comparison src/os/linux/vm/perfMemory_linux.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 98cb887364d3
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_perfMemory_linux.cpp.incl"
27
28 // put OS-includes here
29 # include <sys/types.h>
30 # include <sys/mman.h>
31 # include <errno.h>
32 # include <stdio.h>
33 # include <unistd.h>
34 # include <sys/stat.h>
35 # include <signal.h>
36 # include <pwd.h>
37
38 static char* backing_store_file_name = NULL; // name of the backing store
39 // file, if successfully created.
40
41 // Standard Memory Implementation Details
42
43 // create the PerfData memory region in standard memory.
44 //
45 static char* create_standard_memory(size_t size) {
46
47 // allocate an aligned chuck of memory
48 char* mapAddress = os::reserve_memory(size);
49
50 if (mapAddress == NULL) {
51 return NULL;
52 }
53
54 // commit memory
55 if (!os::commit_memory(mapAddress, size)) {
56 if (PrintMiscellaneous && Verbose) {
57 warning("Could not commit PerfData memory\n");
58 }
59 os::release_memory(mapAddress, size);
60 return NULL;
61 }
62
63 return mapAddress;
64 }
65
66 // delete the PerfData memory region
67 //
68 static void delete_standard_memory(char* addr, size_t size) {
69
70 // there are no persistent external resources to cleanup for standard
71 // memory. since DestroyJavaVM does not support unloading of the JVM,
72 // cleanup of the memory resource is not performed. The memory will be
73 // reclaimed by the OS upon termination of the process.
74 //
75 return;
76 }
77
78 // save the specified memory region to the given file
79 //
80 // Note: this function might be called from signal handler (by os::abort()),
81 // don't allocate heap memory.
82 //
83 static void save_memory_to_file(char* addr, size_t size) {
84
85 const char* destfile = PerfMemory::get_perfdata_file_path();
86 assert(destfile[0] != '\0', "invalid PerfData file path");
87
88 int result;
89
90 RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
91 result);;
92 if (result == OS_ERR) {
93 if (PrintMiscellaneous && Verbose) {
94 warning("Could not create Perfdata save file: %s: %s\n",
95 destfile, strerror(errno));
96 }
97 } else {
98 int fd = result;
99
100 for (size_t remaining = size; remaining > 0;) {
101
102 RESTARTABLE(::write(fd, addr, remaining), result);
103 if (result == OS_ERR) {
104 if (PrintMiscellaneous && Verbose) {
105 warning("Could not write Perfdata save file: %s: %s\n",
106 destfile, strerror(errno));
107 }
108 break;
109 }
110
111 remaining -= (size_t)result;
112 addr += result;
113 }
114
115 RESTARTABLE(::close(fd), result);
116 if (PrintMiscellaneous && Verbose) {
117 if (result == OS_ERR) {
118 warning("Could not close %s: %s\n", destfile, strerror(errno));
119 }
120 }
121 }
122 FREE_C_HEAP_ARRAY(char, destfile);
123 }
124
125
126 // Shared Memory Implementation Details
127
128 // Note: the solaris and linux shared memory implementation uses the mmap
129 // interface with a backing store file to implement named shared memory.
130 // Using the file system as the name space for shared memory allows a
131 // common name space to be supported across a variety of platforms. It
132 // also provides a name space that Java applications can deal with through
133 // simple file apis.
134 //
135 // The solaris and linux implementations store the backing store file in
136 // a user specific temporary directory located in the /tmp file system,
137 // which is always a local file system and is sometimes a RAM based file
138 // system.
139
140 // return the user specific temporary directory name.
141 //
142 // the caller is expected to free the allocated memory.
143 //
144 static char* get_user_tmp_dir(const char* user) {
145
146 const char* tmpdir = os::get_temp_directory();
147 const char* perfdir = PERFDATA_NAME;
148 size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 2;
149 char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
150
151 // construct the path name to user specific tmp directory
152 snprintf(dirname, nbytes, "%s%s_%s", tmpdir, perfdir, user);
153
154 return dirname;
155 }
156
157 // convert the given file name into a process id. if the file
158 // does not meet the file naming constraints, return 0.
159 //
160 static pid_t filename_to_pid(const char* filename) {
161
162 // a filename that doesn't begin with a digit is not a
163 // candidate for conversion.
164 //
165 if (!isdigit(*filename)) {
166 return 0;
167 }
168
169 // check if file name can be converted to an integer without
170 // any leftover characters.
171 //
172 char* remainder = NULL;
173 errno = 0;
174 pid_t pid = (pid_t)strtol(filename, &remainder, 10);
175
176 if (errno != 0) {
177 return 0;
178 }
179
180 // check for left over characters. If any, then the filename is
181 // not a candidate for conversion.
182 //
183 if (remainder != NULL && *remainder != '\0') {
184 return 0;
185 }
186
187 // successful conversion, return the pid
188 return pid;
189 }
190
191
192 // check if the given path is considered a secure directory for
193 // the backing store files. Returns true if the directory exists
194 // and is considered a secure location. Returns false if the path
195 // is a symbolic link or if an error occured.
196 //
197 static bool is_directory_secure(const char* path) {
198 struct stat statbuf;
199 int result = 0;
200
201 RESTARTABLE(::lstat(path, &statbuf), result);
202 if (result == OS_ERR) {
203 return false;
204 }
205
206 // the path exists, now check it's mode
207 if (S_ISLNK(statbuf.st_mode) || !S_ISDIR(statbuf.st_mode)) {
208 // the path represents a link or some non-directory file type,
209 // which is not what we expected. declare it insecure.
210 //
211 return false;
212 }
213 else {
214 // we have an existing directory, check if the permissions are safe.
215 //
216 if ((statbuf.st_mode & (S_IWGRP|S_IWOTH)) != 0) {
217 // the directory is open for writing and could be subjected
218 // to a symlnk attack. declare it insecure.
219 //
220 return false;
221 }
222 }
223 return true;
224 }
225
226
227 // return the user name for the given user id
228 //
229 // the caller is expected to free the allocated memory.
230 //
231 static char* get_user_name(uid_t uid) {
232
233 struct passwd pwent;
234
235 // determine the max pwbuf size from sysconf, and hardcode
236 // a default if this not available through sysconf.
237 //
238 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
239 if (bufsize == -1)
240 bufsize = 1024;
241
242 char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize);
243
244 // POSIX interface to getpwuid_r is used on LINUX
245 struct passwd* p;
246 int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
247
248 if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
249 if (PrintMiscellaneous && Verbose) {
250 if (result != 0) {
251 warning("Could not retrieve passwd entry: %s\n",
252 strerror(result));
253 }
254 else if (p == NULL) {
255 // this check is added to protect against an observed problem
256 // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
257 // indicating success, but has p == NULL. This was observed when
258 // inserting a file descriptor exhaustion fault prior to the call
259 // getpwuid_r() call. In this case, error is set to the appropriate
260 // error condition, but this is undocumented behavior. This check
261 // is safe under any condition, but the use of errno in the output
262 // message may result in an erroneous message.
263 // Bug Id 89052 was opened with RedHat.
264 //
265 warning("Could not retrieve passwd entry: %s\n",
266 strerror(errno));
267 }
268 else {
269 warning("Could not determine user name: %s\n",
270 p->pw_name == NULL ? "pw_name = NULL" :
271 "pw_name zero length");
272 }
273 }
274 FREE_C_HEAP_ARRAY(char, pwbuf);
275 return NULL;
276 }
277
278 char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1);
279 strcpy(user_name, p->pw_name);
280
281 FREE_C_HEAP_ARRAY(char, pwbuf);
282 return user_name;
283 }
284
285 // return the name of the user that owns the process identified by vmid.
286 //
287 // This method uses a slow directory search algorithm to find the backing
288 // store file for the specified vmid and returns the user name, as determined
289 // by the user name suffix of the hsperfdata_<username> directory name.
290 //
291 // the caller is expected to free the allocated memory.
292 //
293 static char* get_user_name_slow(int vmid, TRAPS) {
294
295 // short circuit the directory search if the process doesn't even exist.
296 if (kill(vmid, 0) == OS_ERR) {
297 if (errno == ESRCH) {
298 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
299 "Process not found");
300 }
301 else /* EPERM */ {
302 THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
303 }
304 }
305
306 // directory search
307 char* oldest_user = NULL;
308 time_t oldest_ctime = 0;
309
310 const char* tmpdirname = os::get_temp_directory();
311
312 DIR* tmpdirp = os::opendir(tmpdirname);
313
314 if (tmpdirp == NULL) {
315 return NULL;
316 }
317
318 // for each entry in the directory that matches the pattern hsperfdata_*,
319 // open the directory and check if the file for the given vmid exists.
320 // The file with the expected name and the latest creation date is used
321 // to determine the user name for the process id.
322 //
323 struct dirent* dentry;
324 char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
325 errno = 0;
326 while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
327
328 // check if the directory entry is a hsperfdata file
329 if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
330 continue;
331 }
332
333 char* usrdir_name = NEW_C_HEAP_ARRAY(char,
334 strlen(tmpdirname) + strlen(dentry->d_name) + 1);
335 strcpy(usrdir_name, tmpdirname);
336 strcat(usrdir_name, dentry->d_name);
337
338 DIR* subdirp = os::opendir(usrdir_name);
339
340 if (subdirp == NULL) {
341 FREE_C_HEAP_ARRAY(char, usrdir_name);
342 continue;
343 }
344
345 // Since we don't create the backing store files in directories
346 // pointed to by symbolic links, we also don't follow them when
347 // looking for the files. We check for a symbolic link after the
348 // call to opendir in order to eliminate a small window where the
349 // symlink can be exploited.
350 //
351 if (!is_directory_secure(usrdir_name)) {
352 FREE_C_HEAP_ARRAY(char, usrdir_name);
353 os::closedir(subdirp);
354 continue;
355 }
356
357 struct dirent* udentry;
358 char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
359 errno = 0;
360 while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
361
362 if (filename_to_pid(udentry->d_name) == vmid) {
363 struct stat statbuf;
364 int result;
365
366 char* filename = NEW_C_HEAP_ARRAY(char,
367 strlen(usrdir_name) + strlen(udentry->d_name) + 2);
368
369 strcpy(filename, usrdir_name);
370 strcat(filename, "/");
371 strcat(filename, udentry->d_name);
372
373 // don't follow symbolic links for the file
374 RESTARTABLE(::lstat(filename, &statbuf), result);
375 if (result == OS_ERR) {
376 FREE_C_HEAP_ARRAY(char, filename);
377 continue;
378 }
379
380 // skip over files that are not regular files.
381 if (!S_ISREG(statbuf.st_mode)) {
382 FREE_C_HEAP_ARRAY(char, filename);
383 continue;
384 }
385
386 // compare and save filename with latest creation time
387 if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
388
389 if (statbuf.st_ctime > oldest_ctime) {
390 char* user = strchr(dentry->d_name, '_') + 1;
391
392 if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
393 oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
394
395 strcpy(oldest_user, user);
396 oldest_ctime = statbuf.st_ctime;
397 }
398 }
399
400 FREE_C_HEAP_ARRAY(char, filename);
401 }
402 }
403 os::closedir(subdirp);
404 FREE_C_HEAP_ARRAY(char, udbuf);
405 FREE_C_HEAP_ARRAY(char, usrdir_name);
406 }
407 os::closedir(tmpdirp);
408 FREE_C_HEAP_ARRAY(char, tdbuf);
409
410 return(oldest_user);
411 }
412
413 // return the name of the user that owns the JVM indicated by the given vmid.
414 //
415 static char* get_user_name(int vmid, TRAPS) {
416 return get_user_name_slow(vmid, CHECK_NULL);
417 }
418
419 // return the file name of the backing store file for the named
420 // shared memory region for the given user name and vmid.
421 //
422 // the caller is expected to free the allocated memory.
423 //
424 static char* get_sharedmem_filename(const char* dirname, int vmid) {
425
426 // add 2 for the file separator and a null terminator.
427 size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
428
429 char* name = NEW_C_HEAP_ARRAY(char, nbytes);
430 snprintf(name, nbytes, "%s/%d", dirname, vmid);
431
432 return name;
433 }
434
435
436 // remove file
437 //
438 // this method removes the file specified by the given path
439 //
440 static void remove_file(const char* path) {
441
442 int result;
443
444 // if the file is a directory, the following unlink will fail. since
445 // we don't expect to find directories in the user temp directory, we
446 // won't try to handle this situation. even if accidentially or
447 // maliciously planted, the directory's presence won't hurt anything.
448 //
449 RESTARTABLE(::unlink(path), result);
450 if (PrintMiscellaneous && Verbose && result == OS_ERR) {
451 if (errno != ENOENT) {
452 warning("Could not unlink shared memory backing"
453 " store file %s : %s\n", path, strerror(errno));
454 }
455 }
456 }
457
458
459 // remove file
460 //
461 // this method removes the file with the given file name in the
462 // named directory.
463 //
464 static void remove_file(const char* dirname, const char* filename) {
465
466 size_t nbytes = strlen(dirname) + strlen(filename) + 2;
467 char* path = NEW_C_HEAP_ARRAY(char, nbytes);
468
469 strcpy(path, dirname);
470 strcat(path, "/");
471 strcat(path, filename);
472
473 remove_file(path);
474
475 FREE_C_HEAP_ARRAY(char, path);
476 }
477
478
479 // cleanup stale shared memory resources
480 //
481 // This method attempts to remove all stale shared memory files in
482 // the named user temporary directory. It scans the named directory
483 // for files matching the pattern ^$[0-9]*$. For each file found, the
484 // process id is extracted from the file name and a test is run to
485 // determine if the process is alive. If the process is not alive,
486 // any stale file resources are removed.
487 //
488 static void cleanup_sharedmem_resources(const char* dirname) {
489
490 // open the user temp directory
491 DIR* dirp = os::opendir(dirname);
492
493 if (dirp == NULL) {
494 // directory doesn't exist, so there is nothing to cleanup
495 return;
496 }
497
498 if (!is_directory_secure(dirname)) {
499 // the directory is not a secure directory
500 return;
501 }
502
503 // for each entry in the directory that matches the expected file
504 // name pattern, determine if the file resources are stale and if
505 // so, remove the file resources. Note, instrumented HotSpot processes
506 // for this user may start and/or terminate during this search and
507 // remove or create new files in this directory. The behavior of this
508 // loop under these conditions is dependent upon the implementation of
509 // opendir/readdir.
510 //
511 struct dirent* entry;
512 char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
513 errno = 0;
514 while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
515
516 pid_t pid = filename_to_pid(entry->d_name);
517
518 if (pid == 0) {
519
520 if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
521
522 // attempt to remove all unexpected files, except "." and ".."
523 remove_file(dirname, entry->d_name);
524 }
525
526 errno = 0;
527 continue;
528 }
529
530 // we now have a file name that converts to a valid integer
531 // that could represent a process id . if this process id
532 // matches the current process id or the process is not running,
533 // then remove the stale file resources.
534 //
535 // process liveness is detected by sending signal number 0 to
536 // the process id (see kill(2)). if kill determines that the
537 // process does not exist, then the file resources are removed.
538 // if kill determines that that we don't have permission to
539 // signal the process, then the file resources are assumed to
540 // be stale and are removed because the resources for such a
541 // process should be in a different user specific directory.
542 //
543 if ((pid == os::current_process_id()) ||
544 (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
545
546 remove_file(dirname, entry->d_name);
547 }
548 errno = 0;
549 }
550 os::closedir(dirp);
551 FREE_C_HEAP_ARRAY(char, dbuf);
552 }
553
554 // make the user specific temporary directory. Returns true if
555 // the directory exists and is secure upon return. Returns false
556 // if the directory exists but is either a symlink, is otherwise
557 // insecure, or if an error occurred.
558 //
559 static bool make_user_tmp_dir(const char* dirname) {
560
561 // create the directory with 0755 permissions. note that the directory
562 // will be owned by euid::egid, which may not be the same as uid::gid.
563 //
564 if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
565 if (errno == EEXIST) {
566 // The directory already exists and was probably created by another
567 // JVM instance. However, this could also be the result of a
568 // deliberate symlink. Verify that the existing directory is safe.
569 //
570 if (!is_directory_secure(dirname)) {
571 // directory is not secure
572 if (PrintMiscellaneous && Verbose) {
573 warning("%s directory is insecure\n", dirname);
574 }
575 return false;
576 }
577 }
578 else {
579 // we encountered some other failure while attempting
580 // to create the directory
581 //
582 if (PrintMiscellaneous && Verbose) {
583 warning("could not create directory %s: %s\n",
584 dirname, strerror(errno));
585 }
586 return false;
587 }
588 }
589 return true;
590 }
591
592 // create the shared memory file resources
593 //
594 // This method creates the shared memory file with the given size
595 // This method also creates the user specific temporary directory, if
596 // it does not yet exist.
597 //
598 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
599
600 // make the user temporary directory
601 if (!make_user_tmp_dir(dirname)) {
602 // could not make/find the directory or the found directory
603 // was not secure
604 return -1;
605 }
606
607 int result;
608
609 RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_TRUNC, S_IREAD|S_IWRITE), result);
610 if (result == OS_ERR) {
611 if (PrintMiscellaneous && Verbose) {
612 warning("could not create file %s: %s\n", filename, strerror(errno));
613 }
614 return -1;
615 }
616
617 // save the file descriptor
618 int fd = result;
619
620 // set the file size
621 RESTARTABLE(::ftruncate(fd, (off_t)size), result);
622 if (result == OS_ERR) {
623 if (PrintMiscellaneous && Verbose) {
624 warning("could not set shared memory file size: %s\n", strerror(errno));
625 }
626 RESTARTABLE(::close(fd), result);
627 return -1;
628 }
629
630 return fd;
631 }
632
633 // open the shared memory file for the given user and vmid. returns
634 // the file descriptor for the open file or -1 if the file could not
635 // be opened.
636 //
637 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
638
639 // open the file
640 int result;
641 RESTARTABLE(::open(filename, oflags), result);
642 if (result == OS_ERR) {
643 if (errno == ENOENT) {
644 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
645 "Process not found");
646 }
647 else if (errno == EACCES) {
648 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
649 "Permission denied");
650 }
651 else {
652 THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
653 }
654 }
655
656 return result;
657 }
658
659 // create a named shared memory region. returns the address of the
660 // memory region on success or NULL on failure. A return value of
661 // NULL will ultimately disable the shared memory feature.
662 //
663 // On Solaris and Linux, the name space for shared memory objects
664 // is the file system name space.
665 //
666 // A monitoring application attaching to a JVM does not need to know
667 // the file system name of the shared memory object. However, it may
668 // be convenient for applications to discover the existence of newly
669 // created and terminating JVMs by watching the file system name space
670 // for files being created or removed.
671 //
672 static char* mmap_create_shared(size_t size) {
673
674 int result;
675 int fd;
676 char* mapAddress;
677
678 int vmid = os::current_process_id();
679
680 char* user_name = get_user_name(geteuid());
681
682 if (user_name == NULL)
683 return NULL;
684
685 char* dirname = get_user_tmp_dir(user_name);
686 char* filename = get_sharedmem_filename(dirname, vmid);
687
688 // cleanup any stale shared memory files
689 cleanup_sharedmem_resources(dirname);
690
691 assert(((size > 0) && (size % os::vm_page_size() == 0)),
692 "unexpected PerfMemory region size");
693
694 fd = create_sharedmem_resources(dirname, filename, size);
695
696 FREE_C_HEAP_ARRAY(char, user_name);
697 FREE_C_HEAP_ARRAY(char, dirname);
698
699 if (fd == -1) {
700 FREE_C_HEAP_ARRAY(char, filename);
701 return NULL;
702 }
703
704 mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
705
706 // attempt to close the file - restart it if it was interrupted,
707 // but ignore other failures
708 RESTARTABLE(::close(fd), result);
709 assert(result != OS_ERR, "could not close file");
710
711 if (mapAddress == MAP_FAILED) {
712 if (PrintMiscellaneous && Verbose) {
713 warning("mmap failed - %s\n", strerror(errno));
714 }
715 remove_file(filename);
716 FREE_C_HEAP_ARRAY(char, filename);
717 return NULL;
718 }
719
720 // save the file name for use in delete_shared_memory()
721 backing_store_file_name = filename;
722
723 // clear the shared memory region
724 (void)::memset((void*) mapAddress, 0, size);
725
726 return mapAddress;
727 }
728
729 // release a named shared memory region
730 //
731 static void unmap_shared(char* addr, size_t bytes) {
732 os::release_memory(addr, bytes);
733 }
734
735 // create the PerfData memory region in shared memory.
736 //
737 static char* create_shared_memory(size_t size) {
738
739 // create the shared memory region.
740 return mmap_create_shared(size);
741 }
742
743 // delete the shared PerfData memory region
744 //
745 static void delete_shared_memory(char* addr, size_t size) {
746
747 // cleanup the persistent shared memory resources. since DestroyJavaVM does
748 // not support unloading of the JVM, unmapping of the memory resource is
749 // not performed. The memory will be reclaimed by the OS upon termination of
750 // the process. The backing store file is deleted from the file system.
751
752 assert(!PerfDisableSharedMem, "shouldn't be here");
753
754 if (backing_store_file_name != NULL) {
755 remove_file(backing_store_file_name);
756 // Don't.. Free heap memory could deadlock os::abort() if it is called
757 // from signal handler. OS will reclaim the heap memory.
758 // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
759 backing_store_file_name = NULL;
760 }
761 }
762
763 // return the size of the file for the given file descriptor
764 // or 0 if it is not a valid size for a shared memory file
765 //
766 static size_t sharedmem_filesize(int fd, TRAPS) {
767
768 struct stat statbuf;
769 int result;
770
771 RESTARTABLE(::fstat(fd, &statbuf), result);
772 if (result == OS_ERR) {
773 if (PrintMiscellaneous && Verbose) {
774 warning("fstat failed: %s\n", strerror(errno));
775 }
776 THROW_MSG_0(vmSymbols::java_io_IOException(),
777 "Could not determine PerfMemory size");
778 }
779
780 if ((statbuf.st_size == 0) ||
781 ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
782 THROW_MSG_0(vmSymbols::java_lang_Exception(),
783 "Invalid PerfMemory size");
784 }
785
786 return (size_t)statbuf.st_size;
787 }
788
789 // attach to a named shared memory region.
790 //
791 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
792
793 char* mapAddress;
794 int result;
795 int fd;
796 size_t size;
797 const char* luser = NULL;
798
799 int mmap_prot;
800 int file_flags;
801
802 ResourceMark rm;
803
804 // map the high level access mode to the appropriate permission
805 // constructs for the file and the shared memory mapping.
806 if (mode == PerfMemory::PERF_MODE_RO) {
807 mmap_prot = PROT_READ;
808 file_flags = O_RDONLY;
809 }
810 else if (mode == PerfMemory::PERF_MODE_RW) {
811 #ifdef LATER
812 mmap_prot = PROT_READ | PROT_WRITE;
813 file_flags = O_RDWR;
814 #else
815 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
816 "Unsupported access mode");
817 #endif
818 }
819 else {
820 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
821 "Illegal access mode");
822 }
823
824 if (user == NULL || strlen(user) == 0) {
825 luser = get_user_name(vmid, CHECK);
826 }
827 else {
828 luser = user;
829 }
830
831 if (luser == NULL) {
832 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
833 "Could not map vmid to user Name");
834 }
835
836 char* dirname = get_user_tmp_dir(luser);
837
838 // since we don't follow symbolic links when creating the backing
839 // store file, we don't follow them when attaching either.
840 //
841 if (!is_directory_secure(dirname)) {
842 FREE_C_HEAP_ARRAY(char, dirname);
843 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
844 "Process not found");
845 }
846
847 char* filename = get_sharedmem_filename(dirname, vmid);
848
849 // copy heap memory to resource memory. the open_sharedmem_file
850 // method below need to use the filename, but could throw an
851 // exception. using a resource array prevents the leak that
852 // would otherwise occur.
853 char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
854 strcpy(rfilename, filename);
855
856 // free the c heap resources that are no longer needed
857 if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
858 FREE_C_HEAP_ARRAY(char, dirname);
859 FREE_C_HEAP_ARRAY(char, filename);
860
861 // open the shared memory file for the give vmid
862 fd = open_sharedmem_file(rfilename, file_flags, CHECK);
863 assert(fd != OS_ERR, "unexpected value");
864
865 if (*sizep == 0) {
866 size = sharedmem_filesize(fd, CHECK);
867 assert(size != 0, "unexpected size");
868 }
869
870 mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
871
872 // attempt to close the file - restart if it gets interrupted,
873 // but ignore other failures
874 RESTARTABLE(::close(fd), result);
875 assert(result != OS_ERR, "could not close file");
876
877 if (mapAddress == MAP_FAILED) {
878 if (PrintMiscellaneous && Verbose) {
879 warning("mmap failed: %s\n", strerror(errno));
880 }
881 THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
882 "Could not map PerfMemory");
883 }
884
885 *addr = mapAddress;
886 *sizep = size;
887
888 if (PerfTraceMemOps) {
889 tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
890 INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
891 }
892 }
893
894
895
896
897 // create the PerfData memory region
898 //
899 // This method creates the memory region used to store performance
900 // data for the JVM. The memory may be created in standard or
901 // shared memory.
902 //
903 void PerfMemory::create_memory_region(size_t size) {
904
905 if (PerfDisableSharedMem) {
906 // do not share the memory for the performance data.
907 _start = create_standard_memory(size);
908 }
909 else {
910 _start = create_shared_memory(size);
911 if (_start == NULL) {
912
913 // creation of the shared memory region failed, attempt
914 // to create a contiguous, non-shared memory region instead.
915 //
916 if (PrintMiscellaneous && Verbose) {
917 warning("Reverting to non-shared PerfMemory region.\n");
918 }
919 PerfDisableSharedMem = true;
920 _start = create_standard_memory(size);
921 }
922 }
923
924 if (_start != NULL) _capacity = size;
925
926 }
927
928 // delete the PerfData memory region
929 //
930 // This method deletes the memory region used to store performance
931 // data for the JVM. The memory region indicated by the <address, size>
932 // tuple will be inaccessible after a call to this method.
933 //
934 void PerfMemory::delete_memory_region() {
935
936 assert((start() != NULL && capacity() > 0), "verify proper state");
937
938 // If user specifies PerfDataSaveFile, it will save the performance data
939 // to the specified file name no matter whether PerfDataSaveToFile is specified
940 // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
941 // -XX:+PerfDataSaveToFile.
942 if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
943 save_memory_to_file(start(), capacity());
944 }
945
946 if (PerfDisableSharedMem) {
947 delete_standard_memory(start(), capacity());
948 }
949 else {
950 delete_shared_memory(start(), capacity());
951 }
952 }
953
954 // attach to the PerfData memory region for another JVM
955 //
956 // This method returns an <address, size> tuple that points to
957 // a memory buffer that is kept reasonably synchronized with
958 // the PerfData memory region for the indicated JVM. This
959 // buffer may be kept in synchronization via shared memory
960 // or some other mechanism that keeps the buffer updated.
961 //
962 // If the JVM chooses not to support the attachability feature,
963 // this method should throw an UnsupportedOperation exception.
964 //
965 // This implementation utilizes named shared memory to map
966 // the indicated process's PerfData memory region into this JVMs
967 // address space.
968 //
969 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
970
971 if (vmid == 0 || vmid == os::current_process_id()) {
972 *addrp = start();
973 *sizep = capacity();
974 return;
975 }
976
977 mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
978 }
979
980 // detach from the PerfData memory region of another JVM
981 //
982 // This method detaches the PerfData memory region of another
983 // JVM, specified as an <address, size> tuple of a buffer
984 // in this process's address space. This method may perform
985 // arbitrary actions to accomplish the detachment. The memory
986 // region specified by <address, size> will be inaccessible after
987 // a call to this method.
988 //
989 // If the JVM chooses not to support the attachability feature,
990 // this method should throw an UnsupportedOperation exception.
991 //
992 // This implementation utilizes named shared memory to detach
993 // the indicated process's PerfData memory region from this
994 // process's address space.
995 //
996 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
997
998 assert(addr != 0, "address sanity check");
999 assert(bytes > 0, "capacity sanity check");
1000
1001 if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1002 // prevent accidental detachment of this process's PerfMemory region
1003 return;
1004 }
1005
1006 unmap_shared(addr, bytes);
1007 }
1008
1009 char* PerfMemory::backing_store_filename() {
1010 return backing_store_file_name;
1011 }