count); break;
2642 case lir_ushr: __ shrl(value, count); break;
2643 default: ShouldNotReachHere();
2644 }
2645 } else if (dest->is_double_cpu()) {
2646 Unimplemented();
2647 } else {
2648 ShouldNotReachHere();
2649 }
2650 }
2651
2652
2653 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2654 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2655 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2656 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2657 __ movl (Address(rsp, offset_from_rsp_in_bytes), r);
2658 }
2659
2660
2661 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
2662 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2663 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2664 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2665 __ movl (Address(rsp, offset_from_rsp_in_bytes), c);
2666 }
2667
2668
2669 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
2670 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2671 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2672 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2673 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2674 }
2675
2676
2677 // This code replaces a call to arraycopy; no exception may
2678 // be thrown in this code, they must be thrown in the System.arraycopy
2679 // activation frame; we could save some checks if this would not be the case
2680 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2681 ciArrayKlass* default_type = op->expected_type();
2682 Register src = op->src()->as_register();
2683 Register dst = op->dst()->as_register();
2684 Register src_pos = op->src_pos()->as_register();
2685 Register dst_pos = op->dst_pos()->as_register();
2686 Register length = op->length()->as_register();
2687 Register tmp = op->tmp()->as_register();
2688
2689 CodeStub* stub = op->stub();
2690 int flags = op->flags();
2691 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2692 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2693
2694 // if we don't know anything or it's an object array, just go through the generic arraycopy
2695 if (default_type == NULL) {
2696 Label done;
2697 // save outgoing arguments on stack in case call to System.arraycopy is needed
2698 // HACK ALERT. This code used to push the parameters in a hardwired fashion
2699 // for interpreter calling conventions. Now we have to do it in new style conventions.
2700 // For the moment until C1 gets the new register allocator I just force all the
2701 // args to the right place (except the register args) and then on the back side
2702 // reload the register args properly if we go slow path. Yuck
2703
2704 // These are proper for the calling convention
2705
2706 store_parameter(length, 2);
2707 store_parameter(dst_pos, 1);
2708 store_parameter(dst, 0);
2709
2710 // these are just temporary placements until we need to reload
2711 store_parameter(src_pos, 3);
2712 store_parameter(src, 4);
2713 assert(src == rcx && src_pos == rdx, "mismatch in calling convention");
2714
2715 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
2716 __ pushl(length);
2717 __ pushl(dst_pos);
2718 __ pushl(dst);
2719 __ pushl(src_pos);
2720 __ pushl(src);
2721 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
2722 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
2723
2724 __ cmpl(rax, 0);
2725 __ jcc(Assembler::equal, *stub->continuation());
2726
2727 // Reload values from the stack so they are where the stub
2728 // expects them.
2729 __ movl (dst, Address(rsp, 0*BytesPerWord));
2730 __ movl (dst_pos, Address(rsp, 1*BytesPerWord));
2731 __ movl (length, Address(rsp, 2*BytesPerWord));
2732 __ movl (src_pos, Address(rsp, 3*BytesPerWord));
2733 __ movl (src, Address(rsp, 4*BytesPerWord));
2734 __ jmp(*stub->entry());
2735
2736 __ bind(*stub->continuation());
2737 return;
2738 }
2739
2740 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2741
2742 int elem_size = type2aelembytes[basic_type];
2743 int shift_amount;
2744 Address::ScaleFactor scale;
2745
2746 switch (elem_size) {
2747 case 1 :
2748 shift_amount = 0;
2749 scale = Address::times_1;
2750 break;
2751 case 2 :
2752 shift_amount = 1;
2753 scale = Address::times_2;
2754 break;
2755 case 4 :
2756 shift_amount = 2;
2757 scale = Address::times_4;
2758 break;
2759 case 8 :
2760 shift_amount = 3;
2761 scale = Address::times_8;
2762 break;
2763 default:
2764 ShouldNotReachHere();
2765 }
2766
2767 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2768 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2769 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2770 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2771
2772 // test for NULL
2773 if (flags & LIR_OpArrayCopy::src_null_check) {
2774 __ testl(src, src);
2775 __ jcc(Assembler::zero, *stub->entry());
2776 }
2777 if (flags & LIR_OpArrayCopy::dst_null_check) {
2778 __ testl(dst, dst);
2779 __ jcc(Assembler::zero, *stub->entry());
2780 }
2781
2782 // check if negative
2783 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2784 __ testl(src_pos, src_pos);
2785 __ jcc(Assembler::less, *stub->entry());
2786 }
2787 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2788 __ testl(dst_pos, dst_pos);
2789 __ jcc(Assembler::less, *stub->entry());
2790 }
2791 if (flags & LIR_OpArrayCopy::length_positive_check) {
2792 __ testl(length, length);
2793 __ jcc(Assembler::less, *stub->entry());
2794 }
2795
2796 if (flags & LIR_OpArrayCopy::src_range_check) {
2797 __ leal(tmp, Address(src_pos, length, Address::times_1, 0));
2798 __ cmpl(tmp, src_length_addr);
2799 __ jcc(Assembler::above, *stub->entry());
2800 }
2801 if (flags & LIR_OpArrayCopy::dst_range_check) {
2802 __ leal(tmp, Address(dst_pos, length, Address::times_1, 0));
2803 __ cmpl(tmp, dst_length_addr);
2804 __ jcc(Assembler::above, *stub->entry());
2805 }
2806
2807 if (flags & LIR_OpArrayCopy::type_check) {
2808 __ movl(tmp, src_klass_addr);
2809 __ cmpl(tmp, dst_klass_addr);
2810 __ jcc(Assembler::notEqual, *stub->entry());
2811 }
2812
2813 #ifdef ASSERT
2814 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2815 // Sanity check the known type with the incoming class. For the
2816 // primitive case the types must match exactly with src.klass and
2817 // dst.klass each exactly matching the default type. For the
2818 // object array case, if no type check is needed then either the
2819 // dst type is exactly the expected type and the src type is a
2820 // subtype which we can't check or src is the same array as dst
2821 // but not necessarily exactly of type default_type.
2822 Label known_ok, halt;
2823 __ movoop(tmp, default_type->encoding());
2824 if (basic_type != T_OBJECT) {
2825 __ cmpl(tmp, dst_klass_addr);
2826 __ jcc(Assembler::notEqual, halt);
2827 __ cmpl(tmp, src_klass_addr);
2828 __ jcc(Assembler::equal, known_ok);
2829 } else {
2830 __ cmpl(tmp, dst_klass_addr);
2831 __ jcc(Assembler::equal, known_ok);
2832 __ cmpl(src, dst);
2833 __ jcc(Assembler::equal, known_ok);
2834 }
2835 __ bind(halt);
2836 __ stop("incorrect type information in arraycopy");
2837 __ bind(known_ok);
2838 }
2839 #endif
2840
2841 __ leal(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
2842 store_parameter(tmp, 0);
2843 __ leal(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
2844 store_parameter(tmp, 1);
2845 if (shift_amount > 0 && basic_type != T_OBJECT) {
2846 __ shll(length, shift_amount);
2847 }
2848 store_parameter(length, 2);
2849 if (basic_type == T_OBJECT) {
2850 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
2851 } else {
2852 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
2853 }
2854
2855 __ bind(*stub->continuation());
2856 }
2857
2858
2859 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2860 Register obj = op->obj_opr()->as_register(); // may not be an oop
2861 Register hdr = op->hdr_opr()->as_register();
2862 Register lock = op->lock_opr()->as_register();
2863 if (!UseFastLocking) {
2864 __ jmp(*op->stub()->entry());
2865 } else if (op->code() == lir_lock) {
2866 Register scratch = noreg;
2867 if (UseBiasedLocking) {
2868 scratch = op->scratch_opr()->as_register();
2869 }
2870 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2871 // add debug info for NullPointerException only if one is possible
2872 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
2873 if (op->info() != NULL) {
2874 add_debug_info_for_null_check(null_check_offset, op->info());
2875 }
2876 // done
2877 } else if (op->code() == lir_unlock) {
2878 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2879 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2880 } else {
2881 Unimplemented();
2882 }
2883 __ bind(*op->stub()->continuation());
2884 }
2885
2886
2887 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2888 ciMethod* method = op->profiled_method();
2889 int bci = op->profiled_bci();
2890
2891 // Update counter for all call types
2892 ciMethodData* md = method->method_data();
2893 if (md == NULL) {
2894 bailout("out of memory building methodDataOop");
2895 return;
2896 }
2897 ciProfileData* data = md->bci_to_data(bci);
2898 assert(data->is_CounterData(), "need CounterData for calls");
2899 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
2900 Register mdo = op->mdo()->as_register();
2901 __ movoop(mdo, md->encoding());
2902 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2903 __ addl(counter_addr, DataLayout::counter_increment);
2904 Bytecodes::Code bc = method->java_code_at_bci(bci);
2905 // Perform additional virtual call profiling for invokevirtual and
2906 // invokeinterface bytecodes
2907 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2908 Tier1ProfileVirtualCalls) {
2909 assert(op->recv()->is_single_cpu(), "recv must be allocated");
2910 Register recv = op->recv()->as_register();
2911 assert_different_registers(mdo, recv);
2912 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2913 ciKlass* known_klass = op->known_holder();
2914 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
2915 // We know the type that will be seen at this call site; we can
2916 // statically update the methodDataOop rather than needing to do
2917 // dynamic tests on the receiver type
2918
2919 // NOTE: we should probably put a lock around this search to
2920 // avoid collisions by concurrent compilations
2921 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2922 uint i;
2923 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2924 ciKlass* receiver = vc_data->receiver(i);
2925 if (known_klass->equals(receiver)) {
2926 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2927 __ addl(data_addr, DataLayout::counter_increment);
2928 return;
2929 }
2930 }
2931
2932 // Receiver type not found in profile data; select an empty slot
2933
2934 // Note that this is less efficient than it should be because it
2935 // always does a write to the receiver part of the
2936 // VirtualCallData rather than just the first time
2937 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2938 ciKlass* receiver = vc_data->receiver(i);
2939 if (receiver == NULL) {
2940 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2941 __ movoop(recv_addr, known_klass->encoding());
2942 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2943 __ addl(data_addr, DataLayout::counter_increment);
2944 return;
2945 }
2946 }
2947 } else {
2948 __ movl(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
2949 Label update_done;
2950 uint i;
2951 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2952 Label next_test;
2953 // See if the receiver is receiver[n].
2954 __ cmpl(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
2955 __ jcc(Assembler::notEqual, next_test);
2956 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2957 __ addl(data_addr, DataLayout::counter_increment);
2958 __ jmp(update_done);
2959 __ bind(next_test);
2960 }
2961
2962 // Didn't find receiver; find next empty slot and fill it in
2963 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2964 Label next_test;
2965 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2966 __ cmpl(recv_addr, NULL_WORD);
2967 __ jcc(Assembler::notEqual, next_test);
2968 __ movl(recv_addr, recv);
2969 __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
2970 if (i < (VirtualCallData::row_limit() - 1)) {
2971 __ jmp(update_done);
2972 }
2973 __ bind(next_test);
2974 }
2975
2976 __ bind(update_done);
2977 }
2978 }
2979 }
2980
2981
2982 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2983 Unimplemented();
2984 }
2985
2986
2987 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2988 __ leal(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2989 }
2990
2991
2992 void LIR_Assembler::align_backward_branch_target() {
2993 __ align(BytesPerWord);
2994 }
2995
2996
2997 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2998 if (left->is_single_cpu()) {
2999 __ negl(left->as_register());
3000 move_regs(left->as_register(), dest->as_register());
3001
3002 } else if (left->is_double_cpu()) {
3003 Register lo = left->as_register_lo();
3004 Register hi = left->as_register_hi();
3005 __ lneg(hi, lo);
3006 if (dest->as_register_lo() == hi) {
3007 assert(dest->as_register_hi() != lo, "destroying register");
3008 move_regs(hi, dest->as_register_hi());
3009 move_regs(lo, dest->as_register_lo());
3010 } else {
3011 move_regs(lo, dest->as_register_lo());
3012 move_regs(hi, dest->as_register_hi());
3013 }
3014
3015 } else if (dest->is_single_xmm()) {
3016 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3017 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3018 }
3019 __ xorps(dest->as_xmm_float_reg(),
3020 ExternalAddress((address)float_signflip_pool));
3021
3022 } else if (dest->is_double_xmm()) {
3023 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3024 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3025 }
3026 __ xorpd(dest->as_xmm_double_reg(),
3027 ExternalAddress((address)double_signflip_pool));
3028
3029 } else if (left->is_single_fpu() || left->is_double_fpu()) {
3030 assert(left->fpu() == 0, "arg must be on TOS");
3031 assert(dest->fpu() == 0, "dest must be TOS");
3032 __ fchs();
3033
3034 } else {
3035 ShouldNotReachHere();
3036 }
3037 }
3038
3039
3040 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3041 assert(addr->is_address() && dest->is_register(), "check");
3042 Register reg = dest->as_register();
3043 __ leal(dest->as_register(), as_Address(addr->as_address_ptr()));
3044 }
3045
3046
3047
3048 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3049 assert(!tmp->is_valid(), "don't need temporary");
3050 __ call(RuntimeAddress(dest));
3051 if (info != NULL) {
3052 add_call_info_here(info);
3053 }
3054 }
3055
3056
3057 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3058 assert(type == T_LONG, "only for volatile long fields");
3059
3060 if (info != NULL) {
3061 add_debug_info_for_null_check_here(info);
3062 }
3063
3064 if (src->is_double_xmm()) {
3065 if (dest->is_double_cpu()) {
3066 __ movd(dest->as_register_lo(), src->as_xmm_double_reg());
3067 __ psrlq(src->as_xmm_double_reg(), 32);
3068 __ movd(dest->as_register_hi(), src->as_xmm_double_reg());
3069 } else if (dest->is_double_stack()) {
3070 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3071 } else if (dest->is_address()) {
3072 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3073 } else {
3074 ShouldNotReachHere();
3075 }
3076
3077 } else if (dest->is_double_xmm()) {
3078 if (src->is_double_stack()) {
3079 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3080 } else if (src->is_address()) {
3081 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3082 } else {
3083 ShouldNotReachHere();
3084 }
3085
3086 } else if (src->is_double_fpu()) {
3087 assert(src->fpu_regnrLo() == 0, "must be TOS");
3088 if (dest->is_double_stack()) {
3089 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3090 } else if (dest->is_address()) {
3091 __ fistp_d(as_Address(dest->as_address_ptr()));
3092 } else {
3093 ShouldNotReachHere();
3094 }
3095
3096 } else if (dest->is_double_fpu()) {
3097 assert(dest->fpu_regnrLo() == 0, "must be TOS");
3098 if (src->is_double_stack()) {
3099 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3100 } else if (src->is_address()) {
3101 __ fild_d(as_Address(src->as_address_ptr()));
3102 } else {
3103 ShouldNotReachHere();
3104 }
3105 } else {
3106 ShouldNotReachHere();
3107 }
3108 }
3109
3110
3111 void LIR_Assembler::membar() {
3112 __ membar();
3113 }
3114
3115 void LIR_Assembler::membar_acquire() {
3116 // No x86 machines currently require load fences
3117 // __ load_fence();
3118 }
3119
3120 void LIR_Assembler::membar_release() {
3121 // No x86 machines currently require store fences
3122 // __ store_fence();
3123 }
3124
3125 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3126 assert(result_reg->is_register(), "check");
3127 __ get_thread(result_reg->as_register());
3128 }
3129
3130
3131 void LIR_Assembler::peephole(LIR_List*) {
3132 // do nothing for now
3133 }
3134
3135
3136 #undef __