comparison src/cpu/x86/vm/vm_version_x86_64.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 2649e5276dd7
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 class VM_Version : public Abstract_VM_Version {
26 public:
27 // cpuid result register layouts. These are all unions of a uint32_t
28 // (in case anyone wants access to the register as a whole) and a bitfield.
29
30 union StdCpuid1Eax {
31 uint32_t value;
32 struct {
33 uint32_t stepping : 4,
34 model : 4,
35 family : 4,
36 proc_type : 2,
37 : 2,
38 ext_model : 4,
39 ext_family : 8,
40 : 4;
41 } bits;
42 };
43
44 union StdCpuid1Ebx { // example, unused
45 uint32_t value;
46 struct {
47 uint32_t brand_id : 8,
48 clflush_size : 8,
49 threads_per_cpu : 8,
50 apic_id : 8;
51 } bits;
52 };
53
54 union StdCpuid1Ecx {
55 uint32_t value;
56 struct {
57 uint32_t sse3 : 1,
58 : 2,
59 monitor : 1,
60 : 1,
61 vmx : 1,
62 : 1,
63 est : 1,
64 : 1,
65 ssse3 : 1,
66 cid : 1,
67 : 2,
68 cmpxchg16: 1,
69 : 4,
70 dca : 1,
71 : 4,
72 popcnt : 1,
73 : 8;
74 } bits;
75 };
76
77 union StdCpuid1Edx {
78 uint32_t value;
79 struct {
80 uint32_t : 4,
81 tsc : 1,
82 : 3,
83 cmpxchg8 : 1,
84 : 6,
85 cmov : 1,
86 : 7,
87 mmx : 1,
88 fxsr : 1,
89 sse : 1,
90 sse2 : 1,
91 : 1,
92 ht : 1,
93 : 3;
94 } bits;
95 };
96
97 union DcpCpuid4Eax {
98 uint32_t value;
99 struct {
100 uint32_t cache_type : 5,
101 : 21,
102 cores_per_cpu : 6;
103 } bits;
104 };
105
106 union DcpCpuid4Ebx {
107 uint32_t value;
108 struct {
109 uint32_t L1_line_size : 12,
110 partitions : 10,
111 associativity : 10;
112 } bits;
113 };
114
115 union ExtCpuid1Edx {
116 uint32_t value;
117 struct {
118 uint32_t : 22,
119 mmx_amd : 1,
120 mmx : 1,
121 fxsr : 1,
122 : 4,
123 long_mode : 1,
124 tdnow2 : 1,
125 tdnow : 1;
126 } bits;
127 };
128
129 union ExtCpuid1Ecx {
130 uint32_t value;
131 struct {
132 uint32_t LahfSahf : 1,
133 CmpLegacy : 1,
134 : 4,
135 abm : 1,
136 sse4a : 1,
137 misalignsse : 1,
138 prefetchw : 1,
139 : 22;
140 } bits;
141 };
142
143 union ExtCpuid5Ex {
144 uint32_t value;
145 struct {
146 uint32_t L1_line_size : 8,
147 L1_tag_lines : 8,
148 L1_assoc : 8,
149 L1_size : 8;
150 } bits;
151 };
152
153 union ExtCpuid8Ecx {
154 uint32_t value;
155 struct {
156 uint32_t cores_per_cpu : 8,
157 : 24;
158 } bits;
159 };
160
161 protected:
162 static int _cpu;
163 static int _model;
164 static int _stepping;
165 static int _cpuFeatures; // features returned by the "cpuid" instruction
166 // 0 if this instruction is not available
167 static const char* _features_str;
168
169 enum {
170 CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
171 CPU_CMOV = (1 << 1),
172 CPU_FXSR = (1 << 2),
173 CPU_HT = (1 << 3),
174 CPU_MMX = (1 << 4),
175 CPU_3DNOW= (1 << 5),
176 CPU_SSE = (1 << 6),
177 CPU_SSE2 = (1 << 7),
178 CPU_SSE3 = (1 << 8),
179 CPU_SSSE3= (1 << 9),
180 CPU_SSE4 = (1 <<10),
181 CPU_SSE4A= (1 <<11)
182 } cpuFeatureFlags;
183
184 // cpuid information block. All info derived from executing cpuid with
185 // various function numbers is stored here. Intel and AMD info is
186 // merged in this block: accessor methods disentangle it.
187 //
188 // The info block is laid out in subblocks of 4 dwords corresponding to
189 // eax, ebx, ecx and edx, whether or not they contain anything useful.
190 struct CpuidInfo {
191 // cpuid function 0
192 uint32_t std_max_function;
193 uint32_t std_vendor_name_0;
194 uint32_t std_vendor_name_1;
195 uint32_t std_vendor_name_2;
196
197 // cpuid function 1
198 StdCpuid1Eax std_cpuid1_eax;
199 StdCpuid1Ebx std_cpuid1_ebx;
200 StdCpuid1Ecx std_cpuid1_ecx;
201 StdCpuid1Edx std_cpuid1_edx;
202
203 // cpuid function 4 (deterministic cache parameters)
204 DcpCpuid4Eax dcp_cpuid4_eax;
205 DcpCpuid4Ebx dcp_cpuid4_ebx;
206 uint32_t dcp_cpuid4_ecx; // unused currently
207 uint32_t dcp_cpuid4_edx; // unused currently
208
209 // cpuid function 0x80000000 // example, unused
210 uint32_t ext_max_function;
211 uint32_t ext_vendor_name_0;
212 uint32_t ext_vendor_name_1;
213 uint32_t ext_vendor_name_2;
214
215 // cpuid function 0x80000001
216 uint32_t ext_cpuid1_eax; // reserved
217 uint32_t ext_cpuid1_ebx; // reserved
218 ExtCpuid1Ecx ext_cpuid1_ecx;
219 ExtCpuid1Edx ext_cpuid1_edx;
220
221 // cpuid functions 0x80000002 thru 0x80000004: example, unused
222 uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
223 uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
224 uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
225
226 // cpuid function 0x80000005 //AMD L1, Intel reserved
227 uint32_t ext_cpuid5_eax; // unused currently
228 uint32_t ext_cpuid5_ebx; // reserved
229 ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD)
230 ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD)
231
232 // cpuid function 0x80000008
233 uint32_t ext_cpuid8_eax; // unused currently
234 uint32_t ext_cpuid8_ebx; // reserved
235 ExtCpuid8Ecx ext_cpuid8_ecx;
236 uint32_t ext_cpuid8_edx; // reserved
237 };
238
239 // The actual cpuid info block
240 static CpuidInfo _cpuid_info;
241
242 // Extractors and predicates
243 static bool is_extended_cpu_family() {
244 const uint32_t Extended_Cpu_Family = 0xf;
245 return _cpuid_info.std_cpuid1_eax.bits.family == Extended_Cpu_Family;
246 }
247 static uint32_t extended_cpu_family() {
248 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
249 if (is_extended_cpu_family()) {
250 result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
251 }
252 return result;
253 }
254 static uint32_t extended_cpu_model() {
255 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
256 if (is_extended_cpu_family()) {
257 result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
258 }
259 return result;
260 }
261 static uint32_t cpu_stepping() {
262 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
263 return result;
264 }
265 static uint logical_processor_count() {
266 uint result = threads_per_core();
267 return result;
268 }
269 static uint32_t feature_flags() {
270 uint32_t result = 0;
271 if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
272 result |= CPU_CX8;
273 if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
274 result |= CPU_CMOV;
275 if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || is_amd() &&
276 _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0)
277 result |= CPU_FXSR;
278 // HT flag is set for multi-core processors also.
279 if (threads_per_core() > 1)
280 result |= CPU_HT;
281 if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || is_amd() &&
282 _cpuid_info.ext_cpuid1_edx.bits.mmx != 0)
283 result |= CPU_MMX;
284 if (is_amd() && _cpuid_info.ext_cpuid1_edx.bits.tdnow != 0)
285 result |= CPU_3DNOW;
286 if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
287 result |= CPU_SSE;
288 if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
289 result |= CPU_SSE2;
290 if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
291 result |= CPU_SSE3;
292 if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
293 result |= CPU_SSSE3;
294 if (is_amd() && _cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
295 result |= CPU_SSE4A;
296 return result;
297 }
298
299 static void get_processor_features();
300
301 public:
302 // Offsets for cpuid asm stub
303 static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
304 static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
305 static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
306 static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
307 static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
308 static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
309
310 // Initialization
311 static void initialize();
312
313 // Asserts
314 static void assert_is_initialized() {
315 assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
316 }
317
318 //
319 // Processor family:
320 // 3 - 386
321 // 4 - 486
322 // 5 - Pentium
323 // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
324 // Pentium M, Core Solo, Core Duo, Core2 Duo
325 // family 6 model: 9, 13, 14, 15
326 // 0x0f - Pentium 4, Opteron
327 //
328 // Note: The cpu family should be used to select between
329 // instruction sequences which are valid on all Intel
330 // processors. Use the feature test functions below to
331 // determine whether a particular instruction is supported.
332 //
333 static int cpu_family() { return _cpu;}
334 static bool is_P6() { return cpu_family() >= 6; }
335
336 static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
337 static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
338
339 static uint cores_per_cpu() {
340 uint result = 1;
341 if (is_intel()) {
342 result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
343 } else if (is_amd()) {
344 result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
345 }
346 return result;
347 }
348
349 static uint threads_per_core() {
350 uint result = 1;
351 if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
352 result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
353 cores_per_cpu();
354 }
355 return result;
356 }
357
358 static intx L1_data_cache_line_size() {
359 intx result = 0;
360 if (is_intel()) {
361 result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
362 } else if (is_amd()) {
363 result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
364 }
365 if (result < 32) // not defined ?
366 result = 32; // 32 bytes by default for other x64
367 return result;
368 }
369
370 //
371 // Feature identification
372 //
373 static bool supports_cpuid() { return _cpuFeatures != 0; }
374 static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
375 static bool supports_cmov() { return (_cpuFeatures & CPU_CMOV) != 0; }
376 static bool supports_fxsr() { return (_cpuFeatures & CPU_FXSR) != 0; }
377 static bool supports_ht() { return (_cpuFeatures & CPU_HT) != 0; }
378 static bool supports_mmx() { return (_cpuFeatures & CPU_MMX) != 0; }
379 static bool supports_sse() { return (_cpuFeatures & CPU_SSE) != 0; }
380 static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
381 static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
382 static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
383 static bool supports_sse4() { return (_cpuFeatures & CPU_SSE4) != 0; }
384 //
385 // AMD features
386 //
387 static bool supports_3dnow() { return (_cpuFeatures & CPU_3DNOW) != 0; }
388 static bool supports_mmx_ext() { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
389 static bool supports_3dnow2() { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.tdnow2 != 0; }
390 static bool supports_sse4a() { return (_cpuFeatures & CPU_SSE4A) != 0; }
391
392 static bool supports_compare_and_exchange() { return true; }
393
394 static const char* cpu_features() { return _features_str; }
395
396 static intx allocate_prefetch_distance() {
397 // This method should be called before allocate_prefetch_style().
398 //
399 // Hardware prefetching (distance/size in bytes):
400 // Pentium 4 - 256 / 128
401 // Opteron - 128 / 64 only when 2 sequential cache lines accessed
402 // Core - 128 / 64
403 //
404 // Software prefetching (distance in bytes / instruction with best score):
405 // Pentium 4 - 512 / prefetchnta
406 // Opteron - 256 / prefetchnta
407 // Core - 256 / prefetchnta
408 // It will be used only when AllocatePrefetchStyle > 0
409
410 intx count = AllocatePrefetchDistance;
411 if (count < 0) { // default ?
412 if (is_amd()) { // AMD
413 count = 256; // Opteron
414 } else { // Intel
415 if (cpu_family() == 6) {
416 count = 256;// Pentium M, Core, Core2
417 } else {
418 count = 512;// Pentium 4
419 }
420 }
421 }
422 return count;
423 }
424 static intx allocate_prefetch_style() {
425 assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
426 // Return 0 if AllocatePrefetchDistance was not defined.
427 return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
428 }
429
430 // Prefetch interval for gc copy/scan == 9 dcache lines. Derived from
431 // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
432 // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
433 // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
434
435 // gc copy/scan is disabled if prefetchw isn't supported, because
436 // Prefetch::write emits an inlined prefetchw on Linux.
437 // Do not use the 3dnow prefetchw instruction. It isn't supported on em64t.
438 // The used prefetcht0 instruction works for both amd64 and em64t.
439 static intx prefetch_copy_interval_in_bytes() {
440 intx interval = PrefetchCopyIntervalInBytes;
441 return interval >= 0 ? interval : 576;
442 }
443 static intx prefetch_scan_interval_in_bytes() {
444 intx interval = PrefetchScanIntervalInBytes;
445 return interval >= 0 ? interval : 576;
446 }
447 static intx prefetch_fields_ahead() {
448 intx count = PrefetchFieldsAhead;
449 return count >= 0 ? count : 1;
450 }
451 };