comparison src/cpu/x86/vm/interp_masm_x86_64.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_interp_masm_x86_64.cpp.incl"
27
28
29 // Implementation of InterpreterMacroAssembler
30
31 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
32 int number_of_arguments) {
33 // interpreter specific
34 //
35 // Note: No need to save/restore bcp & locals (r13 & r14) pointer
36 // since these are callee saved registers and no blocking/
37 // GC can happen in leaf calls.
38 #ifdef ASSERT
39 save_bcp();
40 {
41 Label L;
42 cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
43 jcc(Assembler::equal, L);
44 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
45 " last_sp != NULL");
46 bind(L);
47 }
48 #endif
49 // super call
50 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
51 // interpreter specific
52 #ifdef ASSERT
53 {
54 Label L;
55 cmpq(r13, Address(rbp, frame::interpreter_frame_bcx_offset * wordSize));
56 jcc(Assembler::equal, L);
57 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
58 " r13 not callee saved?");
59 bind(L);
60 }
61 {
62 Label L;
63 cmpq(r14, Address(rbp, frame::interpreter_frame_locals_offset * wordSize));
64 jcc(Assembler::equal, L);
65 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
66 " r14 not callee saved?");
67 bind(L);
68 }
69 #endif
70 }
71
72 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
73 Register java_thread,
74 Register last_java_sp,
75 address entry_point,
76 int number_of_arguments,
77 bool check_exceptions) {
78 // interpreter specific
79 //
80 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
81 // really make a difference for these runtime calls, since they are
82 // slow anyway. Btw., bcp must be saved/restored since it may change
83 // due to GC.
84 // assert(java_thread == noreg , "not expecting a precomputed java thread");
85 save_bcp();
86 #ifdef ASSERT
87 {
88 Label L;
89 cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
90 jcc(Assembler::equal, L);
91 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
92 " last_sp != NULL");
93 bind(L);
94 }
95 #endif /* ASSERT */
96 // super call
97 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
98 entry_point, number_of_arguments,
99 check_exceptions);
100 // interpreter specific
101 restore_bcp();
102 restore_locals();
103 }
104
105
106 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
107 if (JvmtiExport::can_pop_frame()) {
108 Label L;
109 // Initiate popframe handling only if it is not already being
110 // processed. If the flag has the popframe_processing bit set, it
111 // means that this code is called *during* popframe handling - we
112 // don't want to reenter.
113 // This method is only called just after the call into the vm in
114 // call_VM_base, so the arg registers are available.
115 movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
116 testl(c_rarg0, JavaThread::popframe_pending_bit);
117 jcc(Assembler::zero, L);
118 testl(c_rarg0, JavaThread::popframe_processing_bit);
119 jcc(Assembler::notZero, L);
120 // Call Interpreter::remove_activation_preserving_args_entry() to get the
121 // address of the same-named entrypoint in the generated interpreter code.
122 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
123 jmp(rax);
124 bind(L);
125 }
126 }
127
128
129 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
130 movq(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
131 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
132 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
133 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
134 switch (state) {
135 case atos: movq(rax, oop_addr);
136 movptr(oop_addr, NULL_WORD);
137 verify_oop(rax, state); break;
138 case ltos: movq(rax, val_addr); break;
139 case btos: // fall through
140 case ctos: // fall through
141 case stos: // fall through
142 case itos: movl(rax, val_addr); break;
143 case ftos: movflt(xmm0, val_addr); break;
144 case dtos: movdbl(xmm0, val_addr); break;
145 case vtos: /* nothing to do */ break;
146 default : ShouldNotReachHere();
147 }
148 // Clean up tos value in the thread object
149 movl(tos_addr, (int) ilgl);
150 movl(val_addr, (int) NULL_WORD);
151 }
152
153
154 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
155 if (JvmtiExport::can_force_early_return()) {
156 Label L;
157 movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
158 testq(c_rarg0, c_rarg0);
159 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
160
161 // Initiate earlyret handling only if it is not already being processed.
162 // If the flag has the earlyret_processing bit set, it means that this code
163 // is called *during* earlyret handling - we don't want to reenter.
164 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
165 cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
166 jcc(Assembler::notEqual, L);
167
168 // Call Interpreter::remove_activation_early_entry() to get the address of the
169 // same-named entrypoint in the generated interpreter code.
170 movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
171 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
172 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
173 jmp(rax);
174 bind(L);
175 }
176 }
177
178
179 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
180 Register reg,
181 int bcp_offset) {
182 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
183 movl(reg, Address(r13, bcp_offset));
184 bswapl(reg);
185 shrl(reg, 16);
186 }
187
188
189 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
190 Register index,
191 int bcp_offset) {
192 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
193 assert(cache != index, "must use different registers");
194 load_unsigned_word(index, Address(r13, bcp_offset));
195 movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
196 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
197 // convert from field index to ConstantPoolCacheEntry index
198 shll(index, 2);
199 }
200
201
202 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
203 Register tmp,
204 int bcp_offset) {
205 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
206 assert(cache != tmp, "must use different register");
207 load_unsigned_word(tmp, Address(r13, bcp_offset));
208 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
209 // convert from field index to ConstantPoolCacheEntry index
210 // and from word offset to byte offset
211 shll(tmp, 2 + LogBytesPerWord);
212 movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
213 // skip past the header
214 addq(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
215 addq(cache, tmp); // construct pointer to cache entry
216 }
217
218
219 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
220 // subtype of super_klass.
221 //
222 // Args:
223 // rax: superklass
224 // Rsub_klass: subklass
225 //
226 // Kills:
227 // rcx, rdi
228 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
229 Label& ok_is_subtype) {
230 assert(Rsub_klass != rax, "rax holds superklass");
231 assert(Rsub_klass != r14, "r14 holds locals");
232 assert(Rsub_klass != r13, "r13 holds bcp");
233 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
234 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
235
236 Label not_subtype, loop;
237
238 // Profile the not-null value's klass.
239 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
240
241 // Load the super-klass's check offset into rcx
242 movl(rcx, Address(rax, sizeof(oopDesc) +
243 Klass::super_check_offset_offset_in_bytes()));
244 // Load from the sub-klass's super-class display list, or a 1-word
245 // cache of the secondary superclass list, or a failing value with a
246 // sentinel offset if the super-klass is an interface or
247 // exceptionally deep in the Java hierarchy and we have to scan the
248 // secondary superclass list the hard way. See if we get an
249 // immediate positive hit
250 cmpq(rax, Address(Rsub_klass, rcx, Address::times_1));
251 jcc(Assembler::equal,ok_is_subtype);
252
253 // Check for immediate negative hit
254 cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
255 jcc( Assembler::notEqual, not_subtype );
256 // Check for self
257 cmpq(Rsub_klass, rax);
258 jcc(Assembler::equal, ok_is_subtype);
259
260 // Now do a linear scan of the secondary super-klass chain.
261 movq(rdi, Address(Rsub_klass, sizeof(oopDesc) +
262 Klass::secondary_supers_offset_in_bytes()));
263 // rdi holds the objArrayOop of secondary supers.
264 // Load the array length
265 movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
266 // Skip to start of data; also clear Z flag incase rcx is zero
267 addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
268 // Scan rcx words at [rdi] for occurance of rax
269 // Set NZ/Z based on last compare
270 repne_scan();
271 // Not equal?
272 jcc(Assembler::notEqual, not_subtype);
273 // Must be equal but missed in cache. Update cache.
274 movq(Address(Rsub_klass, sizeof(oopDesc) +
275 Klass::secondary_super_cache_offset_in_bytes()), rax);
276 jmp(ok_is_subtype);
277
278 bind(not_subtype);
279 profile_typecheck_failed(rcx); // blows rcx
280 }
281
282
283 // Java Expression Stack
284
285 #ifdef ASSERT
286 // Verifies that the stack tag matches. Must be called before the stack
287 // value is popped off the stack.
288 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
289 if (TaggedStackInterpreter) {
290 frame::Tag tag = t;
291 if (t == frame::TagCategory2) {
292 tag = frame::TagValue;
293 Label hokay;
294 cmpq(Address(rsp, 3*wordSize), (int)tag);
295 jcc(Assembler::equal, hokay);
296 stop("Java Expression stack tag high value is bad");
297 bind(hokay);
298 }
299 Label okay;
300 cmpq(Address(rsp, wordSize), (int)tag);
301 jcc(Assembler::equal, okay);
302 // Also compare if the stack value is zero, then the tag might
303 // not have been set coming from deopt.
304 cmpq(Address(rsp, 0), 0);
305 jcc(Assembler::equal, okay);
306 stop("Java Expression stack tag value is bad");
307 bind(okay);
308 }
309 }
310 #endif // ASSERT
311
312 void InterpreterMacroAssembler::pop_ptr(Register r) {
313 debug_only(verify_stack_tag(frame::TagReference));
314 popq(r);
315 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
316 }
317
318 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
319 popq(r);
320 if (TaggedStackInterpreter) popq(tag);
321 }
322
323 void InterpreterMacroAssembler::pop_i(Register r) {
324 // XXX can't use popq currently, upper half non clean
325 debug_only(verify_stack_tag(frame::TagValue));
326 movl(r, Address(rsp, 0));
327 addq(rsp, wordSize);
328 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
329 }
330
331 void InterpreterMacroAssembler::pop_l(Register r) {
332 debug_only(verify_stack_tag(frame::TagCategory2));
333 movq(r, Address(rsp, 0));
334 addq(rsp, 2 * Interpreter::stackElementSize());
335 }
336
337 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
338 debug_only(verify_stack_tag(frame::TagValue));
339 movflt(r, Address(rsp, 0));
340 addq(rsp, wordSize);
341 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
342 }
343
344 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
345 debug_only(verify_stack_tag(frame::TagCategory2));
346 movdbl(r, Address(rsp, 0));
347 addq(rsp, 2 * Interpreter::stackElementSize());
348 }
349
350 void InterpreterMacroAssembler::push_ptr(Register r) {
351 if (TaggedStackInterpreter) pushq(frame::TagReference);
352 pushq(r);
353 }
354
355 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
356 if (TaggedStackInterpreter) pushq(tag);
357 pushq(r);
358 }
359
360 void InterpreterMacroAssembler::push_i(Register r) {
361 if (TaggedStackInterpreter) pushq(frame::TagValue);
362 pushq(r);
363 }
364
365 void InterpreterMacroAssembler::push_l(Register r) {
366 if (TaggedStackInterpreter) {
367 pushq(frame::TagValue);
368 subq(rsp, 1 * wordSize);
369 pushq(frame::TagValue);
370 subq(rsp, 1 * wordSize);
371 } else {
372 subq(rsp, 2 * wordSize);
373 }
374 movq(Address(rsp, 0), r);
375 }
376
377 void InterpreterMacroAssembler::push_f(XMMRegister r) {
378 if (TaggedStackInterpreter) pushq(frame::TagValue);
379 subq(rsp, wordSize);
380 movflt(Address(rsp, 0), r);
381 }
382
383 void InterpreterMacroAssembler::push_d(XMMRegister r) {
384 if (TaggedStackInterpreter) {
385 pushq(frame::TagValue);
386 subq(rsp, 1 * wordSize);
387 pushq(frame::TagValue);
388 subq(rsp, 1 * wordSize);
389 } else {
390 subq(rsp, 2 * wordSize);
391 }
392 movdbl(Address(rsp, 0), r);
393 }
394
395 void InterpreterMacroAssembler::pop(TosState state) {
396 switch (state) {
397 case atos: pop_ptr(); break;
398 case btos:
399 case ctos:
400 case stos:
401 case itos: pop_i(); break;
402 case ltos: pop_l(); break;
403 case ftos: pop_f(); break;
404 case dtos: pop_d(); break;
405 case vtos: /* nothing to do */ break;
406 default: ShouldNotReachHere();
407 }
408 verify_oop(rax, state);
409 }
410
411 void InterpreterMacroAssembler::push(TosState state) {
412 verify_oop(rax, state);
413 switch (state) {
414 case atos: push_ptr(); break;
415 case btos:
416 case ctos:
417 case stos:
418 case itos: push_i(); break;
419 case ltos: push_l(); break;
420 case ftos: push_f(); break;
421 case dtos: push_d(); break;
422 case vtos: /* nothing to do */ break;
423 default : ShouldNotReachHere();
424 }
425 }
426
427
428 // Tagged stack helpers for swap and dup
429 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
430 Register tag) {
431 movq(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
432 if (TaggedStackInterpreter) {
433 movq(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
434 }
435 }
436
437 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
438 Register tag) {
439 movq(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
440 if (TaggedStackInterpreter) {
441 movq(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
442 }
443 }
444
445
446 // Tagged local support
447 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
448 if (TaggedStackInterpreter) {
449 if (tag == frame::TagCategory2) {
450 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
451 (intptr_t)frame::TagValue);
452 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
453 (intptr_t)frame::TagValue);
454 } else {
455 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (intptr_t)tag);
456 }
457 }
458 }
459
460 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
461 if (TaggedStackInterpreter) {
462 if (tag == frame::TagCategory2) {
463 mov64(Address(r14, idx, Address::times_8,
464 Interpreter::local_tag_offset_in_bytes(1)), (intptr_t)frame::TagValue);
465 mov64(Address(r14, idx, Address::times_8,
466 Interpreter::local_tag_offset_in_bytes(0)), (intptr_t)frame::TagValue);
467 } else {
468 mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
469 (intptr_t)tag);
470 }
471 }
472 }
473
474 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
475 if (TaggedStackInterpreter) {
476 // can only be TagValue or TagReference
477 movq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
478 }
479 }
480
481
482 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
483 if (TaggedStackInterpreter) {
484 // can only be TagValue or TagReference
485 movq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
486 }
487 }
488
489 #ifdef ASSERT
490 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
491 if (TaggedStackInterpreter) {
492 frame::Tag t = tag;
493 if (tag == frame::TagCategory2) {
494 Label nbl;
495 t = frame::TagValue; // change to what is stored in locals
496 cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
497 jcc(Assembler::equal, nbl);
498 stop("Local tag is bad for long/double");
499 bind(nbl);
500 }
501 Label notBad;
502 cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
503 jcc(Assembler::equal, notBad);
504 // Also compare if the local value is zero, then the tag might
505 // not have been set coming from deopt.
506 cmpq(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
507 jcc(Assembler::equal, notBad);
508 stop("Local tag is bad");
509 bind(notBad);
510 }
511 }
512
513 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
514 if (TaggedStackInterpreter) {
515 frame::Tag t = tag;
516 if (tag == frame::TagCategory2) {
517 Label nbl;
518 t = frame::TagValue; // change to what is stored in locals
519 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int)t);
520 jcc(Assembler::equal, nbl);
521 stop("Local tag is bad for long/double");
522 bind(nbl);
523 }
524 Label notBad;
525 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int)t);
526 jcc(Assembler::equal, notBad);
527 // Also compare if the local value is zero, then the tag might
528 // not have been set coming from deopt.
529 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
530 jcc(Assembler::equal, notBad);
531 stop("Local tag is bad");
532 bind(notBad);
533 }
534 }
535 #endif // ASSERT
536
537
538 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
539 MacroAssembler::call_VM_leaf_base(entry_point, 0);
540 }
541
542
543 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
544 Register arg_1) {
545 if (c_rarg0 != arg_1) {
546 movq(c_rarg0, arg_1);
547 }
548 MacroAssembler::call_VM_leaf_base(entry_point, 1);
549 }
550
551
552 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
553 Register arg_1,
554 Register arg_2) {
555 assert(c_rarg0 != arg_2, "smashed argument");
556 assert(c_rarg1 != arg_1, "smashed argument");
557 if (c_rarg0 != arg_1) {
558 movq(c_rarg0, arg_1);
559 }
560 if (c_rarg1 != arg_2) {
561 movq(c_rarg1, arg_2);
562 }
563 MacroAssembler::call_VM_leaf_base(entry_point, 2);
564 }
565
566 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
567 Register arg_1,
568 Register arg_2,
569 Register arg_3) {
570 assert(c_rarg0 != arg_2, "smashed argument");
571 assert(c_rarg0 != arg_3, "smashed argument");
572 assert(c_rarg1 != arg_1, "smashed argument");
573 assert(c_rarg1 != arg_3, "smashed argument");
574 assert(c_rarg2 != arg_1, "smashed argument");
575 assert(c_rarg2 != arg_2, "smashed argument");
576 if (c_rarg0 != arg_1) {
577 movq(c_rarg0, arg_1);
578 }
579 if (c_rarg1 != arg_2) {
580 movq(c_rarg1, arg_2);
581 }
582 if (c_rarg2 != arg_3) {
583 movq(c_rarg2, arg_3);
584 }
585 MacroAssembler::call_VM_leaf_base(entry_point, 3);
586 }
587
588 // Jump to from_interpreted entry of a call unless single stepping is possible
589 // in this thread in which case we must call the i2i entry
590 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
591 // set sender sp
592 leaq(r13, Address(rsp, wordSize));
593 // record last_sp
594 movq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
595
596 if (JvmtiExport::can_post_interpreter_events()) {
597 Label run_compiled_code;
598 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
599 // compiled code in threads for which the event is enabled. Check here for
600 // interp_only_mode if these events CAN be enabled.
601 get_thread(temp);
602 // interp_only is an int, on little endian it is sufficient to test the byte only
603 // Is a cmpl faster (ce
604 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
605 jcc(Assembler::zero, run_compiled_code);
606 jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
607 bind(run_compiled_code);
608 }
609
610 jmp(Address(method, methodOopDesc::from_interpreted_offset()));
611
612 }
613
614
615 // The following two routines provide a hook so that an implementation
616 // can schedule the dispatch in two parts. amd64 does not do this.
617 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
618 // Nothing amd64 specific to be done here
619 }
620
621 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
622 dispatch_next(state, step);
623 }
624
625 void InterpreterMacroAssembler::dispatch_base(TosState state,
626 address* table,
627 bool verifyoop) {
628 verify_FPU(1, state);
629 if (VerifyActivationFrameSize) {
630 Label L;
631 movq(rcx, rbp);
632 subq(rcx, rsp);
633 int min_frame_size =
634 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
635 wordSize;
636 cmpq(rcx, min_frame_size);
637 jcc(Assembler::greaterEqual, L);
638 stop("broken stack frame");
639 bind(L);
640 }
641 if (verifyoop) {
642 verify_oop(rax, state);
643 }
644 lea(rscratch1, ExternalAddress((address)table));
645 jmp(Address(rscratch1, rbx, Address::times_8));
646 }
647
648 void InterpreterMacroAssembler::dispatch_only(TosState state) {
649 dispatch_base(state, Interpreter::dispatch_table(state));
650 }
651
652 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
653 dispatch_base(state, Interpreter::normal_table(state));
654 }
655
656 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
657 dispatch_base(state, Interpreter::normal_table(state), false);
658 }
659
660
661 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
662 // load next bytecode (load before advancing r13 to prevent AGI)
663 load_unsigned_byte(rbx, Address(r13, step));
664 // advance r13
665 incrementq(r13, step);
666 dispatch_base(state, Interpreter::dispatch_table(state));
667 }
668
669 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
670 // load current bytecode
671 load_unsigned_byte(rbx, Address(r13, 0));
672 dispatch_base(state, table);
673 }
674
675 // remove activation
676 //
677 // Unlock the receiver if this is a synchronized method.
678 // Unlock any Java monitors from syncronized blocks.
679 // Remove the activation from the stack.
680 //
681 // If there are locked Java monitors
682 // If throw_monitor_exception
683 // throws IllegalMonitorStateException
684 // Else if install_monitor_exception
685 // installs IllegalMonitorStateException
686 // Else
687 // no error processing
688 void InterpreterMacroAssembler::remove_activation(
689 TosState state,
690 Register ret_addr,
691 bool throw_monitor_exception,
692 bool install_monitor_exception,
693 bool notify_jvmdi) {
694 // Note: Registers rdx xmm0 may be in use for the
695 // result check if synchronized method
696 Label unlocked, unlock, no_unlock;
697
698 // get the value of _do_not_unlock_if_synchronized into rdx
699 const Address do_not_unlock_if_synchronized(r15_thread,
700 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
701 movbool(rdx, do_not_unlock_if_synchronized);
702 movbool(do_not_unlock_if_synchronized, false); // reset the flag
703
704 // get method access flags
705 movq(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
706 movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
707 testl(rcx, JVM_ACC_SYNCHRONIZED);
708 jcc(Assembler::zero, unlocked);
709
710 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
711 // is set.
712 testbool(rdx);
713 jcc(Assembler::notZero, no_unlock);
714
715 // unlock monitor
716 push(state); // save result
717
718 // BasicObjectLock will be first in list, since this is a
719 // synchronized method. However, need to check that the object has
720 // not been unlocked by an explicit monitorexit bytecode.
721 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
722 wordSize - (int) sizeof(BasicObjectLock));
723 // We use c_rarg1 so that if we go slow path it will be the correct
724 // register for unlock_object to pass to VM directly
725 leaq(c_rarg1, monitor); // address of first monitor
726
727 movq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
728 testq(rax, rax);
729 jcc(Assembler::notZero, unlock);
730
731 pop(state);
732 if (throw_monitor_exception) {
733 // Entry already unlocked, need to throw exception
734 call_VM(noreg, CAST_FROM_FN_PTR(address,
735 InterpreterRuntime::throw_illegal_monitor_state_exception));
736 should_not_reach_here();
737 } else {
738 // Monitor already unlocked during a stack unroll. If requested,
739 // install an illegal_monitor_state_exception. Continue with
740 // stack unrolling.
741 if (install_monitor_exception) {
742 call_VM(noreg, CAST_FROM_FN_PTR(address,
743 InterpreterRuntime::new_illegal_monitor_state_exception));
744 }
745 jmp(unlocked);
746 }
747
748 bind(unlock);
749 unlock_object(c_rarg1);
750 pop(state);
751
752 // Check that for block-structured locking (i.e., that all locked
753 // objects has been unlocked)
754 bind(unlocked);
755
756 // rax: Might contain return value
757
758 // Check that all monitors are unlocked
759 {
760 Label loop, exception, entry, restart;
761 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
762 const Address monitor_block_top(
763 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
764 const Address monitor_block_bot(
765 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
766
767 bind(restart);
768 // We use c_rarg1 so that if we go slow path it will be the correct
769 // register for unlock_object to pass to VM directly
770 movq(c_rarg1, monitor_block_top); // points to current entry, starting
771 // with top-most entry
772 leaq(rbx, monitor_block_bot); // points to word before bottom of
773 // monitor block
774 jmp(entry);
775
776 // Entry already locked, need to throw exception
777 bind(exception);
778
779 if (throw_monitor_exception) {
780 // Throw exception
781 MacroAssembler::call_VM(noreg,
782 CAST_FROM_FN_PTR(address, InterpreterRuntime::
783 throw_illegal_monitor_state_exception));
784 should_not_reach_here();
785 } else {
786 // Stack unrolling. Unlock object and install illegal_monitor_exception.
787 // Unlock does not block, so don't have to worry about the frame.
788 // We don't have to preserve c_rarg1 since we are going to throw an exception.
789
790 push(state);
791 unlock_object(c_rarg1);
792 pop(state);
793
794 if (install_monitor_exception) {
795 call_VM(noreg, CAST_FROM_FN_PTR(address,
796 InterpreterRuntime::
797 new_illegal_monitor_state_exception));
798 }
799
800 jmp(restart);
801 }
802
803 bind(loop);
804 // check if current entry is used
805 cmpq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
806 jcc(Assembler::notEqual, exception);
807
808 addq(c_rarg1, entry_size); // otherwise advance to next entry
809 bind(entry);
810 cmpq(c_rarg1, rbx); // check if bottom reached
811 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
812 }
813
814 bind(no_unlock);
815
816 // jvmti support
817 if (notify_jvmdi) {
818 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
819 } else {
820 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
821 }
822
823 // remove activation
824 // get sender sp
825 movq(rbx,
826 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
827 leave(); // remove frame anchor
828 popq(ret_addr); // get return address
829 movq(rsp, rbx); // set sp to sender sp
830 }
831
832 // Lock object
833 //
834 // Args:
835 // c_rarg1: BasicObjectLock to be used for locking
836 //
837 // Kills:
838 // rax
839 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
840 // rscratch1, rscratch2 (scratch regs)
841 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
842 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
843
844 if (UseHeavyMonitors) {
845 call_VM(noreg,
846 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
847 lock_reg);
848 } else {
849 Label done;
850
851 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
852 const Register obj_reg = c_rarg3; // Will contain the oop
853
854 const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
855 const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
856 const int mark_offset = lock_offset +
857 BasicLock::displaced_header_offset_in_bytes();
858
859 Label slow_case;
860
861 // Load object pointer into obj_reg %c_rarg3
862 movq(obj_reg, Address(lock_reg, obj_offset));
863
864 if (UseBiasedLocking) {
865 biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
866 }
867
868 // Load immediate 1 into swap_reg %rax
869 movl(swap_reg, 1);
870
871 // Load (object->mark() | 1) into swap_reg %rax
872 orq(swap_reg, Address(obj_reg, 0));
873
874 // Save (object->mark() | 1) into BasicLock's displaced header
875 movq(Address(lock_reg, mark_offset), swap_reg);
876
877 assert(lock_offset == 0,
878 "displached header must be first word in BasicObjectLock");
879
880 if (os::is_MP()) lock();
881 cmpxchgq(lock_reg, Address(obj_reg, 0));
882 if (PrintBiasedLockingStatistics) {
883 cond_inc32(Assembler::zero,
884 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
885 }
886 jcc(Assembler::zero, done);
887
888 // Test if the oopMark is an obvious stack pointer, i.e.,
889 // 1) (mark & 7) == 0, and
890 // 2) rsp <= mark < mark + os::pagesize()
891 //
892 // These 3 tests can be done by evaluating the following
893 // expression: ((mark - rsp) & (7 - os::vm_page_size())),
894 // assuming both stack pointer and pagesize have their
895 // least significant 3 bits clear.
896 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
897 subq(swap_reg, rsp);
898 andq(swap_reg, 7 - os::vm_page_size());
899
900 // Save the test result, for recursive case, the result is zero
901 movq(Address(lock_reg, mark_offset), swap_reg);
902
903 if (PrintBiasedLockingStatistics) {
904 cond_inc32(Assembler::zero,
905 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
906 }
907 jcc(Assembler::zero, done);
908
909 bind(slow_case);
910
911 // Call the runtime routine for slow case
912 call_VM(noreg,
913 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
914 lock_reg);
915
916 bind(done);
917 }
918 }
919
920
921 // Unlocks an object. Used in monitorexit bytecode and
922 // remove_activation. Throws an IllegalMonitorException if object is
923 // not locked by current thread.
924 //
925 // Args:
926 // c_rarg1: BasicObjectLock for lock
927 //
928 // Kills:
929 // rax
930 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
931 // rscratch1, rscratch2 (scratch regs)
932 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
933 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
934
935 if (UseHeavyMonitors) {
936 call_VM(noreg,
937 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
938 lock_reg);
939 } else {
940 Label done;
941
942 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
943 const Register header_reg = c_rarg2; // Will contain the old oopMark
944 const Register obj_reg = c_rarg3; // Will contain the oop
945
946 save_bcp(); // Save in case of exception
947
948 // Convert from BasicObjectLock structure to object and BasicLock
949 // structure Store the BasicLock address into %rax
950 leaq(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
951
952 // Load oop into obj_reg(%c_rarg3)
953 movq(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
954
955 // Free entry
956 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
957
958 if (UseBiasedLocking) {
959 biased_locking_exit(obj_reg, header_reg, done);
960 }
961
962 // Load the old header from BasicLock structure
963 movq(header_reg, Address(swap_reg,
964 BasicLock::displaced_header_offset_in_bytes()));
965
966 // Test for recursion
967 testq(header_reg, header_reg);
968
969 // zero for recursive case
970 jcc(Assembler::zero, done);
971
972 // Atomic swap back the old header
973 if (os::is_MP()) lock();
974 cmpxchgq(header_reg, Address(obj_reg, 0));
975
976 // zero for recursive case
977 jcc(Assembler::zero, done);
978
979 // Call the runtime routine for slow case.
980 movq(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
981 obj_reg); // restore obj
982 call_VM(noreg,
983 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
984 lock_reg);
985
986 bind(done);
987
988 restore_bcp();
989 }
990 }
991
992
993 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
994 Label& zero_continue) {
995 assert(ProfileInterpreter, "must be profiling interpreter");
996 movq(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
997 testq(mdp, mdp);
998 jcc(Assembler::zero, zero_continue);
999 }
1000
1001
1002 // Set the method data pointer for the current bcp.
1003 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1004 assert(ProfileInterpreter, "must be profiling interpreter");
1005 Label zero_continue;
1006 pushq(rax);
1007 pushq(rbx);
1008
1009 get_method(rbx);
1010 // Test MDO to avoid the call if it is NULL.
1011 movq(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
1012 testq(rax, rax);
1013 jcc(Assembler::zero, zero_continue);
1014
1015 // rbx: method
1016 // r13: bcp
1017 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
1018 // rax: mdi
1019
1020 movq(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
1021 testq(rbx, rbx);
1022 jcc(Assembler::zero, zero_continue);
1023 addq(rbx, in_bytes(methodDataOopDesc::data_offset()));
1024 addq(rbx, rax);
1025 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
1026
1027 bind(zero_continue);
1028 popq(rbx);
1029 popq(rax);
1030 }
1031
1032 void InterpreterMacroAssembler::verify_method_data_pointer() {
1033 assert(ProfileInterpreter, "must be profiling interpreter");
1034 #ifdef ASSERT
1035 Label verify_continue;
1036 pushq(rax);
1037 pushq(rbx);
1038 pushq(c_rarg3);
1039 pushq(c_rarg2);
1040 test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
1041 get_method(rbx);
1042
1043 // If the mdp is valid, it will point to a DataLayout header which is
1044 // consistent with the bcp. The converse is highly probable also.
1045 load_unsigned_word(c_rarg2,
1046 Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
1047 addq(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
1048 leaq(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
1049 cmpq(c_rarg2, r13);
1050 jcc(Assembler::equal, verify_continue);
1051 // rbx: method
1052 // r13: bcp
1053 // c_rarg3: mdp
1054 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1055 rbx, r13, c_rarg3);
1056 bind(verify_continue);
1057 popq(c_rarg2);
1058 popq(c_rarg3);
1059 popq(rbx);
1060 popq(rax);
1061 #endif // ASSERT
1062 }
1063
1064
1065 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1066 int constant,
1067 Register value) {
1068 assert(ProfileInterpreter, "must be profiling interpreter");
1069 Address data(mdp_in, constant);
1070 movq(data, value);
1071 }
1072
1073
1074 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1075 int constant,
1076 bool decrement) {
1077 // Counter address
1078 Address data(mdp_in, constant);
1079
1080 increment_mdp_data_at(data, decrement);
1081 }
1082
1083 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1084 bool decrement) {
1085 assert(ProfileInterpreter, "must be profiling interpreter");
1086
1087 if (decrement) {
1088 // Decrement the register. Set condition codes.
1089 addq(data, -DataLayout::counter_increment);
1090 // If the decrement causes the counter to overflow, stay negative
1091 Label L;
1092 jcc(Assembler::negative, L);
1093 addq(data, DataLayout::counter_increment);
1094 bind(L);
1095 } else {
1096 assert(DataLayout::counter_increment == 1,
1097 "flow-free idiom only works with 1");
1098 // Increment the register. Set carry flag.
1099 addq(data, DataLayout::counter_increment);
1100 // If the increment causes the counter to overflow, pull back by 1.
1101 sbbq(data, 0);
1102 }
1103 }
1104
1105
1106 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1107 Register reg,
1108 int constant,
1109 bool decrement) {
1110 Address data(mdp_in, reg, Address::times_1, constant);
1111
1112 increment_mdp_data_at(data, decrement);
1113 }
1114
1115 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1116 int flag_byte_constant) {
1117 assert(ProfileInterpreter, "must be profiling interpreter");
1118 int header_offset = in_bytes(DataLayout::header_offset());
1119 int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1120 // Set the flag
1121 orl(Address(mdp_in, header_offset), header_bits);
1122 }
1123
1124
1125
1126 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1127 int offset,
1128 Register value,
1129 Register test_value_out,
1130 Label& not_equal_continue) {
1131 assert(ProfileInterpreter, "must be profiling interpreter");
1132 if (test_value_out == noreg) {
1133 cmpq(value, Address(mdp_in, offset));
1134 } else {
1135 // Put the test value into a register, so caller can use it:
1136 movq(test_value_out, Address(mdp_in, offset));
1137 cmpq(test_value_out, value);
1138 }
1139 jcc(Assembler::notEqual, not_equal_continue);
1140 }
1141
1142
1143 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1144 int offset_of_disp) {
1145 assert(ProfileInterpreter, "must be profiling interpreter");
1146 Address disp_address(mdp_in, offset_of_disp);
1147 addq(mdp_in, disp_address);
1148 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1149 }
1150
1151
1152 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1153 Register reg,
1154 int offset_of_disp) {
1155 assert(ProfileInterpreter, "must be profiling interpreter");
1156 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1157 addq(mdp_in, disp_address);
1158 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1159 }
1160
1161
1162 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1163 int constant) {
1164 assert(ProfileInterpreter, "must be profiling interpreter");
1165 addq(mdp_in, constant);
1166 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1167 }
1168
1169
1170 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1171 assert(ProfileInterpreter, "must be profiling interpreter");
1172 pushq(return_bci); // save/restore across call_VM
1173 call_VM(noreg,
1174 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1175 return_bci);
1176 popq(return_bci);
1177 }
1178
1179
1180 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1181 Register bumped_count) {
1182 if (ProfileInterpreter) {
1183 Label profile_continue;
1184
1185 // If no method data exists, go to profile_continue.
1186 // Otherwise, assign to mdp
1187 test_method_data_pointer(mdp, profile_continue);
1188
1189 // We are taking a branch. Increment the taken count.
1190 // We inline increment_mdp_data_at to return bumped_count in a register
1191 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1192 Address data(mdp, in_bytes(JumpData::taken_offset()));
1193 movq(bumped_count, data);
1194 assert(DataLayout::counter_increment == 1,
1195 "flow-free idiom only works with 1");
1196 addq(bumped_count, DataLayout::counter_increment);
1197 sbbq(bumped_count, 0);
1198 movq(data, bumped_count); // Store back out
1199
1200 // The method data pointer needs to be updated to reflect the new target.
1201 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1202 bind(profile_continue);
1203 }
1204 }
1205
1206
1207 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1208 if (ProfileInterpreter) {
1209 Label profile_continue;
1210
1211 // If no method data exists, go to profile_continue.
1212 test_method_data_pointer(mdp, profile_continue);
1213
1214 // We are taking a branch. Increment the not taken count.
1215 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1216
1217 // The method data pointer needs to be updated to correspond to
1218 // the next bytecode
1219 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1220 bind(profile_continue);
1221 }
1222 }
1223
1224
1225 void InterpreterMacroAssembler::profile_call(Register mdp) {
1226 if (ProfileInterpreter) {
1227 Label profile_continue;
1228
1229 // If no method data exists, go to profile_continue.
1230 test_method_data_pointer(mdp, profile_continue);
1231
1232 // We are making a call. Increment the count.
1233 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1234
1235 // The method data pointer needs to be updated to reflect the new target.
1236 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1237 bind(profile_continue);
1238 }
1239 }
1240
1241
1242 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1243 if (ProfileInterpreter) {
1244 Label profile_continue;
1245
1246 // If no method data exists, go to profile_continue.
1247 test_method_data_pointer(mdp, profile_continue);
1248
1249 // We are making a call. Increment the count.
1250 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1251
1252 // The method data pointer needs to be updated to reflect the new target.
1253 update_mdp_by_constant(mdp,
1254 in_bytes(VirtualCallData::
1255 virtual_call_data_size()));
1256 bind(profile_continue);
1257 }
1258 }
1259
1260
1261 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1262 Register mdp,
1263 Register reg2) {
1264 if (ProfileInterpreter) {
1265 Label profile_continue;
1266
1267 // If no method data exists, go to profile_continue.
1268 test_method_data_pointer(mdp, profile_continue);
1269
1270 // We are making a call. Increment the count.
1271 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1272
1273 // Record the receiver type.
1274 record_klass_in_profile(receiver, mdp, reg2);
1275
1276 // The method data pointer needs to be updated to reflect the new target.
1277 update_mdp_by_constant(mdp,
1278 in_bytes(VirtualCallData::
1279 virtual_call_data_size()));
1280 bind(profile_continue);
1281 }
1282 }
1283
1284 // This routine creates a state machine for updating the multi-row
1285 // type profile at a virtual call site (or other type-sensitive bytecode).
1286 // The machine visits each row (of receiver/count) until the receiver type
1287 // is found, or until it runs out of rows. At the same time, it remembers
1288 // the location of the first empty row. (An empty row records null for its
1289 // receiver, and can be allocated for a newly-observed receiver type.)
1290 // Because there are two degrees of freedom in the state, a simple linear
1291 // search will not work; it must be a decision tree. Hence this helper
1292 // function is recursive, to generate the required tree structured code.
1293 // It's the interpreter, so we are trading off code space for speed.
1294 // See below for example code.
1295 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1296 Register receiver, Register mdp,
1297 Register reg2,
1298 int start_row, Label& done) {
1299 int last_row = VirtualCallData::row_limit() - 1;
1300 assert(start_row <= last_row, "must be work left to do");
1301 // Test this row for both the receiver and for null.
1302 // Take any of three different outcomes:
1303 // 1. found receiver => increment count and goto done
1304 // 2. found null => keep looking for case 1, maybe allocate this cell
1305 // 3. found something else => keep looking for cases 1 and 2
1306 // Case 3 is handled by a recursive call.
1307 for (int row = start_row; row <= last_row; row++) {
1308 Label next_test;
1309 bool test_for_null_also = (row == start_row);
1310
1311 // See if the receiver is receiver[n].
1312 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1313 test_mdp_data_at(mdp, recvr_offset, receiver,
1314 (test_for_null_also ? reg2 : noreg),
1315 next_test);
1316 // (Reg2 now contains the receiver from the CallData.)
1317
1318 // The receiver is receiver[n]. Increment count[n].
1319 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1320 increment_mdp_data_at(mdp, count_offset);
1321 jmp(done);
1322 bind(next_test);
1323
1324 if (test_for_null_also) {
1325 // Failed the equality check on receiver[n]... Test for null.
1326 testq(reg2, reg2);
1327 if (start_row == last_row) {
1328 // The only thing left to do is handle the null case.
1329 jcc(Assembler::notZero, done);
1330 break;
1331 }
1332 // Since null is rare, make it be the branch-taken case.
1333 Label found_null;
1334 jcc(Assembler::zero, found_null);
1335
1336 // Put all the "Case 3" tests here.
1337 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
1338
1339 // Found a null. Keep searching for a matching receiver,
1340 // but remember that this is an empty (unused) slot.
1341 bind(found_null);
1342 }
1343 }
1344
1345 // In the fall-through case, we found no matching receiver, but we
1346 // observed the receiver[start_row] is NULL.
1347
1348 // Fill in the receiver field and increment the count.
1349 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1350 set_mdp_data_at(mdp, recvr_offset, receiver);
1351 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1352 movl(reg2, DataLayout::counter_increment);
1353 set_mdp_data_at(mdp, count_offset, reg2);
1354 jmp(done);
1355 }
1356
1357 // Example state machine code for three profile rows:
1358 // // main copy of decision tree, rooted at row[1]
1359 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1360 // if (row[0].rec != NULL) {
1361 // // inner copy of decision tree, rooted at row[1]
1362 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1363 // if (row[1].rec != NULL) {
1364 // // degenerate decision tree, rooted at row[2]
1365 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1366 // if (row[2].rec != NULL) { goto done; } // overflow
1367 // row[2].init(rec); goto done;
1368 // } else {
1369 // // remember row[1] is empty
1370 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1371 // row[1].init(rec); goto done;
1372 // }
1373 // } else {
1374 // // remember row[0] is empty
1375 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1376 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1377 // row[0].init(rec); goto done;
1378 // }
1379
1380 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1381 Register mdp,
1382 Register reg2) {
1383 assert(ProfileInterpreter, "must be profiling");
1384 Label done;
1385
1386 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1387
1388 bind (done);
1389 }
1390
1391 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1392 Register mdp) {
1393 if (ProfileInterpreter) {
1394 Label profile_continue;
1395 uint row;
1396
1397 // If no method data exists, go to profile_continue.
1398 test_method_data_pointer(mdp, profile_continue);
1399
1400 // Update the total ret count.
1401 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1402
1403 for (row = 0; row < RetData::row_limit(); row++) {
1404 Label next_test;
1405
1406 // See if return_bci is equal to bci[n]:
1407 test_mdp_data_at(mdp,
1408 in_bytes(RetData::bci_offset(row)),
1409 return_bci, noreg,
1410 next_test);
1411
1412 // return_bci is equal to bci[n]. Increment the count.
1413 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1414
1415 // The method data pointer needs to be updated to reflect the new target.
1416 update_mdp_by_offset(mdp,
1417 in_bytes(RetData::bci_displacement_offset(row)));
1418 jmp(profile_continue);
1419 bind(next_test);
1420 }
1421
1422 update_mdp_for_ret(return_bci);
1423
1424 bind(profile_continue);
1425 }
1426 }
1427
1428
1429 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1430 if (ProfileInterpreter) {
1431 Label profile_continue;
1432
1433 // If no method data exists, go to profile_continue.
1434 test_method_data_pointer(mdp, profile_continue);
1435
1436 // The method data pointer needs to be updated.
1437 int mdp_delta = in_bytes(BitData::bit_data_size());
1438 if (TypeProfileCasts) {
1439 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1440 }
1441 update_mdp_by_constant(mdp, mdp_delta);
1442
1443 bind(profile_continue);
1444 }
1445 }
1446
1447
1448 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1449 if (ProfileInterpreter && TypeProfileCasts) {
1450 Label profile_continue;
1451
1452 // If no method data exists, go to profile_continue.
1453 test_method_data_pointer(mdp, profile_continue);
1454
1455 int count_offset = in_bytes(CounterData::count_offset());
1456 // Back up the address, since we have already bumped the mdp.
1457 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1458
1459 // *Decrement* the counter. We expect to see zero or small negatives.
1460 increment_mdp_data_at(mdp, count_offset, true);
1461
1462 bind (profile_continue);
1463 }
1464 }
1465
1466
1467 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1468 if (ProfileInterpreter) {
1469 Label profile_continue;
1470
1471 // If no method data exists, go to profile_continue.
1472 test_method_data_pointer(mdp, profile_continue);
1473
1474 // The method data pointer needs to be updated.
1475 int mdp_delta = in_bytes(BitData::bit_data_size());
1476 if (TypeProfileCasts) {
1477 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1478
1479 // Record the object type.
1480 record_klass_in_profile(klass, mdp, reg2);
1481 }
1482 update_mdp_by_constant(mdp, mdp_delta);
1483
1484 bind(profile_continue);
1485 }
1486 }
1487
1488
1489 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1490 if (ProfileInterpreter) {
1491 Label profile_continue;
1492
1493 // If no method data exists, go to profile_continue.
1494 test_method_data_pointer(mdp, profile_continue);
1495
1496 // Update the default case count
1497 increment_mdp_data_at(mdp,
1498 in_bytes(MultiBranchData::default_count_offset()));
1499
1500 // The method data pointer needs to be updated.
1501 update_mdp_by_offset(mdp,
1502 in_bytes(MultiBranchData::
1503 default_displacement_offset()));
1504
1505 bind(profile_continue);
1506 }
1507 }
1508
1509
1510 void InterpreterMacroAssembler::profile_switch_case(Register index,
1511 Register mdp,
1512 Register reg2) {
1513 if (ProfileInterpreter) {
1514 Label profile_continue;
1515
1516 // If no method data exists, go to profile_continue.
1517 test_method_data_pointer(mdp, profile_continue);
1518
1519 // Build the base (index * per_case_size_in_bytes()) +
1520 // case_array_offset_in_bytes()
1521 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1522 imulq(index, reg2); // XXX l ?
1523 addq(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1524
1525 // Update the case count
1526 increment_mdp_data_at(mdp,
1527 index,
1528 in_bytes(MultiBranchData::relative_count_offset()));
1529
1530 // The method data pointer needs to be updated.
1531 update_mdp_by_offset(mdp,
1532 index,
1533 in_bytes(MultiBranchData::
1534 relative_displacement_offset()));
1535
1536 bind(profile_continue);
1537 }
1538 }
1539
1540
1541 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1542 if (state == atos) {
1543 MacroAssembler::verify_oop(reg);
1544 }
1545 }
1546
1547 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1548 }
1549
1550
1551 void InterpreterMacroAssembler::notify_method_entry() {
1552 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1553 // track stack depth. If it is possible to enter interp_only_mode we add
1554 // the code to check if the event should be sent.
1555 if (JvmtiExport::can_post_interpreter_events()) {
1556 Label L;
1557 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1558 testl(rdx, rdx);
1559 jcc(Assembler::zero, L);
1560 call_VM(noreg, CAST_FROM_FN_PTR(address,
1561 InterpreterRuntime::post_method_entry));
1562 bind(L);
1563 }
1564
1565 {
1566 SkipIfEqual skip(this, &DTraceMethodProbes, false);
1567 get_method(c_rarg1);
1568 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1569 r15_thread, c_rarg1);
1570 }
1571 }
1572
1573
1574 void InterpreterMacroAssembler::notify_method_exit(
1575 TosState state, NotifyMethodExitMode mode) {
1576 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1577 // track stack depth. If it is possible to enter interp_only_mode we add
1578 // the code to check if the event should be sent.
1579 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1580 Label L;
1581 // Note: frame::interpreter_frame_result has a dependency on how the
1582 // method result is saved across the call to post_method_exit. If this
1583 // is changed then the interpreter_frame_result implementation will
1584 // need to be updated too.
1585 push(state);
1586 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1587 testl(rdx, rdx);
1588 jcc(Assembler::zero, L);
1589 call_VM(noreg,
1590 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1591 bind(L);
1592 pop(state);
1593 }
1594
1595 {
1596 SkipIfEqual skip(this, &DTraceMethodProbes, false);
1597 push(state);
1598 get_method(c_rarg1);
1599 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1600 r15_thread, c_rarg1);
1601 pop(state);
1602 }
1603 }