comparison src/os/windows/vm/perfMemory_windows.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 98cb887364d3
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_perfMemory_windows.cpp.incl"
27
28 #include <windows.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <errno.h>
32 #include <lmcons.h>
33
34 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
35 IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
36 IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
37 IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
38
39 // Standard Memory Implementation Details
40
41 // create the PerfData memory region in standard memory.
42 //
43 static char* create_standard_memory(size_t size) {
44
45 // allocate an aligned chuck of memory
46 char* mapAddress = os::reserve_memory(size);
47
48 if (mapAddress == NULL) {
49 return NULL;
50 }
51
52 // commit memory
53 if (!os::commit_memory(mapAddress, size)) {
54 if (PrintMiscellaneous && Verbose) {
55 warning("Could not commit PerfData memory\n");
56 }
57 os::release_memory(mapAddress, size);
58 return NULL;
59 }
60
61 return mapAddress;
62 }
63
64 // delete the PerfData memory region
65 //
66 static void delete_standard_memory(char* addr, size_t size) {
67
68 // there are no persistent external resources to cleanup for standard
69 // memory. since DestroyJavaVM does not support unloading of the JVM,
70 // cleanup of the memory resource is not performed. The memory will be
71 // reclaimed by the OS upon termination of the process.
72 //
73 return;
74
75 }
76
77 // save the specified memory region to the given file
78 //
79 static void save_memory_to_file(char* addr, size_t size) {
80
81 const char* destfile = PerfMemory::get_perfdata_file_path();
82 assert(destfile[0] != '\0', "invalid Perfdata file path");
83
84 int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
85 _S_IREAD|_S_IWRITE);
86
87 if (fd == OS_ERR) {
88 if (PrintMiscellaneous && Verbose) {
89 warning("Could not create Perfdata save file: %s: %s\n",
90 destfile, strerror(errno));
91 }
92 } else {
93 for (size_t remaining = size; remaining > 0;) {
94
95 int nbytes = ::_write(fd, addr, (unsigned int)remaining);
96 if (nbytes == OS_ERR) {
97 if (PrintMiscellaneous && Verbose) {
98 warning("Could not write Perfdata save file: %s: %s\n",
99 destfile, strerror(errno));
100 }
101 break;
102 }
103
104 remaining -= (size_t)nbytes;
105 addr += nbytes;
106 }
107
108 int result = ::_close(fd);
109 if (PrintMiscellaneous && Verbose) {
110 if (result == OS_ERR) {
111 warning("Could not close %s: %s\n", destfile, strerror(errno));
112 }
113 }
114 }
115
116 FREE_C_HEAP_ARRAY(char, destfile);
117 }
118
119 // Shared Memory Implementation Details
120
121 // Note: the win32 shared memory implementation uses two objects to represent
122 // the shared memory: a windows kernel based file mapping object and a backing
123 // store file. On windows, the name space for shared memory is a kernel
124 // based name space that is disjoint from other win32 name spaces. Since Java
125 // is unaware of this name space, a parallel file system based name space is
126 // maintained, which provides a common file system based shared memory name
127 // space across the supported platforms and one that Java apps can deal with
128 // through simple file apis.
129 //
130 // For performance and resource cleanup reasons, it is recommended that the
131 // user specific directory and the backing store file be stored in either a
132 // RAM based file system or a local disk based file system. Network based
133 // file systems are not recommended for performance reasons. In addition,
134 // use of SMB network based file systems may result in unsuccesful cleanup
135 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
136 // environement variables, as used by the GetTempPath() Win32 API (see
137 // os::get_temp_directory() in os_win32.cpp), control the location of the
138 // user specific directory and the shared memory backing store file.
139
140 static HANDLE sharedmem_fileMapHandle = NULL;
141 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
142 static char* sharedmem_fileName = NULL;
143
144 // return the user specific temporary directory name.
145 //
146 // the caller is expected to free the allocated memory.
147 //
148 static char* get_user_tmp_dir(const char* user) {
149
150 const char* tmpdir = os::get_temp_directory();
151 const char* perfdir = PERFDATA_NAME;
152 size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 2;
153 char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
154
155 // construct the path name to user specific tmp directory
156 _snprintf(dirname, nbytes, "%s%s_%s", tmpdir, perfdir, user);
157
158 return dirname;
159 }
160
161 // convert the given file name into a process id. if the file
162 // does not meet the file naming constraints, return 0.
163 //
164 static int filename_to_pid(const char* filename) {
165
166 // a filename that doesn't begin with a digit is not a
167 // candidate for conversion.
168 //
169 if (!isdigit(*filename)) {
170 return 0;
171 }
172
173 // check if file name can be converted to an integer without
174 // any leftover characters.
175 //
176 char* remainder = NULL;
177 errno = 0;
178 int pid = (int)strtol(filename, &remainder, 10);
179
180 if (errno != 0) {
181 return 0;
182 }
183
184 // check for left over characters. If any, then the filename is
185 // not a candidate for conversion.
186 //
187 if (remainder != NULL && *remainder != '\0') {
188 return 0;
189 }
190
191 // successful conversion, return the pid
192 return pid;
193 }
194
195 // check if the given path is considered a secure directory for
196 // the backing store files. Returns true if the directory exists
197 // and is considered a secure location. Returns false if the path
198 // is a symbolic link or if an error occured.
199 //
200 static bool is_directory_secure(const char* path) {
201
202 DWORD fa;
203
204 fa = GetFileAttributes(path);
205 if (fa == 0xFFFFFFFF) {
206 DWORD lasterror = GetLastError();
207 if (lasterror == ERROR_FILE_NOT_FOUND) {
208 return false;
209 }
210 else {
211 // unexpected error, declare the path insecure
212 if (PrintMiscellaneous && Verbose) {
213 warning("could not get attributes for file %s: ",
214 " lasterror = %d\n", path, lasterror);
215 }
216 return false;
217 }
218 }
219
220 if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
221 // we don't accept any redirection for the user specific directory
222 // so declare the path insecure. This may be too conservative,
223 // as some types of reparse points might be acceptable, but it
224 // is probably more secure to avoid these conditions.
225 //
226 if (PrintMiscellaneous && Verbose) {
227 warning("%s is a reparse point\n", path);
228 }
229 return false;
230 }
231
232 if (fa & FILE_ATTRIBUTE_DIRECTORY) {
233 // this is the expected case. Since windows supports symbolic
234 // links to directories only, not to files, there is no need
235 // to check for open write permissions on the directory. If the
236 // directory has open write permissions, any files deposited that
237 // are not expected will be removed by the cleanup code.
238 //
239 return true;
240 }
241 else {
242 // this is either a regular file or some other type of file,
243 // any of which are unexpected and therefore insecure.
244 //
245 if (PrintMiscellaneous && Verbose) {
246 warning("%s is not a directory, file attributes = "
247 INTPTR_FORMAT "\n", path, fa);
248 }
249 return false;
250 }
251 }
252
253 // return the user name for the owner of this process
254 //
255 // the caller is expected to free the allocated memory.
256 //
257 static char* get_user_name() {
258
259 /* get the user name. This code is adapted from code found in
260 * the jdk in src/windows/native/java/lang/java_props_md.c
261 * java_props_md.c 1.29 02/02/06. According to the original
262 * source, the call to GetUserName is avoided because of a resulting
263 * increase in footprint of 100K.
264 */
265 char* user = getenv("USERNAME");
266 char buf[UNLEN+1];
267 DWORD buflen = sizeof(buf);
268 if (user == NULL || strlen(user) == 0) {
269 if (GetUserName(buf, &buflen)) {
270 user = buf;
271 }
272 else {
273 return NULL;
274 }
275 }
276
277 char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
278 strcpy(user_name, user);
279
280 return user_name;
281 }
282
283 // return the name of the user that owns the process identified by vmid.
284 //
285 // This method uses a slow directory search algorithm to find the backing
286 // store file for the specified vmid and returns the user name, as determined
287 // by the user name suffix of the hsperfdata_<username> directory name.
288 //
289 // the caller is expected to free the allocated memory.
290 //
291 static char* get_user_name_slow(int vmid) {
292
293 // directory search
294 char* oldest_user = NULL;
295 time_t oldest_ctime = 0;
296
297 const char* tmpdirname = os::get_temp_directory();
298
299 DIR* tmpdirp = os::opendir(tmpdirname);
300
301 if (tmpdirp == NULL) {
302 return NULL;
303 }
304
305 // for each entry in the directory that matches the pattern hsperfdata_*,
306 // open the directory and check if the file for the given vmid exists.
307 // The file with the expected name and the latest creation date is used
308 // to determine the user name for the process id.
309 //
310 struct dirent* dentry;
311 char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
312 errno = 0;
313 while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
314
315 // check if the directory entry is a hsperfdata file
316 if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
317 continue;
318 }
319
320 char* usrdir_name = NEW_C_HEAP_ARRAY(char,
321 strlen(tmpdirname) + strlen(dentry->d_name) + 1);
322 strcpy(usrdir_name, tmpdirname);
323 strcat(usrdir_name, dentry->d_name);
324
325 DIR* subdirp = os::opendir(usrdir_name);
326
327 if (subdirp == NULL) {
328 FREE_C_HEAP_ARRAY(char, usrdir_name);
329 continue;
330 }
331
332 // Since we don't create the backing store files in directories
333 // pointed to by symbolic links, we also don't follow them when
334 // looking for the files. We check for a symbolic link after the
335 // call to opendir in order to eliminate a small window where the
336 // symlink can be exploited.
337 //
338 if (!is_directory_secure(usrdir_name)) {
339 FREE_C_HEAP_ARRAY(char, usrdir_name);
340 os::closedir(subdirp);
341 continue;
342 }
343
344 struct dirent* udentry;
345 char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
346 errno = 0;
347 while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
348
349 if (filename_to_pid(udentry->d_name) == vmid) {
350 struct stat statbuf;
351
352 char* filename = NEW_C_HEAP_ARRAY(char,
353 strlen(usrdir_name) + strlen(udentry->d_name) + 2);
354
355 strcpy(filename, usrdir_name);
356 strcat(filename, "\\");
357 strcat(filename, udentry->d_name);
358
359 if (::stat(filename, &statbuf) == OS_ERR) {
360 FREE_C_HEAP_ARRAY(char, filename);
361 continue;
362 }
363
364 // skip over files that are not regular files.
365 if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
366 FREE_C_HEAP_ARRAY(char, filename);
367 continue;
368 }
369
370 // compare and save filename with latest creation time
371 if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
372
373 if (statbuf.st_ctime > oldest_ctime) {
374 char* user = strchr(dentry->d_name, '_') + 1;
375
376 if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
377 oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
378
379 strcpy(oldest_user, user);
380 oldest_ctime = statbuf.st_ctime;
381 }
382 }
383
384 FREE_C_HEAP_ARRAY(char, filename);
385 }
386 }
387 os::closedir(subdirp);
388 FREE_C_HEAP_ARRAY(char, udbuf);
389 FREE_C_HEAP_ARRAY(char, usrdir_name);
390 }
391 os::closedir(tmpdirp);
392 FREE_C_HEAP_ARRAY(char, tdbuf);
393
394 return(oldest_user);
395 }
396
397 // return the name of the user that owns the process identified by vmid.
398 //
399 // note: this method should only be used via the Perf native methods.
400 // There are various costs to this method and limiting its use to the
401 // Perf native methods limits the impact to monitoring applications only.
402 //
403 static char* get_user_name(int vmid) {
404
405 // A fast implementation is not provided at this time. It's possible
406 // to provide a fast process id to user name mapping function using
407 // the win32 apis, but the default ACL for the process object only
408 // allows processes with the same owner SID to acquire the process
409 // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
410 // to have the JVM change the ACL for the process object to allow arbitrary
411 // users to access the process handle and the process security token.
412 // The security ramifications need to be studied before providing this
413 // mechanism.
414 //
415 return get_user_name_slow(vmid);
416 }
417
418 // return the name of the shared memory file mapping object for the
419 // named shared memory region for the given user name and vmid.
420 //
421 // The file mapping object's name is not the file name. It is a name
422 // in a separate name space.
423 //
424 // the caller is expected to free the allocated memory.
425 //
426 static char *get_sharedmem_objectname(const char* user, int vmid) {
427
428 // construct file mapping object's name, add 3 for two '_' and a
429 // null terminator.
430 int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
431
432 // the id is converted to an unsigned value here because win32 allows
433 // negative process ids. However, OpenFileMapping API complains
434 // about a name containing a '-' characters.
435 //
436 nbytes += UINT_CHARS;
437 char* name = NEW_C_HEAP_ARRAY(char, nbytes);
438 _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
439
440 return name;
441 }
442
443 // return the file name of the backing store file for the named
444 // shared memory region for the given user name and vmid.
445 //
446 // the caller is expected to free the allocated memory.
447 //
448 static char* get_sharedmem_filename(const char* dirname, int vmid) {
449
450 // add 2 for the file separator and a null terminator.
451 size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
452
453 char* name = NEW_C_HEAP_ARRAY(char, nbytes);
454 _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
455
456 return name;
457 }
458
459 // remove file
460 //
461 // this method removes the file with the given file name.
462 //
463 // Note: if the indicated file is on an SMB network file system, this
464 // method may be unsuccessful in removing the file.
465 //
466 static void remove_file(const char* dirname, const char* filename) {
467
468 size_t nbytes = strlen(dirname) + strlen(filename) + 2;
469 char* path = NEW_C_HEAP_ARRAY(char, nbytes);
470
471 strcpy(path, dirname);
472 strcat(path, "\\");
473 strcat(path, filename);
474
475 if (::unlink(path) == OS_ERR) {
476 if (PrintMiscellaneous && Verbose) {
477 if (errno != ENOENT) {
478 warning("Could not unlink shared memory backing"
479 " store file %s : %s\n", path, strerror(errno));
480 }
481 }
482 }
483
484 FREE_C_HEAP_ARRAY(char, path);
485 }
486
487 // returns true if the process represented by pid is alive, otherwise
488 // returns false. the validity of the result is only accurate if the
489 // target process is owned by the same principal that owns this process.
490 // this method should not be used if to test the status of an otherwise
491 // arbitrary process unless it is know that this process has the appropriate
492 // privileges to guarantee a result valid.
493 //
494 static bool is_alive(int pid) {
495
496 HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
497 if (ph == NULL) {
498 // the process does not exist.
499 if (PrintMiscellaneous && Verbose) {
500 DWORD lastError = GetLastError();
501 if (lastError != ERROR_INVALID_PARAMETER) {
502 warning("OpenProcess failed: %d\n", GetLastError());
503 }
504 }
505 return false;
506 }
507
508 DWORD exit_status;
509 if (!GetExitCodeProcess(ph, &exit_status)) {
510 if (PrintMiscellaneous && Verbose) {
511 warning("GetExitCodeProcess failed: %d\n", GetLastError());
512 }
513 CloseHandle(ph);
514 return false;
515 }
516
517 CloseHandle(ph);
518 return (exit_status == STILL_ACTIVE) ? true : false;
519 }
520
521 // check if the file system is considered secure for the backing store files
522 //
523 static bool is_filesystem_secure(const char* path) {
524
525 char root_path[MAX_PATH];
526 char fs_type[MAX_PATH];
527
528 if (PerfBypassFileSystemCheck) {
529 if (PrintMiscellaneous && Verbose) {
530 warning("bypassing file system criteria checks for %s\n", path);
531 }
532 return true;
533 }
534
535 char* first_colon = strchr((char *)path, ':');
536 if (first_colon == NULL) {
537 if (PrintMiscellaneous && Verbose) {
538 warning("expected device specifier in path: %s\n", path);
539 }
540 return false;
541 }
542
543 size_t len = (size_t)(first_colon - path);
544 assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
545 strncpy(root_path, path, len + 1);
546 root_path[len + 1] = '\\';
547 root_path[len + 2] = '\0';
548
549 // check that we have something like "C:\" or "AA:\"
550 assert(strlen(root_path) >= 3, "device specifier too short");
551 assert(strchr(root_path, ':') != NULL, "bad device specifier format");
552 assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
553
554 DWORD maxpath;
555 DWORD flags;
556
557 if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
558 &flags, fs_type, MAX_PATH)) {
559 // we can't get information about the volume, so assume unsafe.
560 if (PrintMiscellaneous && Verbose) {
561 warning("could not get device information for %s: "
562 " path = %s: lasterror = %d\n",
563 root_path, path, GetLastError());
564 }
565 return false;
566 }
567
568 if ((flags & FS_PERSISTENT_ACLS) == 0) {
569 // file system doesn't support ACLs, declare file system unsafe
570 if (PrintMiscellaneous && Verbose) {
571 warning("file system type %s on device %s does not support"
572 " ACLs\n", fs_type, root_path);
573 }
574 return false;
575 }
576
577 if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
578 // file system is compressed, declare file system unsafe
579 if (PrintMiscellaneous && Verbose) {
580 warning("file system type %s on device %s is compressed\n",
581 fs_type, root_path);
582 }
583 return false;
584 }
585
586 return true;
587 }
588
589 // cleanup stale shared memory resources
590 //
591 // This method attempts to remove all stale shared memory files in
592 // the named user temporary directory. It scans the named directory
593 // for files matching the pattern ^$[0-9]*$. For each file found, the
594 // process id is extracted from the file name and a test is run to
595 // determine if the process is alive. If the process is not alive,
596 // any stale file resources are removed.
597 //
598 static void cleanup_sharedmem_resources(const char* dirname) {
599
600 // open the user temp directory
601 DIR* dirp = os::opendir(dirname);
602
603 if (dirp == NULL) {
604 // directory doesn't exist, so there is nothing to cleanup
605 return;
606 }
607
608 if (!is_directory_secure(dirname)) {
609 // the directory is not secure, don't attempt any cleanup
610 return;
611 }
612
613 // for each entry in the directory that matches the expected file
614 // name pattern, determine if the file resources are stale and if
615 // so, remove the file resources. Note, instrumented HotSpot processes
616 // for this user may start and/or terminate during this search and
617 // remove or create new files in this directory. The behavior of this
618 // loop under these conditions is dependent upon the implementation of
619 // opendir/readdir.
620 //
621 struct dirent* entry;
622 char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
623 errno = 0;
624 while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
625
626 int pid = filename_to_pid(entry->d_name);
627
628 if (pid == 0) {
629
630 if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
631
632 // attempt to remove all unexpected files, except "." and ".."
633 remove_file(dirname, entry->d_name);
634 }
635
636 errno = 0;
637 continue;
638 }
639
640 // we now have a file name that converts to a valid integer
641 // that could represent a process id . if this process id
642 // matches the current process id or the process is not running,
643 // then remove the stale file resources.
644 //
645 // process liveness is detected by checking the exit status
646 // of the process. if the process id is valid and the exit status
647 // indicates that it is still running, the file file resources
648 // are not removed. If the process id is invalid, or if we don't
649 // have permissions to check the process status, or if the process
650 // id is valid and the process has terminated, the the file resources
651 // are assumed to be stale and are removed.
652 //
653 if (pid == os::current_process_id() || !is_alive(pid)) {
654
655 // we can only remove the file resources. Any mapped views
656 // of the file can only be unmapped by the processes that
657 // opened those views and the file mapping object will not
658 // get removed until all views are unmapped.
659 //
660 remove_file(dirname, entry->d_name);
661 }
662 errno = 0;
663 }
664 os::closedir(dirp);
665 FREE_C_HEAP_ARRAY(char, dbuf);
666 }
667
668 // create a file mapping object with the requested name, and size
669 // from the file represented by the given Handle object
670 //
671 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
672
673 DWORD lowSize = (DWORD)size;
674 DWORD highSize = 0;
675 HANDLE fmh = NULL;
676
677 // Create a file mapping object with the given name. This function
678 // will grow the file to the specified size.
679 //
680 fmh = CreateFileMapping(
681 fh, /* HANDLE file handle for backing store */
682 fsa, /* LPSECURITY_ATTRIBUTES Not inheritable */
683 PAGE_READWRITE, /* DWORD protections */
684 highSize, /* DWORD High word of max size */
685 lowSize, /* DWORD Low word of max size */
686 name); /* LPCTSTR name for object */
687
688 if (fmh == NULL) {
689 if (PrintMiscellaneous && Verbose) {
690 warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
691 }
692 return NULL;
693 }
694
695 if (GetLastError() == ERROR_ALREADY_EXISTS) {
696
697 // a stale file mapping object was encountered. This object may be
698 // owned by this or some other user and cannot be removed until
699 // the other processes either exit or close their mapping objects
700 // and/or mapped views of this mapping object.
701 //
702 if (PrintMiscellaneous && Verbose) {
703 warning("file mapping already exists, lasterror = %d\n", GetLastError());
704 }
705
706 CloseHandle(fmh);
707 return NULL;
708 }
709
710 return fmh;
711 }
712
713
714 // method to free the given security descriptor and the contained
715 // access control list.
716 //
717 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
718
719 BOOL success, exists, isdefault;
720 PACL pACL;
721
722 if (pSD != NULL) {
723
724 // get the access control list from the security descriptor
725 success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
726
727 // if an ACL existed and it was not a default acl, then it must
728 // be an ACL we enlisted. free the resources.
729 //
730 if (success && exists && pACL != NULL && !isdefault) {
731 FREE_C_HEAP_ARRAY(char, pACL);
732 }
733
734 // free the security descriptor
735 FREE_C_HEAP_ARRAY(char, pSD);
736 }
737 }
738
739 // method to free up a security attributes structure and any
740 // contained security descriptors and ACL
741 //
742 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
743
744 if (lpSA != NULL) {
745 // free the contained security descriptor and the ACL
746 free_security_desc(lpSA->lpSecurityDescriptor);
747 lpSA->lpSecurityDescriptor = NULL;
748
749 // free the security attributes structure
750 FREE_C_HEAP_ARRAY(char, lpSA);
751 }
752 }
753
754 // get the user SID for the process indicated by the process handle
755 //
756 static PSID get_user_sid(HANDLE hProcess) {
757
758 HANDLE hAccessToken;
759 PTOKEN_USER token_buf = NULL;
760 DWORD rsize = 0;
761
762 if (hProcess == NULL) {
763 return NULL;
764 }
765
766 // get the process token
767 if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
768 if (PrintMiscellaneous && Verbose) {
769 warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
770 }
771 return NULL;
772 }
773
774 // determine the size of the token structured needed to retrieve
775 // the user token information from the access token.
776 //
777 if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
778 DWORD lasterror = GetLastError();
779 if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
780 if (PrintMiscellaneous && Verbose) {
781 warning("GetTokenInformation failure: lasterror = %d,"
782 " rsize = %d\n", lasterror, rsize);
783 }
784 CloseHandle(hAccessToken);
785 return NULL;
786 }
787 }
788
789 token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
790
791 // get the user token information
792 if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
793 if (PrintMiscellaneous && Verbose) {
794 warning("GetTokenInformation failure: lasterror = %d,"
795 " rsize = %d\n", GetLastError(), rsize);
796 }
797 FREE_C_HEAP_ARRAY(char, token_buf);
798 CloseHandle(hAccessToken);
799 return NULL;
800 }
801
802 DWORD nbytes = GetLengthSid(token_buf->User.Sid);
803 PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
804
805 if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
806 if (PrintMiscellaneous && Verbose) {
807 warning("GetTokenInformation failure: lasterror = %d,"
808 " rsize = %d\n", GetLastError(), rsize);
809 }
810 FREE_C_HEAP_ARRAY(char, token_buf);
811 FREE_C_HEAP_ARRAY(char, pSID);
812 CloseHandle(hAccessToken);
813 return NULL;
814 }
815
816 // close the access token.
817 CloseHandle(hAccessToken);
818 FREE_C_HEAP_ARRAY(char, token_buf);
819
820 return pSID;
821 }
822
823 // structure used to consolidate access control entry information
824 //
825 typedef struct ace_data {
826 PSID pSid; // SID of the ACE
827 DWORD mask; // mask for the ACE
828 } ace_data_t;
829
830
831 // method to add an allow access control entry with the access rights
832 // indicated in mask for the principal indicated in SID to the given
833 // security descriptor. Much of the DACL handling was adapted from
834 // the example provided here:
835 // http://support.microsoft.com/kb/102102/EN-US/
836 //
837
838 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
839 ace_data_t aces[], int ace_count) {
840 PACL newACL = NULL;
841 PACL oldACL = NULL;
842
843 if (pSD == NULL) {
844 return false;
845 }
846
847 BOOL exists, isdefault;
848
849 // retrieve any existing access control list.
850 if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
851 if (PrintMiscellaneous && Verbose) {
852 warning("GetSecurityDescriptor failure: lasterror = %d \n",
853 GetLastError());
854 }
855 return false;
856 }
857
858 // get the size of the DACL
859 ACL_SIZE_INFORMATION aclinfo;
860
861 // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
862 // while oldACL is NULL for some case.
863 if (oldACL == NULL) {
864 exists = FALSE;
865 }
866
867 if (exists) {
868 if (!GetAclInformation(oldACL, &aclinfo,
869 sizeof(ACL_SIZE_INFORMATION),
870 AclSizeInformation)) {
871 if (PrintMiscellaneous && Verbose) {
872 warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
873 return false;
874 }
875 }
876 } else {
877 aclinfo.AceCount = 0; // assume NULL DACL
878 aclinfo.AclBytesFree = 0;
879 aclinfo.AclBytesInUse = sizeof(ACL);
880 }
881
882 // compute the size needed for the new ACL
883 // initial size of ACL is sum of the following:
884 // * size of ACL structure.
885 // * size of each ACE structure that ACL is to contain minus the sid
886 // sidStart member (DWORD) of the ACE.
887 // * length of the SID that each ACE is to contain.
888 DWORD newACLsize = aclinfo.AclBytesInUse +
889 (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
890 for (int i = 0; i < ace_count; i++) {
891 newACLsize += GetLengthSid(aces[i].pSid);
892 }
893
894 // create the new ACL
895 newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
896
897 if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
898 if (PrintMiscellaneous && Verbose) {
899 warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
900 }
901 FREE_C_HEAP_ARRAY(char, newACL);
902 return false;
903 }
904
905 unsigned int ace_index = 0;
906 // copy any existing ACEs from the old ACL (if any) to the new ACL.
907 if (aclinfo.AceCount != 0) {
908 while (ace_index < aclinfo.AceCount) {
909 LPVOID ace;
910 if (!GetAce(oldACL, ace_index, &ace)) {
911 if (PrintMiscellaneous && Verbose) {
912 warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
913 }
914 FREE_C_HEAP_ARRAY(char, newACL);
915 return false;
916 }
917 if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
918 // this is an inherited, allowed ACE; break from loop so we can
919 // add the new access allowed, non-inherited ACE in the correct
920 // position, immediately following all non-inherited ACEs.
921 break;
922 }
923
924 // determine if the SID of this ACE matches any of the SIDs
925 // for which we plan to set ACEs.
926 int matches = 0;
927 for (int i = 0; i < ace_count; i++) {
928 if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
929 matches++;
930 break;
931 }
932 }
933
934 // if there are no SID matches, then add this existing ACE to the new ACL
935 if (matches == 0) {
936 if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
937 ((PACE_HEADER)ace)->AceSize)) {
938 if (PrintMiscellaneous && Verbose) {
939 warning("AddAce failure: lasterror = %d \n", GetLastError());
940 }
941 FREE_C_HEAP_ARRAY(char, newACL);
942 return false;
943 }
944 }
945 ace_index++;
946 }
947 }
948
949 // add the passed-in access control entries to the new ACL
950 for (int i = 0; i < ace_count; i++) {
951 if (!AddAccessAllowedAce(newACL, ACL_REVISION,
952 aces[i].mask, aces[i].pSid)) {
953 if (PrintMiscellaneous && Verbose) {
954 warning("AddAccessAllowedAce failure: lasterror = %d \n",
955 GetLastError());
956 }
957 FREE_C_HEAP_ARRAY(char, newACL);
958 return false;
959 }
960 }
961
962 // now copy the rest of the inherited ACEs from the old ACL
963 if (aclinfo.AceCount != 0) {
964 // picking up at ace_index, where we left off in the
965 // previous ace_index loop
966 while (ace_index < aclinfo.AceCount) {
967 LPVOID ace;
968 if (!GetAce(oldACL, ace_index, &ace)) {
969 if (PrintMiscellaneous && Verbose) {
970 warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
971 }
972 FREE_C_HEAP_ARRAY(char, newACL);
973 return false;
974 }
975 if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
976 ((PACE_HEADER)ace)->AceSize)) {
977 if (PrintMiscellaneous && Verbose) {
978 warning("AddAce failure: lasterror = %d \n", GetLastError());
979 }
980 FREE_C_HEAP_ARRAY(char, newACL);
981 return false;
982 }
983 ace_index++;
984 }
985 }
986
987 // add the new ACL to the security descriptor.
988 if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
989 if (PrintMiscellaneous && Verbose) {
990 warning("SetSecurityDescriptorDacl failure:"
991 " lasterror = %d \n", GetLastError());
992 }
993 FREE_C_HEAP_ARRAY(char, newACL);
994 return false;
995 }
996
997 // if running on windows 2000 or later, set the automatic inheritence
998 // control flags.
999 SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1000 _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1001 GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1002 "SetSecurityDescriptorControl");
1003
1004 if (_SetSecurityDescriptorControl != NULL) {
1005 // We do not want to further propogate inherited DACLs, so making them
1006 // protected prevents that.
1007 if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1008 SE_DACL_PROTECTED)) {
1009 if (PrintMiscellaneous && Verbose) {
1010 warning("SetSecurityDescriptorControl failure:"
1011 " lasterror = %d \n", GetLastError());
1012 }
1013 FREE_C_HEAP_ARRAY(char, newACL);
1014 return false;
1015 }
1016 }
1017 // Note, the security descriptor maintains a reference to the newACL, not
1018 // a copy of it. Therefore, the newACL is not freed here. It is freed when
1019 // the security descriptor containing its reference is freed.
1020 //
1021 return true;
1022 }
1023
1024 // method to create a security attributes structure, which contains a
1025 // security descriptor and an access control list comprised of 0 or more
1026 // access control entries. The method take an array of ace_data structures
1027 // that indicate the ACE to be added to the security descriptor.
1028 //
1029 // the caller must free the resources associated with the security
1030 // attributes structure created by this method by calling the
1031 // free_security_attr() method.
1032 //
1033 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1034
1035 // allocate space for a security descriptor
1036 PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1037 NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
1038
1039 // initialize the security descriptor
1040 if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1041 if (PrintMiscellaneous && Verbose) {
1042 warning("InitializeSecurityDescriptor failure: "
1043 "lasterror = %d \n", GetLastError());
1044 }
1045 free_security_desc(pSD);
1046 return NULL;
1047 }
1048
1049 // add the access control entries
1050 if (!add_allow_aces(pSD, aces, count)) {
1051 free_security_desc(pSD);
1052 return NULL;
1053 }
1054
1055 // allocate and initialize the security attributes structure and
1056 // return it to the caller.
1057 //
1058 LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1059 NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
1060 lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1061 lpSA->lpSecurityDescriptor = pSD;
1062 lpSA->bInheritHandle = FALSE;
1063
1064 return(lpSA);
1065 }
1066
1067 // method to create a security attributes structure with a restrictive
1068 // access control list that creates a set access rights for the user/owner
1069 // of the securable object and a separate set access rights for everyone else.
1070 // also provides for full access rights for the administrator group.
1071 //
1072 // the caller must free the resources associated with the security
1073 // attributes structure created by this method by calling the
1074 // free_security_attr() method.
1075 //
1076
1077 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1078 DWORD umask, DWORD emask, DWORD amask) {
1079
1080 ace_data_t aces[3];
1081
1082 // initialize the user ace data
1083 aces[0].pSid = get_user_sid(GetCurrentProcess());
1084 aces[0].mask = umask;
1085
1086 // get the well known SID for BUILTIN\Administrators
1087 PSID administratorsSid = NULL;
1088 SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1089
1090 if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1091 SECURITY_BUILTIN_DOMAIN_RID,
1092 DOMAIN_ALIAS_RID_ADMINS,
1093 0, 0, 0, 0, 0, 0, &administratorsSid)) {
1094
1095 if (PrintMiscellaneous && Verbose) {
1096 warning("AllocateAndInitializeSid failure: "
1097 "lasterror = %d \n", GetLastError());
1098 }
1099 return NULL;
1100 }
1101
1102 // initialize the ace data for administrator group
1103 aces[1].pSid = administratorsSid;
1104 aces[1].mask = amask;
1105
1106 // get the well known SID for the universal Everybody
1107 PSID everybodySid = NULL;
1108 SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1109
1110 if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1111 0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1112
1113 if (PrintMiscellaneous && Verbose) {
1114 warning("AllocateAndInitializeSid failure: "
1115 "lasterror = %d \n", GetLastError());
1116 }
1117 return NULL;
1118 }
1119
1120 // initialize the ace data for everybody else.
1121 aces[2].pSid = everybodySid;
1122 aces[2].mask = emask;
1123
1124 // create a security attributes structure with access control
1125 // entries as initialized above.
1126 LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1127 FREE_C_HEAP_ARRAY(char, aces[0].pSid);
1128 FreeSid(everybodySid);
1129 FreeSid(administratorsSid);
1130 return(lpSA);
1131 }
1132
1133
1134 // method to create the security attributes structure for restricting
1135 // access to the user temporary directory.
1136 //
1137 // the caller must free the resources associated with the security
1138 // attributes structure created by this method by calling the
1139 // free_security_attr() method.
1140 //
1141 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1142
1143 // create full access rights for the user/owner of the directory
1144 // and read-only access rights for everybody else. This is
1145 // effectively equivalent to UNIX 755 permissions on a directory.
1146 //
1147 DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1148 DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1149 DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1150
1151 return make_user_everybody_admin_security_attr(umask, emask, amask);
1152 }
1153
1154 // method to create the security attributes structure for restricting
1155 // access to the shared memory backing store file.
1156 //
1157 // the caller must free the resources associated with the security
1158 // attributes structure created by this method by calling the
1159 // free_security_attr() method.
1160 //
1161 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1162
1163 // create extensive access rights for the user/owner of the file
1164 // and attribute read-only access rights for everybody else. This
1165 // is effectively equivalent to UNIX 600 permissions on a file.
1166 //
1167 DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1168 DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1169 FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1170 DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1171
1172 return make_user_everybody_admin_security_attr(umask, emask, amask);
1173 }
1174
1175 // method to create the security attributes structure for restricting
1176 // access to the name shared memory file mapping object.
1177 //
1178 // the caller must free the resources associated with the security
1179 // attributes structure created by this method by calling the
1180 // free_security_attr() method.
1181 //
1182 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1183
1184 // create extensive access rights for the user/owner of the shared
1185 // memory object and attribute read-only access rights for everybody
1186 // else. This is effectively equivalent to UNIX 600 permissions on
1187 // on the shared memory object.
1188 //
1189 DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1190 DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1191 DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1192
1193 return make_user_everybody_admin_security_attr(umask, emask, amask);
1194 }
1195
1196 // make the user specific temporary directory
1197 //
1198 static bool make_user_tmp_dir(const char* dirname) {
1199
1200
1201 LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1202 if (pDirSA == NULL) {
1203 return false;
1204 }
1205
1206
1207 // create the directory with the given security attributes
1208 if (!CreateDirectory(dirname, pDirSA)) {
1209 DWORD lasterror = GetLastError();
1210 if (lasterror == ERROR_ALREADY_EXISTS) {
1211 // The directory already exists and was probably created by another
1212 // JVM instance. However, this could also be the result of a
1213 // deliberate symlink. Verify that the existing directory is safe.
1214 //
1215 if (!is_directory_secure(dirname)) {
1216 // directory is not secure
1217 if (PrintMiscellaneous && Verbose) {
1218 warning("%s directory is insecure\n", dirname);
1219 }
1220 return false;
1221 }
1222 // The administrator should be able to delete this directory.
1223 // But the directory created by previous version of JVM may not
1224 // have permission for administrators to delete this directory.
1225 // So add full permission to the administrator. Also setting new
1226 // DACLs might fix the corrupted the DACLs.
1227 SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1228 if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1229 if (PrintMiscellaneous && Verbose) {
1230 lasterror = GetLastError();
1231 warning("SetFileSecurity failed for %s directory. lasterror %d \n",
1232 dirname, lasterror);
1233 }
1234 }
1235 }
1236 else {
1237 if (PrintMiscellaneous && Verbose) {
1238 warning("CreateDirectory failed: %d\n", GetLastError());
1239 }
1240 return false;
1241 }
1242 }
1243
1244 // free the security attributes structure
1245 free_security_attr(pDirSA);
1246
1247 return true;
1248 }
1249
1250 // create the shared memory resources
1251 //
1252 // This function creates the shared memory resources. This includes
1253 // the backing store file and the file mapping shared memory object.
1254 //
1255 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1256
1257 HANDLE fh = INVALID_HANDLE_VALUE;
1258 HANDLE fmh = NULL;
1259
1260
1261 // create the security attributes for the backing store file
1262 LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1263 if (lpFileSA == NULL) {
1264 return NULL;
1265 }
1266
1267 // create the security attributes for the shared memory object
1268 LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1269 if (lpSmoSA == NULL) {
1270 free_security_attr(lpFileSA);
1271 return NULL;
1272 }
1273
1274 // create the user temporary directory
1275 if (!make_user_tmp_dir(dirname)) {
1276 // could not make/find the directory or the found directory
1277 // was not secure
1278 return NULL;
1279 }
1280
1281 // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1282 // file to be deleted by the last process that closes its handle to
1283 // the file. This is important as the apis do not allow a terminating
1284 // JVM being monitored by another process to remove the file name.
1285 //
1286 // the FILE_SHARE_DELETE share mode is valid only in winnt
1287 //
1288 fh = CreateFile(
1289 filename, /* LPCTSTR file name */
1290
1291 GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
1292
1293 (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
1294 FILE_SHARE_READ, /* DWORD share mode, future READONLY
1295 * open operations allowed
1296 */
1297 lpFileSA, /* LPSECURITY security attributes */
1298 CREATE_ALWAYS, /* DWORD creation disposition
1299 * create file, if it already
1300 * exists, overwrite it.
1301 */
1302 FILE_FLAG_DELETE_ON_CLOSE, /* DWORD flags and attributes */
1303
1304 NULL); /* HANDLE template file access */
1305
1306 free_security_attr(lpFileSA);
1307
1308 if (fh == INVALID_HANDLE_VALUE) {
1309 DWORD lasterror = GetLastError();
1310 if (PrintMiscellaneous && Verbose) {
1311 warning("could not create file %s: %d\n", filename, lasterror);
1312 }
1313 return NULL;
1314 }
1315
1316 // try to create the file mapping
1317 fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1318
1319 free_security_attr(lpSmoSA);
1320
1321 if (fmh == NULL) {
1322 // closing the file handle here will decrement the reference count
1323 // on the file. When all processes accessing the file close their
1324 // handle to it, the reference count will decrement to 0 and the
1325 // OS will delete the file. These semantics are requested by the
1326 // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1327 CloseHandle(fh);
1328 fh = NULL;
1329 return NULL;
1330 }
1331
1332 // the file has been successfully created and the file mapping
1333 // object has been created.
1334 sharedmem_fileHandle = fh;
1335 sharedmem_fileName = strdup(filename);
1336
1337 return fmh;
1338 }
1339
1340 // open the shared memory object for the given vmid.
1341 //
1342 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1343
1344 HANDLE fmh;
1345
1346 // open the file mapping with the requested mode
1347 fmh = OpenFileMapping(
1348 ofm_access, /* DWORD access mode */
1349 FALSE, /* BOOL inherit flag - Do not allow inherit */
1350 objectname); /* name for object */
1351
1352 if (fmh == NULL) {
1353 if (PrintMiscellaneous && Verbose) {
1354 warning("OpenFileMapping failed for shared memory object %s:"
1355 " lasterror = %d\n", objectname, GetLastError());
1356 }
1357 THROW_MSG_(vmSymbols::java_lang_Exception(),
1358 "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1359 }
1360
1361 return fmh;;
1362 }
1363
1364 // create a named shared memory region
1365 //
1366 // On Win32, a named shared memory object has a name space that
1367 // is independent of the file system name space. Shared memory object,
1368 // or more precisely, file mapping objects, provide no mechanism to
1369 // inquire the size of the memory region. There is also no api to
1370 // enumerate the memory regions for various processes.
1371 //
1372 // This implementation utilizes the shared memory name space in parallel
1373 // with the file system name space. This allows us to determine the
1374 // size of the shared memory region from the size of the file and it
1375 // allows us to provide a common, file system based name space for
1376 // shared memory across platforms.
1377 //
1378 static char* mapping_create_shared(size_t size) {
1379
1380 void *mapAddress;
1381 int vmid = os::current_process_id();
1382
1383 // get the name of the user associated with this process
1384 char* user = get_user_name();
1385
1386 if (user == NULL) {
1387 return NULL;
1388 }
1389
1390 // construct the name of the user specific temporary directory
1391 char* dirname = get_user_tmp_dir(user);
1392
1393 // check that the file system is secure - i.e. it supports ACLs.
1394 if (!is_filesystem_secure(dirname)) {
1395 return NULL;
1396 }
1397
1398 // create the names of the backing store files and for the
1399 // share memory object.
1400 //
1401 char* filename = get_sharedmem_filename(dirname, vmid);
1402 char* objectname = get_sharedmem_objectname(user, vmid);
1403
1404 // cleanup any stale shared memory resources
1405 cleanup_sharedmem_resources(dirname);
1406
1407 assert(((size != 0) && (size % os::vm_page_size() == 0)),
1408 "unexpected PerfMemry region size");
1409
1410 FREE_C_HEAP_ARRAY(char, user);
1411
1412 // create the shared memory resources
1413 sharedmem_fileMapHandle =
1414 create_sharedmem_resources(dirname, filename, objectname, size);
1415
1416 FREE_C_HEAP_ARRAY(char, filename);
1417 FREE_C_HEAP_ARRAY(char, objectname);
1418 FREE_C_HEAP_ARRAY(char, dirname);
1419
1420 if (sharedmem_fileMapHandle == NULL) {
1421 return NULL;
1422 }
1423
1424 // map the file into the address space
1425 mapAddress = MapViewOfFile(
1426 sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1427 FILE_MAP_ALL_ACCESS, /* DWORD access flags */
1428 0, /* DWORD High word of offset */
1429 0, /* DWORD Low word of offset */
1430 (DWORD)size); /* DWORD Number of bytes to map */
1431
1432 if (mapAddress == NULL) {
1433 if (PrintMiscellaneous && Verbose) {
1434 warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1435 }
1436 CloseHandle(sharedmem_fileMapHandle);
1437 sharedmem_fileMapHandle = NULL;
1438 return NULL;
1439 }
1440
1441 // clear the shared memory region
1442 (void)memset(mapAddress, '\0', size);
1443
1444 return (char*) mapAddress;
1445 }
1446
1447 // this method deletes the file mapping object.
1448 //
1449 static void delete_file_mapping(char* addr, size_t size) {
1450
1451 // cleanup the persistent shared memory resources. since DestroyJavaVM does
1452 // not support unloading of the JVM, unmapping of the memory resource is not
1453 // performed. The memory will be reclaimed by the OS upon termination of all
1454 // processes mapping the resource. The file mapping handle and the file
1455 // handle are closed here to expedite the remove of the file by the OS. The
1456 // file is not removed directly because it was created with
1457 // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1458 // be unsuccessful.
1459
1460 // close the fileMapHandle. the file mapping will still be retained
1461 // by the OS as long as any other JVM processes has an open file mapping
1462 // handle or a mapped view of the file.
1463 //
1464 if (sharedmem_fileMapHandle != NULL) {
1465 CloseHandle(sharedmem_fileMapHandle);
1466 sharedmem_fileMapHandle = NULL;
1467 }
1468
1469 // close the file handle. This will decrement the reference count on the
1470 // backing store file. When the reference count decrements to 0, the OS
1471 // will delete the file. These semantics apply because the file was
1472 // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1473 //
1474 if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1475 CloseHandle(sharedmem_fileHandle);
1476 sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1477 }
1478 }
1479
1480 // this method determines the size of the shared memory file
1481 //
1482 static size_t sharedmem_filesize(const char* filename, TRAPS) {
1483
1484 struct stat statbuf;
1485
1486 // get the file size
1487 //
1488 // on win95/98/me, _stat returns a file size of 0 bytes, but on
1489 // winnt/2k the appropriate file size is returned. support for
1490 // the sharable aspects of performance counters was abandonded
1491 // on the non-nt win32 platforms due to this and other api
1492 // inconsistencies
1493 //
1494 if (::stat(filename, &statbuf) == OS_ERR) {
1495 if (PrintMiscellaneous && Verbose) {
1496 warning("stat %s failed: %s\n", filename, strerror(errno));
1497 }
1498 THROW_MSG_0(vmSymbols::java_io_IOException(),
1499 "Could not determine PerfMemory size");
1500 }
1501
1502 if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1503 if (PrintMiscellaneous && Verbose) {
1504 warning("unexpected file size: size = " SIZE_FORMAT "\n",
1505 statbuf.st_size);
1506 }
1507 THROW_MSG_0(vmSymbols::java_lang_Exception(),
1508 "Invalid PerfMemory size");
1509 }
1510
1511 return statbuf.st_size;
1512 }
1513
1514 // this method opens a file mapping object and maps the object
1515 // into the address space of the process
1516 //
1517 static void open_file_mapping(const char* user, int vmid,
1518 PerfMemory::PerfMemoryMode mode,
1519 char** addrp, size_t* sizep, TRAPS) {
1520
1521 ResourceMark rm;
1522
1523 void *mapAddress = 0;
1524 size_t size;
1525 HANDLE fmh;
1526 DWORD ofm_access;
1527 DWORD mv_access;
1528 const char* luser = NULL;
1529
1530 if (mode == PerfMemory::PERF_MODE_RO) {
1531 ofm_access = FILE_MAP_READ;
1532 mv_access = FILE_MAP_READ;
1533 }
1534 else if (mode == PerfMemory::PERF_MODE_RW) {
1535 #ifdef LATER
1536 ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1537 mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1538 #else
1539 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1540 "Unsupported access mode");
1541 #endif
1542 }
1543 else {
1544 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1545 "Illegal access mode");
1546 }
1547
1548 // if a user name wasn't specified, then find the user name for
1549 // the owner of the target vm.
1550 if (user == NULL || strlen(user) == 0) {
1551 luser = get_user_name(vmid);
1552 }
1553 else {
1554 luser = user;
1555 }
1556
1557 if (luser == NULL) {
1558 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1559 "Could not map vmid to user name");
1560 }
1561
1562 // get the names for the resources for the target vm
1563 char* dirname = get_user_tmp_dir(luser);
1564
1565 // since we don't follow symbolic links when creating the backing
1566 // store file, we also don't following them when attaching
1567 //
1568 if (!is_directory_secure(dirname)) {
1569 FREE_C_HEAP_ARRAY(char, dirname);
1570 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1571 "Process not found");
1572 }
1573
1574 char* filename = get_sharedmem_filename(dirname, vmid);
1575 char* objectname = get_sharedmem_objectname(luser, vmid);
1576
1577 // copy heap memory to resource memory. the objectname and
1578 // filename are passed to methods that may throw exceptions.
1579 // using resource arrays for these names prevents the leaks
1580 // that would otherwise occur.
1581 //
1582 char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1583 char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1584 strcpy(rfilename, filename);
1585 strcpy(robjectname, objectname);
1586
1587 // free the c heap resources that are no longer needed
1588 if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1589 FREE_C_HEAP_ARRAY(char, dirname);
1590 FREE_C_HEAP_ARRAY(char, filename);
1591 FREE_C_HEAP_ARRAY(char, objectname);
1592
1593 if (*sizep == 0) {
1594 size = sharedmem_filesize(rfilename, CHECK);
1595 assert(size != 0, "unexpected size");
1596 }
1597
1598 // Open the file mapping object with the given name
1599 fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1600
1601 assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1602
1603 // map the entire file into the address space
1604 mapAddress = MapViewOfFile(
1605 fmh, /* HANDLE Handle of file mapping object */
1606 mv_access, /* DWORD access flags */
1607 0, /* DWORD High word of offset */
1608 0, /* DWORD Low word of offset */
1609 size); /* DWORD Number of bytes to map */
1610
1611 if (mapAddress == NULL) {
1612 if (PrintMiscellaneous && Verbose) {
1613 warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1614 }
1615 CloseHandle(fmh);
1616 THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1617 "Could not map PerfMemory");
1618 }
1619
1620 *addrp = (char*)mapAddress;
1621 *sizep = size;
1622
1623 // File mapping object can be closed at this time without
1624 // invalidating the mapped view of the file
1625 CloseHandle(fmh);
1626
1627 if (PerfTraceMemOps) {
1628 tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1629 INTPTR_FORMAT "\n", size, vmid, mapAddress);
1630 }
1631 }
1632
1633 // this method unmaps the the mapped view of the the
1634 // file mapping object.
1635 //
1636 static void remove_file_mapping(char* addr) {
1637
1638 // the file mapping object was closed in open_file_mapping()
1639 // after the file map view was created. We only need to
1640 // unmap the file view here.
1641 UnmapViewOfFile(addr);
1642 }
1643
1644 // create the PerfData memory region in shared memory.
1645 static char* create_shared_memory(size_t size) {
1646
1647 return mapping_create_shared(size);
1648 }
1649
1650 // release a named, shared memory region
1651 //
1652 void delete_shared_memory(char* addr, size_t size) {
1653
1654 delete_file_mapping(addr, size);
1655 }
1656
1657
1658
1659
1660 // create the PerfData memory region
1661 //
1662 // This method creates the memory region used to store performance
1663 // data for the JVM. The memory may be created in standard or
1664 // shared memory.
1665 //
1666 void PerfMemory::create_memory_region(size_t size) {
1667
1668 if (PerfDisableSharedMem || !os::win32::is_nt()) {
1669 // do not share the memory for the performance data.
1670 PerfDisableSharedMem = true;
1671 _start = create_standard_memory(size);
1672 }
1673 else {
1674 _start = create_shared_memory(size);
1675 if (_start == NULL) {
1676
1677 // creation of the shared memory region failed, attempt
1678 // to create a contiguous, non-shared memory region instead.
1679 //
1680 if (PrintMiscellaneous && Verbose) {
1681 warning("Reverting to non-shared PerfMemory region.\n");
1682 }
1683 PerfDisableSharedMem = true;
1684 _start = create_standard_memory(size);
1685 }
1686 }
1687
1688 if (_start != NULL) _capacity = size;
1689
1690 }
1691
1692 // delete the PerfData memory region
1693 //
1694 // This method deletes the memory region used to store performance
1695 // data for the JVM. The memory region indicated by the <address, size>
1696 // tuple will be inaccessible after a call to this method.
1697 //
1698 void PerfMemory::delete_memory_region() {
1699
1700 assert((start() != NULL && capacity() > 0), "verify proper state");
1701
1702 // If user specifies PerfDataSaveFile, it will save the performance data
1703 // to the specified file name no matter whether PerfDataSaveToFile is specified
1704 // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1705 // -XX:+PerfDataSaveToFile.
1706 if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1707 save_memory_to_file(start(), capacity());
1708 }
1709
1710 if (PerfDisableSharedMem) {
1711 delete_standard_memory(start(), capacity());
1712 }
1713 else {
1714 delete_shared_memory(start(), capacity());
1715 }
1716 }
1717
1718 // attach to the PerfData memory region for another JVM
1719 //
1720 // This method returns an <address, size> tuple that points to
1721 // a memory buffer that is kept reasonably synchronized with
1722 // the PerfData memory region for the indicated JVM. This
1723 // buffer may be kept in synchronization via shared memory
1724 // or some other mechanism that keeps the buffer updated.
1725 //
1726 // If the JVM chooses not to support the attachability feature,
1727 // this method should throw an UnsupportedOperation exception.
1728 //
1729 // This implementation utilizes named shared memory to map
1730 // the indicated process's PerfData memory region into this JVMs
1731 // address space.
1732 //
1733 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1734 char** addrp, size_t* sizep, TRAPS) {
1735
1736 if (vmid == 0 || vmid == os::current_process_id()) {
1737 *addrp = start();
1738 *sizep = capacity();
1739 return;
1740 }
1741
1742 open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1743 }
1744
1745 // detach from the PerfData memory region of another JVM
1746 //
1747 // This method detaches the PerfData memory region of another
1748 // JVM, specified as an <address, size> tuple of a buffer
1749 // in this process's address space. This method may perform
1750 // arbitrary actions to accomplish the detachment. The memory
1751 // region specified by <address, size> will be inaccessible after
1752 // a call to this method.
1753 //
1754 // If the JVM chooses not to support the attachability feature,
1755 // this method should throw an UnsupportedOperation exception.
1756 //
1757 // This implementation utilizes named shared memory to detach
1758 // the indicated process's PerfData memory region from this
1759 // process's address space.
1760 //
1761 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1762
1763 assert(addr != 0, "address sanity check");
1764 assert(bytes > 0, "capacity sanity check");
1765
1766 if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1767 // prevent accidental detachment of this process's PerfMemory region
1768 return;
1769 }
1770
1771 remove_file_mapping(addr);
1772 }
1773
1774 char* PerfMemory::backing_store_filename() {
1775 return sharedmem_fileName;
1776 }