comparison src/share/vm/adlc/formssel.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
26 #include "adlc.hpp"
27
28 //==============================Instructions===================================
29 //------------------------------InstructForm-----------------------------------
30 InstructForm::InstructForm(const char *id, bool ideal_only)
31 : _ident(id), _ideal_only(ideal_only),
32 _localNames(cmpstr, hashstr, Form::arena),
33 _effects(cmpstr, hashstr, Form::arena) {
34 _ftype = Form::INS;
35
36 _matrule = NULL;
37 _insencode = NULL;
38 _opcode = NULL;
39 _size = NULL;
40 _attribs = NULL;
41 _predicate = NULL;
42 _exprule = NULL;
43 _rewrule = NULL;
44 _format = NULL;
45 _peephole = NULL;
46 _ins_pipe = NULL;
47 _uniq_idx = NULL;
48 _num_uniq = 0;
49 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
50 _cisc_spill_alternate = NULL; // possible cisc replacement
51 _cisc_reg_mask_name = NULL;
52 _is_cisc_alternate = false;
53 _is_short_branch = false;
54 _short_branch_form = NULL;
55 _alignment = 1;
56 }
57
58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
59 : _ident(id), _ideal_only(false),
60 _localNames(instr->_localNames),
61 _effects(instr->_effects) {
62 _ftype = Form::INS;
63
64 _matrule = rule;
65 _insencode = instr->_insencode;
66 _opcode = instr->_opcode;
67 _size = instr->_size;
68 _attribs = instr->_attribs;
69 _predicate = instr->_predicate;
70 _exprule = instr->_exprule;
71 _rewrule = instr->_rewrule;
72 _format = instr->_format;
73 _peephole = instr->_peephole;
74 _ins_pipe = instr->_ins_pipe;
75 _uniq_idx = instr->_uniq_idx;
76 _num_uniq = instr->_num_uniq;
77 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
78 _cisc_spill_alternate = NULL; // possible cisc replacement
79 _cisc_reg_mask_name = NULL;
80 _is_cisc_alternate = false;
81 _is_short_branch = false;
82 _short_branch_form = NULL;
83 _alignment = 1;
84 // Copy parameters
85 const char *name;
86 instr->_parameters.reset();
87 for (; (name = instr->_parameters.iter()) != NULL;)
88 _parameters.addName(name);
89 }
90
91 InstructForm::~InstructForm() {
92 }
93
94 InstructForm *InstructForm::is_instruction() const {
95 return (InstructForm*)this;
96 }
97
98 bool InstructForm::ideal_only() const {
99 return _ideal_only;
100 }
101
102 bool InstructForm::sets_result() const {
103 return (_matrule != NULL && _matrule->sets_result());
104 }
105
106 bool InstructForm::needs_projections() {
107 _components.reset();
108 for( Component *comp; (comp = _components.iter()) != NULL; ) {
109 if (comp->isa(Component::KILL)) {
110 return true;
111 }
112 }
113 return false;
114 }
115
116
117 bool InstructForm::has_temps() {
118 if (_matrule) {
119 // Examine each component to see if it is a TEMP
120 _components.reset();
121 // Skip the first component, if already handled as (SET dst (...))
122 Component *comp = NULL;
123 if (sets_result()) comp = _components.iter();
124 while ((comp = _components.iter()) != NULL) {
125 if (comp->isa(Component::TEMP)) {
126 return true;
127 }
128 }
129 }
130
131 return false;
132 }
133
134 uint InstructForm::num_defs_or_kills() {
135 uint defs_or_kills = 0;
136
137 _components.reset();
138 for( Component *comp; (comp = _components.iter()) != NULL; ) {
139 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
140 ++defs_or_kills;
141 }
142 }
143
144 return defs_or_kills;
145 }
146
147 // This instruction has an expand rule?
148 bool InstructForm::expands() const {
149 return ( _exprule != NULL );
150 }
151
152 // This instruction has a peephole rule?
153 Peephole *InstructForm::peepholes() const {
154 return _peephole;
155 }
156
157 // This instruction has a peephole rule?
158 void InstructForm::append_peephole(Peephole *peephole) {
159 if( _peephole == NULL ) {
160 _peephole = peephole;
161 } else {
162 _peephole->append_peephole(peephole);
163 }
164 }
165
166
167 // ideal opcode enumeration
168 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
169 if( !_matrule ) return "Node"; // Something weird
170 // Chain rules do not really have ideal Opcodes; use their source
171 // operand ideal Opcode instead.
172 if( is_simple_chain_rule(globalNames) ) {
173 const char *src = _matrule->_rChild->_opType;
174 OperandForm *src_op = globalNames[src]->is_operand();
175 assert( src_op, "Not operand class of chain rule" );
176 if( !src_op->_matrule ) return "Node";
177 return src_op->_matrule->_opType;
178 }
179 // Operand chain rules do not really have ideal Opcodes
180 if( _matrule->is_chain_rule(globalNames) )
181 return "Node";
182 return strcmp(_matrule->_opType,"Set")
183 ? _matrule->_opType
184 : _matrule->_rChild->_opType;
185 }
186
187 // Recursive check on all operands' match rules in my match rule
188 bool InstructForm::is_pinned(FormDict &globals) {
189 if ( ! _matrule) return false;
190
191 int index = 0;
192 if (_matrule->find_type("Goto", index)) return true;
193 if (_matrule->find_type("If", index)) return true;
194 if (_matrule->find_type("CountedLoopEnd",index)) return true;
195 if (_matrule->find_type("Return", index)) return true;
196 if (_matrule->find_type("Rethrow", index)) return true;
197 if (_matrule->find_type("TailCall", index)) return true;
198 if (_matrule->find_type("TailJump", index)) return true;
199 if (_matrule->find_type("Halt", index)) return true;
200 if (_matrule->find_type("Jump", index)) return true;
201
202 return is_parm(globals);
203 }
204
205 // Recursive check on all operands' match rules in my match rule
206 bool InstructForm::is_projection(FormDict &globals) {
207 if ( ! _matrule) return false;
208
209 int index = 0;
210 if (_matrule->find_type("Goto", index)) return true;
211 if (_matrule->find_type("Return", index)) return true;
212 if (_matrule->find_type("Rethrow", index)) return true;
213 if (_matrule->find_type("TailCall",index)) return true;
214 if (_matrule->find_type("TailJump",index)) return true;
215 if (_matrule->find_type("Halt", index)) return true;
216
217 return false;
218 }
219
220 // Recursive check on all operands' match rules in my match rule
221 bool InstructForm::is_parm(FormDict &globals) {
222 if ( ! _matrule) return false;
223
224 int index = 0;
225 if (_matrule->find_type("Parm",index)) return true;
226
227 return false;
228 }
229
230
231 // Return 'true' if this instruction matches an ideal 'Copy*' node
232 int InstructForm::is_ideal_copy() const {
233 return _matrule ? _matrule->is_ideal_copy() : 0;
234 }
235
236 // Return 'true' if this instruction is too complex to rematerialize.
237 int InstructForm::is_expensive() const {
238 // We can prove it is cheap if it has an empty encoding.
239 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
240 if (is_empty_encoding())
241 return 0;
242
243 if (is_tls_instruction())
244 return 1;
245
246 if (_matrule == NULL) return 0;
247
248 return _matrule->is_expensive();
249 }
250
251 // Has an empty encoding if _size is a constant zero or there
252 // are no ins_encode tokens.
253 int InstructForm::is_empty_encoding() const {
254 if (_insencode != NULL) {
255 _insencode->reset();
256 if (_insencode->encode_class_iter() == NULL) {
257 return 1;
258 }
259 }
260 if (_size != NULL && strcmp(_size, "0") == 0) {
261 return 1;
262 }
263 return 0;
264 }
265
266 int InstructForm::is_tls_instruction() const {
267 if (_ident != NULL &&
268 ( ! strcmp( _ident,"tlsLoadP") ||
269 ! strncmp(_ident,"tlsLoadP_",9)) ) {
270 return 1;
271 }
272
273 if (_matrule != NULL && _insencode != NULL) {
274 const char* opType = _matrule->_opType;
275 if (strcmp(opType, "Set")==0)
276 opType = _matrule->_rChild->_opType;
277 if (strcmp(opType,"ThreadLocal")==0) {
278 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
279 (_ident == NULL ? "NULL" : _ident));
280 return 1;
281 }
282 }
283
284 return 0;
285 }
286
287
288 // Return 'true' if this instruction matches an ideal 'Copy*' node
289 bool InstructForm::is_ideal_unlock() const {
290 return _matrule ? _matrule->is_ideal_unlock() : false;
291 }
292
293 bool InstructForm::is_ideal_call_leaf() const {
294 return _matrule ? _matrule->is_ideal_call_leaf() : false;
295 }
296
297 // Return 'true' if this instruction matches an ideal 'If' node
298 bool InstructForm::is_ideal_if() const {
299 if( _matrule == NULL ) return false;
300
301 return _matrule->is_ideal_if();
302 }
303
304 // Return 'true' if this instruction matches an ideal 'FastLock' node
305 bool InstructForm::is_ideal_fastlock() const {
306 if( _matrule == NULL ) return false;
307
308 return _matrule->is_ideal_fastlock();
309 }
310
311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
312 bool InstructForm::is_ideal_membar() const {
313 if( _matrule == NULL ) return false;
314
315 return _matrule->is_ideal_membar();
316 }
317
318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
319 bool InstructForm::is_ideal_loadPC() const {
320 if( _matrule == NULL ) return false;
321
322 return _matrule->is_ideal_loadPC();
323 }
324
325 // Return 'true' if this instruction matches an ideal 'Box' node
326 bool InstructForm::is_ideal_box() const {
327 if( _matrule == NULL ) return false;
328
329 return _matrule->is_ideal_box();
330 }
331
332 // Return 'true' if this instruction matches an ideal 'Goto' node
333 bool InstructForm::is_ideal_goto() const {
334 if( _matrule == NULL ) return false;
335
336 return _matrule->is_ideal_goto();
337 }
338
339 // Return 'true' if this instruction matches an ideal 'Jump' node
340 bool InstructForm::is_ideal_jump() const {
341 if( _matrule == NULL ) return false;
342
343 return _matrule->is_ideal_jump();
344 }
345
346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
347 // 'CountedLoopEnd' | 'Jump'
348 bool InstructForm::is_ideal_branch() const {
349 if( _matrule == NULL ) return false;
350
351 return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
352 }
353
354
355 // Return 'true' if this instruction matches an ideal 'Return' node
356 bool InstructForm::is_ideal_return() const {
357 if( _matrule == NULL ) return false;
358
359 // Check MatchRule to see if the first entry is the ideal "Return" node
360 int index = 0;
361 if (_matrule->find_type("Return",index)) return true;
362 if (_matrule->find_type("Rethrow",index)) return true;
363 if (_matrule->find_type("TailCall",index)) return true;
364 if (_matrule->find_type("TailJump",index)) return true;
365
366 return false;
367 }
368
369 // Return 'true' if this instruction matches an ideal 'Halt' node
370 bool InstructForm::is_ideal_halt() const {
371 int index = 0;
372 return _matrule && _matrule->find_type("Halt",index);
373 }
374
375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
376 bool InstructForm::is_ideal_safepoint() const {
377 int index = 0;
378 return _matrule && _matrule->find_type("SafePoint",index);
379 }
380
381 // Return 'true' if this instruction matches an ideal 'Nop' node
382 bool InstructForm::is_ideal_nop() const {
383 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
384 }
385
386 bool InstructForm::is_ideal_control() const {
387 if ( ! _matrule) return false;
388
389 return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
390 }
391
392 // Return 'true' if this instruction matches an ideal 'Call' node
393 Form::CallType InstructForm::is_ideal_call() const {
394 if( _matrule == NULL ) return Form::invalid_type;
395
396 // Check MatchRule to see if the first entry is the ideal "Call" node
397 int idx = 0;
398 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
399 idx = 0;
400 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
401 idx = 0;
402 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
403 idx = 0;
404 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
405 idx = 0;
406 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
407 idx = 0;
408 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
409 idx = 0;
410 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
411 idx = 0;
412
413 return Form::invalid_type;
414 }
415
416 // Return 'true' if this instruction matches an ideal 'Load?' node
417 Form::DataType InstructForm::is_ideal_load() const {
418 if( _matrule == NULL ) return Form::none;
419
420 return _matrule->is_ideal_load();
421 }
422
423 // Return 'true' if this instruction matches an ideal 'Load?' node
424 Form::DataType InstructForm::is_ideal_store() const {
425 if( _matrule == NULL ) return Form::none;
426
427 return _matrule->is_ideal_store();
428 }
429
430 // Return the input register that must match the output register
431 // If this is not required, return 0
432 uint InstructForm::two_address(FormDict &globals) {
433 uint matching_input = 0;
434 if(_components.count() == 0) return 0;
435
436 _components.reset();
437 Component *comp = _components.iter();
438 // Check if there is a DEF
439 if( comp->isa(Component::DEF) ) {
440 // Check that this is a register
441 const char *def_type = comp->_type;
442 const Form *form = globals[def_type];
443 OperandForm *op = form->is_operand();
444 if( op ) {
445 if( op->constrained_reg_class() != NULL &&
446 op->interface_type(globals) == Form::register_interface ) {
447 // Remember the local name for equality test later
448 const char *def_name = comp->_name;
449 // Check if a component has the same name and is a USE
450 do {
451 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
452 return operand_position_format(def_name);
453 }
454 } while( (comp = _components.iter()) != NULL);
455 }
456 }
457 }
458
459 return 0;
460 }
461
462
463 // when chaining a constant to an instruction, returns 'true' and sets opType
464 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
465 const char *dummy = NULL;
466 const char *dummy2 = NULL;
467 return is_chain_of_constant(globals, dummy, dummy2);
468 }
469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
470 const char * &opTypeParam) {
471 const char *result = NULL;
472
473 return is_chain_of_constant(globals, opTypeParam, result);
474 }
475
476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
477 const char * &opTypeParam, const char * &resultParam) {
478 Form::DataType data_type = Form::none;
479 if ( ! _matrule) return data_type;
480
481 // !!!!!
482 // The source of the chain rule is 'position = 1'
483 uint position = 1;
484 const char *result = NULL;
485 const char *name = NULL;
486 const char *opType = NULL;
487 // Here base_operand is looking for an ideal type to be returned (opType).
488 if ( _matrule->is_chain_rule(globals)
489 && _matrule->base_operand(position, globals, result, name, opType) ) {
490 data_type = ideal_to_const_type(opType);
491
492 // if it isn't an ideal constant type, just return
493 if ( data_type == Form::none ) return data_type;
494
495 // Ideal constant types also adjust the opType parameter.
496 resultParam = result;
497 opTypeParam = opType;
498 return data_type;
499 }
500
501 return data_type;
502 }
503
504 // Check if a simple chain rule
505 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
506 if( _matrule && _matrule->sets_result()
507 && _matrule->_rChild->_lChild == NULL
508 && globals[_matrule->_rChild->_opType]
509 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
510 return true;
511 }
512 return false;
513 }
514
515 // check for structural rematerialization
516 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
517 bool rematerialize = false;
518
519 Form::DataType data_type = is_chain_of_constant(globals);
520 if( data_type != Form::none )
521 rematerialize = true;
522
523 // Constants
524 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
525 rematerialize = true;
526
527 // Pseudo-constants (values easily available to the runtime)
528 if (is_empty_encoding() && is_tls_instruction())
529 rematerialize = true;
530
531 // 1-input, 1-output, such as copies or increments.
532 if( _components.count() == 2 &&
533 _components[0]->is(Component::DEF) &&
534 _components[1]->isa(Component::USE) )
535 rematerialize = true;
536
537 // Check for an ideal 'Load?' and eliminate rematerialize option
538 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
539 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
540 is_expensive() != Form::none) { // Expensive? Do not rematerialize
541 rematerialize = false;
542 }
543
544 // Always rematerialize the flags. They are more expensive to save &
545 // restore than to recompute (and possibly spill the compare's inputs).
546 if( _components.count() >= 1 ) {
547 Component *c = _components[0];
548 const Form *form = globals[c->_type];
549 OperandForm *opform = form->is_operand();
550 if( opform ) {
551 // Avoid the special stack_slots register classes
552 const char *rc_name = opform->constrained_reg_class();
553 if( rc_name ) {
554 if( strcmp(rc_name,"stack_slots") ) {
555 // Check for ideal_type of RegFlags
556 const char *type = opform->ideal_type( globals, registers );
557 if( !strcmp(type,"RegFlags") )
558 rematerialize = true;
559 } else
560 rematerialize = false; // Do not rematerialize things target stk
561 }
562 }
563 }
564
565 return rematerialize;
566 }
567
568 // loads from memory, so must check for anti-dependence
569 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
570 // Machine independent loads must be checked for anti-dependences
571 if( is_ideal_load() != Form::none ) return true;
572
573 // !!!!! !!!!! !!!!!
574 // TEMPORARY
575 // if( is_simple_chain_rule(globals) ) return false;
576
577 // String-compare uses many memorys edges, but writes none
578 if( _matrule && _matrule->_rChild &&
579 strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
580 return true;
581
582 // Check if instruction has a USE of a memory operand class, but no defs
583 bool USE_of_memory = false;
584 bool DEF_of_memory = false;
585 Component *comp = NULL;
586 ComponentList &components = (ComponentList &)_components;
587
588 components.reset();
589 while( (comp = components.iter()) != NULL ) {
590 const Form *form = globals[comp->_type];
591 if( !form ) continue;
592 OpClassForm *op = form->is_opclass();
593 if( !op ) continue;
594 if( form->interface_type(globals) == Form::memory_interface ) {
595 if( comp->isa(Component::USE) ) USE_of_memory = true;
596 if( comp->isa(Component::DEF) ) {
597 OperandForm *oper = form->is_operand();
598 if( oper && oper->is_user_name_for_sReg() ) {
599 // Stack slots are unaliased memory handled by allocator
600 oper = oper; // debug stopping point !!!!!
601 } else {
602 DEF_of_memory = true;
603 }
604 }
605 }
606 }
607 return (USE_of_memory && !DEF_of_memory);
608 }
609
610
611 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
612 if( _matrule == NULL ) return false;
613 if( !_matrule->_opType ) return false;
614
615 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
616 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
617
618 return false;
619 }
620
621 int InstructForm::memory_operand(FormDict &globals) const {
622 // Machine independent loads must be checked for anti-dependences
623 // Check if instruction has a USE of a memory operand class, or a def.
624 int USE_of_memory = 0;
625 int DEF_of_memory = 0;
626 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
627 Component *unique = NULL;
628 Component *comp = NULL;
629 ComponentList &components = (ComponentList &)_components;
630
631 components.reset();
632 while( (comp = components.iter()) != NULL ) {
633 const Form *form = globals[comp->_type];
634 if( !form ) continue;
635 OpClassForm *op = form->is_opclass();
636 if( !op ) continue;
637 if( op->stack_slots_only(globals) ) continue;
638 if( form->interface_type(globals) == Form::memory_interface ) {
639 if( comp->isa(Component::DEF) ) {
640 last_memory_DEF = comp->_name;
641 DEF_of_memory++;
642 unique = comp;
643 } else if( comp->isa(Component::USE) ) {
644 if( last_memory_DEF != NULL ) {
645 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
646 last_memory_DEF = NULL;
647 }
648 USE_of_memory++;
649 if (DEF_of_memory == 0) // defs take precedence
650 unique = comp;
651 } else {
652 assert(last_memory_DEF == NULL, "unpaired memory DEF");
653 }
654 }
655 }
656 assert(last_memory_DEF == NULL, "unpaired memory DEF");
657 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
658 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
659 if( (USE_of_memory + DEF_of_memory) > 0 ) {
660 if( is_simple_chain_rule(globals) ) {
661 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
662 //((InstructForm*)this)->dump();
663 // Preceding code prints nothing on sparc and these insns on intel:
664 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
665 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
666 return NO_MEMORY_OPERAND;
667 }
668
669 if( DEF_of_memory == 1 ) {
670 assert(unique != NULL, "");
671 if( USE_of_memory == 0 ) {
672 // unique def, no uses
673 } else {
674 // // unique def, some uses
675 // // must return bottom unless all uses match def
676 // unique = NULL;
677 }
678 } else if( DEF_of_memory > 0 ) {
679 // multiple defs, don't care about uses
680 unique = NULL;
681 } else if( USE_of_memory == 1) {
682 // unique use, no defs
683 assert(unique != NULL, "");
684 } else if( USE_of_memory > 0 ) {
685 // multiple uses, no defs
686 unique = NULL;
687 } else {
688 assert(false, "bad case analysis");
689 }
690 // process the unique DEF or USE, if there is one
691 if( unique == NULL ) {
692 return MANY_MEMORY_OPERANDS;
693 } else {
694 int pos = components.operand_position(unique->_name);
695 if( unique->isa(Component::DEF) ) {
696 pos += 1; // get corresponding USE from DEF
697 }
698 assert(pos >= 1, "I was just looking at it!");
699 return pos;
700 }
701 }
702
703 // missed the memory op??
704 if( true ) { // %%% should not be necessary
705 if( is_ideal_store() != Form::none ) {
706 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
707 ((InstructForm*)this)->dump();
708 // pretend it has multiple defs and uses
709 return MANY_MEMORY_OPERANDS;
710 }
711 if( is_ideal_load() != Form::none ) {
712 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
713 ((InstructForm*)this)->dump();
714 // pretend it has multiple uses and no defs
715 return MANY_MEMORY_OPERANDS;
716 }
717 }
718
719 return NO_MEMORY_OPERAND;
720 }
721
722
723 // This instruction captures the machine-independent bottom_type
724 // Expected use is for pointer vs oop determination for LoadP
725 bool InstructForm::captures_bottom_type() const {
726 if( _matrule && _matrule->_rChild &&
727 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
728 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
729 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
730 !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
731 else if ( is_ideal_load() == Form::idealP ) return true;
732 else if ( is_ideal_store() != Form::none ) return true;
733
734 return false;
735 }
736
737
738 // Access instr_cost attribute or return NULL.
739 const char* InstructForm::cost() {
740 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
741 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
742 return cur->_val;
743 }
744 }
745 return NULL;
746 }
747
748 // Return count of top-level operands.
749 uint InstructForm::num_opnds() {
750 int num_opnds = _components.num_operands();
751
752 // Need special handling for matching some ideal nodes
753 // i.e. Matching a return node
754 /*
755 if( _matrule ) {
756 if( strcmp(_matrule->_opType,"Return" )==0 ||
757 strcmp(_matrule->_opType,"Halt" )==0 )
758 return 3;
759 }
760 */
761 return num_opnds;
762 }
763
764 // Return count of unmatched operands.
765 uint InstructForm::num_post_match_opnds() {
766 uint num_post_match_opnds = _components.count();
767 uint num_match_opnds = _components.match_count();
768 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
769
770 return num_post_match_opnds;
771 }
772
773 // Return the number of leaves below this complex operand
774 uint InstructForm::num_consts(FormDict &globals) const {
775 if ( ! _matrule) return 0;
776
777 // This is a recursive invocation on all operands in the matchrule
778 return _matrule->num_consts(globals);
779 }
780
781 // Constants in match rule with specified type
782 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
783 if ( ! _matrule) return 0;
784
785 // This is a recursive invocation on all operands in the matchrule
786 return _matrule->num_consts(globals, type);
787 }
788
789
790 // Return the register class associated with 'leaf'.
791 const char *InstructForm::out_reg_class(FormDict &globals) {
792 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
793
794 return NULL;
795 }
796
797
798
799 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
800 uint InstructForm::oper_input_base(FormDict &globals) {
801 if( !_matrule ) return 1; // Skip control for most nodes
802
803 // Need special handling for matching some ideal nodes
804 // i.e. Matching a return node
805 if( strcmp(_matrule->_opType,"Return" )==0 ||
806 strcmp(_matrule->_opType,"Rethrow" )==0 ||
807 strcmp(_matrule->_opType,"TailCall" )==0 ||
808 strcmp(_matrule->_opType,"TailJump" )==0 ||
809 strcmp(_matrule->_opType,"SafePoint" )==0 ||
810 strcmp(_matrule->_opType,"Halt" )==0 )
811 return AdlcVMDeps::Parms; // Skip the machine-state edges
812
813 if( _matrule->_rChild &&
814 strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
815 // String compare takes 1 control and 4 memory edges.
816 return 5;
817 }
818
819 // Check for handling of 'Memory' input/edge in the ideal world.
820 // The AD file writer is shielded from knowledge of these edges.
821 int base = 1; // Skip control
822 base += _matrule->needs_ideal_memory_edge(globals);
823
824 // Also skip the base-oop value for uses of derived oops.
825 // The AD file writer is shielded from knowledge of these edges.
826 base += needs_base_oop_edge(globals);
827
828 return base;
829 }
830
831 // Implementation does not modify state of internal structures
832 void InstructForm::build_components() {
833 // Add top-level operands to the components
834 if (_matrule) _matrule->append_components(_localNames, _components);
835
836 // Add parameters that "do not appear in match rule".
837 bool has_temp = false;
838 const char *name;
839 const char *kill_name = NULL;
840 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
841 OperandForm *opForm = (OperandForm*)_localNames[name];
842
843 const Form *form = _effects[name];
844 Effect *e = form ? form->is_effect() : NULL;
845 if (e != NULL) {
846 has_temp |= e->is(Component::TEMP);
847
848 // KILLs must be declared after any TEMPs because TEMPs are real
849 // uses so their operand numbering must directly follow the real
850 // inputs from the match rule. Fixing the numbering seems
851 // complex so simply enforce the restriction during parse.
852 if (kill_name != NULL &&
853 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
854 OperandForm* kill = (OperandForm*)_localNames[kill_name];
855 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
856 _ident, kill->_ident, kill_name);
857 } else if (e->isa(Component::KILL)) {
858 kill_name = name;
859 }
860
861 // TEMPs are real uses and need to be among the first parameters
862 // listed, otherwise the numbering of operands and inputs gets
863 // screwy, so enforce this restriction during parse.
864 if (kill_name != NULL &&
865 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
866 OperandForm* kill = (OperandForm*)_localNames[kill_name];
867 globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
868 _ident, kill->_ident, kill_name, opForm->_ident, name);
869 } else if (e->isa(Component::KILL)) {
870 kill_name = name;
871 }
872 }
873
874 const Component *component = _components.search(name);
875 if ( component == NULL ) {
876 if (e) {
877 _components.insert(name, opForm->_ident, e->_use_def, false);
878 component = _components.search(name);
879 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
880 const Form *form = globalAD->globalNames()[component->_type];
881 assert( form, "component type must be a defined form");
882 OperandForm *op = form->is_operand();
883 if (op->_interface && op->_interface->is_RegInterface()) {
884 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
885 _ident, opForm->_ident, name);
886 }
887 }
888 } else {
889 // This would be a nice warning but it triggers in a few places in a benign way
890 // if (_matrule != NULL && !expands()) {
891 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
892 // _ident, opForm->_ident, name);
893 // }
894 _components.insert(name, opForm->_ident, Component::INVALID, false);
895 }
896 }
897 else if (e) {
898 // Component was found in the list
899 // Check if there is a new effect that requires an extra component.
900 // This happens when adding 'USE' to a component that is not yet one.
901 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
902 if (component->isa(Component::USE) && _matrule) {
903 const Form *form = globalAD->globalNames()[component->_type];
904 assert( form, "component type must be a defined form");
905 OperandForm *op = form->is_operand();
906 if (op->_interface && op->_interface->is_RegInterface()) {
907 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
908 _ident, opForm->_ident, name);
909 }
910 }
911 _components.insert(name, opForm->_ident, e->_use_def, false);
912 } else {
913 Component *comp = (Component*)component;
914 comp->promote_use_def_info(e->_use_def);
915 }
916 // Component positions are zero based.
917 int pos = _components.operand_position(name);
918 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
919 "Component::DEF can only occur in the first position");
920 }
921 }
922
923 // Resolving the interactions between expand rules and TEMPs would
924 // be complex so simply disallow it.
925 if (_matrule == NULL && has_temp) {
926 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
927 }
928
929 return;
930 }
931
932 // Return zero-based position in component list; -1 if not in list.
933 int InstructForm::operand_position(const char *name, int usedef) {
934 return unique_opnds_idx(_components.operand_position(name, usedef));
935 }
936
937 int InstructForm::operand_position_format(const char *name) {
938 return unique_opnds_idx(_components.operand_position_format(name));
939 }
940
941 // Return zero-based position in component list; -1 if not in list.
942 int InstructForm::label_position() {
943 return unique_opnds_idx(_components.label_position());
944 }
945
946 int InstructForm::method_position() {
947 return unique_opnds_idx(_components.method_position());
948 }
949
950 // Return number of relocation entries needed for this instruction.
951 uint InstructForm::reloc(FormDict &globals) {
952 uint reloc_entries = 0;
953 // Check for "Call" nodes
954 if ( is_ideal_call() ) ++reloc_entries;
955 if ( is_ideal_return() ) ++reloc_entries;
956 if ( is_ideal_safepoint() ) ++reloc_entries;
957
958
959 // Check if operands MAYBE oop pointers, by checking for ConP elements
960 // Proceed through the leaves of the match-tree and check for ConPs
961 if ( _matrule != NULL ) {
962 uint position = 0;
963 const char *result = NULL;
964 const char *name = NULL;
965 const char *opType = NULL;
966 while (_matrule->base_operand(position, globals, result, name, opType)) {
967 if ( strcmp(opType,"ConP") == 0 ) {
968 #ifdef SPARC
969 reloc_entries += 2; // 1 for sethi + 1 for setlo
970 #else
971 ++reloc_entries;
972 #endif
973 }
974 ++position;
975 }
976 }
977
978 // Above is only a conservative estimate
979 // because it did not check contents of operand classes.
980 // !!!!! !!!!!
981 // Add 1 to reloc info for each operand class in the component list.
982 Component *comp;
983 _components.reset();
984 while ( (comp = _components.iter()) != NULL ) {
985 const Form *form = globals[comp->_type];
986 assert( form, "Did not find component's type in global names");
987 const OpClassForm *opc = form->is_opclass();
988 const OperandForm *oper = form->is_operand();
989 if ( opc && (oper == NULL) ) {
990 ++reloc_entries;
991 } else if ( oper ) {
992 // floats and doubles loaded out of method's constant pool require reloc info
993 Form::DataType type = oper->is_base_constant(globals);
994 if ( (type == Form::idealF) || (type == Form::idealD) ) {
995 ++reloc_entries;
996 }
997 }
998 }
999
1000 // Float and Double constants may come from the CodeBuffer table
1001 // and require relocatable addresses for access
1002 // !!!!!
1003 // Check for any component being an immediate float or double.
1004 Form::DataType data_type = is_chain_of_constant(globals);
1005 if( data_type==idealD || data_type==idealF ) {
1006 #ifdef SPARC
1007 // sparc required more relocation entries for floating constants
1008 // (expires 9/98)
1009 reloc_entries += 6;
1010 #else
1011 reloc_entries++;
1012 #endif
1013 }
1014
1015 return reloc_entries;
1016 }
1017
1018 // Utility function defined in archDesc.cpp
1019 extern bool is_def(int usedef);
1020
1021 // Return the result of reducing an instruction
1022 const char *InstructForm::reduce_result() {
1023 const char* result = "Universe"; // default
1024 _components.reset();
1025 Component *comp = _components.iter();
1026 if (comp != NULL && comp->isa(Component::DEF)) {
1027 result = comp->_type;
1028 // Override this if the rule is a store operation:
1029 if (_matrule && _matrule->_rChild &&
1030 is_store_to_memory(_matrule->_rChild->_opType))
1031 result = "Universe";
1032 }
1033 return result;
1034 }
1035
1036 // Return the name of the operand on the right hand side of the binary match
1037 // Return NULL if there is no right hand side
1038 const char *InstructForm::reduce_right(FormDict &globals) const {
1039 if( _matrule == NULL ) return NULL;
1040 return _matrule->reduce_right(globals);
1041 }
1042
1043 // Similar for left
1044 const char *InstructForm::reduce_left(FormDict &globals) const {
1045 if( _matrule == NULL ) return NULL;
1046 return _matrule->reduce_left(globals);
1047 }
1048
1049
1050 // Base class for this instruction, MachNode except for calls
1051 const char *InstructForm::mach_base_class() const {
1052 if( is_ideal_call() == Form::JAVA_STATIC ) {
1053 return "MachCallStaticJavaNode";
1054 }
1055 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1056 return "MachCallDynamicJavaNode";
1057 }
1058 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1059 return "MachCallRuntimeNode";
1060 }
1061 else if( is_ideal_call() == Form::JAVA_LEAF ) {
1062 return "MachCallLeafNode";
1063 }
1064 else if (is_ideal_return()) {
1065 return "MachReturnNode";
1066 }
1067 else if (is_ideal_halt()) {
1068 return "MachHaltNode";
1069 }
1070 else if (is_ideal_safepoint()) {
1071 return "MachSafePointNode";
1072 }
1073 else if (is_ideal_if()) {
1074 return "MachIfNode";
1075 }
1076 else if (is_ideal_fastlock()) {
1077 return "MachFastLockNode";
1078 }
1079 else if (is_ideal_nop()) {
1080 return "MachNopNode";
1081 }
1082 else if (captures_bottom_type()) {
1083 return "MachTypeNode";
1084 } else {
1085 return "MachNode";
1086 }
1087 assert( false, "ShouldNotReachHere()");
1088 return NULL;
1089 }
1090
1091 // Compare the instruction predicates for textual equality
1092 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1093 const Predicate *pred1 = instr1->_predicate;
1094 const Predicate *pred2 = instr2->_predicate;
1095 if( pred1 == NULL && pred2 == NULL ) {
1096 // no predicates means they are identical
1097 return true;
1098 }
1099 if( pred1 != NULL && pred2 != NULL ) {
1100 // compare the predicates
1101 const char *str1 = pred1->_pred;
1102 const char *str2 = pred2->_pred;
1103 if( (str1 == NULL && str2 == NULL)
1104 || (str1 != NULL && str2 != NULL && strcmp(str1,str2) == 0) ) {
1105 return true;
1106 }
1107 }
1108
1109 return false;
1110 }
1111
1112 // Check if this instruction can cisc-spill to 'alternate'
1113 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1114 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1115 // Do not replace if a cisc-version has been found.
1116 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1117
1118 int cisc_spill_operand = Maybe_cisc_spillable;
1119 char *result = NULL;
1120 char *result2 = NULL;
1121 const char *op_name = NULL;
1122 const char *reg_type = NULL;
1123 FormDict &globals = AD.globalNames();
1124 cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1125 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1126 cisc_spill_operand = operand_position(op_name, Component::USE);
1127 int def_oper = operand_position(op_name, Component::DEF);
1128 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1129 // Do not support cisc-spilling for destination operands and
1130 // make sure they have the same number of operands.
1131 _cisc_spill_alternate = instr;
1132 instr->set_cisc_alternate(true);
1133 if( AD._cisc_spill_debug ) {
1134 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1135 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1136 }
1137 // Record that a stack-version of the reg_mask is needed
1138 // !!!!!
1139 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1140 assert( oper != NULL, "cisc-spilling non operand");
1141 const char *reg_class_name = oper->constrained_reg_class();
1142 AD.set_stack_or_reg(reg_class_name);
1143 const char *reg_mask_name = AD.reg_mask(*oper);
1144 set_cisc_reg_mask_name(reg_mask_name);
1145 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1146 } else {
1147 cisc_spill_operand = Not_cisc_spillable;
1148 }
1149 } else {
1150 cisc_spill_operand = Not_cisc_spillable;
1151 }
1152
1153 set_cisc_spill_operand(cisc_spill_operand);
1154 return (cisc_spill_operand != Not_cisc_spillable);
1155 }
1156
1157 // Check to see if this instruction can be replaced with the short branch
1158 // instruction `short-branch'
1159 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1160 if (_matrule != NULL &&
1161 this != short_branch && // Don't match myself
1162 !is_short_branch() && // Don't match another short branch variant
1163 reduce_result() != NULL &&
1164 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1165 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1166 // The instructions are equivalent.
1167 if (AD._short_branch_debug) {
1168 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1169 }
1170 _short_branch_form = short_branch;
1171 return true;
1172 }
1173 return false;
1174 }
1175
1176
1177 // --------------------------- FILE *output_routines
1178 //
1179 // Generate the format call for the replacement variable
1180 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1181 // Find replacement variable's type
1182 const Form *form = _localNames[rep_var];
1183 if (form == NULL) {
1184 fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
1185 assert(false, "ShouldNotReachHere()");
1186 }
1187 OpClassForm *opc = form->is_opclass();
1188 assert( opc, "replacement variable was not found in local names");
1189 // Lookup the index position of the replacement variable
1190 int idx = operand_position_format(rep_var);
1191 if ( idx == -1 ) {
1192 assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
1193 assert( false, "ShouldNotReachHere()");
1194 }
1195
1196 if (is_noninput_operand(idx)) {
1197 // This component isn't in the input array. Print out the static
1198 // name of the register.
1199 OperandForm* oper = form->is_operand();
1200 if (oper != NULL && oper->is_bound_register()) {
1201 const RegDef* first = oper->get_RegClass()->find_first_elem();
1202 fprintf(fp, " tty->print(\"%s\");\n", first->_regname);
1203 } else {
1204 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1205 }
1206 } else {
1207 // Output the format call for this operand
1208 fprintf(fp,"opnd_array(%d)->",idx);
1209 if (idx == 0)
1210 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1211 else
1212 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1213 }
1214 }
1215
1216 // Seach through operands to determine parameters unique positions.
1217 void InstructForm::set_unique_opnds() {
1218 uint* uniq_idx = NULL;
1219 uint nopnds = num_opnds();
1220 uint num_uniq = nopnds;
1221 uint i;
1222 if ( nopnds > 0 ) {
1223 // Allocate index array with reserve.
1224 uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
1225 for( i = 0; i < nopnds+2; i++ ) {
1226 uniq_idx[i] = i;
1227 }
1228 }
1229 // Do it only if there is a match rule and no expand rule. With an
1230 // expand rule it is done by creating new mach node in Expand()
1231 // method.
1232 if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
1233 const char *name;
1234 uint count;
1235 bool has_dupl_use = false;
1236
1237 _parameters.reset();
1238 while( (name = _parameters.iter()) != NULL ) {
1239 count = 0;
1240 uint position = 0;
1241 uint uniq_position = 0;
1242 _components.reset();
1243 Component *comp = NULL;
1244 if( sets_result() ) {
1245 comp = _components.iter();
1246 position++;
1247 }
1248 // The next code is copied from the method operand_position().
1249 for (; (comp = _components.iter()) != NULL; ++position) {
1250 // When the first component is not a DEF,
1251 // leave space for the result operand!
1252 if ( position==0 && (! comp->isa(Component::DEF)) ) {
1253 ++position;
1254 }
1255 if( strcmp(name, comp->_name)==0 ) {
1256 if( ++count > 1 ) {
1257 uniq_idx[position] = uniq_position;
1258 has_dupl_use = true;
1259 } else {
1260 uniq_position = position;
1261 }
1262 }
1263 if( comp->isa(Component::DEF)
1264 && comp->isa(Component::USE) ) {
1265 ++position;
1266 if( position != 1 )
1267 --position; // only use two slots for the 1st USE_DEF
1268 }
1269 }
1270 }
1271 if( has_dupl_use ) {
1272 for( i = 1; i < nopnds; i++ )
1273 if( i != uniq_idx[i] )
1274 break;
1275 int j = i;
1276 for( ; i < nopnds; i++ )
1277 if( i == uniq_idx[i] )
1278 uniq_idx[i] = j++;
1279 num_uniq = j;
1280 }
1281 }
1282 _uniq_idx = uniq_idx;
1283 _num_uniq = num_uniq;
1284 }
1285
1286 // Generate index values needed for determing the operand position
1287 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1288 uint idx = 0; // position of operand in match rule
1289 int cur_num_opnds = num_opnds();
1290
1291 // Compute the index into vector of operand pointers:
1292 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1293 // idx1 starts at oper_input_base()
1294 if ( cur_num_opnds >= 1 ) {
1295 fprintf(fp," // Start at oper_input_base() and count operands\n");
1296 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1297 fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
1298
1299 // Generate starting points for other unique operands if they exist
1300 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1301 if( *receiver == 0 ) {
1302 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
1303 prefix, idx, prefix, idx-1, idx-1 );
1304 } else {
1305 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
1306 prefix, idx, prefix, idx-1, receiver, idx-1 );
1307 }
1308 }
1309 }
1310 if( *receiver != 0 ) {
1311 // This value is used by generate_peepreplace when copying a node.
1312 // Don't emit it in other cases since it can hide bugs with the
1313 // use invalid idx's.
1314 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1315 }
1316
1317 }
1318
1319 // ---------------------------
1320 bool InstructForm::verify() {
1321 // !!!!! !!!!!
1322 // Check that a "label" operand occurs last in the operand list, if present
1323 return true;
1324 }
1325
1326 void InstructForm::dump() {
1327 output(stderr);
1328 }
1329
1330 void InstructForm::output(FILE *fp) {
1331 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1332 if (_matrule) _matrule->output(fp);
1333 if (_insencode) _insencode->output(fp);
1334 if (_opcode) _opcode->output(fp);
1335 if (_attribs) _attribs->output(fp);
1336 if (_predicate) _predicate->output(fp);
1337 if (_effects.Size()) {
1338 fprintf(fp,"Effects\n");
1339 _effects.dump();
1340 }
1341 if (_exprule) _exprule->output(fp);
1342 if (_rewrule) _rewrule->output(fp);
1343 if (_format) _format->output(fp);
1344 if (_peephole) _peephole->output(fp);
1345 }
1346
1347 void MachNodeForm::dump() {
1348 output(stderr);
1349 }
1350
1351 void MachNodeForm::output(FILE *fp) {
1352 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1353 }
1354
1355 //------------------------------build_predicate--------------------------------
1356 // Build instruction predicates. If the user uses the same operand name
1357 // twice, we need to check that the operands are pointer-eequivalent in
1358 // the DFA during the labeling process.
1359 Predicate *InstructForm::build_predicate() {
1360 char buf[1024], *s=buf;
1361 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
1362
1363 MatchNode *mnode =
1364 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1365 mnode->count_instr_names(names);
1366
1367 uint first = 1;
1368 // Start with the predicate supplied in the .ad file.
1369 if( _predicate ) {
1370 if( first ) first=0;
1371 strcpy(s,"("); s += strlen(s);
1372 strcpy(s,_predicate->_pred);
1373 s += strlen(s);
1374 strcpy(s,")"); s += strlen(s);
1375 }
1376 for( DictI i(&names); i.test(); ++i ) {
1377 uintptr_t cnt = (uintptr_t)i._value;
1378 if( cnt > 1 ) { // Need a predicate at all?
1379 assert( cnt == 2, "Unimplemented" );
1380 // Handle many pairs
1381 if( first ) first=0;
1382 else { // All tests must pass, so use '&&'
1383 strcpy(s," && ");
1384 s += strlen(s);
1385 }
1386 // Add predicate to working buffer
1387 sprintf(s,"/*%s*/(",(char*)i._key);
1388 s += strlen(s);
1389 mnode->build_instr_pred(s,(char*)i._key,0);
1390 s += strlen(s);
1391 strcpy(s," == "); s += strlen(s);
1392 mnode->build_instr_pred(s,(char*)i._key,1);
1393 s += strlen(s);
1394 strcpy(s,")"); s += strlen(s);
1395 }
1396 }
1397 if( s == buf ) s = NULL;
1398 else {
1399 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1400 s = strdup(buf);
1401 }
1402 return new Predicate(s);
1403 }
1404
1405 //------------------------------EncodeForm-------------------------------------
1406 // Constructor
1407 EncodeForm::EncodeForm()
1408 : _encClass(cmpstr,hashstr, Form::arena) {
1409 }
1410 EncodeForm::~EncodeForm() {
1411 }
1412
1413 // record a new register class
1414 EncClass *EncodeForm::add_EncClass(const char *className) {
1415 EncClass *encClass = new EncClass(className);
1416 _eclasses.addName(className);
1417 _encClass.Insert(className,encClass);
1418 return encClass;
1419 }
1420
1421 // Lookup the function body for an encoding class
1422 EncClass *EncodeForm::encClass(const char *className) {
1423 assert( className != NULL, "Must provide a defined encoding name");
1424
1425 EncClass *encClass = (EncClass*)_encClass[className];
1426 return encClass;
1427 }
1428
1429 // Lookup the function body for an encoding class
1430 const char *EncodeForm::encClassBody(const char *className) {
1431 if( className == NULL ) return NULL;
1432
1433 EncClass *encClass = (EncClass*)_encClass[className];
1434 assert( encClass != NULL, "Encode Class is missing.");
1435 encClass->_code.reset();
1436 const char *code = (const char*)encClass->_code.iter();
1437 assert( code != NULL, "Found an empty encode class body.");
1438
1439 return code;
1440 }
1441
1442 // Lookup the function body for an encoding class
1443 const char *EncodeForm::encClassPrototype(const char *className) {
1444 assert( className != NULL, "Encode class name must be non NULL.");
1445
1446 return className;
1447 }
1448
1449 void EncodeForm::dump() { // Debug printer
1450 output(stderr);
1451 }
1452
1453 void EncodeForm::output(FILE *fp) { // Write info to output files
1454 const char *name;
1455 fprintf(fp,"\n");
1456 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1457 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1458 ((EncClass*)_encClass[name])->output(fp);
1459 }
1460 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
1461 }
1462 //------------------------------EncClass---------------------------------------
1463 EncClass::EncClass(const char *name)
1464 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1465 }
1466 EncClass::~EncClass() {
1467 }
1468
1469 // Add a parameter <type,name> pair
1470 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1471 _parameter_type.addName( parameter_type );
1472 _parameter_name.addName( parameter_name );
1473 }
1474
1475 // Verify operand types in parameter list
1476 bool EncClass::check_parameter_types(FormDict &globals) {
1477 // !!!!!
1478 return false;
1479 }
1480
1481 // Add the decomposed "code" sections of an encoding's code-block
1482 void EncClass::add_code(const char *code) {
1483 _code.addName(code);
1484 }
1485
1486 // Add the decomposed "replacement variables" of an encoding's code-block
1487 void EncClass::add_rep_var(char *replacement_var) {
1488 _code.addName(NameList::_signal);
1489 _rep_vars.addName(replacement_var);
1490 }
1491
1492 // Lookup the function body for an encoding class
1493 int EncClass::rep_var_index(const char *rep_var) {
1494 uint position = 0;
1495 const char *name = NULL;
1496
1497 _parameter_name.reset();
1498 while ( (name = _parameter_name.iter()) != NULL ) {
1499 if ( strcmp(rep_var,name) == 0 ) return position;
1500 ++position;
1501 }
1502
1503 return -1;
1504 }
1505
1506 // Check after parsing
1507 bool EncClass::verify() {
1508 // 1!!!!
1509 // Check that each replacement variable, '$name' in architecture description
1510 // is actually a local variable for this encode class, or a reserved name
1511 // "primary, secondary, tertiary"
1512 return true;
1513 }
1514
1515 void EncClass::dump() {
1516 output(stderr);
1517 }
1518
1519 // Write info to output files
1520 void EncClass::output(FILE *fp) {
1521 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1522
1523 // Output the parameter list
1524 _parameter_type.reset();
1525 _parameter_name.reset();
1526 const char *type = _parameter_type.iter();
1527 const char *name = _parameter_name.iter();
1528 fprintf(fp, " ( ");
1529 for ( ; (type != NULL) && (name != NULL);
1530 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1531 fprintf(fp, " %s %s,", type, name);
1532 }
1533 fprintf(fp, " ) ");
1534
1535 // Output the code block
1536 _code.reset();
1537 _rep_vars.reset();
1538 const char *code;
1539 while ( (code = _code.iter()) != NULL ) {
1540 if ( _code.is_signal(code) ) {
1541 // A replacement variable
1542 const char *rep_var = _rep_vars.iter();
1543 fprintf(fp,"($%s)", rep_var);
1544 } else {
1545 // A section of code
1546 fprintf(fp,"%s", code);
1547 }
1548 }
1549
1550 }
1551
1552 //------------------------------Opcode-----------------------------------------
1553 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1554 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1555 }
1556
1557 Opcode::~Opcode() {
1558 }
1559
1560 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1561 if( strcmp(param,"primary") == 0 ) {
1562 return Opcode::PRIMARY;
1563 }
1564 else if( strcmp(param,"secondary") == 0 ) {
1565 return Opcode::SECONDARY;
1566 }
1567 else if( strcmp(param,"tertiary") == 0 ) {
1568 return Opcode::TERTIARY;
1569 }
1570 return Opcode::NOT_AN_OPCODE;
1571 }
1572
1573 void Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1574 // Default values previously provided by MachNode::primary()...
1575 const char *description = "default_opcode()";
1576 const char *value = "-1";
1577 // Check if user provided any opcode definitions
1578 if( this != NULL ) {
1579 // Update 'value' if user provided a definition in the instruction
1580 switch (desired_opcode) {
1581 case PRIMARY:
1582 description = "primary()";
1583 if( _primary != NULL) { value = _primary; }
1584 break;
1585 case SECONDARY:
1586 description = "secondary()";
1587 if( _secondary != NULL ) { value = _secondary; }
1588 break;
1589 case TERTIARY:
1590 description = "tertiary()";
1591 if( _tertiary != NULL ) { value = _tertiary; }
1592 break;
1593 default:
1594 assert( false, "ShouldNotReachHere();");
1595 break;
1596 }
1597 }
1598 fprintf(fp, "(%s /*%s*/)", value, description);
1599 }
1600
1601 void Opcode::dump() {
1602 output(stderr);
1603 }
1604
1605 // Write info to output files
1606 void Opcode::output(FILE *fp) {
1607 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
1608 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1609 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
1610 }
1611
1612 //------------------------------InsEncode--------------------------------------
1613 InsEncode::InsEncode() {
1614 }
1615 InsEncode::~InsEncode() {
1616 }
1617
1618 // Add "encode class name" and its parameters
1619 NameAndList *InsEncode::add_encode(char *encoding) {
1620 assert( encoding != NULL, "Must provide name for encoding");
1621
1622 // add_parameter(NameList::_signal);
1623 NameAndList *encode = new NameAndList(encoding);
1624 _encoding.addName((char*)encode);
1625
1626 return encode;
1627 }
1628
1629 // Access the list of encodings
1630 void InsEncode::reset() {
1631 _encoding.reset();
1632 // _parameter.reset();
1633 }
1634 const char* InsEncode::encode_class_iter() {
1635 NameAndList *encode_class = (NameAndList*)_encoding.iter();
1636 return ( encode_class != NULL ? encode_class->name() : NULL );
1637 }
1638 // Obtain parameter name from zero based index
1639 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1640 NameAndList *params = (NameAndList*)_encoding.current();
1641 assert( params != NULL, "Internal Error");
1642 const char *param = (*params)[param_no];
1643
1644 // Remove '$' if parser placed it there.
1645 return ( param != NULL && *param == '$') ? (param+1) : param;
1646 }
1647
1648 void InsEncode::dump() {
1649 output(stderr);
1650 }
1651
1652 // Write info to output files
1653 void InsEncode::output(FILE *fp) {
1654 NameAndList *encoding = NULL;
1655 const char *parameter = NULL;
1656
1657 fprintf(fp,"InsEncode: ");
1658 _encoding.reset();
1659
1660 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1661 // Output the encoding being used
1662 fprintf(fp,"%s(", encoding->name() );
1663
1664 // Output its parameter list, if any
1665 bool first_param = true;
1666 encoding->reset();
1667 while ( (parameter = encoding->iter()) != 0 ) {
1668 // Output the ',' between parameters
1669 if ( ! first_param ) fprintf(fp,", ");
1670 first_param = false;
1671 // Output the parameter
1672 fprintf(fp,"%s", parameter);
1673 } // done with parameters
1674 fprintf(fp,") ");
1675 } // done with encodings
1676
1677 fprintf(fp,"\n");
1678 }
1679
1680 //------------------------------Effect-----------------------------------------
1681 static int effect_lookup(const char *name) {
1682 if(!strcmp(name, "USE")) return Component::USE;
1683 if(!strcmp(name, "DEF")) return Component::DEF;
1684 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1685 if(!strcmp(name, "KILL")) return Component::KILL;
1686 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1687 if(!strcmp(name, "TEMP")) return Component::TEMP;
1688 if(!strcmp(name, "INVALID")) return Component::INVALID;
1689 assert( false,"Invalid effect name specified\n");
1690 return Component::INVALID;
1691 }
1692
1693 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1694 _ftype = Form::EFF;
1695 }
1696 Effect::~Effect() {
1697 }
1698
1699 // Dynamic type check
1700 Effect *Effect::is_effect() const {
1701 return (Effect*)this;
1702 }
1703
1704
1705 // True if this component is equal to the parameter.
1706 bool Effect::is(int use_def_kill_enum) const {
1707 return (_use_def == use_def_kill_enum ? true : false);
1708 }
1709 // True if this component is used/def'd/kill'd as the parameter suggests.
1710 bool Effect::isa(int use_def_kill_enum) const {
1711 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1712 }
1713
1714 void Effect::dump() {
1715 output(stderr);
1716 }
1717
1718 void Effect::output(FILE *fp) { // Write info to output files
1719 fprintf(fp,"Effect: %s\n", (_name?_name:""));
1720 }
1721
1722 //------------------------------ExpandRule-------------------------------------
1723 ExpandRule::ExpandRule() : _expand_instrs(),
1724 _newopconst(cmpstr, hashstr, Form::arena) {
1725 _ftype = Form::EXP;
1726 }
1727
1728 ExpandRule::~ExpandRule() { // Destructor
1729 }
1730
1731 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1732 _expand_instrs.addName((char*)instruction_name_and_operand_list);
1733 }
1734
1735 void ExpandRule::reset_instructions() {
1736 _expand_instrs.reset();
1737 }
1738
1739 NameAndList* ExpandRule::iter_instructions() {
1740 return (NameAndList*)_expand_instrs.iter();
1741 }
1742
1743
1744 void ExpandRule::dump() {
1745 output(stderr);
1746 }
1747
1748 void ExpandRule::output(FILE *fp) { // Write info to output files
1749 NameAndList *expand_instr = NULL;
1750 const char *opid = NULL;
1751
1752 fprintf(fp,"\nExpand Rule:\n");
1753
1754 // Iterate over the instructions 'node' expands into
1755 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1756 fprintf(fp,"%s(", expand_instr->name());
1757
1758 // iterate over the operand list
1759 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1760 fprintf(fp,"%s ", opid);
1761 }
1762 fprintf(fp,");\n");
1763 }
1764 }
1765
1766 //------------------------------RewriteRule------------------------------------
1767 RewriteRule::RewriteRule(char* params, char* block)
1768 : _tempParams(params), _tempBlock(block) { }; // Constructor
1769 RewriteRule::~RewriteRule() { // Destructor
1770 }
1771
1772 void RewriteRule::dump() {
1773 output(stderr);
1774 }
1775
1776 void RewriteRule::output(FILE *fp) { // Write info to output files
1777 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1778 (_tempParams?_tempParams:""),
1779 (_tempBlock?_tempBlock:""));
1780 }
1781
1782
1783 //==============================MachNodes======================================
1784 //------------------------------MachNodeForm-----------------------------------
1785 MachNodeForm::MachNodeForm(char *id)
1786 : _ident(id) {
1787 }
1788
1789 MachNodeForm::~MachNodeForm() {
1790 }
1791
1792 MachNodeForm *MachNodeForm::is_machnode() const {
1793 return (MachNodeForm*)this;
1794 }
1795
1796 //==============================Operand Classes================================
1797 //------------------------------OpClassForm------------------------------------
1798 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1799 _ftype = Form::OPCLASS;
1800 }
1801
1802 OpClassForm::~OpClassForm() {
1803 }
1804
1805 bool OpClassForm::ideal_only() const { return 0; }
1806
1807 OpClassForm *OpClassForm::is_opclass() const {
1808 return (OpClassForm*)this;
1809 }
1810
1811 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1812 if( _oplst.count() == 0 ) return Form::no_interface;
1813
1814 // Check that my operands have the same interface type
1815 Form::InterfaceType interface;
1816 bool first = true;
1817 NameList &op_list = (NameList &)_oplst;
1818 op_list.reset();
1819 const char *op_name;
1820 while( (op_name = op_list.iter()) != NULL ) {
1821 const Form *form = globals[op_name];
1822 OperandForm *operand = form->is_operand();
1823 assert( operand, "Entry in operand class that is not an operand");
1824 if( first ) {
1825 first = false;
1826 interface = operand->interface_type(globals);
1827 } else {
1828 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1829 }
1830 }
1831 return interface;
1832 }
1833
1834 bool OpClassForm::stack_slots_only(FormDict &globals) const {
1835 if( _oplst.count() == 0 ) return false; // how?
1836
1837 NameList &op_list = (NameList &)_oplst;
1838 op_list.reset();
1839 const char *op_name;
1840 while( (op_name = op_list.iter()) != NULL ) {
1841 const Form *form = globals[op_name];
1842 OperandForm *operand = form->is_operand();
1843 assert( operand, "Entry in operand class that is not an operand");
1844 if( !operand->stack_slots_only(globals) ) return false;
1845 }
1846 return true;
1847 }
1848
1849
1850 void OpClassForm::dump() {
1851 output(stderr);
1852 }
1853
1854 void OpClassForm::output(FILE *fp) {
1855 const char *name;
1856 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
1857 fprintf(fp,"\nCount = %d\n", _oplst.count());
1858 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
1859 fprintf(fp,"%s, ",name);
1860 }
1861 fprintf(fp,"\n");
1862 }
1863
1864
1865 //==============================Operands=======================================
1866 //------------------------------OperandForm------------------------------------
1867 OperandForm::OperandForm(const char* id)
1868 : OpClassForm(id), _ideal_only(false),
1869 _localNames(cmpstr, hashstr, Form::arena) {
1870 _ftype = Form::OPER;
1871
1872 _matrule = NULL;
1873 _interface = NULL;
1874 _attribs = NULL;
1875 _predicate = NULL;
1876 _constraint= NULL;
1877 _construct = NULL;
1878 _format = NULL;
1879 }
1880 OperandForm::OperandForm(const char* id, bool ideal_only)
1881 : OpClassForm(id), _ideal_only(ideal_only),
1882 _localNames(cmpstr, hashstr, Form::arena) {
1883 _ftype = Form::OPER;
1884
1885 _matrule = NULL;
1886 _interface = NULL;
1887 _attribs = NULL;
1888 _predicate = NULL;
1889 _constraint= NULL;
1890 _construct = NULL;
1891 _format = NULL;
1892 }
1893 OperandForm::~OperandForm() {
1894 }
1895
1896
1897 OperandForm *OperandForm::is_operand() const {
1898 return (OperandForm*)this;
1899 }
1900
1901 bool OperandForm::ideal_only() const {
1902 return _ideal_only;
1903 }
1904
1905 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
1906 if( _interface == NULL ) return Form::no_interface;
1907
1908 return _interface->interface_type(globals);
1909 }
1910
1911
1912 bool OperandForm::stack_slots_only(FormDict &globals) const {
1913 if( _constraint == NULL ) return false;
1914 return _constraint->stack_slots_only();
1915 }
1916
1917
1918 // Access op_cost attribute or return NULL.
1919 const char* OperandForm::cost() {
1920 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
1921 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
1922 return cur->_val;
1923 }
1924 }
1925 return NULL;
1926 }
1927
1928 // Return the number of leaves below this complex operand
1929 uint OperandForm::num_leaves() const {
1930 if ( ! _matrule) return 0;
1931
1932 int num_leaves = _matrule->_numleaves;
1933 return num_leaves;
1934 }
1935
1936 // Return the number of constants contained within this complex operand
1937 uint OperandForm::num_consts(FormDict &globals) const {
1938 if ( ! _matrule) return 0;
1939
1940 // This is a recursive invocation on all operands in the matchrule
1941 return _matrule->num_consts(globals);
1942 }
1943
1944 // Return the number of constants in match rule with specified type
1945 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
1946 if ( ! _matrule) return 0;
1947
1948 // This is a recursive invocation on all operands in the matchrule
1949 return _matrule->num_consts(globals, type);
1950 }
1951
1952 // Return the number of pointer constants contained within this complex operand
1953 uint OperandForm::num_const_ptrs(FormDict &globals) const {
1954 if ( ! _matrule) return 0;
1955
1956 // This is a recursive invocation on all operands in the matchrule
1957 return _matrule->num_const_ptrs(globals);
1958 }
1959
1960 uint OperandForm::num_edges(FormDict &globals) const {
1961 uint edges = 0;
1962 uint leaves = num_leaves();
1963 uint consts = num_consts(globals);
1964
1965 // If we are matching a constant directly, there are no leaves.
1966 edges = ( leaves > consts ) ? leaves - consts : 0;
1967
1968 // !!!!!
1969 // Special case operands that do not have a corresponding ideal node.
1970 if( (edges == 0) && (consts == 0) ) {
1971 if( constrained_reg_class() != NULL ) {
1972 edges = 1;
1973 } else {
1974 if( _matrule
1975 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
1976 const Form *form = globals[_matrule->_opType];
1977 OperandForm *oper = form ? form->is_operand() : NULL;
1978 if( oper ) {
1979 return oper->num_edges(globals);
1980 }
1981 }
1982 }
1983 }
1984
1985 return edges;
1986 }
1987
1988
1989 // Check if this operand is usable for cisc-spilling
1990 bool OperandForm::is_cisc_reg(FormDict &globals) const {
1991 const char *ideal = ideal_type(globals);
1992 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
1993 return is_cisc_reg;
1994 }
1995
1996 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
1997 Form::InterfaceType my_interface = interface_type(globals);
1998 return (my_interface == memory_interface);
1999 }
2000
2001
2002 // node matches ideal 'Bool'
2003 bool OperandForm::is_ideal_bool() const {
2004 if( _matrule == NULL ) return false;
2005
2006 return _matrule->is_ideal_bool();
2007 }
2008
2009 // Require user's name for an sRegX to be stackSlotX
2010 Form::DataType OperandForm::is_user_name_for_sReg() const {
2011 DataType data_type = none;
2012 if( _ident != NULL ) {
2013 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2014 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2015 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2016 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2017 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2018 }
2019 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2020
2021 return data_type;
2022 }
2023
2024
2025 // Return ideal type, if there is a single ideal type for this operand
2026 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2027 const char *type = NULL;
2028 if (ideal_only()) type = _ident;
2029 else if( _matrule == NULL ) {
2030 // Check for condition code register
2031 const char *rc_name = constrained_reg_class();
2032 // !!!!!
2033 if (rc_name == NULL) return NULL;
2034 // !!!!! !!!!!
2035 // Check constraints on result's register class
2036 if( registers ) {
2037 RegClass *reg_class = registers->getRegClass(rc_name);
2038 assert( reg_class != NULL, "Register class is not defined");
2039
2040 // Check for ideal type of entries in register class, all are the same type
2041 reg_class->reset();
2042 RegDef *reg_def = reg_class->RegDef_iter();
2043 assert( reg_def != NULL, "No entries in register class");
2044 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2045 // Return substring that names the register's ideal type
2046 type = reg_def->_idealtype + 3;
2047 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2048 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2049 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2050 }
2051 }
2052 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2053 // This operand matches a single type, at the top level.
2054 // Check for ideal type
2055 type = _matrule->_opType;
2056 if( strcmp(type,"Bool") == 0 )
2057 return "Bool";
2058 // transitive lookup
2059 const Form *frm = globals[type];
2060 OperandForm *op = frm->is_operand();
2061 type = op->ideal_type(globals, registers);
2062 }
2063 return type;
2064 }
2065
2066
2067 // If there is a single ideal type for this interface field, return it.
2068 const char *OperandForm::interface_ideal_type(FormDict &globals,
2069 const char *field) const {
2070 const char *ideal_type = NULL;
2071 const char *value = NULL;
2072
2073 // Check if "field" is valid for this operand's interface
2074 if ( ! is_interface_field(field, value) ) return ideal_type;
2075
2076 // !!!!! !!!!! !!!!!
2077 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2078
2079 // Else, lookup type of field's replacement variable
2080
2081 return ideal_type;
2082 }
2083
2084
2085 RegClass* OperandForm::get_RegClass() const {
2086 if (_interface && !_interface->is_RegInterface()) return NULL;
2087 return globalAD->get_registers()->getRegClass(constrained_reg_class());
2088 }
2089
2090
2091 bool OperandForm::is_bound_register() const {
2092 RegClass *reg_class = get_RegClass();
2093 if (reg_class == NULL) return false;
2094
2095 const char * name = ideal_type(globalAD->globalNames());
2096 if (name == NULL) return false;
2097
2098 int size = 0;
2099 if (strcmp(name,"RegFlags")==0) size = 1;
2100 if (strcmp(name,"RegI")==0) size = 1;
2101 if (strcmp(name,"RegF")==0) size = 1;
2102 if (strcmp(name,"RegD")==0) size = 2;
2103 if (strcmp(name,"RegL")==0) size = 2;
2104 if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
2105 if (size == 0) return false;
2106 return size == reg_class->size();
2107 }
2108
2109
2110 // Check if this is a valid field for this operand,
2111 // Return 'true' if valid, and set the value to the string the user provided.
2112 bool OperandForm::is_interface_field(const char *field,
2113 const char * &value) const {
2114 return false;
2115 }
2116
2117
2118 // Return register class name if a constraint specifies the register class.
2119 const char *OperandForm::constrained_reg_class() const {
2120 const char *reg_class = NULL;
2121 if ( _constraint ) {
2122 // !!!!!
2123 Constraint *constraint = _constraint;
2124 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2125 reg_class = _constraint->_arg;
2126 }
2127 }
2128
2129 return reg_class;
2130 }
2131
2132
2133 // Return the register class associated with 'leaf'.
2134 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2135 const char *reg_class = NULL; // "RegMask::Empty";
2136
2137 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2138 reg_class = constrained_reg_class();
2139 return reg_class;
2140 }
2141 const char *result = NULL;
2142 const char *name = NULL;
2143 const char *type = NULL;
2144 // iterate through all base operands
2145 // until we reach the register that corresponds to "leaf"
2146 // This function is not looking for an ideal type. It needs the first
2147 // level user type associated with the leaf.
2148 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2149 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2150 OperandForm *oper = form ? form->is_operand() : NULL;
2151 if( oper ) {
2152 reg_class = oper->constrained_reg_class();
2153 if( reg_class ) {
2154 reg_class = reg_class;
2155 } else {
2156 // ShouldNotReachHere();
2157 }
2158 } else {
2159 // ShouldNotReachHere();
2160 }
2161
2162 // Increment our target leaf position if current leaf is not a candidate.
2163 if( reg_class == NULL) ++leaf;
2164 // Exit the loop with the value of reg_class when at the correct index
2165 if( idx == leaf ) break;
2166 // May iterate through all base operands if reg_class for 'leaf' is NULL
2167 }
2168 return reg_class;
2169 }
2170
2171
2172 // Recursive call to construct list of top-level operands.
2173 // Implementation does not modify state of internal structures
2174 void OperandForm::build_components() {
2175 if (_matrule) _matrule->append_components(_localNames, _components);
2176
2177 // Add parameters that "do not appear in match rule".
2178 const char *name;
2179 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2180 OperandForm *opForm = (OperandForm*)_localNames[name];
2181
2182 if ( _components.operand_position(name) == -1 ) {
2183 _components.insert(name, opForm->_ident, Component::INVALID, false);
2184 }
2185 }
2186
2187 return;
2188 }
2189
2190 int OperandForm::operand_position(const char *name, int usedef) {
2191 return _components.operand_position(name, usedef);
2192 }
2193
2194
2195 // Return zero-based position in component list, only counting constants;
2196 // Return -1 if not in list.
2197 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2198 // Iterate through components and count constants preceeding 'constant'
2199 uint position = 0;
2200 Component *comp;
2201 _components.reset();
2202 while( (comp = _components.iter()) != NULL && (comp != last) ) {
2203 // Special case for operands that take a single user-defined operand
2204 // Skip the initial definition in the component list.
2205 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2206
2207 const char *type = comp->_type;
2208 // Lookup operand form for replacement variable's type
2209 const Form *form = globals[type];
2210 assert( form != NULL, "Component's type not found");
2211 OperandForm *oper = form ? form->is_operand() : NULL;
2212 if( oper ) {
2213 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2214 ++position;
2215 }
2216 }
2217 }
2218
2219 // Check for being passed a component that was not in the list
2220 if( comp != last ) position = -1;
2221
2222 return position;
2223 }
2224 // Provide position of constant by "name"
2225 int OperandForm::constant_position(FormDict &globals, const char *name) {
2226 const Component *comp = _components.search(name);
2227 int idx = constant_position( globals, comp );
2228
2229 return idx;
2230 }
2231
2232
2233 // Return zero-based position in component list, only counting constants;
2234 // Return -1 if not in list.
2235 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2236 // Iterate through components and count registers preceeding 'last'
2237 uint position = 0;
2238 Component *comp;
2239 _components.reset();
2240 while( (comp = _components.iter()) != NULL
2241 && (strcmp(comp->_name,reg_name) != 0) ) {
2242 // Special case for operands that take a single user-defined operand
2243 // Skip the initial definition in the component list.
2244 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2245
2246 const char *type = comp->_type;
2247 // Lookup operand form for component's type
2248 const Form *form = globals[type];
2249 assert( form != NULL, "Component's type not found");
2250 OperandForm *oper = form ? form->is_operand() : NULL;
2251 if( oper ) {
2252 if( oper->_matrule->is_base_register(globals) ) {
2253 ++position;
2254 }
2255 }
2256 }
2257
2258 return position;
2259 }
2260
2261
2262 const char *OperandForm::reduce_result() const {
2263 return _ident;
2264 }
2265 // Return the name of the operand on the right hand side of the binary match
2266 // Return NULL if there is no right hand side
2267 const char *OperandForm::reduce_right(FormDict &globals) const {
2268 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
2269 }
2270
2271 // Similar for left
2272 const char *OperandForm::reduce_left(FormDict &globals) const {
2273 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
2274 }
2275
2276
2277 // --------------------------- FILE *output_routines
2278 //
2279 // Output code for disp_is_oop, if true.
2280 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2281 // Check it is a memory interface with a non-user-constant disp field
2282 if ( this->_interface == NULL ) return;
2283 MemInterface *mem_interface = this->_interface->is_MemInterface();
2284 if ( mem_interface == NULL ) return;
2285 const char *disp = mem_interface->_disp;
2286 if ( *disp != '$' ) return;
2287
2288 // Lookup replacement variable in operand's component list
2289 const char *rep_var = disp + 1;
2290 const Component *comp = this->_components.search(rep_var);
2291 assert( comp != NULL, "Replacement variable not found in components");
2292 // Lookup operand form for replacement variable's type
2293 const char *type = comp->_type;
2294 Form *form = (Form*)globals[type];
2295 assert( form != NULL, "Replacement variable's type not found");
2296 OperandForm *op = form->is_operand();
2297 assert( op, "Memory Interface 'disp' can only emit an operand form");
2298 // Check if this is a ConP, which may require relocation
2299 if ( op->is_base_constant(globals) == Form::idealP ) {
2300 // Find the constant's index: _c0, _c1, _c2, ... , _cN
2301 uint idx = op->constant_position( globals, rep_var);
2302 fprintf(fp," virtual bool disp_is_oop() const {", _ident);
2303 fprintf(fp, " return _c%d->isa_oop_ptr();", idx);
2304 fprintf(fp, " }\n");
2305 }
2306 }
2307
2308 // Generate code for internal and external format methods
2309 //
2310 // internal access to reg# node->_idx
2311 // access to subsumed constant _c0, _c1,
2312 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2313 Form::DataType dtype;
2314 if (_matrule && (_matrule->is_base_register(globals) ||
2315 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2316 // !!!!! !!!!!
2317 fprintf(fp, "{ char reg_str[128];\n");
2318 fprintf(fp," ra->dump_register(node,reg_str);\n");
2319 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
2320 fprintf(fp," }\n");
2321 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2322 format_constant( fp, index, dtype );
2323 } else if (ideal_to_sReg_type(_ident) != Form::none) {
2324 // Special format for Stack Slot Register
2325 fprintf(fp, "{ char reg_str[128];\n");
2326 fprintf(fp," ra->dump_register(node,reg_str);\n");
2327 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
2328 fprintf(fp," }\n");
2329 } else {
2330 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2331 fflush(fp);
2332 fprintf(stderr,"No format defined for %s\n", _ident);
2333 dump();
2334 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
2335 }
2336 }
2337
2338 // Similar to "int_format" but for cases where data is external to operand
2339 // external access to reg# node->in(idx)->_idx,
2340 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2341 Form::DataType dtype;
2342 if (_matrule && (_matrule->is_base_register(globals) ||
2343 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2344 fprintf(fp, "{ char reg_str[128];\n");
2345 fprintf(fp," ra->dump_register(node->in(idx");
2346 if ( index != 0 ) fprintf(fp, "+%d",index);
2347 fprintf(fp, "),reg_str);\n");
2348 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
2349 fprintf(fp," }\n");
2350 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2351 format_constant( fp, index, dtype );
2352 } else if (ideal_to_sReg_type(_ident) != Form::none) {
2353 // Special format for Stack Slot Register
2354 fprintf(fp, "{ char reg_str[128];\n");
2355 fprintf(fp," ra->dump_register(node->in(idx");
2356 if ( index != 0 ) fprintf(fp, "+%d",index);
2357 fprintf(fp, "),reg_str);\n");
2358 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
2359 fprintf(fp," }\n");
2360 } else {
2361 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2362 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
2363 }
2364 }
2365
2366 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2367 switch(const_type) {
2368 case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
2369 case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
2370 case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
2371 case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2372 case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2373 default:
2374 assert( false, "ShouldNotReachHere()");
2375 }
2376 }
2377
2378 // Return the operand form corresponding to the given index, else NULL.
2379 OperandForm *OperandForm::constant_operand(FormDict &globals,
2380 uint index) {
2381 // !!!!!
2382 // Check behavior on complex operands
2383 uint n_consts = num_consts(globals);
2384 if( n_consts > 0 ) {
2385 uint i = 0;
2386 const char *type;
2387 Component *comp;
2388 _components.reset();
2389 if ((comp = _components.iter()) == NULL) {
2390 assert(n_consts == 1, "Bad component list detected.\n");
2391 // Current operand is THE operand
2392 if ( index == 0 ) {
2393 return this;
2394 }
2395 } // end if NULL
2396 else {
2397 // Skip the first component, it can not be a DEF of a constant
2398 do {
2399 type = comp->base_type(globals);
2400 // Check that "type" is a 'ConI', 'ConP', ...
2401 if ( ideal_to_const_type(type) != Form::none ) {
2402 // When at correct component, get corresponding Operand
2403 if ( index == 0 ) {
2404 return globals[comp->_type]->is_operand();
2405 }
2406 // Decrement number of constants to go
2407 --index;
2408 }
2409 } while((comp = _components.iter()) != NULL);
2410 }
2411 }
2412
2413 // Did not find a constant for this index.
2414 return NULL;
2415 }
2416
2417 // If this operand has a single ideal type, return its type
2418 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2419 const char *type_name = ideal_type(globals);
2420 Form::DataType type = type_name ? ideal_to_const_type( type_name )
2421 : Form::none;
2422 return type;
2423 }
2424
2425 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2426 if ( _matrule == NULL ) return Form::none;
2427
2428 return _matrule->is_base_constant(globals);
2429 }
2430
2431 // "true" if this operand is a simple type that is swallowed
2432 bool OperandForm::swallowed(FormDict &globals) const {
2433 Form::DataType type = simple_type(globals);
2434 if( type != Form::none ) {
2435 return true;
2436 }
2437
2438 return false;
2439 }
2440
2441 // Output code to access the value of the index'th constant
2442 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2443 uint const_index) {
2444 OperandForm *oper = constant_operand(globals, const_index);
2445 assert( oper, "Index exceeds number of constants in operand");
2446 Form::DataType dtype = oper->is_base_constant(globals);
2447
2448 switch(dtype) {
2449 case idealI: fprintf(fp,"_c%d", const_index); break;
2450 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2451 case idealL: fprintf(fp,"_c%d", const_index); break;
2452 case idealF: fprintf(fp,"_c%d", const_index); break;
2453 case idealD: fprintf(fp,"_c%d", const_index); break;
2454 default:
2455 assert( false, "ShouldNotReachHere()");
2456 }
2457 }
2458
2459
2460 void OperandForm::dump() {
2461 output(stderr);
2462 }
2463
2464 void OperandForm::output(FILE *fp) {
2465 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2466 if (_matrule) _matrule->dump();
2467 if (_interface) _interface->dump();
2468 if (_attribs) _attribs->dump();
2469 if (_predicate) _predicate->dump();
2470 if (_constraint) _constraint->dump();
2471 if (_construct) _construct->dump();
2472 if (_format) _format->dump();
2473 }
2474
2475 //------------------------------Constraint-------------------------------------
2476 Constraint::Constraint(const char *func, const char *arg)
2477 : _func(func), _arg(arg) {
2478 }
2479 Constraint::~Constraint() { /* not owner of char* */
2480 }
2481
2482 bool Constraint::stack_slots_only() const {
2483 return strcmp(_func, "ALLOC_IN_RC") == 0
2484 && strcmp(_arg, "stack_slots") == 0;
2485 }
2486
2487 void Constraint::dump() {
2488 output(stderr);
2489 }
2490
2491 void Constraint::output(FILE *fp) { // Write info to output files
2492 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2493 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2494 }
2495
2496 //------------------------------Predicate--------------------------------------
2497 Predicate::Predicate(char *pr)
2498 : _pred(pr) {
2499 }
2500 Predicate::~Predicate() {
2501 }
2502
2503 void Predicate::dump() {
2504 output(stderr);
2505 }
2506
2507 void Predicate::output(FILE *fp) {
2508 fprintf(fp,"Predicate"); // Write to output files
2509 }
2510 //------------------------------Interface--------------------------------------
2511 Interface::Interface(const char *name) : _name(name) {
2512 }
2513 Interface::~Interface() {
2514 }
2515
2516 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2517 Interface *thsi = (Interface*)this;
2518 if ( thsi->is_RegInterface() ) return Form::register_interface;
2519 if ( thsi->is_MemInterface() ) return Form::memory_interface;
2520 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2521 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
2522
2523 return Form::no_interface;
2524 }
2525
2526 RegInterface *Interface::is_RegInterface() {
2527 if ( strcmp(_name,"REG_INTER") != 0 )
2528 return NULL;
2529 return (RegInterface*)this;
2530 }
2531 MemInterface *Interface::is_MemInterface() {
2532 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
2533 return (MemInterface*)this;
2534 }
2535 ConstInterface *Interface::is_ConstInterface() {
2536 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
2537 return (ConstInterface*)this;
2538 }
2539 CondInterface *Interface::is_CondInterface() {
2540 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
2541 return (CondInterface*)this;
2542 }
2543
2544
2545 void Interface::dump() {
2546 output(stderr);
2547 }
2548
2549 // Write info to output files
2550 void Interface::output(FILE *fp) {
2551 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2552 }
2553
2554 //------------------------------RegInterface-----------------------------------
2555 RegInterface::RegInterface() : Interface("REG_INTER") {
2556 }
2557 RegInterface::~RegInterface() {
2558 }
2559
2560 void RegInterface::dump() {
2561 output(stderr);
2562 }
2563
2564 // Write info to output files
2565 void RegInterface::output(FILE *fp) {
2566 Interface::output(fp);
2567 }
2568
2569 //------------------------------ConstInterface---------------------------------
2570 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2571 }
2572 ConstInterface::~ConstInterface() {
2573 }
2574
2575 void ConstInterface::dump() {
2576 output(stderr);
2577 }
2578
2579 // Write info to output files
2580 void ConstInterface::output(FILE *fp) {
2581 Interface::output(fp);
2582 }
2583
2584 //------------------------------MemInterface-----------------------------------
2585 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2586 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2587 }
2588 MemInterface::~MemInterface() {
2589 // not owner of any character arrays
2590 }
2591
2592 void MemInterface::dump() {
2593 output(stderr);
2594 }
2595
2596 // Write info to output files
2597 void MemInterface::output(FILE *fp) {
2598 Interface::output(fp);
2599 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
2600 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
2601 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
2602 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
2603 // fprintf(fp,"\n");
2604 }
2605
2606 //------------------------------CondInterface----------------------------------
2607 CondInterface::CondInterface(char *equal, char *not_equal,
2608 char *less, char *greater_equal,
2609 char *less_equal, char *greater)
2610 : Interface("COND_INTER"),
2611 _equal(equal), _not_equal(not_equal),
2612 _less(less), _greater_equal(greater_equal),
2613 _less_equal(less_equal), _greater(greater) {
2614 //
2615 }
2616 CondInterface::~CondInterface() {
2617 // not owner of any character arrays
2618 }
2619
2620 void CondInterface::dump() {
2621 output(stderr);
2622 }
2623
2624 // Write info to output files
2625 void CondInterface::output(FILE *fp) {
2626 Interface::output(fp);
2627 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
2628 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
2629 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
2630 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
2631 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
2632 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
2633 // fprintf(fp,"\n");
2634 }
2635
2636 //------------------------------ConstructRule----------------------------------
2637 ConstructRule::ConstructRule(char *cnstr)
2638 : _construct(cnstr) {
2639 }
2640 ConstructRule::~ConstructRule() {
2641 }
2642
2643 void ConstructRule::dump() {
2644 output(stderr);
2645 }
2646
2647 void ConstructRule::output(FILE *fp) {
2648 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
2649 }
2650
2651
2652 //==============================Shared Forms===================================
2653 //------------------------------AttributeForm----------------------------------
2654 int AttributeForm::_insId = 0; // start counter at 0
2655 int AttributeForm::_opId = 0; // start counter at 0
2656 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2657 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
2658 const char* AttributeForm::_op_cost = "op_cost"; // required name
2659
2660 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2661 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2662 if (type==OP_ATTR) {
2663 id = ++_opId;
2664 }
2665 else if (type==INS_ATTR) {
2666 id = ++_insId;
2667 }
2668 else assert( false,"");
2669 }
2670 AttributeForm::~AttributeForm() {
2671 }
2672
2673 // Dynamic type check
2674 AttributeForm *AttributeForm::is_attribute() const {
2675 return (AttributeForm*)this;
2676 }
2677
2678
2679 // inlined // int AttributeForm::type() { return id;}
2680
2681 void AttributeForm::dump() {
2682 output(stderr);
2683 }
2684
2685 void AttributeForm::output(FILE *fp) {
2686 if( _attrname && _attrdef ) {
2687 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2688 _attrname, _attrdef);
2689 }
2690 else {
2691 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2692 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2693 }
2694 }
2695
2696 //------------------------------Component--------------------------------------
2697 Component::Component(const char *name, const char *type, int usedef)
2698 : _name(name), _type(type), _usedef(usedef) {
2699 _ftype = Form::COMP;
2700 }
2701 Component::~Component() {
2702 }
2703
2704 // True if this component is equal to the parameter.
2705 bool Component::is(int use_def_kill_enum) const {
2706 return (_usedef == use_def_kill_enum ? true : false);
2707 }
2708 // True if this component is used/def'd/kill'd as the parameter suggests.
2709 bool Component::isa(int use_def_kill_enum) const {
2710 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2711 }
2712
2713 // Extend this component with additional use/def/kill behavior
2714 int Component::promote_use_def_info(int new_use_def) {
2715 _usedef |= new_use_def;
2716
2717 return _usedef;
2718 }
2719
2720 // Check the base type of this component, if it has one
2721 const char *Component::base_type(FormDict &globals) {
2722 const Form *frm = globals[_type];
2723 if (frm == NULL) return NULL;
2724 OperandForm *op = frm->is_operand();
2725 if (op == NULL) return NULL;
2726 if (op->ideal_only()) return op->_ident;
2727 return (char *)op->ideal_type(globals);
2728 }
2729
2730 void Component::dump() {
2731 output(stderr);
2732 }
2733
2734 void Component::output(FILE *fp) {
2735 fprintf(fp,"Component:"); // Write to output files
2736 fprintf(fp, " name = %s", _name);
2737 fprintf(fp, ", type = %s", _type);
2738 const char * usedef = "Undefined Use/Def info";
2739 switch (_usedef) {
2740 case USE: usedef = "USE"; break;
2741 case USE_DEF: usedef = "USE_DEF"; break;
2742 case USE_KILL: usedef = "USE_KILL"; break;
2743 case KILL: usedef = "KILL"; break;
2744 case TEMP: usedef = "TEMP"; break;
2745 case DEF: usedef = "DEF"; break;
2746 default: assert(false, "unknown effect");
2747 }
2748 fprintf(fp, ", use/def = %s\n", usedef);
2749 }
2750
2751
2752 //------------------------------ComponentList---------------------------------
2753 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2754 }
2755 ComponentList::~ComponentList() {
2756 // // This list may not own its elements if copied via assignment
2757 // Component *component;
2758 // for (reset(); (component = iter()) != NULL;) {
2759 // delete component;
2760 // }
2761 }
2762
2763 void ComponentList::insert(Component *component, bool mflag) {
2764 NameList::addName((char *)component);
2765 if(mflag) _matchcnt++;
2766 }
2767 void ComponentList::insert(const char *name, const char *opType, int usedef,
2768 bool mflag) {
2769 Component * component = new Component(name, opType, usedef);
2770 insert(component, mflag);
2771 }
2772 Component *ComponentList::current() { return (Component*)NameList::current(); }
2773 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
2774 Component *ComponentList::match_iter() {
2775 if(_iter < _matchcnt) return (Component*)NameList::iter();
2776 return NULL;
2777 }
2778 Component *ComponentList::post_match_iter() {
2779 Component *comp = iter();
2780 // At end of list?
2781 if ( comp == NULL ) {
2782 return comp;
2783 }
2784 // In post-match components?
2785 if (_iter > match_count()-1) {
2786 return comp;
2787 }
2788
2789 return post_match_iter();
2790 }
2791
2792 void ComponentList::reset() { NameList::reset(); }
2793 int ComponentList::count() { return NameList::count(); }
2794
2795 Component *ComponentList::operator[](int position) {
2796 // Shortcut complete iteration if there are not enough entries
2797 if (position >= count()) return NULL;
2798
2799 int index = 0;
2800 Component *component = NULL;
2801 for (reset(); (component = iter()) != NULL;) {
2802 if (index == position) {
2803 return component;
2804 }
2805 ++index;
2806 }
2807
2808 return NULL;
2809 }
2810
2811 const Component *ComponentList::search(const char *name) {
2812 PreserveIter pi(this);
2813 reset();
2814 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2815 if( strcmp(comp->_name,name) == 0 ) return comp;
2816 }
2817
2818 return NULL;
2819 }
2820
2821 // Return number of USEs + number of DEFs
2822 // When there are no components, or the first component is a USE,
2823 // then we add '1' to hold a space for the 'result' operand.
2824 int ComponentList::num_operands() {
2825 PreserveIter pi(this);
2826 uint count = 1; // result operand
2827 uint position = 0;
2828
2829 Component *component = NULL;
2830 for( reset(); (component = iter()) != NULL; ++position ) {
2831 if( component->isa(Component::USE) ||
2832 ( position == 0 && (! component->isa(Component::DEF))) ) {
2833 ++count;
2834 }
2835 }
2836
2837 return count;
2838 }
2839
2840 // Return zero-based position in list; -1 if not in list.
2841 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2842 int ComponentList::operand_position(const char *name, int usedef) {
2843 PreserveIter pi(this);
2844 int position = 0;
2845 int num_opnds = num_operands();
2846 Component *component;
2847 Component* preceding_non_use = NULL;
2848 Component* first_def = NULL;
2849 for (reset(); (component = iter()) != NULL; ++position) {
2850 // When the first component is not a DEF,
2851 // leave space for the result operand!
2852 if ( position==0 && (! component->isa(Component::DEF)) ) {
2853 ++position;
2854 ++num_opnds;
2855 }
2856 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
2857 // When the first entry in the component list is a DEF and a USE
2858 // Treat them as being separate, a DEF first, then a USE
2859 if( position==0
2860 && usedef==Component::USE && component->isa(Component::DEF) ) {
2861 assert(position+1 < num_opnds, "advertised index in bounds");
2862 return position+1;
2863 } else {
2864 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
2865 fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
2866 }
2867 if( position >= num_opnds ) {
2868 fprintf(stderr, "the name '%s' is too late in its name list\n", name);
2869 }
2870 assert(position < num_opnds, "advertised index in bounds");
2871 return position;
2872 }
2873 }
2874 if( component->isa(Component::DEF)
2875 && component->isa(Component::USE) ) {
2876 ++position;
2877 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
2878 }
2879 if( component->isa(Component::DEF) && !first_def ) {
2880 first_def = component;
2881 }
2882 if( !component->isa(Component::USE) && component != first_def ) {
2883 preceding_non_use = component;
2884 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
2885 preceding_non_use = NULL;
2886 }
2887 }
2888 return Not_in_list;
2889 }
2890
2891 // Find position for this name, regardless of use/def information
2892 int ComponentList::operand_position(const char *name) {
2893 PreserveIter pi(this);
2894 int position = 0;
2895 Component *component;
2896 for (reset(); (component = iter()) != NULL; ++position) {
2897 // When the first component is not a DEF,
2898 // leave space for the result operand!
2899 if ( position==0 && (! component->isa(Component::DEF)) ) {
2900 ++position;
2901 }
2902 if (strcmp(name, component->_name)==0) {
2903 return position;
2904 }
2905 if( component->isa(Component::DEF)
2906 && component->isa(Component::USE) ) {
2907 ++position;
2908 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
2909 }
2910 }
2911 return Not_in_list;
2912 }
2913
2914 int ComponentList::operand_position_format(const char *name) {
2915 PreserveIter pi(this);
2916 int first_position = operand_position(name);
2917 int use_position = operand_position(name, Component::USE);
2918
2919 return ((first_position < use_position) ? use_position : first_position);
2920 }
2921
2922 int ComponentList::label_position() {
2923 PreserveIter pi(this);
2924 int position = 0;
2925 reset();
2926 for( Component *comp; (comp = iter()) != NULL; ++position) {
2927 // When the first component is not a DEF,
2928 // leave space for the result operand!
2929 if ( position==0 && (! comp->isa(Component::DEF)) ) {
2930 ++position;
2931 }
2932 if (strcmp(comp->_type, "label")==0) {
2933 return position;
2934 }
2935 if( comp->isa(Component::DEF)
2936 && comp->isa(Component::USE) ) {
2937 ++position;
2938 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
2939 }
2940 }
2941
2942 return -1;
2943 }
2944
2945 int ComponentList::method_position() {
2946 PreserveIter pi(this);
2947 int position = 0;
2948 reset();
2949 for( Component *comp; (comp = iter()) != NULL; ++position) {
2950 // When the first component is not a DEF,
2951 // leave space for the result operand!
2952 if ( position==0 && (! comp->isa(Component::DEF)) ) {
2953 ++position;
2954 }
2955 if (strcmp(comp->_type, "method")==0) {
2956 return position;
2957 }
2958 if( comp->isa(Component::DEF)
2959 && comp->isa(Component::USE) ) {
2960 ++position;
2961 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
2962 }
2963 }
2964
2965 return -1;
2966 }
2967
2968 void ComponentList::dump() { output(stderr); }
2969
2970 void ComponentList::output(FILE *fp) {
2971 PreserveIter pi(this);
2972 fprintf(fp, "\n");
2973 Component *component;
2974 for (reset(); (component = iter()) != NULL;) {
2975 component->output(fp);
2976 }
2977 fprintf(fp, "\n");
2978 }
2979
2980 //------------------------------MatchNode--------------------------------------
2981 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
2982 const char *opType, MatchNode *lChild, MatchNode *rChild)
2983 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
2984 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
2985 _commutative_id(0) {
2986 _numleaves = (lChild ? lChild->_numleaves : 0)
2987 + (rChild ? rChild->_numleaves : 0);
2988 }
2989
2990 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
2991 : _AD(ad), _result(mnode._result), _name(mnode._name),
2992 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
2993 _internalop(0), _numleaves(mnode._numleaves),
2994 _commutative_id(mnode._commutative_id) {
2995 }
2996
2997 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
2998 : _AD(ad), _result(mnode._result), _name(mnode._name),
2999 _opType(mnode._opType),
3000 _internalop(0), _numleaves(mnode._numleaves),
3001 _commutative_id(mnode._commutative_id) {
3002 if (mnode._lChild) {
3003 _lChild = new MatchNode(ad, *mnode._lChild, clone);
3004 } else {
3005 _lChild = NULL;
3006 }
3007 if (mnode._rChild) {
3008 _rChild = new MatchNode(ad, *mnode._rChild, clone);
3009 } else {
3010 _rChild = NULL;
3011 }
3012 }
3013
3014 MatchNode::~MatchNode() {
3015 // // This node may not own its children if copied via assignment
3016 // if( _lChild ) delete _lChild;
3017 // if( _rChild ) delete _rChild;
3018 }
3019
3020 bool MatchNode::find_type(const char *type, int &position) const {
3021 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3022 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3023
3024 if (strcmp(type,_opType)==0) {
3025 return true;
3026 } else {
3027 ++position;
3028 }
3029 return false;
3030 }
3031
3032 // Recursive call collecting info on top-level operands, not transitive.
3033 // Implementation does not modify state of internal structures.
3034 void MatchNode::append_components(FormDict &locals, ComponentList &components,
3035 bool deflag) const {
3036 int usedef = deflag ? Component::DEF : Component::USE;
3037 FormDict &globals = _AD.globalNames();
3038
3039 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3040 // Base case
3041 if (_lChild==NULL && _rChild==NULL) {
3042 // If _opType is not an operation, do not build a component for it #####
3043 const Form *f = globals[_opType];
3044 if( f != NULL ) {
3045 // Add non-ideals that are operands, operand-classes,
3046 if( ! f->ideal_only()
3047 && (f->is_opclass() || f->is_operand()) ) {
3048 components.insert(_name, _opType, usedef, true);
3049 }
3050 }
3051 return;
3052 }
3053 // Promote results of "Set" to DEF
3054 bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
3055 if (_lChild) _lChild->append_components(locals, components, def_flag);
3056 def_flag = false; // only applies to component immediately following 'Set'
3057 if (_rChild) _rChild->append_components(locals, components, def_flag);
3058 }
3059
3060 // Find the n'th base-operand in the match node,
3061 // recursively investigates match rules of user-defined operands.
3062 //
3063 // Implementation does not modify state of internal structures since they
3064 // can be shared.
3065 bool MatchNode::base_operand(uint &position, FormDict &globals,
3066 const char * &result, const char * &name,
3067 const char * &opType) const {
3068 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3069 // Base case
3070 if (_lChild==NULL && _rChild==NULL) {
3071 // Check for special case: "Universe", "label"
3072 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3073 if (position == 0) {
3074 result = _result;
3075 name = _name;
3076 opType = _opType;
3077 return 1;
3078 } else {
3079 -- position;
3080 return 0;
3081 }
3082 }
3083
3084 const Form *form = globals[_opType];
3085 MatchNode *matchNode = NULL;
3086 // Check for user-defined type
3087 if (form) {
3088 // User operand or instruction?
3089 OperandForm *opForm = form->is_operand();
3090 InstructForm *inForm = form->is_instruction();
3091 if ( opForm ) {
3092 matchNode = (MatchNode*)opForm->_matrule;
3093 } else if ( inForm ) {
3094 matchNode = (MatchNode*)inForm->_matrule;
3095 }
3096 }
3097 // if this is user-defined, recurse on match rule
3098 // User-defined operand and instruction forms have a match-rule.
3099 if (matchNode) {
3100 return (matchNode->base_operand(position,globals,result,name,opType));
3101 } else {
3102 // Either not a form, or a system-defined form (no match rule).
3103 if (position==0) {
3104 result = _result;
3105 name = _name;
3106 opType = _opType;
3107 return 1;
3108 } else {
3109 --position;
3110 return 0;
3111 }
3112 }
3113
3114 } else {
3115 // Examine the left child and right child as well
3116 if (_lChild) {
3117 if (_lChild->base_operand(position, globals, result, name, opType))
3118 return 1;
3119 }
3120
3121 if (_rChild) {
3122 if (_rChild->base_operand(position, globals, result, name, opType))
3123 return 1;
3124 }
3125 }
3126
3127 return 0;
3128 }
3129
3130 // Recursive call on all operands' match rules in my match rule.
3131 uint MatchNode::num_consts(FormDict &globals) const {
3132 uint index = 0;
3133 uint num_consts = 0;
3134 const char *result;
3135 const char *name;
3136 const char *opType;
3137
3138 for (uint position = index;
3139 base_operand(position,globals,result,name,opType); position = index) {
3140 ++index;
3141 if( ideal_to_const_type(opType) ) num_consts++;
3142 }
3143
3144 return num_consts;
3145 }
3146
3147 // Recursive call on all operands' match rules in my match rule.
3148 // Constants in match rule subtree with specified type
3149 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3150 uint index = 0;
3151 uint num_consts = 0;
3152 const char *result;
3153 const char *name;
3154 const char *opType;
3155
3156 for (uint position = index;
3157 base_operand(position,globals,result,name,opType); position = index) {
3158 ++index;
3159 if( ideal_to_const_type(opType) == type ) num_consts++;
3160 }
3161
3162 return num_consts;
3163 }
3164
3165 // Recursive call on all operands' match rules in my match rule.
3166 uint MatchNode::num_const_ptrs(FormDict &globals) const {
3167 return num_consts( globals, Form::idealP );
3168 }
3169
3170 bool MatchNode::sets_result() const {
3171 return ( (strcmp(_name,"Set") == 0) ? true : false );
3172 }
3173
3174 const char *MatchNode::reduce_right(FormDict &globals) const {
3175 // If there is no right reduction, return NULL.
3176 const char *rightStr = NULL;
3177
3178 // If we are a "Set", start from the right child.
3179 const MatchNode *const mnode = sets_result() ?
3180 (const MatchNode *const)this->_rChild :
3181 (const MatchNode *const)this;
3182
3183 // If our right child exists, it is the right reduction
3184 if ( mnode->_rChild ) {
3185 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3186 : mnode->_rChild->_opType;
3187 }
3188 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3189 return rightStr;
3190 }
3191
3192 const char *MatchNode::reduce_left(FormDict &globals) const {
3193 // If there is no left reduction, return NULL.
3194 const char *leftStr = NULL;
3195
3196 // If we are a "Set", start from the right child.
3197 const MatchNode *const mnode = sets_result() ?
3198 (const MatchNode *const)this->_rChild :
3199 (const MatchNode *const)this;
3200
3201 // If our left child exists, it is the left reduction
3202 if ( mnode->_lChild ) {
3203 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3204 : mnode->_lChild->_opType;
3205 } else {
3206 // May be simple chain rule: (Set dst operand_form_source)
3207 if ( sets_result() ) {
3208 OperandForm *oper = globals[mnode->_opType]->is_operand();
3209 if( oper ) {
3210 leftStr = mnode->_opType;
3211 }
3212 }
3213 }
3214 return leftStr;
3215 }
3216
3217 //------------------------------count_instr_names------------------------------
3218 // Count occurrences of operands names in the leaves of the instruction
3219 // match rule.
3220 void MatchNode::count_instr_names( Dict &names ) {
3221 if( !this ) return;
3222 if( _lChild ) _lChild->count_instr_names(names);
3223 if( _rChild ) _rChild->count_instr_names(names);
3224 if( !_lChild && !_rChild ) {
3225 uintptr_t cnt = (uintptr_t)names[_name];
3226 cnt++; // One more name found
3227 names.Insert(_name,(void*)cnt);
3228 }
3229 }
3230
3231 //------------------------------build_instr_pred-------------------------------
3232 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
3233 // can skip some leading instances of 'name'.
3234 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3235 if( _lChild ) {
3236 if( !cnt ) strcpy( buf, "_kids[0]->" );
3237 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3238 if( cnt < 0 ) return cnt; // Found it, all done
3239 }
3240 if( _rChild ) {
3241 if( !cnt ) strcpy( buf, "_kids[1]->" );
3242 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3243 if( cnt < 0 ) return cnt; // Found it, all done
3244 }
3245 if( !_lChild && !_rChild ) { // Found a leaf
3246 // Wrong name? Give up...
3247 if( strcmp(name,_name) ) return cnt;
3248 if( !cnt ) strcpy(buf,"_leaf");
3249 return cnt-1;
3250 }
3251 return cnt;
3252 }
3253
3254
3255 //------------------------------build_internalop-------------------------------
3256 // Build string representation of subtree
3257 void MatchNode::build_internalop( ) {
3258 char *iop, *subtree;
3259 const char *lstr, *rstr;
3260 // Build string representation of subtree
3261 // Operation lchildType rchildType
3262 int len = (int)strlen(_opType) + 4;
3263 lstr = (_lChild) ? ((_lChild->_internalop) ?
3264 _lChild->_internalop : _lChild->_opType) : "";
3265 rstr = (_rChild) ? ((_rChild->_internalop) ?
3266 _rChild->_internalop : _rChild->_opType) : "";
3267 len += (int)strlen(lstr) + (int)strlen(rstr);
3268 subtree = (char *)malloc(len);
3269 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3270 // Hash the subtree string in _internalOps; if a name exists, use it
3271 iop = (char *)_AD._internalOps[subtree];
3272 // Else create a unique name, and add it to the hash table
3273 if (iop == NULL) {
3274 iop = subtree;
3275 _AD._internalOps.Insert(subtree, iop);
3276 _AD._internalOpNames.addName(iop);
3277 _AD._internalMatch.Insert(iop, this);
3278 }
3279 // Add the internal operand name to the MatchNode
3280 _internalop = iop;
3281 _result = iop;
3282 }
3283
3284
3285 void MatchNode::dump() {
3286 output(stderr);
3287 }
3288
3289 void MatchNode::output(FILE *fp) {
3290 if (_lChild==0 && _rChild==0) {
3291 fprintf(fp," %s",_name); // operand
3292 }
3293 else {
3294 fprintf(fp," (%s ",_name); // " (opcodeName "
3295 if(_lChild) _lChild->output(fp); // left operand
3296 if(_rChild) _rChild->output(fp); // right operand
3297 fprintf(fp,")"); // ")"
3298 }
3299 }
3300
3301 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3302 static const char *needs_ideal_memory_list[] = {
3303 "StoreI","StoreL","StoreP","StoreD","StoreF" ,
3304 "StoreB","StoreC","Store" ,"StoreFP",
3305 "LoadI" ,"LoadL", "LoadP" ,"LoadD" ,"LoadF" ,
3306 "LoadB" ,"LoadC" ,"LoadS" ,"Load" ,
3307 "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
3308 "Store8B","Store4B","Store8C","Store4C","Store2C",
3309 "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
3310 "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
3311 "LoadRange", "LoadKlass", "LoadL_unaligned", "LoadD_unaligned",
3312 "LoadPLocked", "LoadLLocked",
3313 "StorePConditional", "StoreLConditional",
3314 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP",
3315 "StoreCM",
3316 "ClearArray"
3317 };
3318 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3319 if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
3320 return 1;
3321 if( _lChild ) {
3322 const char *opType = _lChild->_opType;
3323 for( int i=0; i<cnt; i++ )
3324 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3325 return 1;
3326 if( _lChild->needs_ideal_memory_edge(globals) )
3327 return 1;
3328 }
3329 if( _rChild ) {
3330 const char *opType = _rChild->_opType;
3331 for( int i=0; i<cnt; i++ )
3332 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3333 return 1;
3334 if( _rChild->needs_ideal_memory_edge(globals) )
3335 return 1;
3336 }
3337
3338 return 0;
3339 }
3340
3341 // TRUE if defines a derived oop, and so needs a base oop edge present
3342 // post-matching.
3343 int MatchNode::needs_base_oop_edge() const {
3344 if( !strcmp(_opType,"AddP") ) return 1;
3345 if( strcmp(_opType,"Set") ) return 0;
3346 return !strcmp(_rChild->_opType,"AddP");
3347 }
3348
3349 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3350 if( is_simple_chain_rule(globals) ) {
3351 const char *src = _matrule->_rChild->_opType;
3352 OperandForm *src_op = globals[src]->is_operand();
3353 assert( src_op, "Not operand class of chain rule" );
3354 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3355 } // Else check instruction
3356
3357 return _matrule ? _matrule->needs_base_oop_edge() : 0;
3358 }
3359
3360
3361 //-------------------------cisc spilling methods-------------------------------
3362 // helper routines and methods for detecting cisc-spilling instructions
3363 //-------------------------cisc_spill_merge------------------------------------
3364 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3365 int cisc_spillable = Maybe_cisc_spillable;
3366
3367 // Combine results of left and right checks
3368 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3369 // neither side is spillable, nor prevents cisc spilling
3370 cisc_spillable = Maybe_cisc_spillable;
3371 }
3372 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3373 // right side is spillable
3374 cisc_spillable = right_spillable;
3375 }
3376 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3377 // left side is spillable
3378 cisc_spillable = left_spillable;
3379 }
3380 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3381 // left or right prevents cisc spilling this instruction
3382 cisc_spillable = Not_cisc_spillable;
3383 }
3384 else {
3385 // Only allow one to spill
3386 cisc_spillable = Not_cisc_spillable;
3387 }
3388
3389 return cisc_spillable;
3390 }
3391
3392 //-------------------------root_ops_match--------------------------------------
3393 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3394 // Base Case: check that the current operands/operations match
3395 assert( op1, "Must have op's name");
3396 assert( op2, "Must have op's name");
3397 const Form *form1 = globals[op1];
3398 const Form *form2 = globals[op2];
3399
3400 return (form1 == form2);
3401 }
3402
3403 //-------------------------cisc_spill_match------------------------------------
3404 // Recursively check two MatchRules for legal conversion via cisc-spilling
3405 int MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
3406 int cisc_spillable = Maybe_cisc_spillable;
3407 int left_spillable = Maybe_cisc_spillable;
3408 int right_spillable = Maybe_cisc_spillable;
3409
3410 // Check that each has same number of operands at this level
3411 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3412 return Not_cisc_spillable;
3413
3414 // Base Case: check that the current operands/operations match
3415 // or are CISC spillable
3416 assert( _opType, "Must have _opType");
3417 assert( mRule2->_opType, "Must have _opType");
3418 const Form *form = globals[_opType];
3419 const Form *form2 = globals[mRule2->_opType];
3420 if( form == form2 ) {
3421 cisc_spillable = Maybe_cisc_spillable;
3422 } else {
3423 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3424 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3425 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3426 // Detect reg vs (loadX memory)
3427 if( form->is_cisc_reg(globals)
3428 && form2_inst
3429 && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
3430 && (name_left != NULL) // NOT (load)
3431 && (name_right == NULL) ) { // NOT (load memory foo)
3432 const Form *form2_left = name_left ? globals[name_left] : NULL;
3433 if( form2_left && form2_left->is_cisc_mem(globals) ) {
3434 cisc_spillable = Is_cisc_spillable;
3435 operand = _name;
3436 reg_type = _result;
3437 return Is_cisc_spillable;
3438 } else {
3439 cisc_spillable = Not_cisc_spillable;
3440 }
3441 }
3442 // Detect reg vs memory
3443 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3444 cisc_spillable = Is_cisc_spillable;
3445 operand = _name;
3446 reg_type = _result;
3447 return Is_cisc_spillable;
3448 } else {
3449 cisc_spillable = Not_cisc_spillable;
3450 }
3451 }
3452
3453 // If cisc is still possible, check rest of tree
3454 if( cisc_spillable == Maybe_cisc_spillable ) {
3455 // Check that each has same number of operands at this level
3456 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3457
3458 // Check left operands
3459 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3460 left_spillable = Maybe_cisc_spillable;
3461 } else {
3462 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3463 }
3464
3465 // Check right operands
3466 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3467 right_spillable = Maybe_cisc_spillable;
3468 } else {
3469 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3470 }
3471
3472 // Combine results of left and right checks
3473 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3474 }
3475
3476 return cisc_spillable;
3477 }
3478
3479 //---------------------------cisc_spill_match----------------------------------
3480 // Recursively check two MatchRules for legal conversion via cisc-spilling
3481 // This method handles the root of Match tree,
3482 // general recursive checks done in MatchNode
3483 int MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
3484 MatchRule *mRule2, const char * &operand,
3485 const char * &reg_type) {
3486 int cisc_spillable = Maybe_cisc_spillable;
3487 int left_spillable = Maybe_cisc_spillable;
3488 int right_spillable = Maybe_cisc_spillable;
3489
3490 // Check that each sets a result
3491 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3492 // Check that each has same number of operands at this level
3493 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3494
3495 // Check left operands: at root, must be target of 'Set'
3496 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3497 left_spillable = Not_cisc_spillable;
3498 } else {
3499 // Do not support cisc-spilling instruction's target location
3500 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3501 left_spillable = Maybe_cisc_spillable;
3502 } else {
3503 left_spillable = Not_cisc_spillable;
3504 }
3505 }
3506
3507 // Check right operands: recursive walk to identify reg->mem operand
3508 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3509 right_spillable = Maybe_cisc_spillable;
3510 } else {
3511 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3512 }
3513
3514 // Combine results of left and right checks
3515 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3516
3517 return cisc_spillable;
3518 }
3519
3520 //----------------------------- equivalent ------------------------------------
3521 // Recursively check to see if two match rules are equivalent.
3522 // This rule handles the root.
3523 bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
3524 // Check that each sets a result
3525 if (sets_result() != mRule2->sets_result()) {
3526 return false;
3527 }
3528
3529 // Check that the current operands/operations match
3530 assert( _opType, "Must have _opType");
3531 assert( mRule2->_opType, "Must have _opType");
3532 const Form *form = globals[_opType];
3533 const Form *form2 = globals[mRule2->_opType];
3534 if( form != form2 ) {
3535 return false;
3536 }
3537
3538 if (_lChild ) {
3539 if( !_lChild->equivalent(globals, mRule2->_lChild) )
3540 return false;
3541 } else if (mRule2->_lChild) {
3542 return false; // I have NULL left child, mRule2 has non-NULL left child.
3543 }
3544
3545 if (_rChild ) {
3546 if( !_rChild->equivalent(globals, mRule2->_rChild) )
3547 return false;
3548 } else if (mRule2->_rChild) {
3549 return false; // I have NULL right child, mRule2 has non-NULL right child.
3550 }
3551
3552 // We've made it through the gauntlet.
3553 return true;
3554 }
3555
3556 //----------------------------- equivalent ------------------------------------
3557 // Recursively check to see if two match rules are equivalent.
3558 // This rule handles the operands.
3559 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3560 if( !mNode2 )
3561 return false;
3562
3563 // Check that the current operands/operations match
3564 assert( _opType, "Must have _opType");
3565 assert( mNode2->_opType, "Must have _opType");
3566 const Form *form = globals[_opType];
3567 const Form *form2 = globals[mNode2->_opType];
3568 return (form == form2);
3569 }
3570
3571 //-------------------------- has_commutative_op -------------------------------
3572 // Recursively check for commutative operations with subtree operands
3573 // which could be swapped.
3574 void MatchNode::count_commutative_op(int& count) {
3575 static const char *commut_op_list[] = {
3576 "AddI","AddL","AddF","AddD",
3577 "AndI","AndL",
3578 "MaxI","MinI",
3579 "MulI","MulL","MulF","MulD",
3580 "OrI" ,"OrL" ,
3581 "XorI","XorL"
3582 };
3583 int cnt = sizeof(commut_op_list)/sizeof(char*);
3584
3585 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3586 // Don't swap if right operand is an immediate constant.
3587 bool is_const = false;
3588 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3589 FormDict &globals = _AD.globalNames();
3590 const Form *form = globals[_rChild->_opType];
3591 if ( form ) {
3592 OperandForm *oper = form->is_operand();
3593 if( oper && oper->interface_type(globals) == Form::constant_interface )
3594 is_const = true;
3595 }
3596 }
3597 if( !is_const ) {
3598 for( int i=0; i<cnt; i++ ) {
3599 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3600 count++;
3601 _commutative_id = count; // id should be > 0
3602 break;
3603 }
3604 }
3605 }
3606 }
3607 if( _lChild )
3608 _lChild->count_commutative_op(count);
3609 if( _rChild )
3610 _rChild->count_commutative_op(count);
3611 }
3612
3613 //-------------------------- swap_commutative_op ------------------------------
3614 // Recursively swap specified commutative operation with subtree operands.
3615 void MatchNode::swap_commutative_op(bool atroot, int id) {
3616 if( _commutative_id == id ) { // id should be > 0
3617 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3618 "not swappable operation");
3619 MatchNode* tmp = _lChild;
3620 _lChild = _rChild;
3621 _rChild = tmp;
3622 // Don't exit here since we need to build internalop.
3623 }
3624
3625 bool is_set = ( strcmp(_opType, "Set") == 0 );
3626 if( _lChild )
3627 _lChild->swap_commutative_op(is_set, id);
3628 if( _rChild )
3629 _rChild->swap_commutative_op(is_set, id);
3630
3631 // If not the root, reduce this subtree to an internal operand
3632 if( !atroot && (_lChild || _rChild) ) {
3633 build_internalop();
3634 }
3635 }
3636
3637 //-------------------------- swap_commutative_op ------------------------------
3638 // Recursively swap specified commutative operation with subtree operands.
3639 void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3640 assert(match_rules_cnt < 100," too many match rule clones");
3641 // Clone
3642 MatchRule* clone = new MatchRule(_AD, this);
3643 // Swap operands of commutative operation
3644 ((MatchNode*)clone)->swap_commutative_op(true, count);
3645 char* buf = (char*) malloc(strlen(instr_ident) + 4);
3646 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3647 clone->_result = buf;
3648
3649 clone->_next = this->_next;
3650 this-> _next = clone;
3651 if( (--count) > 0 ) {
3652 this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
3653 clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
3654 }
3655 }
3656
3657 //------------------------------MatchRule--------------------------------------
3658 MatchRule::MatchRule(ArchDesc &ad)
3659 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3660 _next = NULL;
3661 }
3662
3663 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3664 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3665 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3666 _next = NULL;
3667 }
3668
3669 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3670 int numleaves)
3671 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3672 _numchilds(0) {
3673 _next = NULL;
3674 mroot->_lChild = NULL;
3675 mroot->_rChild = NULL;
3676 delete mroot;
3677 _numleaves = numleaves;
3678 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3679 }
3680 MatchRule::~MatchRule() {
3681 }
3682
3683 // Recursive call collecting info on top-level operands, not transitive.
3684 // Implementation does not modify state of internal structures.
3685 void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
3686 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3687
3688 MatchNode::append_components(locals, components,
3689 false /* not necessarily a def */);
3690 }
3691
3692 // Recursive call on all operands' match rules in my match rule.
3693 // Implementation does not modify state of internal structures since they
3694 // can be shared.
3695 // The MatchNode that is called first treats its
3696 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3697 const char *&result, const char * &name,
3698 const char * &opType)const{
3699 uint position = position0;
3700
3701 return (MatchNode::base_operand( position, globals, result, name, opType));
3702 }
3703
3704
3705 bool MatchRule::is_base_register(FormDict &globals) const {
3706 uint position = 1;
3707 const char *result = NULL;
3708 const char *name = NULL;
3709 const char *opType = NULL;
3710 if (!base_operand(position, globals, result, name, opType)) {
3711 position = 0;
3712 if( base_operand(position, globals, result, name, opType) &&
3713 (strcmp(opType,"RegI")==0 ||
3714 strcmp(opType,"RegP")==0 ||
3715 strcmp(opType,"RegL")==0 ||
3716 strcmp(opType,"RegF")==0 ||
3717 strcmp(opType,"RegD")==0 ||
3718 strcmp(opType,"Reg" )==0) ) {
3719 return 1;
3720 }
3721 }
3722 return 0;
3723 }
3724
3725 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3726 uint position = 1;
3727 const char *result = NULL;
3728 const char *name = NULL;
3729 const char *opType = NULL;
3730 if (!base_operand(position, globals, result, name, opType)) {
3731 position = 0;
3732 if (base_operand(position, globals, result, name, opType)) {
3733 return ideal_to_const_type(opType);
3734 }
3735 }
3736 return Form::none;
3737 }
3738
3739 bool MatchRule::is_chain_rule(FormDict &globals) const {
3740
3741 // Check for chain rule, and do not generate a match list for it
3742 if ((_lChild == NULL) && (_rChild == NULL) ) {
3743 const Form *form = globals[_opType];
3744 // If this is ideal, then it is a base match, not a chain rule.
3745 if ( form && form->is_operand() && (!form->ideal_only())) {
3746 return true;
3747 }
3748 }
3749 // Check for "Set" form of chain rule, and do not generate a match list
3750 if (_rChild) {
3751 const char *rch = _rChild->_opType;
3752 const Form *form = globals[rch];
3753 if ((!strcmp(_opType,"Set") &&
3754 ((form) && form->is_operand()))) {
3755 return true;
3756 }
3757 }
3758 return false;
3759 }
3760
3761 int MatchRule::is_ideal_copy() const {
3762 if( _rChild ) {
3763 const char *opType = _rChild->_opType;
3764 if( strcmp(opType,"CastII")==0 )
3765 return 1;
3766 // Do not treat *CastPP this way, because it
3767 // may transfer a raw pointer to an oop.
3768 // If the register allocator were to coalesce this
3769 // into a single LRG, the GC maps would be incorrect.
3770 //if( strcmp(opType,"CastPP")==0 )
3771 // return 1;
3772 //if( strcmp(opType,"CheckCastPP")==0 )
3773 // return 1;
3774 //
3775 // Do not treat CastX2P or CastP2X this way, because
3776 // raw pointers and int types are treated differently
3777 // when saving local & stack info for safepoints in
3778 // Output().
3779 //if( strcmp(opType,"CastX2P")==0 )
3780 // return 1;
3781 //if( strcmp(opType,"CastP2X")==0 )
3782 // return 1;
3783 }
3784 if( is_chain_rule(_AD.globalNames()) &&
3785 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3786 return 1;
3787 return 0;
3788 }
3789
3790
3791 int MatchRule::is_expensive() const {
3792 if( _rChild ) {
3793 const char *opType = _rChild->_opType;
3794 if( strcmp(opType,"AtanD")==0 ||
3795 strcmp(opType,"CosD")==0 ||
3796 strcmp(opType,"DivD")==0 ||
3797 strcmp(opType,"DivF")==0 ||
3798 strcmp(opType,"DivI")==0 ||
3799 strcmp(opType,"ExpD")==0 ||
3800 strcmp(opType,"LogD")==0 ||
3801 strcmp(opType,"Log10D")==0 ||
3802 strcmp(opType,"ModD")==0 ||
3803 strcmp(opType,"ModF")==0 ||
3804 strcmp(opType,"ModI")==0 ||
3805 strcmp(opType,"PowD")==0 ||
3806 strcmp(opType,"SinD")==0 ||
3807 strcmp(opType,"SqrtD")==0 ||
3808 strcmp(opType,"TanD")==0 ||
3809 strcmp(opType,"ConvD2F")==0 ||
3810 strcmp(opType,"ConvD2I")==0 ||
3811 strcmp(opType,"ConvD2L")==0 ||
3812 strcmp(opType,"ConvF2D")==0 ||
3813 strcmp(opType,"ConvF2I")==0 ||
3814 strcmp(opType,"ConvF2L")==0 ||
3815 strcmp(opType,"ConvI2D")==0 ||
3816 strcmp(opType,"ConvI2F")==0 ||
3817 strcmp(opType,"ConvI2L")==0 ||
3818 strcmp(opType,"ConvL2D")==0 ||
3819 strcmp(opType,"ConvL2F")==0 ||
3820 strcmp(opType,"ConvL2I")==0 ||
3821 strcmp(opType,"RoundDouble")==0 ||
3822 strcmp(opType,"RoundFloat")==0 ||
3823 strcmp(opType,"ReverseBytesI")==0 ||
3824 strcmp(opType,"ReverseBytesL")==0 ||
3825 strcmp(opType,"Replicate16B")==0 ||
3826 strcmp(opType,"Replicate8B")==0 ||
3827 strcmp(opType,"Replicate4B")==0 ||
3828 strcmp(opType,"Replicate8C")==0 ||
3829 strcmp(opType,"Replicate4C")==0 ||
3830 strcmp(opType,"Replicate8S")==0 ||
3831 strcmp(opType,"Replicate4S")==0 ||
3832 strcmp(opType,"Replicate4I")==0 ||
3833 strcmp(opType,"Replicate2I")==0 ||
3834 strcmp(opType,"Replicate2L")==0 ||
3835 strcmp(opType,"Replicate4F")==0 ||
3836 strcmp(opType,"Replicate2F")==0 ||
3837 strcmp(opType,"Replicate2D")==0 ||
3838 0 /* 0 to line up columns nicely */ )
3839 return 1;
3840 }
3841 return 0;
3842 }
3843
3844 bool MatchRule::is_ideal_unlock() const {
3845 if( !_opType ) return false;
3846 return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
3847 }
3848
3849
3850 bool MatchRule::is_ideal_call_leaf() const {
3851 if( !_opType ) return false;
3852 return !strcmp(_opType,"CallLeaf") ||
3853 !strcmp(_opType,"CallLeafNoFP");
3854 }
3855
3856
3857 bool MatchRule::is_ideal_if() const {
3858 if( !_opType ) return false;
3859 return
3860 !strcmp(_opType,"If" ) ||
3861 !strcmp(_opType,"CountedLoopEnd");
3862 }
3863
3864 bool MatchRule::is_ideal_fastlock() const {
3865 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3866 return (strcmp(_rChild->_opType,"FastLock") == 0);
3867 }
3868 return false;
3869 }
3870
3871 bool MatchRule::is_ideal_membar() const {
3872 if( !_opType ) return false;
3873 return
3874 !strcmp(_opType,"MemBarAcquire" ) ||
3875 !strcmp(_opType,"MemBarRelease" ) ||
3876 !strcmp(_opType,"MemBarVolatile" ) ||
3877 !strcmp(_opType,"MemBarCPUOrder" ) ;
3878 }
3879
3880 bool MatchRule::is_ideal_loadPC() const {
3881 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3882 return (strcmp(_rChild->_opType,"LoadPC") == 0);
3883 }
3884 return false;
3885 }
3886
3887 bool MatchRule::is_ideal_box() const {
3888 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3889 return (strcmp(_rChild->_opType,"Box") == 0);
3890 }
3891 return false;
3892 }
3893
3894 bool MatchRule::is_ideal_goto() const {
3895 bool ideal_goto = false;
3896
3897 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
3898 ideal_goto = true;
3899 }
3900 return ideal_goto;
3901 }
3902
3903 bool MatchRule::is_ideal_jump() const {
3904 if( _opType ) {
3905 if( !strcmp(_opType,"Jump") )
3906 return true;
3907 }
3908 return false;
3909 }
3910
3911 bool MatchRule::is_ideal_bool() const {
3912 if( _opType ) {
3913 if( !strcmp(_opType,"Bool") )
3914 return true;
3915 }
3916 return false;
3917 }
3918
3919
3920 Form::DataType MatchRule::is_ideal_load() const {
3921 Form::DataType ideal_load = Form::none;
3922
3923 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3924 const char *opType = _rChild->_opType;
3925 ideal_load = is_load_from_memory(opType);
3926 }
3927
3928 return ideal_load;
3929 }
3930
3931
3932 Form::DataType MatchRule::is_ideal_store() const {
3933 Form::DataType ideal_store = Form::none;
3934
3935 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3936 const char *opType = _rChild->_opType;
3937 ideal_store = is_store_to_memory(opType);
3938 }
3939
3940 return ideal_store;
3941 }
3942
3943
3944 void MatchRule::dump() {
3945 output(stderr);
3946 }
3947
3948 void MatchRule::output(FILE *fp) {
3949 fprintf(fp,"MatchRule: ( %s",_name);
3950 if (_lChild) _lChild->output(fp);
3951 if (_rChild) _rChild->output(fp);
3952 fprintf(fp," )\n");
3953 fprintf(fp," nesting depth = %d\n", _depth);
3954 if (_result) fprintf(fp," Result Type = %s", _result);
3955 fprintf(fp,"\n");
3956 }
3957
3958 //------------------------------Attribute--------------------------------------
3959 Attribute::Attribute(char *id, char* val, int type)
3960 : _ident(id), _val(val), _atype(type) {
3961 }
3962 Attribute::~Attribute() {
3963 }
3964
3965 int Attribute::int_val(ArchDesc &ad) {
3966 // Make sure it is an integer constant:
3967 int result = 0;
3968 if (!_val || !ADLParser::is_int_token(_val, result)) {
3969 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
3970 _ident, _val ? _val : "");
3971 }
3972 return result;
3973 }
3974
3975 void Attribute::dump() {
3976 output(stderr);
3977 } // Debug printer
3978
3979 // Write to output files
3980 void Attribute::output(FILE *fp) {
3981 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
3982 }
3983
3984 //------------------------------FormatRule----------------------------------
3985 FormatRule::FormatRule(char *temp)
3986 : _temp(temp) {
3987 }
3988 FormatRule::~FormatRule() {
3989 }
3990
3991 void FormatRule::dump() {
3992 output(stderr);
3993 }
3994
3995 // Write to output files
3996 void FormatRule::output(FILE *fp) {
3997 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
3998 fprintf(fp,"\n");
3999 }