comparison src/share/vm/adlc/output_c.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // output_c.cpp - Class CPP file output routines for architecture definition
26
27 #include "adlc.hpp"
28
29 // Utilities to characterize effect statements
30 static bool is_def(int usedef) {
31 switch(usedef) {
32 case Component::DEF:
33 case Component::USE_DEF: return true; break;
34 }
35 return false;
36 }
37
38 static bool is_use(int usedef) {
39 switch(usedef) {
40 case Component::USE:
41 case Component::USE_DEF:
42 case Component::USE_KILL: return true; break;
43 }
44 return false;
45 }
46
47 static bool is_kill(int usedef) {
48 switch(usedef) {
49 case Component::KILL:
50 case Component::USE_KILL: return true; break;
51 }
52 return false;
53 }
54
55 // Define an array containing the machine register names, strings.
56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
57 if (registers) {
58 fprintf(fp,"\n");
59 fprintf(fp,"// An array of character pointers to machine register names.\n");
60 fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
61
62 // Output the register name for each register in the allocation classes
63 RegDef *reg_def = NULL;
64 RegDef *next = NULL;
65 registers->reset_RegDefs();
66 for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
67 next = registers->iter_RegDefs();
68 const char *comma = (next != NULL) ? "," : " // no trailing comma";
69 fprintf(fp," \"%s\"%s\n",
70 reg_def->_regname, comma );
71 }
72
73 // Finish defining enumeration
74 fprintf(fp,"};\n");
75
76 fprintf(fp,"\n");
77 fprintf(fp,"// An array of character pointers to machine register names.\n");
78 fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
79 reg_def = NULL;
80 next = NULL;
81 registers->reset_RegDefs();
82 for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
83 next = registers->iter_RegDefs();
84 const char *comma = (next != NULL) ? "," : " // no trailing comma";
85 fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma );
86 }
87 // Finish defining array
88 fprintf(fp,"\t};\n");
89 fprintf(fp,"\n");
90
91 fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
92
93 }
94 }
95
96 // Define an array containing the machine register encoding values
97 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
98 if (registers) {
99 fprintf(fp,"\n");
100 fprintf(fp,"// An array of the machine register encode values\n");
101 fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
102
103 // Output the register encoding for each register in the allocation classes
104 RegDef *reg_def = NULL;
105 RegDef *next = NULL;
106 registers->reset_RegDefs();
107 for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
108 next = registers->iter_RegDefs();
109 const char* register_encode = reg_def->register_encode();
110 const char *comma = (next != NULL) ? "," : " // no trailing comma";
111 int encval;
112 if (!ADLParser::is_int_token(register_encode, encval)) {
113 fprintf(fp," %s%s // %s\n",
114 register_encode, comma, reg_def->_regname );
115 } else {
116 // Output known constants in hex char format (backward compatibility).
117 assert(encval < 256, "Exceeded supported width for register encoding");
118 fprintf(fp," (unsigned char)'\\x%X'%s // %s\n",
119 encval, comma, reg_def->_regname );
120 }
121 }
122 // Finish defining enumeration
123 fprintf(fp,"};\n");
124
125 } // Done defining array
126 }
127
128 // Output an enumeration of register class names
129 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
130 if (registers) {
131 // Output an enumeration of register class names
132 fprintf(fp,"\n");
133 fprintf(fp,"// Enumeration of register class names\n");
134 fprintf(fp, "enum machRegisterClass {\n");
135 registers->_rclasses.reset();
136 for( const char *class_name = NULL;
137 (class_name = registers->_rclasses.iter()) != NULL; ) {
138 fprintf(fp," %s,\n", toUpper( class_name ));
139 }
140 // Finish defining enumeration
141 fprintf(fp, " _last_Mach_Reg_Class\n");
142 fprintf(fp, "};\n");
143 }
144 }
145
146 // Declare an enumeration of user-defined register classes
147 // and a list of register masks, one for each class.
148 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
149 const char *rc_name;
150
151 if( _register ) {
152 // Build enumeration of user-defined register classes.
153 defineRegClassEnum(fp_hpp, _register);
154
155 // Generate a list of register masks, one for each class.
156 fprintf(fp_hpp,"\n");
157 fprintf(fp_hpp,"// Register masks, one for each register class.\n");
158 _register->_rclasses.reset();
159 for( rc_name = NULL;
160 (rc_name = _register->_rclasses.iter()) != NULL; ) {
161 const char *prefix = "";
162 RegClass *reg_class = _register->getRegClass(rc_name);
163 assert( reg_class, "Using an undefined register class");
164
165 int len = RegisterForm::RegMask_Size();
166 fprintf(fp_hpp, "extern const RegMask %s%s_mask;\n", prefix, toUpper( rc_name ) );
167
168 if( reg_class->_stack_or_reg ) {
169 fprintf(fp_hpp, "extern const RegMask %sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) );
170 }
171 }
172 }
173 }
174
175 // Generate an enumeration of user-defined register classes
176 // and a list of register masks, one for each class.
177 void ArchDesc::build_register_masks(FILE *fp_cpp) {
178 const char *rc_name;
179
180 if( _register ) {
181 // Generate a list of register masks, one for each class.
182 fprintf(fp_cpp,"\n");
183 fprintf(fp_cpp,"// Register masks, one for each register class.\n");
184 _register->_rclasses.reset();
185 for( rc_name = NULL;
186 (rc_name = _register->_rclasses.iter()) != NULL; ) {
187 const char *prefix = "";
188 RegClass *reg_class = _register->getRegClass(rc_name);
189 assert( reg_class, "Using an undefined register class");
190
191 int len = RegisterForm::RegMask_Size();
192 fprintf(fp_cpp, "const RegMask %s%s_mask(", prefix, toUpper( rc_name ) );
193 { int i;
194 for( i = 0; i < len-1; i++ )
195 fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false));
196 fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false));
197 }
198
199 if( reg_class->_stack_or_reg ) {
200 int i;
201 fprintf(fp_cpp, "const RegMask %sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) );
202 for( i = 0; i < len-1; i++ )
203 fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true));
204 fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true));
205 }
206 }
207 }
208 }
209
210 // Compute an index for an array in the pipeline_reads_NNN arrays
211 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
212 {
213 int templen = 1;
214 int paramcount = 0;
215 const char *paramname;
216
217 if (pipeclass->_parameters.count() == 0)
218 return -1;
219
220 pipeclass->_parameters.reset();
221 paramname = pipeclass->_parameters.iter();
222 const PipeClassOperandForm *pipeopnd =
223 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
224 if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
225 pipeclass->_parameters.reset();
226
227 while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
228 const PipeClassOperandForm *pipeopnd =
229 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
230
231 if (pipeopnd)
232 templen += 10 + (int)strlen(pipeopnd->_stage);
233 else
234 templen += 19;
235
236 paramcount++;
237 }
238
239 // See if the count is zero
240 if (paramcount == 0) {
241 return -1;
242 }
243
244 char *operand_stages = new char [templen];
245 operand_stages[0] = 0;
246 int i = 0;
247 templen = 0;
248
249 pipeclass->_parameters.reset();
250 paramname = pipeclass->_parameters.iter();
251 pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
252 if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
253 pipeclass->_parameters.reset();
254
255 while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
256 const PipeClassOperandForm *pipeopnd =
257 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
258 templen += sprintf(&operand_stages[templen], " stage_%s%c\n",
259 pipeopnd ? pipeopnd->_stage : "undefined",
260 (++i < paramcount ? ',' : ' ') );
261 }
262
263 // See if the same string is in the table
264 int ndx = pipeline_reads.index(operand_stages);
265
266 // No, add it to the table
267 if (ndx < 0) {
268 pipeline_reads.addName(operand_stages);
269 ndx = pipeline_reads.index(operand_stages);
270
271 fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
272 ndx+1, paramcount, operand_stages);
273 }
274 else
275 delete [] operand_stages;
276
277 return (ndx);
278 }
279
280 // Compute an index for an array in the pipeline_res_stages_NNN arrays
281 static int pipeline_res_stages_initializer(
282 FILE *fp_cpp,
283 PipelineForm *pipeline,
284 NameList &pipeline_res_stages,
285 PipeClassForm *pipeclass)
286 {
287 const PipeClassResourceForm *piperesource;
288 int * res_stages = new int [pipeline->_rescount];
289 int i;
290
291 for (i = 0; i < pipeline->_rescount; i++)
292 res_stages[i] = 0;
293
294 for (pipeclass->_resUsage.reset();
295 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
296 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
297 for (i = 0; i < pipeline->_rescount; i++)
298 if ((1 << i) & used_mask) {
299 int stage = pipeline->_stages.index(piperesource->_stage);
300 if (res_stages[i] < stage+1)
301 res_stages[i] = stage+1;
302 }
303 }
304
305 // Compute the length needed for the resource list
306 int commentlen = 0;
307 int max_stage = 0;
308 for (i = 0; i < pipeline->_rescount; i++) {
309 if (res_stages[i] == 0) {
310 if (max_stage < 9)
311 max_stage = 9;
312 }
313 else {
314 int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
315 if (max_stage < stagelen)
316 max_stage = stagelen;
317 }
318
319 commentlen += (int)strlen(pipeline->_reslist.name(i));
320 }
321
322 int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
323
324 // Allocate space for the resource list
325 char * resource_stages = new char [templen];
326
327 templen = 0;
328 for (i = 0; i < pipeline->_rescount; i++) {
329 const char * const resname =
330 res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
331
332 templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n",
333 resname, max_stage - (int)strlen(resname) + 1,
334 (i < pipeline->_rescount-1) ? "," : "",
335 pipeline->_reslist.name(i));
336 }
337
338 // See if the same string is in the table
339 int ndx = pipeline_res_stages.index(resource_stages);
340
341 // No, add it to the table
342 if (ndx < 0) {
343 pipeline_res_stages.addName(resource_stages);
344 ndx = pipeline_res_stages.index(resource_stages);
345
346 fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
347 ndx+1, pipeline->_rescount, resource_stages);
348 }
349 else
350 delete [] resource_stages;
351
352 delete [] res_stages;
353
354 return (ndx);
355 }
356
357 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
358 static int pipeline_res_cycles_initializer(
359 FILE *fp_cpp,
360 PipelineForm *pipeline,
361 NameList &pipeline_res_cycles,
362 PipeClassForm *pipeclass)
363 {
364 const PipeClassResourceForm *piperesource;
365 int * res_cycles = new int [pipeline->_rescount];
366 int i;
367
368 for (i = 0; i < pipeline->_rescount; i++)
369 res_cycles[i] = 0;
370
371 for (pipeclass->_resUsage.reset();
372 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
373 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
374 for (i = 0; i < pipeline->_rescount; i++)
375 if ((1 << i) & used_mask) {
376 int cycles = piperesource->_cycles;
377 if (res_cycles[i] < cycles)
378 res_cycles[i] = cycles;
379 }
380 }
381
382 // Pre-compute the string length
383 int templen;
384 int cyclelen = 0, commentlen = 0;
385 int max_cycles = 0;
386 char temp[32];
387
388 for (i = 0; i < pipeline->_rescount; i++) {
389 if (max_cycles < res_cycles[i])
390 max_cycles = res_cycles[i];
391 templen = sprintf(temp, "%d", res_cycles[i]);
392 if (cyclelen < templen)
393 cyclelen = templen;
394 commentlen += (int)strlen(pipeline->_reslist.name(i));
395 }
396
397 templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
398
399 // Allocate space for the resource list
400 char * resource_cycles = new char [templen];
401
402 templen = 0;
403
404 for (i = 0; i < pipeline->_rescount; i++) {
405 templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n",
406 cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
407 }
408
409 // See if the same string is in the table
410 int ndx = pipeline_res_cycles.index(resource_cycles);
411
412 // No, add it to the table
413 if (ndx < 0) {
414 pipeline_res_cycles.addName(resource_cycles);
415 ndx = pipeline_res_cycles.index(resource_cycles);
416
417 fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
418 ndx+1, pipeline->_rescount, resource_cycles);
419 }
420 else
421 delete [] resource_cycles;
422
423 delete [] res_cycles;
424
425 return (ndx);
426 }
427
428 //typedef unsigned long long uint64_t;
429
430 // Compute an index for an array in the pipeline_res_mask_NNN arrays
431 static int pipeline_res_mask_initializer(
432 FILE *fp_cpp,
433 PipelineForm *pipeline,
434 NameList &pipeline_res_mask,
435 NameList &pipeline_res_args,
436 PipeClassForm *pipeclass)
437 {
438 const PipeClassResourceForm *piperesource;
439 const uint rescount = pipeline->_rescount;
440 const uint maxcycleused = pipeline->_maxcycleused;
441 const uint cyclemasksize = (maxcycleused + 31) >> 5;
442
443 int i, j;
444 int element_count = 0;
445 uint *res_mask = new uint [cyclemasksize];
446 uint resources_used = 0;
447 uint resources_used_exclusively = 0;
448
449 for (pipeclass->_resUsage.reset();
450 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; )
451 element_count++;
452
453 // Pre-compute the string length
454 int templen;
455 int commentlen = 0;
456 int max_cycles = 0;
457
458 int cyclelen = ((maxcycleused + 3) >> 2);
459 int masklen = (rescount + 3) >> 2;
460
461 int cycledigit = 0;
462 for (i = maxcycleused; i > 0; i /= 10)
463 cycledigit++;
464
465 int maskdigit = 0;
466 for (i = rescount; i > 0; i /= 10)
467 maskdigit++;
468
469 static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
470 static const char * pipeline_use_element = "Pipeline_Use_Element";
471
472 templen = 1 +
473 (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
474 (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
475
476 // Allocate space for the resource list
477 char * resource_mask = new char [templen];
478 char * last_comma = NULL;
479
480 templen = 0;
481
482 for (pipeclass->_resUsage.reset();
483 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
484 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
485
486 if (!used_mask)
487 fprintf(stderr, "*** used_mask is 0 ***\n");
488
489 resources_used |= used_mask;
490
491 uint lb, ub;
492
493 for (lb = 0; (used_mask & (1 << lb)) == 0; lb++);
494 for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
495
496 if (lb == ub)
497 resources_used_exclusively |= used_mask;
498
499 int formatlen =
500 sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(",
501 pipeline_use_element,
502 masklen, used_mask,
503 cycledigit, lb, cycledigit, ub,
504 ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
505 pipeline_use_cycle_mask);
506
507 templen += formatlen;
508
509 memset(res_mask, 0, cyclemasksize * sizeof(uint));
510
511 int cycles = piperesource->_cycles;
512 uint stage = pipeline->_stages.index(piperesource->_stage);
513 uint upper_limit = stage+cycles-1;
514 uint lower_limit = stage-1;
515 uint upper_idx = upper_limit >> 5;
516 uint lower_idx = lower_limit >> 5;
517 uint upper_position = upper_limit & 0x1f;
518 uint lower_position = lower_limit & 0x1f;
519
520 uint mask = (((uint)1) << upper_position) - 1;
521
522 while ( upper_idx > lower_idx ) {
523 res_mask[upper_idx--] |= mask;
524 mask = (uint)-1;
525 }
526
527 mask -= (((uint)1) << lower_position) - 1;
528 res_mask[upper_idx] |= mask;
529
530 for (j = cyclemasksize-1; j >= 0; j--) {
531 formatlen =
532 sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
533 templen += formatlen;
534 }
535
536 resource_mask[templen++] = ')';
537 resource_mask[templen++] = ')';
538 last_comma = &resource_mask[templen];
539 resource_mask[templen++] = ',';
540 resource_mask[templen++] = '\n';
541 }
542
543 resource_mask[templen] = 0;
544 if (last_comma)
545 last_comma[0] = ' ';
546
547 // See if the same string is in the table
548 int ndx = pipeline_res_mask.index(resource_mask);
549
550 // No, add it to the table
551 if (ndx < 0) {
552 pipeline_res_mask.addName(resource_mask);
553 ndx = pipeline_res_mask.index(resource_mask);
554
555 if (strlen(resource_mask) > 0)
556 fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
557 ndx+1, element_count, resource_mask);
558
559 char * args = new char [9 + 2*masklen + maskdigit];
560
561 sprintf(args, "0x%0*x, 0x%0*x, %*d",
562 masklen, resources_used,
563 masklen, resources_used_exclusively,
564 maskdigit, element_count);
565
566 pipeline_res_args.addName(args);
567 }
568 else
569 delete [] resource_mask;
570
571 delete [] res_mask;
572 //delete [] res_masks;
573
574 return (ndx);
575 }
576
577 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
578 const char *classname;
579 const char *resourcename;
580 int resourcenamelen = 0;
581 NameList pipeline_reads;
582 NameList pipeline_res_stages;
583 NameList pipeline_res_cycles;
584 NameList pipeline_res_masks;
585 NameList pipeline_res_args;
586 const int default_latency = 1;
587 const int non_operand_latency = 0;
588 const int node_latency = 0;
589
590 if (!_pipeline) {
591 fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
592 fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
593 fprintf(fp_cpp, " return %d;\n", non_operand_latency);
594 fprintf(fp_cpp, "}\n");
595 return;
596 }
597
598 fprintf(fp_cpp, "\n");
599 fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
600 fprintf(fp_cpp, "#ifndef PRODUCT\n");
601 fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
602 fprintf(fp_cpp, " static const char * const _stage_names[] = {\n");
603 fprintf(fp_cpp, " \"undefined\"");
604
605 for (int s = 0; s < _pipeline->_stagecnt; s++)
606 fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
607
608 fprintf(fp_cpp, "\n };\n\n");
609 fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n",
610 _pipeline->_stagecnt);
611 fprintf(fp_cpp, "}\n");
612 fprintf(fp_cpp, "#endif\n\n");
613
614 fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
615 fprintf(fp_cpp, " // See if the functional units overlap\n");
616 #if 0
617 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
618 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
619 fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
620 fprintf(fp_cpp, " }\n");
621 fprintf(fp_cpp, "#endif\n\n");
622 #endif
623 fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
624 fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n");
625 #if 0
626 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
627 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
628 fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
629 fprintf(fp_cpp, " }\n");
630 fprintf(fp_cpp, "#endif\n\n");
631 #endif
632 fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
633 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
634 fprintf(fp_cpp, " if (predUse->multiple())\n");
635 fprintf(fp_cpp, " continue;\n\n");
636 fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n");
637 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
638 fprintf(fp_cpp, " if (currUse->multiple())\n");
639 fprintf(fp_cpp, " continue;\n\n");
640 fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n");
641 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
642 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
643 fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n");
644 fprintf(fp_cpp, " y <<= 1;\n");
645 fprintf(fp_cpp, " }\n");
646 fprintf(fp_cpp, " }\n");
647 fprintf(fp_cpp, " }\n\n");
648 fprintf(fp_cpp, " // There is the potential for overlap\n");
649 fprintf(fp_cpp, " return (start);\n");
650 fprintf(fp_cpp, "}\n\n");
651 fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
652 fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
653 fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
654 fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
655 fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
656 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
657 fprintf(fp_cpp, " if (predUse->_multiple) {\n");
658 fprintf(fp_cpp, " uint min_delay = %d;\n",
659 _pipeline->_maxcycleused+1);
660 fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
661 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
662 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
663 fprintf(fp_cpp, " uint curr_delay = delay;\n");
664 fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
665 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
666 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
667 fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
668 fprintf(fp_cpp, " y <<= 1;\n");
669 fprintf(fp_cpp, " }\n");
670 fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n");
671 fprintf(fp_cpp, " }\n");
672 fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n");
673 fprintf(fp_cpp, " }\n");
674 fprintf(fp_cpp, " else {\n");
675 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
676 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
677 fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
678 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
679 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
680 fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n");
681 fprintf(fp_cpp, " y <<= 1;\n");
682 fprintf(fp_cpp, " }\n");
683 fprintf(fp_cpp, " }\n");
684 fprintf(fp_cpp, " }\n");
685 fprintf(fp_cpp, " }\n\n");
686 fprintf(fp_cpp, " return (delay);\n");
687 fprintf(fp_cpp, "}\n\n");
688 fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
689 fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
690 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
691 fprintf(fp_cpp, " if (predUse->_multiple) {\n");
692 fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
693 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
694 fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
695 fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
696 fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
697 fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
698 fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
699 fprintf(fp_cpp, " break;\n");
700 fprintf(fp_cpp, " }\n");
701 fprintf(fp_cpp, " }\n");
702 fprintf(fp_cpp, " }\n");
703 fprintf(fp_cpp, " else {\n");
704 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
705 fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
706 fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
707 fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
708 fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
709 fprintf(fp_cpp, " }\n");
710 fprintf(fp_cpp, " }\n");
711 fprintf(fp_cpp, " }\n");
712 fprintf(fp_cpp, "}\n\n");
713
714 fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
715 fprintf(fp_cpp, " int const default_latency = 1;\n");
716 fprintf(fp_cpp, "\n");
717 #if 0
718 fprintf(fp_cpp, "#ifndef PRODUCT\n");
719 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
720 fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
721 fprintf(fp_cpp, " }\n");
722 fprintf(fp_cpp, "#endif\n\n");
723 #endif
724 fprintf(fp_cpp, " assert(this, \"NULL pipeline info\")\n");
725 fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\")\n\n");
726 fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n");
727 fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n");
728 fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n");
729 fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n");
730 fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n");
731 #if 0
732 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
733 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
734 fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
735 fprintf(fp_cpp, " }\n");
736 fprintf(fp_cpp, "#endif\n\n");
737 #endif
738 fprintf(fp_cpp, "\n");
739 fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n");
740 fprintf(fp_cpp, " return (default_latency);\n");
741 fprintf(fp_cpp, "\n");
742 fprintf(fp_cpp, " int delta = writeStage - readStage;\n");
743 fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n");
744 #if 0
745 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
746 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
747 fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
748 fprintf(fp_cpp, " }\n");
749 fprintf(fp_cpp, "#endif\n\n");
750 #endif
751 fprintf(fp_cpp, " return (delta);\n");
752 fprintf(fp_cpp, "}\n\n");
753
754 if (!_pipeline)
755 /* Do Nothing */;
756
757 else if (_pipeline->_maxcycleused <=
758 #ifdef SPARC
759 64
760 #else
761 32
762 #endif
763 ) {
764 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
765 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
766 fprintf(fp_cpp, "}\n\n");
767 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
768 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
769 fprintf(fp_cpp, "}\n\n");
770 }
771 else {
772 uint l;
773 uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
774 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
775 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
776 for (l = 1; l <= masklen; l++)
777 fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
778 fprintf(fp_cpp, ");\n");
779 fprintf(fp_cpp, "}\n\n");
780 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
781 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
782 for (l = 1; l <= masklen; l++)
783 fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
784 fprintf(fp_cpp, ");\n");
785 fprintf(fp_cpp, "}\n\n");
786 fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
787 for (l = 1; l <= masklen; l++)
788 fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
789 fprintf(fp_cpp, "\n}\n\n");
790 }
791
792 /* Get the length of all the resource names */
793 for (_pipeline->_reslist.reset(), resourcenamelen = 0;
794 (resourcename = _pipeline->_reslist.iter()) != NULL;
795 resourcenamelen += (int)strlen(resourcename));
796
797 // Create the pipeline class description
798
799 fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
800 fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
801
802 fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
803 for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
804 fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
805 uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
806 for (int i2 = masklen-1; i2 >= 0; i2--)
807 fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
808 fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
809 }
810 fprintf(fp_cpp, "};\n\n");
811
812 fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
813 _pipeline->_rescount);
814
815 for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
816 fprintf(fp_cpp, "\n");
817 fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
818 PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
819 int maxWriteStage = -1;
820 int maxMoreInstrs = 0;
821 int paramcount = 0;
822 int i = 0;
823 const char *paramname;
824 int resource_count = (_pipeline->_rescount + 3) >> 2;
825
826 // Scan the operands, looking for last output stage and number of inputs
827 for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
828 const PipeClassOperandForm *pipeopnd =
829 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
830 if (pipeopnd) {
831 if (pipeopnd->_iswrite) {
832 int stagenum = _pipeline->_stages.index(pipeopnd->_stage);
833 int moreinsts = pipeopnd->_more_instrs;
834 if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
835 maxWriteStage = stagenum;
836 maxMoreInstrs = moreinsts;
837 }
838 }
839 }
840
841 if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
842 paramcount++;
843 }
844
845 // Create the list of stages for the operands that are read
846 // Note that we will build a NameList to reduce the number of copies
847
848 int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
849
850 int pipeline_res_stages_index = pipeline_res_stages_initializer(
851 fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
852
853 int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
854 fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
855
856 int pipeline_res_mask_index = pipeline_res_mask_initializer(
857 fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
858
859 #if 0
860 // Process the Resources
861 const PipeClassResourceForm *piperesource;
862
863 unsigned resources_used = 0;
864 unsigned exclusive_resources_used = 0;
865 unsigned resource_groups = 0;
866 for (pipeclass->_resUsage.reset();
867 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
868 int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
869 if (used_mask)
870 resource_groups++;
871 resources_used |= used_mask;
872 if ((used_mask & (used_mask-1)) == 0)
873 exclusive_resources_used |= used_mask;
874 }
875
876 if (resource_groups > 0) {
877 fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
878 pipeclass->_num, resource_groups);
879 for (pipeclass->_resUsage.reset(), i = 1;
880 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
881 i++ ) {
882 int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
883 if (used_mask) {
884 fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
885 }
886 }
887 fprintf(fp_cpp, "};\n\n");
888 }
889 #endif
890
891 // Create the pipeline class description
892 fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
893 pipeclass->_num);
894 if (maxWriteStage < 0)
895 fprintf(fp_cpp, "(uint)stage_undefined");
896 else if (maxMoreInstrs == 0)
897 fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
898 else
899 fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
900 fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
901 paramcount,
902 pipeclass->hasFixedLatency() ? "true" : "false",
903 pipeclass->fixedLatency(),
904 pipeclass->InstructionCount(),
905 pipeclass->hasBranchDelay() ? "true" : "false",
906 pipeclass->hasMultipleBundles() ? "true" : "false",
907 pipeclass->forceSerialization() ? "true" : "false",
908 pipeclass->mayHaveNoCode() ? "true" : "false" );
909 if (paramcount > 0) {
910 fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
911 pipeline_reads_index+1);
912 }
913 else
914 fprintf(fp_cpp, " NULL,");
915 fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
916 pipeline_res_stages_index+1);
917 fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n",
918 pipeline_res_cycles_index+1);
919 fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)",
920 pipeline_res_args.name(pipeline_res_mask_index));
921 if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
922 fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
923 pipeline_res_mask_index+1);
924 else
925 fprintf(fp_cpp, "NULL");
926 fprintf(fp_cpp, "));\n");
927 }
928
929 // Generate the Node::latency method if _pipeline defined
930 fprintf(fp_cpp, "\n");
931 fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
932 fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
933 if (_pipeline) {
934 #if 0
935 fprintf(fp_cpp, "#ifndef PRODUCT\n");
936 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
937 fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
938 fprintf(fp_cpp, " }\n");
939 fprintf(fp_cpp, "#endif\n");
940 #endif
941 fprintf(fp_cpp, " uint j;\n");
942 fprintf(fp_cpp, " // verify in legal range for inputs\n");
943 fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n");
944 fprintf(fp_cpp, " // verify input is not null\n");
945 fprintf(fp_cpp, " Node *pred = in(i);\n");
946 fprintf(fp_cpp, " if (!pred)\n return %d;\n\n",
947 non_operand_latency);
948 fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n");
949 fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n");
950 fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n");
951 fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n");
952 fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n");
953 fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n");
954 fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n");
955 fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n",
956 node_latency);
957 fprintf(fp_cpp, " const MachNode *m = as_Mach();\n");
958 fprintf(fp_cpp, " j = m->oper_input_base();\n");
959 fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n",
960 non_operand_latency);
961 fprintf(fp_cpp, " // determine which operand this is in\n");
962 fprintf(fp_cpp, " uint n = m->num_opnds();\n");
963 fprintf(fp_cpp, " int delta = %d;\n\n",
964 non_operand_latency);
965 fprintf(fp_cpp, " uint k;\n");
966 fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n");
967 fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n");
968 fprintf(fp_cpp, " if (i < j)\n");
969 fprintf(fp_cpp, " break;\n");
970 fprintf(fp_cpp, " }\n");
971 fprintf(fp_cpp, " if (k < n)\n");
972 fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n");
973 fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n");
974 }
975 else {
976 fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
977 fprintf(fp_cpp, " return %d;\n",
978 non_operand_latency);
979 }
980 fprintf(fp_cpp, "}\n\n");
981
982 // Output the list of nop nodes
983 fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
984 const char *nop;
985 int nopcnt = 0;
986 for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
987
988 fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
989 int i = 0;
990 for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
991 fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
992 }
993 fprintf(fp_cpp, "};\n\n");
994 fprintf(fp_cpp, "#ifndef PRODUCT\n");
995 fprintf(fp_cpp, "void Bundle::dump() const {\n");
996 fprintf(fp_cpp, " static const char * bundle_flags[] = {\n");
997 fprintf(fp_cpp, " \"\",\n");
998 fprintf(fp_cpp, " \"use nop delay\",\n");
999 fprintf(fp_cpp, " \"use unconditional delay\",\n");
1000 fprintf(fp_cpp, " \"use conditional delay\",\n");
1001 fprintf(fp_cpp, " \"used in conditional delay\",\n");
1002 fprintf(fp_cpp, " \"used in unconditional delay\",\n");
1003 fprintf(fp_cpp, " \"used in all conditional delays\",\n");
1004 fprintf(fp_cpp, " };\n\n");
1005
1006 fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount);
1007 for (i = 0; i < _pipeline->_rescount; i++)
1008 fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1009 fprintf(fp_cpp, "};\n\n");
1010
1011 // See if the same string is in the table
1012 fprintf(fp_cpp, " bool needs_comma = false;\n\n");
1013 fprintf(fp_cpp, " if (_flags) {\n");
1014 fprintf(fp_cpp, " tty->print(\"%%s\", bundle_flags[_flags]);\n");
1015 fprintf(fp_cpp, " needs_comma = true;\n");
1016 fprintf(fp_cpp, " };\n");
1017 fprintf(fp_cpp, " if (instr_count()) {\n");
1018 fprintf(fp_cpp, " tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1019 fprintf(fp_cpp, " needs_comma = true;\n");
1020 fprintf(fp_cpp, " };\n");
1021 fprintf(fp_cpp, " uint r = resources_used();\n");
1022 fprintf(fp_cpp, " if (r) {\n");
1023 fprintf(fp_cpp, " tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1024 fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1025 fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n");
1026 fprintf(fp_cpp, " tty->print(\" %%s\", resource_names[i]);\n");
1027 fprintf(fp_cpp, " needs_comma = true;\n");
1028 fprintf(fp_cpp, " };\n");
1029 fprintf(fp_cpp, " tty->print(\"\\n\");\n");
1030 fprintf(fp_cpp, "}\n");
1031 fprintf(fp_cpp, "#endif\n");
1032 }
1033
1034 // ---------------------------------------------------------------------------
1035 //------------------------------Utilities to build Instruction Classes--------
1036 // ---------------------------------------------------------------------------
1037
1038 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1039 fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1040 node, regMask);
1041 }
1042
1043 // Scan the peepmatch and output a test for each instruction
1044 static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1045 intptr_t parent = -1;
1046 intptr_t inst_position = 0;
1047 const char *inst_name = NULL;
1048 intptr_t input = 0;
1049 fprintf(fp, " // Check instruction sub-tree\n");
1050 pmatch->reset();
1051 for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1052 inst_name != NULL;
1053 pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1054 // If this is not a placeholder
1055 if( ! pmatch->is_placeholder() ) {
1056 // Define temporaries 'inst#', based on parent and parent's input index
1057 if( parent != -1 ) { // root was initialized
1058 fprintf(fp, " inst%ld = inst%ld->in(%ld);\n",
1059 inst_position, parent, input);
1060 }
1061
1062 // When not the root
1063 // Test we have the correct instruction by comparing the rule
1064 if( parent != -1 ) {
1065 fprintf(fp, " matches = matches && ( inst%ld->rule() == %s_rule );",
1066 inst_position, inst_name);
1067 }
1068 } else {
1069 // Check that user did not try to constrain a placeholder
1070 assert( ! pconstraint->constrains_instruction(inst_position),
1071 "fatal(): Can not constrain a placeholder instruction");
1072 }
1073 }
1074 }
1075
1076 static void print_block_index(FILE *fp, intptr_t inst_position) {
1077 assert( inst_position >= 0, "Instruction number less than zero");
1078 fprintf(fp, "block_index");
1079 if( inst_position != 0 ) {
1080 fprintf(fp, " - %ld", inst_position);
1081 }
1082 }
1083
1084 // Scan the peepmatch and output a test for each instruction
1085 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086 intptr_t parent = -1;
1087 intptr_t inst_position = 0;
1088 const char *inst_name = NULL;
1089 intptr_t input = 0;
1090 fprintf(fp, " // Check instruction sub-tree\n");
1091 pmatch->reset();
1092 for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1093 inst_name != NULL;
1094 pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1095 // If this is not a placeholder
1096 if( ! pmatch->is_placeholder() ) {
1097 // Define temporaries 'inst#', based on parent and parent's input index
1098 if( parent != -1 ) { // root was initialized
1099 fprintf(fp, " // Identify previous instruction if inside this block\n");
1100 fprintf(fp, " if( ");
1101 print_block_index(fp, inst_position);
1102 fprintf(fp, " > 0 ) {\n Node *n = block->_nodes.at(");
1103 print_block_index(fp, inst_position);
1104 fprintf(fp, ");\n inst%ld = (n->is_Mach()) ? ", inst_position);
1105 fprintf(fp, "n->as_Mach() : NULL;\n }\n");
1106 }
1107
1108 // When not the root
1109 // Test we have the correct instruction by comparing the rule.
1110 if( parent != -1 ) {
1111 fprintf(fp, " matches = matches && (inst%ld != NULL) && (inst%ld->rule() == %s_rule);\n",
1112 inst_position, inst_position, inst_name);
1113 }
1114 } else {
1115 // Check that user did not try to constrain a placeholder
1116 assert( ! pconstraint->constrains_instruction(inst_position),
1117 "fatal(): Can not constrain a placeholder instruction");
1118 }
1119 }
1120 }
1121
1122 // Build mapping for register indices, num_edges to input
1123 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1124 intptr_t parent = -1;
1125 intptr_t inst_position = 0;
1126 const char *inst_name = NULL;
1127 intptr_t input = 0;
1128 fprintf(fp, " // Build map to register info\n");
1129 pmatch->reset();
1130 for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1131 inst_name != NULL;
1132 pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1133 // If this is not a placeholder
1134 if( ! pmatch->is_placeholder() ) {
1135 // Define temporaries 'inst#', based on self's inst_position
1136 InstructForm *inst = globals[inst_name]->is_instruction();
1137 if( inst != NULL ) {
1138 char inst_prefix[] = "instXXXX_";
1139 sprintf(inst_prefix, "inst%ld_", inst_position);
1140 char receiver[] = "instXXXX->";
1141 sprintf(receiver, "inst%ld->", inst_position);
1142 inst->index_temps( fp, globals, inst_prefix, receiver );
1143 }
1144 }
1145 }
1146 }
1147
1148 // Generate tests for the constraints
1149 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1150 fprintf(fp, "\n");
1151 fprintf(fp, " // Check constraints on sub-tree-leaves\n");
1152
1153 // Build mapping from num_edges to local variables
1154 build_instruction_index_mapping( fp, globals, pmatch );
1155
1156 // Build constraint tests
1157 if( pconstraint != NULL ) {
1158 fprintf(fp, " matches = matches &&");
1159 bool first_constraint = true;
1160 while( pconstraint != NULL ) {
1161 // indentation and connecting '&&'
1162 const char *indentation = " ";
1163 fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " "));
1164
1165 // Only have '==' relation implemented
1166 if( strcmp(pconstraint->_relation,"==") != 0 ) {
1167 assert( false, "Unimplemented()" );
1168 }
1169
1170 // LEFT
1171 intptr_t left_index = pconstraint->_left_inst;
1172 const char *left_op = pconstraint->_left_op;
1173 // Access info on the instructions whose operands are compared
1174 InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1175 assert( inst_left, "Parser should guaranty this is an instruction");
1176 int left_op_base = inst_left->oper_input_base(globals);
1177 // Access info on the operands being compared
1178 int left_op_index = inst_left->operand_position(left_op, Component::USE);
1179 if( left_op_index == -1 ) {
1180 left_op_index = inst_left->operand_position(left_op, Component::DEF);
1181 if( left_op_index == -1 ) {
1182 left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1183 }
1184 }
1185 assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1186 ComponentList components_left = inst_left->_components;
1187 const char *left_comp_type = components_left.at(left_op_index)->_type;
1188 OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1189 Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1190
1191
1192 // RIGHT
1193 int right_op_index = -1;
1194 intptr_t right_index = pconstraint->_right_inst;
1195 const char *right_op = pconstraint->_right_op;
1196 if( right_index != -1 ) { // Match operand
1197 // Access info on the instructions whose operands are compared
1198 InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1199 assert( inst_right, "Parser should guaranty this is an instruction");
1200 int right_op_base = inst_right->oper_input_base(globals);
1201 // Access info on the operands being compared
1202 right_op_index = inst_right->operand_position(right_op, Component::USE);
1203 if( right_op_index == -1 ) {
1204 right_op_index = inst_right->operand_position(right_op, Component::DEF);
1205 if( right_op_index == -1 ) {
1206 right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1207 }
1208 }
1209 assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1210 ComponentList components_right = inst_right->_components;
1211 const char *right_comp_type = components_right.at(right_op_index)->_type;
1212 OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1213 Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1214 assert( right_interface_type == left_interface_type, "Both must be same interface");
1215
1216 } else { // Else match register
1217 // assert( false, "should be a register" );
1218 }
1219
1220 //
1221 // Check for equivalence
1222 //
1223 // fprintf(fp, "phase->eqv( ");
1224 // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1225 // left_index, left_op_base, left_op_index, left_op,
1226 // right_index, right_op_base, right_op_index, right_op );
1227 // fprintf(fp, ")");
1228 //
1229 switch( left_interface_type ) {
1230 case Form::register_interface: {
1231 // Check that they are allocated to the same register
1232 // Need parameter for index position if not result operand
1233 char left_reg_index[] = ",instXXXX_idxXXXX";
1234 if( left_op_index != 0 ) {
1235 assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1236 // Must have index into operands
1237 sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index);
1238 } else {
1239 strcpy(left_reg_index, "");
1240 }
1241 fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */",
1242 left_index, left_op_index, left_index, left_reg_index, left_index, left_op );
1243 fprintf(fp, " == ");
1244
1245 if( right_index != -1 ) {
1246 char right_reg_index[18] = ",instXXXX_idxXXXX";
1247 if( right_op_index != 0 ) {
1248 assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1249 // Must have index into operands
1250 sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index);
1251 } else {
1252 strcpy(right_reg_index, "");
1253 }
1254 fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1255 right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1256 } else {
1257 fprintf(fp, "%s_enc", right_op );
1258 }
1259 fprintf(fp,")");
1260 break;
1261 }
1262 case Form::constant_interface: {
1263 // Compare the '->constant()' values
1264 fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */",
1265 left_index, left_op_index, left_index, left_op );
1266 fprintf(fp, " == ");
1267 fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1268 right_index, right_op, right_index, right_op_index );
1269 break;
1270 }
1271 case Form::memory_interface: {
1272 // Compare 'base', 'index', 'scale', and 'disp'
1273 // base
1274 fprintf(fp, "( \n");
1275 fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */",
1276 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1277 fprintf(fp, " == ");
1278 fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1279 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1280 // index
1281 fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */",
1282 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1283 fprintf(fp, " == ");
1284 fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1285 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1286 // scale
1287 fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */",
1288 left_index, left_op_index, left_index, left_op );
1289 fprintf(fp, " == ");
1290 fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1291 right_index, right_op, right_index, right_op_index );
1292 // disp
1293 fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */",
1294 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1295 fprintf(fp, " == ");
1296 fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1297 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1298 fprintf(fp, ") \n");
1299 break;
1300 }
1301 case Form::conditional_interface: {
1302 // Compare the condition code being tested
1303 assert( false, "Unimplemented()" );
1304 break;
1305 }
1306 default: {
1307 assert( false, "ShouldNotReachHere()" );
1308 break;
1309 }
1310 }
1311
1312 // Advance to next constraint
1313 pconstraint = pconstraint->next();
1314 first_constraint = false;
1315 }
1316
1317 fprintf(fp, ";\n");
1318 }
1319 }
1320
1321 // // EXPERIMENTAL -- TEMPORARY code
1322 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1323 // int op_index = instr->operand_position(op_name, Component::USE);
1324 // if( op_index == -1 ) {
1325 // op_index = instr->operand_position(op_name, Component::DEF);
1326 // if( op_index == -1 ) {
1327 // op_index = instr->operand_position(op_name, Component::USE_DEF);
1328 // }
1329 // }
1330 // assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1331 //
1332 // ComponentList components_right = instr->_components;
1333 // char *right_comp_type = components_right.at(op_index)->_type;
1334 // OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1335 // Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1336 //
1337 // return;
1338 // }
1339
1340 // Construct the new sub-tree
1341 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1342 fprintf(fp, " // IF instructions and constraints matched\n");
1343 fprintf(fp, " if( matches ) {\n");
1344 fprintf(fp, " // generate the new sub-tree\n");
1345 fprintf(fp, " assert( true, \"Debug stopping point\");\n");
1346 if( preplace != NULL ) {
1347 // Get the root of the new sub-tree
1348 const char *root_inst = NULL;
1349 preplace->next_instruction(root_inst);
1350 InstructForm *root_form = globals[root_inst]->is_instruction();
1351 assert( root_form != NULL, "Replacement instruction was not previously defined");
1352 fprintf(fp, " %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1353
1354 intptr_t inst_num;
1355 const char *op_name;
1356 int opnds_index = 0; // define result operand
1357 // Then install the use-operands for the new sub-tree
1358 // preplace->reset(); // reset breaks iteration
1359 for( preplace->next_operand( inst_num, op_name );
1360 op_name != NULL;
1361 preplace->next_operand( inst_num, op_name ) ) {
1362 InstructForm *inst_form;
1363 inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1364 assert( inst_form, "Parser should guaranty this is an instruction");
1365 int op_base = inst_form->oper_input_base(globals);
1366 int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1367 if( inst_op_num == NameList::Not_in_list )
1368 inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1369 assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1370 // find the name of the OperandForm from the local name
1371 const Form *form = inst_form->_localNames[op_name];
1372 OperandForm *op_form = form->is_operand();
1373 if( opnds_index == 0 ) {
1374 // Initial setup of new instruction
1375 fprintf(fp, " // ----- Initial setup -----\n");
1376 //
1377 // Add control edge for this node
1378 fprintf(fp, " root->add_req(_in[0]); // control edge\n");
1379 // Add unmatched edges from root of match tree
1380 int op_base = root_form->oper_input_base(globals);
1381 for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1382 fprintf(fp, " root->add_req(inst%ld->in(%d)); // unmatched ideal edge\n",
1383 inst_num, unmatched_edge);
1384 }
1385 // If new instruction captures bottom type
1386 if( root_form->captures_bottom_type() ) {
1387 // Get bottom type from instruction whose result we are replacing
1388 fprintf(fp, " root->_bottom_type = inst%ld->bottom_type();\n", inst_num);
1389 }
1390 // Define result register and result operand
1391 fprintf(fp, " ra_->add_reference(root, inst%ld);\n", inst_num);
1392 fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%ld));\n", inst_num);
1393 fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%ld), ra_->get_reg_first(inst%ld));\n", inst_num, inst_num);
1394 fprintf(fp, " root->_opnds[0] = inst%ld->_opnds[0]->clone(C); // result\n", inst_num);
1395 fprintf(fp, " // ----- Done with initial setup -----\n");
1396 } else {
1397 if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1398 // Do not have ideal edges for constants after matching
1399 fprintf(fp, " for( unsigned x%d = inst%ld_idx%d; x%d < inst%ld_idx%d; x%d++ )\n",
1400 inst_op_num, inst_num, inst_op_num,
1401 inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1402 fprintf(fp, " root->add_req( inst%ld->in(x%d) );\n",
1403 inst_num, inst_op_num );
1404 } else {
1405 fprintf(fp, " // no ideal edge for constants after matching\n");
1406 }
1407 fprintf(fp, " root->_opnds[%d] = inst%ld->_opnds[%d]->clone(C);\n",
1408 opnds_index, inst_num, inst_op_num );
1409 }
1410 ++opnds_index;
1411 }
1412 }else {
1413 // Replacing subtree with empty-tree
1414 assert( false, "ShouldNotReachHere();");
1415 }
1416
1417 // Return the new sub-tree
1418 fprintf(fp, " deleted = %d;\n", max_position+1 /*zero to one based*/);
1419 fprintf(fp, " return root; // return new root;\n");
1420 fprintf(fp, " }\n");
1421 }
1422
1423
1424 // Define the Peephole method for an instruction node
1425 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1426 // Generate Peephole function header
1427 fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1428 fprintf(fp, " bool matches = true;\n");
1429
1430 // Identify the maximum instruction position,
1431 // generate temporaries that hold current instruction
1432 //
1433 // MachNode *inst0 = NULL;
1434 // ...
1435 // MachNode *instMAX = NULL;
1436 //
1437 int max_position = 0;
1438 Peephole *peep;
1439 for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1440 PeepMatch *pmatch = peep->match();
1441 assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1442 if( max_position < pmatch->max_position() ) max_position = pmatch->max_position();
1443 }
1444 for( int i = 0; i <= max_position; ++i ) {
1445 if( i == 0 ) {
1446 fprintf(fp, " MachNode *inst0 = this;\n", i);
1447 } else {
1448 fprintf(fp, " MachNode *inst%d = NULL;\n", i);
1449 }
1450 }
1451
1452 // For each peephole rule in architecture description
1453 // Construct a test for the desired instruction sub-tree
1454 // then check the constraints
1455 // If these match, Generate the new subtree
1456 for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1457 int peephole_number = peep->peephole_number();
1458 PeepMatch *pmatch = peep->match();
1459 PeepConstraint *pconstraint = peep->constraints();
1460 PeepReplace *preplace = peep->replacement();
1461
1462 // Root of this peephole is the current MachNode
1463 assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1464 "root of PeepMatch does not match instruction");
1465
1466 // Make each peephole rule individually selectable
1467 fprintf(fp, " if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1468 fprintf(fp, " matches = true;\n");
1469 // Scan the peepmatch and output a test for each instruction
1470 check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1471
1472 // Check constraints and build replacement inside scope
1473 fprintf(fp, " // If instruction subtree matches\n");
1474 fprintf(fp, " if( matches ) {\n");
1475
1476 // Generate tests for the constraints
1477 check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1478
1479 // Construct the new sub-tree
1480 generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1481
1482 // End of scope for this peephole's constraints
1483 fprintf(fp, " }\n");
1484 // Closing brace '}' to make each peephole rule individually selectable
1485 fprintf(fp, " } // end of peephole rule #%d\n", peephole_number);
1486 fprintf(fp, "\n");
1487 }
1488
1489 fprintf(fp, " return NULL; // No peephole rules matched\n");
1490 fprintf(fp, "}\n");
1491 fprintf(fp, "\n");
1492 }
1493
1494 // Define the Expand method for an instruction node
1495 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1496 unsigned cnt = 0; // Count nodes we have expand into
1497 unsigned i;
1498
1499 // Generate Expand function header
1500 fprintf(fp,"MachNode *%sNode::Expand(State *state, Node_List &proj_list) {\n", node->_ident);
1501 fprintf(fp,"Compile* C = Compile::current();\n");
1502 // Generate expand code
1503 if( node->expands() ) {
1504 const char *opid;
1505 int new_pos, exp_pos;
1506 const char *new_id = NULL;
1507 const Form *frm = NULL;
1508 InstructForm *new_inst = NULL;
1509 OperandForm *new_oper = NULL;
1510 unsigned numo = node->num_opnds() +
1511 node->_exprule->_newopers.count();
1512
1513 // If necessary, generate any operands created in expand rule
1514 if (node->_exprule->_newopers.count()) {
1515 for(node->_exprule->_newopers.reset();
1516 (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1517 frm = node->_localNames[new_id];
1518 assert(frm, "Invalid entry in new operands list of expand rule");
1519 new_oper = frm->is_operand();
1520 char *tmp = (char *)node->_exprule->_newopconst[new_id];
1521 if (tmp == NULL) {
1522 fprintf(fp," MachOper *op%d = new (C) %sOper();\n",
1523 cnt, new_oper->_ident);
1524 }
1525 else {
1526 fprintf(fp," MachOper *op%d = new (C) %sOper(%s);\n",
1527 cnt, new_oper->_ident, tmp);
1528 }
1529 }
1530 }
1531 cnt = 0;
1532 // Generate the temps to use for DAG building
1533 for(i = 0; i < numo; i++) {
1534 if (i < node->num_opnds()) {
1535 fprintf(fp," MachNode *tmp%d = this;\n", i);
1536 }
1537 else {
1538 fprintf(fp," MachNode *tmp%d = NULL;\n", i);
1539 }
1540 }
1541 // Build mapping from num_edges to local variables
1542 fprintf(fp," unsigned num0 = 0;\n");
1543 for( i = 1; i < node->num_opnds(); i++ ) {
1544 fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1545 }
1546
1547 // Build a mapping from operand index to input edges
1548 fprintf(fp," unsigned idx0 = oper_input_base();\n");
1549 for( i = 0; i < node->num_opnds(); i++ ) {
1550 fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
1551 i+1,i,i);
1552 }
1553
1554 // Declare variable to hold root of expansion
1555 fprintf(fp," MachNode *result = NULL;\n");
1556
1557 // Iterate over the instructions 'node' expands into
1558 ExpandRule *expand = node->_exprule;
1559 NameAndList *expand_instr = NULL;
1560 for(expand->reset_instructions();
1561 (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1562 new_id = expand_instr->name();
1563
1564 InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1565 if (expand_instruction->has_temps()) {
1566 globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1567 node->_ident, new_id);
1568 }
1569
1570 // Build the node for the instruction
1571 fprintf(fp,"\n %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1572 // Add control edge for this node
1573 fprintf(fp," n%d->add_req(_in[0]);\n", cnt);
1574 // Build the operand for the value this node defines.
1575 Form *form = (Form*)_globalNames[new_id];
1576 assert( form, "'new_id' must be a defined form name");
1577 // Grab the InstructForm for the new instruction
1578 new_inst = form->is_instruction();
1579 assert( new_inst, "'new_id' must be an instruction name");
1580 if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1581 fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1582 fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1583 }
1584
1585 if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1586 fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1587 }
1588
1589 const char *resultOper = new_inst->reduce_result();
1590 fprintf(fp," n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1591 cnt, machOperEnum(resultOper));
1592
1593 // get the formal operand NameList
1594 NameList *formal_lst = &new_inst->_parameters;
1595 formal_lst->reset();
1596
1597 // Handle any memory operand
1598 int memory_operand = new_inst->memory_operand(_globalNames);
1599 if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1600 int node_mem_op = node->memory_operand(_globalNames);
1601 assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1602 "expand rule member needs memory but top-level inst doesn't have any" );
1603 // Copy memory edge
1604 fprintf(fp," n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1605 }
1606
1607 // Iterate over the new instruction's operands
1608 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1609 // Use 'parameter' at current position in list of new instruction's formals
1610 // instead of 'opid' when looking up info internal to new_inst
1611 const char *parameter = formal_lst->iter();
1612 // Check for an operand which is created in the expand rule
1613 if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1614 new_pos = new_inst->operand_position(parameter,Component::USE);
1615 exp_pos += node->num_opnds();
1616 // If there is no use of the created operand, just skip it
1617 if (new_pos != -1) {
1618 //Copy the operand from the original made above
1619 fprintf(fp," n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1620 cnt, new_pos, exp_pos-node->num_opnds(), opid);
1621 // Check for who defines this operand & add edge if needed
1622 fprintf(fp," if(tmp%d != NULL)\n", exp_pos);
1623 fprintf(fp," n%d->add_req(tmp%d);\n", cnt, exp_pos);
1624 }
1625 }
1626 else {
1627 // Use operand name to get an index into instruction component list
1628 // ins = (InstructForm *) _globalNames[new_id];
1629 exp_pos = node->operand_position_format(opid);
1630 assert(exp_pos != -1, "Bad expand rule");
1631
1632 new_pos = new_inst->operand_position(parameter,Component::USE);
1633 if (new_pos != -1) {
1634 // Copy the operand from the ExpandNode to the new node
1635 fprintf(fp," n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1636 cnt, new_pos, exp_pos, opid);
1637 // For each operand add appropriate input edges by looking at tmp's
1638 fprintf(fp," if(tmp%d == this) {\n", exp_pos);
1639 // Grab corresponding edges from ExpandNode and insert them here
1640 fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1641 fprintf(fp," n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1642 fprintf(fp," }\n");
1643 fprintf(fp," }\n");
1644 // This value is generated by one of the new instructions
1645 fprintf(fp," else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1646 }
1647 }
1648
1649 // Update the DAG tmp's for values defined by this instruction
1650 int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1651 Effect *eform = (Effect *)new_inst->_effects[parameter];
1652 // If this operand is a definition in either an effects rule
1653 // or a match rule
1654 if((eform) && (is_def(eform->_use_def))) {
1655 // Update the temp associated with this operand
1656 fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1657 }
1658 else if( new_def_pos != -1 ) {
1659 // Instruction defines a value but user did not declare it
1660 // in the 'effect' clause
1661 fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1662 }
1663 } // done iterating over a new instruction's operands
1664
1665 // Invoke Expand() for the newly created instruction.
1666 fprintf(fp," result = n%d->Expand( state, proj_list );\n", cnt);
1667 assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1668 } // done iterating over new instructions
1669 fprintf(fp,"\n");
1670 } // done generating expand rule
1671
1672 else if( node->_matrule != NULL ) {
1673 // Remove duplicated operands and inputs which use the same name.
1674 // Seach through match operands for the same name usage.
1675 uint cur_num_opnds = node->num_opnds();
1676 if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1677 Component *comp = NULL;
1678 // Build mapping from num_edges to local variables
1679 fprintf(fp," unsigned num0 = 0;\n");
1680 for( i = 1; i < cur_num_opnds; i++ ) {
1681 fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1682 }
1683 // Build a mapping from operand index to input edges
1684 fprintf(fp," unsigned idx0 = oper_input_base();\n");
1685 for( i = 0; i < cur_num_opnds; i++ ) {
1686 fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
1687 i+1,i,i);
1688 }
1689
1690 uint new_num_opnds = 1;
1691 node->_components.reset();
1692 // Skip first unique operands.
1693 for( i = 1; i < cur_num_opnds; i++ ) {
1694 comp = node->_components.iter();
1695 if( (int)i != node->unique_opnds_idx(i) ) {
1696 break;
1697 }
1698 new_num_opnds++;
1699 }
1700 // Replace not unique operands with next unique operands.
1701 for( ; i < cur_num_opnds; i++ ) {
1702 comp = node->_components.iter();
1703 int j = node->unique_opnds_idx(i);
1704 // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1705 if( j != node->unique_opnds_idx(j) ) {
1706 fprintf(fp," set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1707 new_num_opnds, i, comp->_name);
1708 // delete not unique edges here
1709 fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", i);
1710 fprintf(fp," set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1711 fprintf(fp," }\n");
1712 fprintf(fp," num%d = num%d;\n", new_num_opnds, i);
1713 fprintf(fp," idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1714 new_num_opnds++;
1715 }
1716 }
1717 // delete the rest of edges
1718 fprintf(fp," for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1719 fprintf(fp," del_req(i);\n", i);
1720 fprintf(fp," }\n");
1721 fprintf(fp," _num_opnds = %d;\n", new_num_opnds);
1722 }
1723 }
1724
1725
1726 // Generate projections for instruction's additional DEFs and KILLs
1727 if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1728 // Get string representing the MachNode that projections point at
1729 const char *machNode = "this";
1730 // Generate the projections
1731 fprintf(fp," // Add projection edges for additional defs or kills\n");
1732
1733 // Examine each component to see if it is a DEF or KILL
1734 node->_components.reset();
1735 // Skip the first component, if already handled as (SET dst (...))
1736 Component *comp = NULL;
1737 // For kills, the choice of projection numbers is arbitrary
1738 int proj_no = 1;
1739 bool declared_def = false;
1740 bool declared_kill = false;
1741
1742 while( (comp = node->_components.iter()) != NULL ) {
1743 // Lookup register class associated with operand type
1744 Form *form = (Form*)_globalNames[comp->_type];
1745 assert( form, "component type must be a defined form");
1746 OperandForm *op = form->is_operand();
1747
1748 if (comp->is(Component::TEMP)) {
1749 fprintf(fp, " // TEMP %s\n", comp->_name);
1750 if (!declared_def) {
1751 // Define the variable "def" to hold new MachProjNodes
1752 fprintf(fp, " MachTempNode *def;\n");
1753 declared_def = true;
1754 }
1755 if (op && op->_interface && op->_interface->is_RegInterface()) {
1756 fprintf(fp," def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1757 machOperEnum(op->_ident));
1758 fprintf(fp," add_req(def);\n");
1759 int idx = node->operand_position_format(comp->_name);
1760 fprintf(fp," set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1761 idx, machOperEnum(op->_ident));
1762 } else {
1763 assert(false, "can't have temps which aren't registers");
1764 }
1765 } else if (comp->isa(Component::KILL)) {
1766 fprintf(fp, " // DEF/KILL %s\n", comp->_name);
1767
1768 if (!declared_kill) {
1769 // Define the variable "kill" to hold new MachProjNodes
1770 fprintf(fp, " MachProjNode *kill;\n");
1771 declared_kill = true;
1772 }
1773
1774 assert( op, "Support additional KILLS for base operands");
1775 const char *regmask = reg_mask(*op);
1776 const char *ideal_type = op->ideal_type(_globalNames, _register);
1777
1778 if (!op->is_bound_register()) {
1779 syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1780 node->_ident, comp->_type, comp->_name);
1781 }
1782
1783 fprintf(fp," kill = ");
1784 fprintf(fp,"new (C, 1) MachProjNode( %s, %d, (%s), Op_%s );\n",
1785 machNode, proj_no++, regmask, ideal_type);
1786 fprintf(fp," proj_list.push(kill);\n");
1787 }
1788 }
1789 }
1790
1791 fprintf(fp,"\n");
1792 if( node->expands() ) {
1793 fprintf(fp," return result;\n",cnt-1);
1794 } else {
1795 fprintf(fp," return this;\n");
1796 }
1797 fprintf(fp,"}\n");
1798 fprintf(fp,"\n");
1799 }
1800
1801
1802 //------------------------------Emit Routines----------------------------------
1803 // Special classes and routines for defining node emit routines which output
1804 // target specific instruction object encodings.
1805 // Define the ___Node::emit() routine
1806 //
1807 // (1) void ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1808 // (2) // ... encoding defined by user
1809 // (3)
1810 // (4) }
1811 //
1812
1813 class DefineEmitState {
1814 private:
1815 enum reloc_format { RELOC_NONE = -1,
1816 RELOC_IMMEDIATE = 0,
1817 RELOC_DISP = 1,
1818 RELOC_CALL_DISP = 2 };
1819 enum literal_status{ LITERAL_NOT_SEEN = 0,
1820 LITERAL_SEEN = 1,
1821 LITERAL_ACCESSED = 2,
1822 LITERAL_OUTPUT = 3 };
1823 // Temporaries that describe current operand
1824 bool _cleared;
1825 OpClassForm *_opclass;
1826 OperandForm *_operand;
1827 int _operand_idx;
1828 const char *_local_name;
1829 const char *_operand_name;
1830 bool _doing_disp;
1831 bool _doing_constant;
1832 Form::DataType _constant_type;
1833 DefineEmitState::literal_status _constant_status;
1834 DefineEmitState::literal_status _reg_status;
1835 bool _doing_emit8;
1836 bool _doing_emit_d32;
1837 bool _doing_emit_d16;
1838 bool _doing_emit_hi;
1839 bool _doing_emit_lo;
1840 bool _may_reloc;
1841 bool _must_reloc;
1842 reloc_format _reloc_form;
1843 const char * _reloc_type;
1844 bool _processing_noninput;
1845
1846 NameList _strings_to_emit;
1847
1848 // Stable state, set by constructor
1849 ArchDesc &_AD;
1850 FILE *_fp;
1851 EncClass &_encoding;
1852 InsEncode &_ins_encode;
1853 InstructForm &_inst;
1854
1855 public:
1856 DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1857 InsEncode &ins_encode, InstructForm &inst)
1858 : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1859 clear();
1860 }
1861
1862 void clear() {
1863 _cleared = true;
1864 _opclass = NULL;
1865 _operand = NULL;
1866 _operand_idx = 0;
1867 _local_name = "";
1868 _operand_name = "";
1869 _doing_disp = false;
1870 _doing_constant= false;
1871 _constant_type = Form::none;
1872 _constant_status = LITERAL_NOT_SEEN;
1873 _reg_status = LITERAL_NOT_SEEN;
1874 _doing_emit8 = false;
1875 _doing_emit_d32= false;
1876 _doing_emit_d16= false;
1877 _doing_emit_hi = false;
1878 _doing_emit_lo = false;
1879 _may_reloc = false;
1880 _must_reloc = false;
1881 _reloc_form = RELOC_NONE;
1882 _reloc_type = AdlcVMDeps::none_reloc_type();
1883 _strings_to_emit.clear();
1884 }
1885
1886 // Track necessary state when identifying a replacement variable
1887 void update_state(const char *rep_var) {
1888 // A replacement variable or one of its subfields
1889 // Obtain replacement variable from list
1890 if ( (*rep_var) != '$' ) {
1891 // A replacement variable, '$' prefix
1892 // check_rep_var( rep_var );
1893 if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1894 // No state needed.
1895 assert( _opclass == NULL,
1896 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1897 } else {
1898 // Lookup its position in parameter list
1899 int param_no = _encoding.rep_var_index(rep_var);
1900 if ( param_no == -1 ) {
1901 _AD.syntax_err( _encoding._linenum,
1902 "Replacement variable %s not found in enc_class %s.\n",
1903 rep_var, _encoding._name);
1904 }
1905
1906 // Lookup the corresponding ins_encode parameter
1907 const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1908 if (inst_rep_var == NULL) {
1909 _AD.syntax_err( _ins_encode._linenum,
1910 "Parameter %s not passed to enc_class %s from instruct %s.\n",
1911 rep_var, _encoding._name, _inst._ident);
1912 }
1913
1914 // Check if instruction's actual parameter is a local name in the instruction
1915 const Form *local = _inst._localNames[inst_rep_var];
1916 OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
1917 // Note: assert removed to allow constant and symbolic parameters
1918 // assert( opc, "replacement variable was not found in local names");
1919 // Lookup the index position iff the replacement variable is a localName
1920 int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1921
1922 if ( idx != -1 ) {
1923 // This is a local in the instruction
1924 // Update local state info.
1925 _opclass = opc;
1926 _operand_idx = idx;
1927 _local_name = rep_var;
1928 _operand_name = inst_rep_var;
1929
1930 // !!!!!
1931 // Do not support consecutive operands.
1932 assert( _operand == NULL, "Unimplemented()");
1933 _operand = opc->is_operand();
1934 }
1935 else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1936 // Instruction provided a constant expression
1937 // Check later that encoding specifies $$$constant to resolve as constant
1938 _constant_status = LITERAL_SEEN;
1939 }
1940 else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1941 // Instruction provided an opcode: "primary", "secondary", "tertiary"
1942 // Check later that encoding specifies $$$constant to resolve as constant
1943 _constant_status = LITERAL_SEEN;
1944 }
1945 else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1946 // Instruction provided a literal register name for this parameter
1947 // Check that encoding specifies $$$reg to resolve.as register.
1948 _reg_status = LITERAL_SEEN;
1949 }
1950 else {
1951 // Check for unimplemented functionality before hard failure
1952 assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
1953 assert( false, "ShouldNotReachHere()");
1954 }
1955 } // done checking which operand this is.
1956 } else {
1957 //
1958 // A subfield variable, '$$' prefix
1959 // Check for fields that may require relocation information.
1960 // Then check that literal register parameters are accessed with 'reg' or 'constant'
1961 //
1962 if ( strcmp(rep_var,"$disp") == 0 ) {
1963 _doing_disp = true;
1964 assert( _opclass, "Must use operand or operand class before '$disp'");
1965 if( _operand == NULL ) {
1966 // Only have an operand class, generate run-time check for relocation
1967 _may_reloc = true;
1968 _reloc_form = RELOC_DISP;
1969 _reloc_type = AdlcVMDeps::oop_reloc_type();
1970 } else {
1971 // Do precise check on operand: is it a ConP or not
1972 //
1973 // Check interface for value of displacement
1974 assert( ( _operand->_interface != NULL ),
1975 "$disp can only follow memory interface operand");
1976 MemInterface *mem_interface= _operand->_interface->is_MemInterface();
1977 assert( mem_interface != NULL,
1978 "$disp can only follow memory interface operand");
1979 const char *disp = mem_interface->_disp;
1980
1981 if( disp != NULL && (*disp == '$') ) {
1982 // MemInterface::disp contains a replacement variable,
1983 // Check if this matches a ConP
1984 //
1985 // Lookup replacement variable, in operand's component list
1986 const char *rep_var_name = disp + 1; // Skip '$'
1987 const Component *comp = _operand->_components.search(rep_var_name);
1988 assert( comp != NULL,"Replacement variable not found in components");
1989 const char *type = comp->_type;
1990 // Lookup operand form for replacement variable's type
1991 const Form *form = _AD.globalNames()[type];
1992 assert( form != NULL, "Replacement variable's type not found");
1993 OperandForm *op = form->is_operand();
1994 assert( op, "Attempting to emit a non-register or non-constant");
1995 // Check if this is a constant
1996 if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
1997 // Check which constant this name maps to: _c0, _c1, ..., _cn
1998 // const int idx = _operand.constant_position(_AD.globalNames(), comp);
1999 // assert( idx != -1, "Constant component not found in operand");
2000 Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2001 if ( dtype == Form::idealP ) {
2002 _may_reloc = true;
2003 // No longer true that idealP is always an oop
2004 _reloc_form = RELOC_DISP;
2005 _reloc_type = AdlcVMDeps::oop_reloc_type();
2006 }
2007 }
2008
2009 else if( _operand->is_user_name_for_sReg() != Form::none ) {
2010 // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2011 assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2012 _may_reloc = false;
2013 } else {
2014 assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2015 }
2016 }
2017 } // finished with precise check of operand for relocation.
2018 } // finished with subfield variable
2019 else if ( strcmp(rep_var,"$constant") == 0 ) {
2020 _doing_constant = true;
2021 if ( _constant_status == LITERAL_NOT_SEEN ) {
2022 // Check operand for type of constant
2023 assert( _operand, "Must use operand before '$$constant'");
2024 Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2025 _constant_type = dtype;
2026 if ( dtype == Form::idealP ) {
2027 _may_reloc = true;
2028 // No longer true that idealP is always an oop
2029 // // _must_reloc = true;
2030 _reloc_form = RELOC_IMMEDIATE;
2031 _reloc_type = AdlcVMDeps::oop_reloc_type();
2032 } else {
2033 // No relocation information needed
2034 }
2035 } else {
2036 // User-provided literals may not require relocation information !!!!!
2037 assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2038 }
2039 }
2040 else if ( strcmp(rep_var,"$label") == 0 ) {
2041 // Calls containing labels require relocation
2042 if ( _inst.is_ideal_call() ) {
2043 _may_reloc = true;
2044 // !!!!! !!!!!
2045 _reloc_type = AdlcVMDeps::none_reloc_type();
2046 }
2047 }
2048
2049 // literal register parameter must be accessed as a 'reg' field.
2050 if ( _reg_status != LITERAL_NOT_SEEN ) {
2051 assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2052 if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2053 _reg_status = LITERAL_ACCESSED;
2054 } else {
2055 assert( false, "invalid access to literal register parameter");
2056 }
2057 }
2058 // literal constant parameters must be accessed as a 'constant' field
2059 if ( _constant_status != LITERAL_NOT_SEEN ) {
2060 assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2061 if( strcmp(rep_var,"$constant") == 0 ) {
2062 _constant_status = LITERAL_ACCESSED;
2063 } else {
2064 assert( false, "invalid access to literal constant parameter");
2065 }
2066 }
2067 } // end replacement and/or subfield
2068
2069 }
2070
2071 void add_rep_var(const char *rep_var) {
2072 // Handle subfield and replacement variables.
2073 if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2074 // Check for emit prefix, '$$emit32'
2075 assert( _cleared, "Can not nest $$$emit32");
2076 if ( strcmp(rep_var,"$$emit32") == 0 ) {
2077 _doing_emit_d32 = true;
2078 }
2079 else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2080 _doing_emit_d16 = true;
2081 }
2082 else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2083 _doing_emit_hi = true;
2084 }
2085 else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2086 _doing_emit_lo = true;
2087 }
2088 else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2089 _doing_emit8 = true;
2090 }
2091 else {
2092 _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2093 assert( false, "fatal();");
2094 }
2095 }
2096 else {
2097 // Update state for replacement variables
2098 update_state( rep_var );
2099 _strings_to_emit.addName(rep_var);
2100 }
2101 _cleared = false;
2102 }
2103
2104 void emit_replacement() {
2105 // A replacement variable or one of its subfields
2106 // Obtain replacement variable from list
2107 // const char *ec_rep_var = encoding->_rep_vars.iter();
2108 const char *rep_var;
2109 _strings_to_emit.reset();
2110 while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2111
2112 if ( (*rep_var) == '$' ) {
2113 // A subfield variable, '$$' prefix
2114 emit_field( rep_var );
2115 } else {
2116 // A replacement variable, '$' prefix
2117 emit_rep_var( rep_var );
2118 } // end replacement and/or subfield
2119 }
2120 }
2121
2122 void emit_reloc_type(const char* type) {
2123 fprintf(_fp, "%s", type)
2124 ;
2125 }
2126
2127
2128 void gen_emit_x_reloc(const char *d32_lo_hi ) {
2129 fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_lo_hi );
2130 emit_replacement(); fprintf(_fp,", ");
2131 emit_reloc_type( _reloc_type ); fprintf(_fp,", ");
2132 fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2133 }
2134
2135
2136 void emit() {
2137 //
2138 // "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2139 //
2140 // Emit the function name when generating an emit function
2141 if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2142 const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2143 // In general, relocatable isn't known at compiler compile time.
2144 // Check results of prior scan
2145 if ( ! _may_reloc ) {
2146 // Definitely don't need relocation information
2147 fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2148 emit_replacement(); fprintf(_fp, ")");
2149 }
2150 else if ( _must_reloc ) {
2151 // Must emit relocation information
2152 gen_emit_x_reloc( d32_hi_lo );
2153 }
2154 else {
2155 // Emit RUNTIME CHECK to see if value needs relocation info
2156 // If emitting a relocatable address, use 'emit_d32_reloc'
2157 const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2158 assert( (_doing_disp || _doing_constant)
2159 && !(_doing_disp && _doing_constant),
2160 "Must be emitting either a displacement or a constant");
2161 fprintf(_fp,"\n");
2162 fprintf(_fp,"if ( opnd_array(%d)->%s_is_oop() ) {\n",
2163 _operand_idx, disp_constant);
2164 fprintf(_fp," ");
2165 gen_emit_x_reloc( d32_hi_lo ); fprintf(_fp,"\n");
2166 fprintf(_fp,"} else {\n");
2167 fprintf(_fp," emit_%s(cbuf, ", d32_hi_lo);
2168 emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2169 }
2170 }
2171 else if ( _doing_emit_d16 ) {
2172 // Relocation of 16-bit values is not supported
2173 fprintf(_fp,"emit_d16(cbuf, ");
2174 emit_replacement(); fprintf(_fp, ")");
2175 // No relocation done for 16-bit values
2176 }
2177 else if ( _doing_emit8 ) {
2178 // Relocation of 8-bit values is not supported
2179 fprintf(_fp,"emit_d8(cbuf, ");
2180 emit_replacement(); fprintf(_fp, ")");
2181 // No relocation done for 8-bit values
2182 }
2183 else {
2184 // Not an emit# command, just output the replacement string.
2185 emit_replacement();
2186 }
2187
2188 // Get ready for next state collection.
2189 clear();
2190 }
2191
2192 private:
2193
2194 // recognizes names which represent MacroAssembler register types
2195 // and return the conversion function to build them from OptoReg
2196 const char* reg_conversion(const char* rep_var) {
2197 if (strcmp(rep_var,"$Register") == 0) return "as_Register";
2198 if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2199 #if defined(IA32) || defined(AMD64)
2200 if (strcmp(rep_var,"$XMMRegister") == 0) return "as_XMMRegister";
2201 #endif
2202 return NULL;
2203 }
2204
2205 void emit_field(const char *rep_var) {
2206 const char* reg_convert = reg_conversion(rep_var);
2207
2208 // A subfield variable, '$$subfield'
2209 if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2210 // $reg form or the $Register MacroAssembler type conversions
2211 assert( _operand_idx != -1,
2212 "Must use this subfield after operand");
2213 if( _reg_status == LITERAL_NOT_SEEN ) {
2214 if (_processing_noninput) {
2215 const Form *local = _inst._localNames[_operand_name];
2216 OperandForm *oper = local->is_operand();
2217 const RegDef* first = oper->get_RegClass()->find_first_elem();
2218 if (reg_convert != NULL) {
2219 fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2220 } else {
2221 fprintf(_fp, "%s_enc", first->_regname);
2222 }
2223 } else {
2224 fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2225 // Add parameter for index position, if not result operand
2226 if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2227 fprintf(_fp,")");
2228 }
2229 } else {
2230 assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2231 // Register literal has already been sent to output file, nothing more needed
2232 }
2233 }
2234 else if ( strcmp(rep_var,"$base") == 0 ) {
2235 assert( _operand_idx != -1,
2236 "Must use this subfield after operand");
2237 assert( ! _may_reloc, "UnImplemented()");
2238 fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2239 }
2240 else if ( strcmp(rep_var,"$index") == 0 ) {
2241 assert( _operand_idx != -1,
2242 "Must use this subfield after operand");
2243 assert( ! _may_reloc, "UnImplemented()");
2244 fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2245 }
2246 else if ( strcmp(rep_var,"$scale") == 0 ) {
2247 assert( ! _may_reloc, "UnImplemented()");
2248 fprintf(_fp,"->scale()");
2249 }
2250 else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2251 assert( ! _may_reloc, "UnImplemented()");
2252 fprintf(_fp,"->ccode()");
2253 }
2254 else if ( strcmp(rep_var,"$constant") == 0 ) {
2255 if( _constant_status == LITERAL_NOT_SEEN ) {
2256 if ( _constant_type == Form::idealD ) {
2257 fprintf(_fp,"->constantD()");
2258 } else if ( _constant_type == Form::idealF ) {
2259 fprintf(_fp,"->constantF()");
2260 } else if ( _constant_type == Form::idealL ) {
2261 fprintf(_fp,"->constantL()");
2262 } else {
2263 fprintf(_fp,"->constant()");
2264 }
2265 } else {
2266 assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2267 // Cosntant literal has already been sent to output file, nothing more needed
2268 }
2269 }
2270 else if ( strcmp(rep_var,"$disp") == 0 ) {
2271 Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2272 if( _operand && _operand_idx==0 && stack_type != Form::none ) {
2273 fprintf(_fp,"->disp(ra_,this,0)");
2274 } else {
2275 fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2276 }
2277 }
2278 else if ( strcmp(rep_var,"$label") == 0 ) {
2279 fprintf(_fp,"->label()");
2280 }
2281 else if ( strcmp(rep_var,"$method") == 0 ) {
2282 fprintf(_fp,"->method()");
2283 }
2284 else {
2285 printf("emit_field: %s\n",rep_var);
2286 assert( false, "UnImplemented()");
2287 }
2288 }
2289
2290
2291 void emit_rep_var(const char *rep_var) {
2292 _processing_noninput = false;
2293 // A replacement variable, originally '$'
2294 if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2295 _inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) );
2296 }
2297 else {
2298 // Lookup its position in parameter list
2299 int param_no = _encoding.rep_var_index(rep_var);
2300 if ( param_no == -1 ) {
2301 _AD.syntax_err( _encoding._linenum,
2302 "Replacement variable %s not found in enc_class %s.\n",
2303 rep_var, _encoding._name);
2304 }
2305 // Lookup the corresponding ins_encode parameter
2306 const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2307
2308 // Check if instruction's actual parameter is a local name in the instruction
2309 const Form *local = _inst._localNames[inst_rep_var];
2310 OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
2311 // Note: assert removed to allow constant and symbolic parameters
2312 // assert( opc, "replacement variable was not found in local names");
2313 // Lookup the index position iff the replacement variable is a localName
2314 int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2315 if( idx != -1 ) {
2316 if (_inst.is_noninput_operand(idx)) {
2317 // This operand isn't a normal input so printing it is done
2318 // specially.
2319 _processing_noninput = true;
2320 } else {
2321 // Output the emit code for this operand
2322 fprintf(_fp,"opnd_array(%d)",idx);
2323 }
2324 assert( _operand == opc->is_operand(),
2325 "Previous emit $operand does not match current");
2326 }
2327 else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2328 // else check if it is a constant expression
2329 // Removed following assert to allow primitive C types as arguments to encodings
2330 // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2331 fprintf(_fp,"(%s)", inst_rep_var);
2332 _constant_status = LITERAL_OUTPUT;
2333 }
2334 else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2335 // else check if "primary", "secondary", "tertiary"
2336 assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2337 _inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) );
2338 _constant_status = LITERAL_OUTPUT;
2339 }
2340 else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2341 // Instruction provided a literal register name for this parameter
2342 // Check that encoding specifies $$$reg to resolve.as register.
2343 assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2344 fprintf(_fp,"(%s_enc)", inst_rep_var);
2345 _reg_status = LITERAL_OUTPUT;
2346 }
2347 else {
2348 // Check for unimplemented functionality before hard failure
2349 assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2350 assert( false, "ShouldNotReachHere()");
2351 }
2352 // all done
2353 }
2354 }
2355
2356 }; // end class DefineEmitState
2357
2358
2359 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2360
2361 //(1)
2362 // Output instruction's emit prototype
2363 fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2364 inst._ident);
2365
2366 //(2)
2367 // Print the size
2368 fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2369
2370 // (3) and (4)
2371 fprintf(fp,"}\n");
2372 }
2373
2374 void ArchDesc::defineEmit(FILE *fp, InstructForm &inst) {
2375 InsEncode *ins_encode = inst._insencode;
2376
2377 // (1)
2378 // Output instruction's emit prototype
2379 fprintf(fp,"void %sNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {\n",
2380 inst._ident);
2381
2382 // If user did not define an encode section,
2383 // provide stub that does not generate any machine code.
2384 if( (_encode == NULL) || (ins_encode == NULL) ) {
2385 fprintf(fp, " // User did not define an encode section.\n");
2386 fprintf(fp,"}\n");
2387 return;
2388 }
2389
2390 // Save current instruction's starting address (helps with relocation).
2391 fprintf( fp, " cbuf.set_inst_mark();\n");
2392
2393 // // // idx0 is only needed for syntactic purposes and only by "storeSSI"
2394 // fprintf( fp, " unsigned idx0 = 0;\n");
2395
2396 // Output each operand's offset into the array of registers.
2397 inst.index_temps( fp, _globalNames );
2398
2399 // Output this instruction's encodings
2400 const char *ec_name;
2401 bool user_defined = false;
2402 ins_encode->reset();
2403 while ( (ec_name = ins_encode->encode_class_iter()) != NULL ) {
2404 fprintf(fp, " {");
2405 // Output user-defined encoding
2406 user_defined = true;
2407
2408 const char *ec_code = NULL;
2409 const char *ec_rep_var = NULL;
2410 EncClass *encoding = _encode->encClass(ec_name);
2411 if (encoding == NULL) {
2412 fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2413 abort();
2414 }
2415
2416 if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2417 globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2418 inst._ident, ins_encode->current_encoding_num_args(),
2419 ec_name, encoding->num_args());
2420 }
2421
2422 DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst );
2423 encoding->_code.reset();
2424 encoding->_rep_vars.reset();
2425 // Process list of user-defined strings,
2426 // and occurrences of replacement variables.
2427 // Replacement Vars are pushed into a list and then output
2428 while ( (ec_code = encoding->_code.iter()) != NULL ) {
2429 if ( ! encoding->_code.is_signal( ec_code ) ) {
2430 // Emit pending code
2431 pending.emit();
2432 pending.clear();
2433 // Emit this code section
2434 fprintf(fp,"%s", ec_code);
2435 } else {
2436 // A replacement variable or one of its subfields
2437 // Obtain replacement variable from list
2438 ec_rep_var = encoding->_rep_vars.iter();
2439 pending.add_rep_var(ec_rep_var);
2440 }
2441 }
2442 // Emit pending code
2443 pending.emit();
2444 pending.clear();
2445 fprintf(fp, "}\n");
2446 } // end while instruction's encodings
2447
2448 // Check if user stated which encoding to user
2449 if ( user_defined == false ) {
2450 fprintf(fp, " // User did not define which encode class to use.\n");
2451 }
2452
2453 // (3) and (4)
2454 fprintf(fp,"}\n");
2455 }
2456
2457 // ---------------------------------------------------------------------------
2458 //--------Utilities to build MachOper and MachNode derived Classes------------
2459 // ---------------------------------------------------------------------------
2460
2461 //------------------------------Utilities to build Operand Classes------------
2462 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2463 uint num_edges = oper.num_edges(globals);
2464 if( num_edges != 0 ) {
2465 // Method header
2466 fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2467 oper._ident);
2468
2469 // Assert that the index is in range.
2470 fprintf(fp, " assert(0 <= index && index < %d, \"index out of range\");\n",
2471 num_edges);
2472
2473 // Figure out if all RegMasks are the same.
2474 const char* first_reg_class = oper.in_reg_class(0, globals);
2475 bool all_same = true;
2476 assert(first_reg_class != NULL, "did not find register mask");
2477
2478 for (uint index = 1; all_same && index < num_edges; index++) {
2479 const char* some_reg_class = oper.in_reg_class(index, globals);
2480 assert(some_reg_class != NULL, "did not find register mask");
2481 if (strcmp(first_reg_class, some_reg_class) != 0) {
2482 all_same = false;
2483 }
2484 }
2485
2486 if (all_same) {
2487 // Return the sole RegMask.
2488 if (strcmp(first_reg_class, "stack_slots") == 0) {
2489 fprintf(fp," return &(Compile::current()->FIRST_STACK_mask());\n");
2490 } else {
2491 fprintf(fp," return &%s_mask;\n", toUpper(first_reg_class));
2492 }
2493 } else {
2494 // Build a switch statement to return the desired mask.
2495 fprintf(fp," switch (index) {\n");
2496
2497 for (uint index = 0; index < num_edges; index++) {
2498 const char *reg_class = oper.in_reg_class(index, globals);
2499 assert(reg_class != NULL, "did not find register mask");
2500 if( !strcmp(reg_class, "stack_slots") ) {
2501 fprintf(fp, " case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2502 } else {
2503 fprintf(fp, " case %d: return &%s_mask;\n", index, toUpper(reg_class));
2504 }
2505 }
2506 fprintf(fp," }\n");
2507 fprintf(fp," ShouldNotReachHere();\n");
2508 fprintf(fp," return NULL;\n");
2509 }
2510
2511 // Method close
2512 fprintf(fp, "}\n\n");
2513 }
2514 }
2515
2516 // generate code to create a clone for a class derived from MachOper
2517 //
2518 // (0) MachOper *MachOperXOper::clone(Compile* C) const {
2519 // (1) return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2520 // (2) }
2521 //
2522 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2523 fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
2524 // Check for constants that need to be copied over
2525 const int num_consts = oper.num_consts(globalNames);
2526 const bool is_ideal_bool = oper.is_ideal_bool();
2527 if( (num_consts > 0) ) {
2528 fprintf(fp," return new (C) %sOper(", oper._ident);
2529 // generate parameters for constants
2530 int i = 0;
2531 fprintf(fp,"_c%d", i);
2532 for( i = 1; i < num_consts; ++i) {
2533 fprintf(fp,", _c%d", i);
2534 }
2535 // finish line (1)
2536 fprintf(fp,");\n");
2537 }
2538 else {
2539 assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2540 fprintf(fp," return new (C) %sOper();\n", oper._ident);
2541 }
2542 // finish method
2543 fprintf(fp,"}\n");
2544 }
2545
2546 static void define_hash(FILE *fp, char *operand) {
2547 fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand);
2548 }
2549
2550 static void define_cmp(FILE *fp, char *operand) {
2551 fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand);
2552 }
2553
2554
2555 // Helper functions for bug 4796752, abstracted with minimal modification
2556 // from define_oper_interface()
2557 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2558 OperandForm *op = NULL;
2559 // Check for replacement variable
2560 if( *encoding == '$' ) {
2561 // Replacement variable
2562 const char *rep_var = encoding + 1;
2563 // Lookup replacement variable, rep_var, in operand's component list
2564 const Component *comp = oper._components.search(rep_var);
2565 assert( comp != NULL, "Replacement variable not found in components");
2566 // Lookup operand form for replacement variable's type
2567 const char *type = comp->_type;
2568 Form *form = (Form*)globals[type];
2569 assert( form != NULL, "Replacement variable's type not found");
2570 op = form->is_operand();
2571 assert( op, "Attempting to emit a non-register or non-constant");
2572 }
2573
2574 return op;
2575 }
2576
2577 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2578 int idx = -1;
2579 // Check for replacement variable
2580 if( *encoding == '$' ) {
2581 // Replacement variable
2582 const char *rep_var = encoding + 1;
2583 // Lookup replacement variable, rep_var, in operand's component list
2584 const Component *comp = oper._components.search(rep_var);
2585 assert( comp != NULL, "Replacement variable not found in components");
2586 // Lookup operand form for replacement variable's type
2587 const char *type = comp->_type;
2588 Form *form = (Form*)globals[type];
2589 assert( form != NULL, "Replacement variable's type not found");
2590 OperandForm *op = form->is_operand();
2591 assert( op, "Attempting to emit a non-register or non-constant");
2592 // Check that this is a constant and find constant's index:
2593 if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2594 idx = oper.constant_position(globals, comp);
2595 }
2596 }
2597
2598 return idx;
2599 }
2600
2601 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2602 bool is_regI = false;
2603
2604 OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2605 if( op != NULL ) {
2606 // Check that this is a register
2607 if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2608 // Register
2609 const char* ideal = op->ideal_type(globals);
2610 is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2611 }
2612 }
2613
2614 return is_regI;
2615 }
2616
2617 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2618 bool is_conP = false;
2619
2620 OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2621 if( op != NULL ) {
2622 // Check that this is a constant pointer
2623 if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2624 // Constant
2625 Form::DataType dtype = op->is_base_constant(globals);
2626 is_conP = (dtype == Form::idealP);
2627 }
2628 }
2629
2630 return is_conP;
2631 }
2632
2633
2634 // Define a MachOper interface methods
2635 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2636 const char *name, const char *encoding) {
2637 bool emit_position = false;
2638 int position = -1;
2639
2640 fprintf(fp," virtual int %s", name);
2641 // Generate access method for base, index, scale, disp, ...
2642 if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2643 fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2644 emit_position = true;
2645 } else if ( (strcmp(name,"disp") == 0) ) {
2646 fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2647 } else {
2648 fprintf(fp,"() const { ");
2649 }
2650
2651 // Check for hexadecimal value OR replacement variable
2652 if( *encoding == '$' ) {
2653 // Replacement variable
2654 const char *rep_var = encoding + 1;
2655 fprintf(fp,"// Replacement variable: %s\n", encoding+1);
2656 // Lookup replacement variable, rep_var, in operand's component list
2657 const Component *comp = oper._components.search(rep_var);
2658 assert( comp != NULL, "Replacement variable not found in components");
2659 // Lookup operand form for replacement variable's type
2660 const char *type = comp->_type;
2661 Form *form = (Form*)globals[type];
2662 assert( form != NULL, "Replacement variable's type not found");
2663 OperandForm *op = form->is_operand();
2664 assert( op, "Attempting to emit a non-register or non-constant");
2665 // Check that this is a register or a constant and generate code:
2666 if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2667 // Register
2668 int idx_offset = oper.register_position( globals, rep_var);
2669 position = idx_offset;
2670 fprintf(fp," return (int)ra_->get_encode(node->in(idx");
2671 if ( idx_offset > 0 ) fprintf(fp, "+%d",idx_offset);
2672 fprintf(fp,"));\n");
2673 } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2674 // StackSlot for an sReg comes either from input node or from self, when idx==0
2675 fprintf(fp," if( idx != 0 ) {\n");
2676 fprintf(fp," // Access register number for input operand\n");
2677 fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2678 fprintf(fp," }\n");
2679 fprintf(fp," // Access register number from myself\n");
2680 fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2681 } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2682 // Constant
2683 // Check which constant this name maps to: _c0, _c1, ..., _cn
2684 const int idx = oper.constant_position(globals, comp);
2685 assert( idx != -1, "Constant component not found in operand");
2686 // Output code for this constant, type dependent.
2687 fprintf(fp," return (int)" );
2688 oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2689 fprintf(fp,";\n");
2690 } else {
2691 assert( false, "Attempting to emit a non-register or non-constant");
2692 }
2693 }
2694 else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2695 // Hex value
2696 fprintf(fp,"return %s;", encoding);
2697 } else {
2698 assert( false, "Do not support octal or decimal encode constants");
2699 }
2700 fprintf(fp," }\n");
2701
2702 if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2703 fprintf(fp," virtual int %s_position() const { return %d; }\n", name, position);
2704 MemInterface *mem_interface = oper._interface->is_MemInterface();
2705 const char *base = mem_interface->_base;
2706 const char *disp = mem_interface->_disp;
2707 if( emit_position && (strcmp(name,"base") == 0)
2708 && base != NULL && is_regI(base, oper, globals)
2709 && disp != NULL && is_conP(disp, oper, globals) ) {
2710 // Found a memory access using a constant pointer for a displacement
2711 // and a base register containing an integer offset.
2712 // In this case the base and disp are reversed with respect to what
2713 // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2714 // Provide a non-NULL return for disp_as_type() that will allow adr_type()
2715 // to correctly compute the access type for alias analysis.
2716 //
2717 // See BugId 4796752, operand indOffset32X in i486.ad
2718 int idx = rep_var_to_constant_index(disp, oper, globals);
2719 fprintf(fp," virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2720 }
2721 }
2722 }
2723
2724 //
2725 // Construct the method to copy _idx, inputs and operands to new node.
2726 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
2727 fprintf(fp_cpp, "\n");
2728 fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
2729 fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
2730 if( !used ) {
2731 fprintf(fp_cpp, " // This architecture does not have cisc or short branch instructions\n");
2732 fprintf(fp_cpp, " ShouldNotCallThis();\n");
2733 fprintf(fp_cpp, "}\n");
2734 } else {
2735 // New node must use same node index for access through allocator's tables
2736 fprintf(fp_cpp, " // New node must use same node index\n");
2737 fprintf(fp_cpp, " node->set_idx( _idx );\n");
2738 // Copy machine-independent inputs
2739 fprintf(fp_cpp, " // Copy machine-independent inputs\n");
2740 fprintf(fp_cpp, " for( uint j = 0; j < req(); j++ ) {\n");
2741 fprintf(fp_cpp, " node->add_req(in(j));\n");
2742 fprintf(fp_cpp, " }\n");
2743 // Copy machine operands to new MachNode
2744 fprintf(fp_cpp, " // Copy my operands, except for cisc position\n");
2745 fprintf(fp_cpp, " int nopnds = num_opnds();\n");
2746 fprintf(fp_cpp, " assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
2747 fprintf(fp_cpp, " MachOper **to = node->_opnds;\n");
2748 fprintf(fp_cpp, " for( int i = 0; i < nopnds; i++ ) {\n");
2749 fprintf(fp_cpp, " if( i != cisc_operand() ) \n");
2750 fprintf(fp_cpp, " to[i] = _opnds[i]->clone(C);\n");
2751 fprintf(fp_cpp, " }\n");
2752 fprintf(fp_cpp, "}\n");
2753 }
2754 fprintf(fp_cpp, "\n");
2755 }
2756
2757 //------------------------------defineClasses----------------------------------
2758 // Define members of MachNode and MachOper classes based on
2759 // operand and instruction lists
2760 void ArchDesc::defineClasses(FILE *fp) {
2761
2762 // Define the contents of an array containing the machine register names
2763 defineRegNames(fp, _register);
2764 // Define an array containing the machine register encoding values
2765 defineRegEncodes(fp, _register);
2766 // Generate an enumeration of user-defined register classes
2767 // and a list of register masks, one for each class.
2768 // Only define the RegMask value objects in the expand file.
2769 // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
2770 declare_register_masks(_HPP_file._fp);
2771 // build_register_masks(fp);
2772 build_register_masks(_CPP_EXPAND_file._fp);
2773 // Define the pipe_classes
2774 build_pipe_classes(_CPP_PIPELINE_file._fp);
2775
2776 // Generate Machine Classes for each operand defined in AD file
2777 fprintf(fp,"\n");
2778 fprintf(fp,"\n");
2779 fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
2780 // Iterate through all operands
2781 _operands.reset();
2782 OperandForm *oper;
2783 for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
2784 // Ensure this is a machine-world instruction
2785 if ( oper->ideal_only() ) continue;
2786 // !!!!!
2787 // The declaration of labelOper is in machine-independent file: machnode
2788 if ( strcmp(oper->_ident,"label") == 0 ) {
2789 defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2790
2791 fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident);
2792 fprintf(fp," return new (C) %sOper(_label, _block_num);\n", oper->_ident);
2793 fprintf(fp,"}\n");
2794
2795 fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
2796 oper->_ident, machOperEnum(oper->_ident));
2797 // // Currently all XXXOper::Hash() methods are identical (990820)
2798 // define_hash(fp, oper->_ident);
2799 // // Currently all XXXOper::Cmp() methods are identical (990820)
2800 // define_cmp(fp, oper->_ident);
2801 fprintf(fp,"\n");
2802
2803 continue;
2804 }
2805
2806 // The declaration of methodOper is in machine-independent file: machnode
2807 if ( strcmp(oper->_ident,"method") == 0 ) {
2808 defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2809
2810 fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident);
2811 fprintf(fp," return new (C) %sOper(_method);\n", oper->_ident);
2812 fprintf(fp,"}\n");
2813
2814 fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
2815 oper->_ident, machOperEnum(oper->_ident));
2816 // // Currently all XXXOper::Hash() methods are identical (990820)
2817 // define_hash(fp, oper->_ident);
2818 // // Currently all XXXOper::Cmp() methods are identical (990820)
2819 // define_cmp(fp, oper->_ident);
2820 fprintf(fp,"\n");
2821
2822 continue;
2823 }
2824
2825 defineIn_RegMask(fp, _globalNames, *oper);
2826 defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
2827 // // Currently all XXXOper::Hash() methods are identical (990820)
2828 // define_hash(fp, oper->_ident);
2829 // // Currently all XXXOper::Cmp() methods are identical (990820)
2830 // define_cmp(fp, oper->_ident);
2831
2832 // side-call to generate output that used to be in the header file:
2833 extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
2834 gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
2835
2836 }
2837
2838
2839 // Generate Machine Classes for each instruction defined in AD file
2840 fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
2841 // Output the definitions for out_RegMask() // & kill_RegMask()
2842 _instructions.reset();
2843 InstructForm *instr;
2844 MachNodeForm *machnode;
2845 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
2846 // Ensure this is a machine-world instruction
2847 if ( instr->ideal_only() ) continue;
2848
2849 defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
2850 }
2851
2852 bool used = false;
2853 // Output the definitions for expand rules & peephole rules
2854 _instructions.reset();
2855 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
2856 // Ensure this is a machine-world instruction
2857 if ( instr->ideal_only() ) continue;
2858 // If there are multiple defs/kills, or an explicit expand rule, build rule
2859 if( instr->expands() || instr->needs_projections() ||
2860 instr->has_temps() ||
2861 instr->_matrule != NULL &&
2862 instr->num_opnds() != instr->num_unique_opnds() )
2863 defineExpand(_CPP_EXPAND_file._fp, instr);
2864 // If there is an explicit peephole rule, build it
2865 if ( instr->peepholes() )
2866 definePeephole(_CPP_PEEPHOLE_file._fp, instr);
2867
2868 // Output code to convert to the cisc version, if applicable
2869 used |= instr->define_cisc_version(*this, fp);
2870
2871 // Output code to convert to the short branch version, if applicable
2872 used |= instr->define_short_branch_methods(fp);
2873 }
2874
2875 // Construct the method called by cisc_version() to copy inputs and operands.
2876 define_fill_new_machnode(used, fp);
2877
2878 // Output the definitions for labels
2879 _instructions.reset();
2880 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
2881 // Ensure this is a machine-world instruction
2882 if ( instr->ideal_only() ) continue;
2883
2884 // Access the fields for operand Label
2885 int label_position = instr->label_position();
2886 if( label_position != -1 ) {
2887 // Set the label
2888 fprintf(fp,"void %sNode::label_set( Label& label, uint block_num ) {\n", instr->_ident);
2889 fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
2890 label_position );
2891 fprintf(fp," oper->_label = &label;\n");
2892 fprintf(fp," oper->_block_num = block_num;\n");
2893 fprintf(fp,"}\n");
2894 }
2895 }
2896
2897 // Output the definitions for methods
2898 _instructions.reset();
2899 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
2900 // Ensure this is a machine-world instruction
2901 if ( instr->ideal_only() ) continue;
2902
2903 // Access the fields for operand Label
2904 int method_position = instr->method_position();
2905 if( method_position != -1 ) {
2906 // Access the method's address
2907 fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
2908 fprintf(fp," ((methodOper*)opnd_array(%d))->_method = method;\n",
2909 method_position );
2910 fprintf(fp,"}\n");
2911 fprintf(fp,"\n");
2912 }
2913 }
2914
2915 // Define this instruction's number of relocation entries, base is '0'
2916 _instructions.reset();
2917 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
2918 // Output the definition for number of relocation entries
2919 uint reloc_size = instr->reloc(_globalNames);
2920 if ( reloc_size != 0 ) {
2921 fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
2922 fprintf(fp, " return %d;\n", reloc_size );
2923 fprintf(fp,"}\n");
2924 fprintf(fp,"\n");
2925 }
2926 }
2927 fprintf(fp,"\n");
2928
2929 // Output the definitions for code generation
2930 //
2931 // address ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
2932 // // ... encoding defined by user
2933 // return ptr;
2934 // }
2935 //
2936 _instructions.reset();
2937 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
2938 // Ensure this is a machine-world instruction
2939 if ( instr->ideal_only() ) continue;
2940
2941 if (instr->_insencode) defineEmit(fp, *instr);
2942 if (instr->_size) defineSize(fp, *instr);
2943
2944 // side-call to generate output that used to be in the header file:
2945 extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
2946 gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
2947 }
2948
2949 // Output the definitions for alias analysis
2950 _instructions.reset();
2951 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
2952 // Ensure this is a machine-world instruction
2953 if ( instr->ideal_only() ) continue;
2954
2955 // Analyze machine instructions that either USE or DEF memory.
2956 int memory_operand = instr->memory_operand(_globalNames);
2957 // Some guys kill all of memory
2958 if ( instr->is_wide_memory_kill(_globalNames) ) {
2959 memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
2960 }
2961
2962 if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
2963 if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
2964 fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
2965 fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
2966 } else {
2967 fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
2968 }
2969 }
2970 }
2971
2972 // Get the length of the longest identifier
2973 int max_ident_len = 0;
2974 _instructions.reset();
2975
2976 for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
2977 if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
2978 int ident_len = (int)strlen(instr->_ident);
2979 if( max_ident_len < ident_len )
2980 max_ident_len = ident_len;
2981 }
2982 }
2983
2984 // Emit specifically for Node(s)
2985 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
2986 max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
2987 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
2988 max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
2989 fprintf(_CPP_PIPELINE_file._fp, "\n");
2990
2991 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
2992 max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
2993 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
2994 max_ident_len, "MachNode");
2995 fprintf(_CPP_PIPELINE_file._fp, "\n");
2996
2997 // Output the definitions for machine node specific pipeline data
2998 _machnodes.reset();
2999
3000 for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3001 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3002 machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3003 }
3004
3005 fprintf(_CPP_PIPELINE_file._fp, "\n");
3006
3007 // Output the definitions for instruction pipeline static data references
3008 _instructions.reset();
3009
3010 for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3011 if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3012 fprintf(_CPP_PIPELINE_file._fp, "\n");
3013 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3014 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3015 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3016 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3017 }
3018 }
3019 }
3020
3021
3022 // -------------------------------- maps ------------------------------------
3023
3024 // Information needed to generate the ReduceOp mapping for the DFA
3025 class OutputReduceOp : public OutputMap {
3026 public:
3027 OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3028 : OutputMap(hpp, cpp, globals, AD) {};
3029
3030 void declaration() { fprintf(_hpp, "extern const int reduceOp[];\n"); }
3031 void definition() { fprintf(_cpp, "const int reduceOp[] = {\n"); }
3032 void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3033 OutputMap::closing();
3034 }
3035 void map(OpClassForm &opc) {
3036 const char *reduce = opc._ident;
3037 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3038 else fprintf(_cpp, " 0");
3039 }
3040 void map(OperandForm &oper) {
3041 // Most operands without match rules, e.g. eFlagsReg, do not have a result operand
3042 const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3043 // operand stackSlot does not have a match rule, but produces a stackSlot
3044 if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3045 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3046 else fprintf(_cpp, " 0");
3047 }
3048 void map(InstructForm &inst) {
3049 const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3050 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3051 else fprintf(_cpp, " 0");
3052 }
3053 void map(char *reduce) {
3054 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3055 else fprintf(_cpp, " 0");
3056 }
3057 };
3058
3059 // Information needed to generate the LeftOp mapping for the DFA
3060 class OutputLeftOp : public OutputMap {
3061 public:
3062 OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3063 : OutputMap(hpp, cpp, globals, AD) {};
3064
3065 void declaration() { fprintf(_hpp, "extern const int leftOp[];\n"); }
3066 void definition() { fprintf(_cpp, "const int leftOp[] = {\n"); }
3067 void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3068 OutputMap::closing();
3069 }
3070 void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
3071 void map(OperandForm &oper) {
3072 const char *reduce = oper.reduce_left(_globals);
3073 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3074 else fprintf(_cpp, " 0");
3075 }
3076 void map(char *name) {
3077 const char *reduce = _AD.reduceLeft(name);
3078 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3079 else fprintf(_cpp, " 0");
3080 }
3081 void map(InstructForm &inst) {
3082 const char *reduce = inst.reduce_left(_globals);
3083 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3084 else fprintf(_cpp, " 0");
3085 }
3086 };
3087
3088
3089 // Information needed to generate the RightOp mapping for the DFA
3090 class OutputRightOp : public OutputMap {
3091 public:
3092 OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3093 : OutputMap(hpp, cpp, globals, AD) {};
3094
3095 void declaration() { fprintf(_hpp, "extern const int rightOp[];\n"); }
3096 void definition() { fprintf(_cpp, "const int rightOp[] = {\n"); }
3097 void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3098 OutputMap::closing();
3099 }
3100 void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
3101 void map(OperandForm &oper) {
3102 const char *reduce = oper.reduce_right(_globals);
3103 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3104 else fprintf(_cpp, " 0");
3105 }
3106 void map(char *name) {
3107 const char *reduce = _AD.reduceRight(name);
3108 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3109 else fprintf(_cpp, " 0");
3110 }
3111 void map(InstructForm &inst) {
3112 const char *reduce = inst.reduce_right(_globals);
3113 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3114 else fprintf(_cpp, " 0");
3115 }
3116 };
3117
3118
3119 // Information needed to generate the Rule names for the DFA
3120 class OutputRuleName : public OutputMap {
3121 public:
3122 OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3123 : OutputMap(hpp, cpp, globals, AD) {};
3124
3125 void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3126 void definition() { fprintf(_cpp, "const char *ruleName[] = {\n"); }
3127 void closing() { fprintf(_cpp, " \"no trailing comma\"\n");
3128 OutputMap::closing();
3129 }
3130 void map(OpClassForm &opc) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(opc._ident) ); }
3131 void map(OperandForm &oper) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(oper._ident) ); }
3132 void map(char *name) { fprintf(_cpp, " \"%s\"", name ? name : "0"); }
3133 void map(InstructForm &inst){ fprintf(_cpp, " \"%s\"", inst._ident ? inst._ident : "0"); }
3134 };
3135
3136
3137 // Information needed to generate the swallowed mapping for the DFA
3138 class OutputSwallowed : public OutputMap {
3139 public:
3140 OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3141 : OutputMap(hpp, cpp, globals, AD) {};
3142
3143 void declaration() { fprintf(_hpp, "extern const bool swallowed[];\n"); }
3144 void definition() { fprintf(_cpp, "const bool swallowed[] = {\n"); }
3145 void closing() { fprintf(_cpp, " false // no trailing comma\n");
3146 OutputMap::closing();
3147 }
3148 void map(OperandForm &oper) { // Generate the entry for this opcode
3149 const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3150 fprintf(_cpp, " %s", swallowed);
3151 }
3152 void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
3153 void map(char *name) { fprintf(_cpp, " false"); }
3154 void map(InstructForm &inst){ fprintf(_cpp, " false"); }
3155 };
3156
3157
3158 // Information needed to generate the decision array for instruction chain rule
3159 class OutputInstChainRule : public OutputMap {
3160 public:
3161 OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3162 : OutputMap(hpp, cpp, globals, AD) {};
3163
3164 void declaration() { fprintf(_hpp, "extern const bool instruction_chain_rule[];\n"); }
3165 void definition() { fprintf(_cpp, "const bool instruction_chain_rule[] = {\n"); }
3166 void closing() { fprintf(_cpp, " false // no trailing comma\n");
3167 OutputMap::closing();
3168 }
3169 void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
3170 void map(OperandForm &oper) { fprintf(_cpp, " false"); }
3171 void map(char *name) { fprintf(_cpp, " false"); }
3172 void map(InstructForm &inst) { // Check for simple chain rule
3173 const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3174 fprintf(_cpp, " %s", chain);
3175 }
3176 };
3177
3178
3179 //---------------------------build_map------------------------------------
3180 // Build mapping from enumeration for densely packed operands
3181 // TO result and child types.
3182 void ArchDesc::build_map(OutputMap &map) {
3183 FILE *fp_hpp = map.decl_file();
3184 FILE *fp_cpp = map.def_file();
3185 int idx = 0;
3186 OperandForm *op;
3187 OpClassForm *opc;
3188 InstructForm *inst;
3189
3190 // Construct this mapping
3191 map.declaration();
3192 fprintf(fp_cpp,"\n");
3193 map.definition();
3194
3195 // Output the mapping for operands
3196 map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3197 _operands.reset();
3198 for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3199 // Ensure this is a machine-world instruction
3200 if ( op->ideal_only() ) continue;
3201
3202 // Generate the entry for this opcode
3203 map.map(*op); fprintf(fp_cpp, ", // %d\n", idx);
3204 ++idx;
3205 };
3206 fprintf(fp_cpp, " // last operand\n");
3207
3208 // Place all user-defined operand classes into the mapping
3209 map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3210 _opclass.reset();
3211 for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3212 map.map(*opc); fprintf(fp_cpp, ", // %d\n", idx);
3213 ++idx;
3214 };
3215 fprintf(fp_cpp, " // last operand class\n");
3216
3217 // Place all internally defined operands into the mapping
3218 map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3219 _internalOpNames.reset();
3220 char *name = NULL;
3221 for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3222 map.map(name); fprintf(fp_cpp, ", // %d\n", idx);
3223 ++idx;
3224 };
3225 fprintf(fp_cpp, " // last internally defined operand\n");
3226
3227 // Place all user-defined instructions into the mapping
3228 if( map.do_instructions() ) {
3229 map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3230 // Output all simple instruction chain rules first
3231 map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3232 {
3233 _instructions.reset();
3234 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3235 // Ensure this is a machine-world instruction
3236 if ( inst->ideal_only() ) continue;
3237 if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3238 if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3239
3240 map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx);
3241 ++idx;
3242 };
3243 map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3244 _instructions.reset();
3245 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3246 // Ensure this is a machine-world instruction
3247 if ( inst->ideal_only() ) continue;
3248 if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3249 if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3250
3251 map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx);
3252 ++idx;
3253 };
3254 map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3255 }
3256 // Output all instructions that are NOT simple chain rules
3257 {
3258 _instructions.reset();
3259 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3260 // Ensure this is a machine-world instruction
3261 if ( inst->ideal_only() ) continue;
3262 if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3263 if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3264
3265 map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx);
3266 ++idx;
3267 };
3268 map.record_position(OutputMap::END_REMATERIALIZE, idx );
3269 _instructions.reset();
3270 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3271 // Ensure this is a machine-world instruction
3272 if ( inst->ideal_only() ) continue;
3273 if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3274 if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3275
3276 map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx);
3277 ++idx;
3278 };
3279 }
3280 fprintf(fp_cpp, " // last instruction\n");
3281 map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3282 }
3283 // Finish defining table
3284 map.closing();
3285 };
3286
3287
3288 // Helper function for buildReduceMaps
3289 char reg_save_policy(const char *calling_convention) {
3290 char callconv;
3291
3292 if (!strcmp(calling_convention, "NS")) callconv = 'N';
3293 else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3294 else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3295 else if (!strcmp(calling_convention, "AS")) callconv = 'A';
3296 else callconv = 'Z';
3297
3298 return callconv;
3299 }
3300
3301 //---------------------------generate_assertion_checks-------------------
3302 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3303 fprintf(fp_cpp, "\n");
3304
3305 fprintf(fp_cpp, "#ifndef PRODUCT\n");
3306 fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3307 globalDefs().print_asserts(fp_cpp);
3308 fprintf(fp_cpp, "}\n");
3309 fprintf(fp_cpp, "#endif\n");
3310 fprintf(fp_cpp, "\n");
3311 }
3312
3313 //---------------------------addSourceBlocks-----------------------------
3314 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3315 if (_source.count() > 0)
3316 _source.output(fp_cpp);
3317
3318 generate_adlc_verification(fp_cpp);
3319 }
3320 //---------------------------addHeaderBlocks-----------------------------
3321 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3322 if (_header.count() > 0)
3323 _header.output(fp_hpp);
3324 }
3325 //-------------------------addPreHeaderBlocks----------------------------
3326 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3327 // Output #defines from definition block
3328 globalDefs().print_defines(fp_hpp);
3329
3330 if (_pre_header.count() > 0)
3331 _pre_header.output(fp_hpp);
3332 }
3333
3334 //---------------------------buildReduceMaps-----------------------------
3335 // Build mapping from enumeration for densely packed operands
3336 // TO result and child types.
3337 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3338 RegDef *rdef;
3339 RegDef *next;
3340
3341 // The emit bodies currently require functions defined in the source block.
3342
3343 // Build external declarations for mappings
3344 fprintf(fp_hpp, "\n");
3345 fprintf(fp_hpp, "extern const char register_save_policy[];\n");
3346 fprintf(fp_hpp, "extern const char c_reg_save_policy[];\n");
3347 fprintf(fp_hpp, "extern const int register_save_type[];\n");
3348 fprintf(fp_hpp, "\n");
3349
3350 // Construct Save-Policy array
3351 fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3352 fprintf(fp_cpp, "const char register_save_policy[] = {\n");
3353 _register->reset_RegDefs();
3354 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3355 next = _register->iter_RegDefs();
3356 char policy = reg_save_policy(rdef->_callconv);
3357 const char *comma = (next != NULL) ? "," : " // no trailing comma";
3358 fprintf(fp_cpp, " '%c'%s\n", policy, comma);
3359 }
3360 fprintf(fp_cpp, "};\n\n");
3361
3362 // Construct Native Save-Policy array
3363 fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3364 fprintf(fp_cpp, "const char c_reg_save_policy[] = {\n");
3365 _register->reset_RegDefs();
3366 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3367 next = _register->iter_RegDefs();
3368 char policy = reg_save_policy(rdef->_c_conv);
3369 const char *comma = (next != NULL) ? "," : " // no trailing comma";
3370 fprintf(fp_cpp, " '%c'%s\n", policy, comma);
3371 }
3372 fprintf(fp_cpp, "};\n\n");
3373
3374 // Construct Register Save Type array
3375 fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3376 fprintf(fp_cpp, "const int register_save_type[] = {\n");
3377 _register->reset_RegDefs();
3378 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3379 next = _register->iter_RegDefs();
3380 const char *comma = (next != NULL) ? "," : " // no trailing comma";
3381 fprintf(fp_cpp, " %s%s\n", rdef->_idealtype, comma);
3382 }
3383 fprintf(fp_cpp, "};\n\n");
3384
3385 // Construct the table for reduceOp
3386 OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3387 build_map(output_reduce_op);
3388 // Construct the table for leftOp
3389 OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3390 build_map(output_left_op);
3391 // Construct the table for rightOp
3392 OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3393 build_map(output_right_op);
3394 // Construct the table of rule names
3395 OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3396 build_map(output_rule_name);
3397 // Construct the boolean table for subsumed operands
3398 OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3399 build_map(output_swallowed);
3400 // // // Preserve in case we decide to use this table instead of another
3401 //// Construct the boolean table for instruction chain rules
3402 //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3403 //build_map(output_inst_chain);
3404
3405 }
3406
3407
3408 //---------------------------buildMachOperGenerator---------------------------
3409
3410 // Recurse through match tree, building path through corresponding state tree,
3411 // Until we reach the constant we are looking for.
3412 static void path_to_constant(FILE *fp, FormDict &globals,
3413 MatchNode *mnode, uint idx) {
3414 if ( ! mnode) return;
3415
3416 unsigned position = 0;
3417 const char *result = NULL;
3418 const char *name = NULL;
3419 const char *optype = NULL;
3420
3421 // Base Case: access constant in ideal node linked to current state node
3422 // Each type of constant has its own access function
3423 if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3424 && mnode->base_operand(position, globals, result, name, optype) ) {
3425 if ( strcmp(optype,"ConI") == 0 ) {
3426 fprintf(fp, "_leaf->get_int()");
3427 } else if ( (strcmp(optype,"ConP") == 0) ) {
3428 fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3429 } else if ( (strcmp(optype,"ConF") == 0) ) {
3430 fprintf(fp, "_leaf->getf()");
3431 } else if ( (strcmp(optype,"ConD") == 0) ) {
3432 fprintf(fp, "_leaf->getd()");
3433 } else if ( (strcmp(optype,"ConL") == 0) ) {
3434 fprintf(fp, "_leaf->get_long()");
3435 } else if ( (strcmp(optype,"Con")==0) ) {
3436 // !!!!! - Update if adding a machine-independent constant type
3437 fprintf(fp, "_leaf->get_int()");
3438 assert( false, "Unsupported constant type, pointer or indefinite");
3439 } else if ( (strcmp(optype,"Bool") == 0) ) {
3440 fprintf(fp, "_leaf->as_Bool()->_test._test");
3441 } else {
3442 assert( false, "Unsupported constant type");
3443 }
3444 return;
3445 }
3446
3447 // If constant is in left child, build path and recurse
3448 uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3449 uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3450 if ( (mnode->_lChild) && (lConsts > idx) ) {
3451 fprintf(fp, "_kids[0]->");
3452 path_to_constant(fp, globals, mnode->_lChild, idx);
3453 return;
3454 }
3455 // If constant is in right child, build path and recurse
3456 if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3457 idx = idx - lConsts;
3458 fprintf(fp, "_kids[1]->");
3459 path_to_constant(fp, globals, mnode->_rChild, idx);
3460 return;
3461 }
3462 assert( false, "ShouldNotReachHere()");
3463 }
3464
3465 // Generate code that is executed when generating a specific Machine Operand
3466 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3467 OperandForm &op) {
3468 const char *opName = op._ident;
3469 const char *opEnumName = AD.machOperEnum(opName);
3470 uint num_consts = op.num_consts(globalNames);
3471
3472 // Generate the case statement for this opcode
3473 fprintf(fp, " case %s:", opEnumName);
3474 fprintf(fp, "\n return new (C) %sOper(", opName);
3475 // Access parameters for constructor from the stat object
3476 //
3477 // Build access to condition code value
3478 if ( (num_consts > 0) ) {
3479 uint i = 0;
3480 path_to_constant(fp, globalNames, op._matrule, i);
3481 for ( i = 1; i < num_consts; ++i ) {
3482 fprintf(fp, ", ");
3483 path_to_constant(fp, globalNames, op._matrule, i);
3484 }
3485 }
3486 fprintf(fp, " );\n");
3487 }
3488
3489
3490 // Build switch to invoke "new" MachNode or MachOper
3491 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3492 int idx = 0;
3493
3494 // Build switch to invoke 'new' for a specific MachOper
3495 fprintf(fp_cpp, "\n");
3496 fprintf(fp_cpp, "\n");
3497 fprintf(fp_cpp,
3498 "//------------------------- MachOper Generator ---------------\n");
3499 fprintf(fp_cpp,
3500 "// A switch statement on the dense-packed user-defined type system\n"
3501 "// that invokes 'new' on the corresponding class constructor.\n");
3502 fprintf(fp_cpp, "\n");
3503 fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3504 fprintf(fp_cpp, "(int opcode, Compile* C)");
3505 fprintf(fp_cpp, "{\n");
3506 fprintf(fp_cpp, "\n");
3507 fprintf(fp_cpp, " switch(opcode) {\n");
3508
3509 // Place all user-defined operands into the mapping
3510 _operands.reset();
3511 int opIndex = 0;
3512 OperandForm *op;
3513 for( ; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3514 // Ensure this is a machine-world instruction
3515 if ( op->ideal_only() ) continue;
3516
3517 genMachOperCase(fp_cpp, _globalNames, *this, *op);
3518 };
3519
3520 // Do not iterate over operand classes for the operand generator!!!
3521
3522 // Place all internal operands into the mapping
3523 _internalOpNames.reset();
3524 const char *iopn;
3525 for( ; (iopn = _internalOpNames.iter()) != NULL; ) {
3526 const char *opEnumName = machOperEnum(iopn);
3527 // Generate the case statement for this opcode
3528 fprintf(fp_cpp, " case %s:", opEnumName);
3529 fprintf(fp_cpp, " return NULL;\n");
3530 };
3531
3532 // Generate the default case for switch(opcode)
3533 fprintf(fp_cpp, " \n");
3534 fprintf(fp_cpp, " default:\n");
3535 fprintf(fp_cpp, " fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3536 fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
3537 fprintf(fp_cpp, " break;\n");
3538 fprintf(fp_cpp, " }\n");
3539
3540 // Generate the closing for method Matcher::MachOperGenerator
3541 fprintf(fp_cpp, " return NULL;\n");
3542 fprintf(fp_cpp, "};\n");
3543 }
3544
3545
3546 //---------------------------buildMachNode-------------------------------------
3547 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3548 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3549 const char *opType = NULL;
3550 const char *opClass = inst->_ident;
3551
3552 // Create the MachNode object
3553 fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3554
3555 if ( (inst->num_post_match_opnds() != 0) ) {
3556 // Instruction that contains operands which are not in match rule.
3557 //
3558 // Check if the first post-match component may be an interesting def
3559 bool dont_care = false;
3560 ComponentList &comp_list = inst->_components;
3561 Component *comp = NULL;
3562 comp_list.reset();
3563 if ( comp_list.match_iter() != NULL ) dont_care = true;
3564
3565 // Insert operands that are not in match-rule.
3566 // Only insert a DEF if the do_care flag is set
3567 comp_list.reset();
3568 while ( comp = comp_list.post_match_iter() ) {
3569 // Check if we don't care about DEFs or KILLs that are not USEs
3570 if ( dont_care && (! comp->isa(Component::USE)) ) {
3571 continue;
3572 }
3573 dont_care = true;
3574 // For each operand not in the match rule, call MachOperGenerator
3575 // with the enum for the opcode that needs to be built
3576 // and the node just built, the parent of the operand.
3577 ComponentList clist = inst->_components;
3578 int index = clist.operand_position(comp->_name, comp->_usedef);
3579 const char *opcode = machOperEnum(comp->_type);
3580 const char *parent = "node";
3581 fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3582 fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3583 }
3584 }
3585 else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3586 // An instruction that chains from a constant!
3587 // In this case, we need to subsume the constant into the node
3588 // at operand position, oper_input_base().
3589 //
3590 // Fill in the constant
3591 fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3592 inst->oper_input_base(_globalNames));
3593 // #####
3594 // Check for multiple constants and then fill them in.
3595 // Just like MachOperGenerator
3596 const char *opName = inst->_matrule->_rChild->_opType;
3597 fprintf(fp_cpp, "new (C) %sOper(", opName);
3598 // Grab operand form
3599 OperandForm *op = (_globalNames[opName])->is_operand();
3600 // Look up the number of constants
3601 uint num_consts = op->num_consts(_globalNames);
3602 if ( (num_consts > 0) ) {
3603 uint i = 0;
3604 path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3605 for ( i = 1; i < num_consts; ++i ) {
3606 fprintf(fp_cpp, ", ");
3607 path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3608 }
3609 }
3610 fprintf(fp_cpp, " );\n");
3611 // #####
3612 }
3613
3614 // Fill in the bottom_type where requested
3615 if ( inst->captures_bottom_type() ) {
3616 fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3617 }
3618 if( inst->is_ideal_if() ) {
3619 fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3620 fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3621 }
3622 if( inst->is_ideal_fastlock() ) {
3623 fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3624 }
3625
3626 }
3627
3628 //---------------------------declare_cisc_version------------------------------
3629 // Build CISC version of this instruction
3630 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3631 if( AD.can_cisc_spill() ) {
3632 InstructForm *inst_cisc = cisc_spill_alternate();
3633 if (inst_cisc != NULL) {
3634 fprintf(fp_hpp, " virtual int cisc_operand() const { return %d; }\n", cisc_spill_operand());
3635 fprintf(fp_hpp, " virtual MachNode *cisc_version(int offset, Compile* C);\n");
3636 fprintf(fp_hpp, " virtual void use_cisc_RegMask();\n");
3637 fprintf(fp_hpp, " virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3638 }
3639 }
3640 }
3641
3642 //---------------------------define_cisc_version-------------------------------
3643 // Build CISC version of this instruction
3644 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3645 InstructForm *inst_cisc = this->cisc_spill_alternate();
3646 if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3647 const char *name = inst_cisc->_ident;
3648 assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3649 OperandForm *cisc_oper = AD.cisc_spill_operand();
3650 assert( cisc_oper != NULL, "insanity check");
3651 const char *cisc_oper_name = cisc_oper->_ident;
3652 assert( cisc_oper_name != NULL, "insanity check");
3653 //
3654 // Set the correct reg_mask_or_stack for the cisc operand
3655 fprintf(fp_cpp, "\n");
3656 fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3657 // Lookup the correct reg_mask_or_stack
3658 const char *reg_mask_name = cisc_reg_mask_name();
3659 fprintf(fp_cpp, " _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3660 fprintf(fp_cpp, "}\n");
3661 //
3662 // Construct CISC version of this instruction
3663 fprintf(fp_cpp, "\n");
3664 fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3665 fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3666 // Create the MachNode object
3667 fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name);
3668 // Fill in the bottom_type where requested
3669 if ( this->captures_bottom_type() ) {
3670 fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
3671 }
3672 fprintf(fp_cpp, "\n");
3673 fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
3674 fprintf(fp_cpp, " fill_new_machnode(node, C);\n");
3675 // Construct operand to access [stack_pointer + offset]
3676 fprintf(fp_cpp, " // Construct operand to access [stack_pointer + offset]\n");
3677 fprintf(fp_cpp, " node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3678 fprintf(fp_cpp, "\n");
3679
3680 // Return result and exit scope
3681 fprintf(fp_cpp, " return node;\n");
3682 fprintf(fp_cpp, "}\n");
3683 fprintf(fp_cpp, "\n");
3684 return true;
3685 }
3686 return false;
3687 }
3688
3689 //---------------------------declare_short_branch_methods----------------------
3690 // Build prototypes for short branch methods
3691 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
3692 if (has_short_branch_form()) {
3693 fprintf(fp_hpp, " virtual MachNode *short_branch_version(Compile* C);\n");
3694 }
3695 }
3696
3697 //---------------------------define_short_branch_methods-----------------------
3698 // Build definitions for short branch methods
3699 bool InstructForm::define_short_branch_methods(FILE *fp_cpp) {
3700 if (has_short_branch_form()) {
3701 InstructForm *short_branch = short_branch_form();
3702 const char *name = short_branch->_ident;
3703
3704 // Construct short_branch_version() method.
3705 fprintf(fp_cpp, "// Build short branch version of this instruction\n");
3706 fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
3707 // Create the MachNode object
3708 fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name);
3709 if( is_ideal_if() ) {
3710 fprintf(fp_cpp, " node->_prob = _prob;\n");
3711 fprintf(fp_cpp, " node->_fcnt = _fcnt;\n");
3712 }
3713 // Fill in the bottom_type where requested
3714 if ( this->captures_bottom_type() ) {
3715 fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
3716 }
3717
3718 fprintf(fp_cpp, "\n");
3719 // Short branch version must use same node index for access
3720 // through allocator's tables
3721 fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
3722 fprintf(fp_cpp, " fill_new_machnode(node, C);\n");
3723
3724 // Return result and exit scope
3725 fprintf(fp_cpp, " return node;\n");
3726 fprintf(fp_cpp, "}\n");
3727 fprintf(fp_cpp,"\n");
3728 return true;
3729 }
3730 return false;
3731 }
3732
3733
3734 //---------------------------buildMachNodeGenerator----------------------------
3735 // Build switch to invoke appropriate "new" MachNode for an opcode
3736 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
3737
3738 // Build switch to invoke 'new' for a specific MachNode
3739 fprintf(fp_cpp, "\n");
3740 fprintf(fp_cpp, "\n");
3741 fprintf(fp_cpp,
3742 "//------------------------- MachNode Generator ---------------\n");
3743 fprintf(fp_cpp,
3744 "// A switch statement on the dense-packed user-defined type system\n"
3745 "// that invokes 'new' on the corresponding class constructor.\n");
3746 fprintf(fp_cpp, "\n");
3747 fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
3748 fprintf(fp_cpp, "(int opcode, Compile* C)");
3749 fprintf(fp_cpp, "{\n");
3750 fprintf(fp_cpp, " switch(opcode) {\n");
3751
3752 // Provide constructor for all user-defined instructions
3753 _instructions.reset();
3754 int opIndex = operandFormCount();
3755 InstructForm *inst;
3756 for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3757 // Ensure that matrule is defined.
3758 if ( inst->_matrule == NULL ) continue;
3759
3760 int opcode = opIndex++;
3761 const char *opClass = inst->_ident;
3762 char *opType = NULL;
3763
3764 // Generate the case statement for this instruction
3765 fprintf(fp_cpp, " case %s_rule:", opClass);
3766
3767 // Start local scope
3768 fprintf(fp_cpp, " {\n");
3769 // Generate code to construct the new MachNode
3770 buildMachNode(fp_cpp, inst, " ");
3771 // Return result and exit scope
3772 fprintf(fp_cpp, " return node;\n");
3773 fprintf(fp_cpp, " }\n");
3774 }
3775
3776 // Generate the default case for switch(opcode)
3777 fprintf(fp_cpp, " \n");
3778 fprintf(fp_cpp, " default:\n");
3779 fprintf(fp_cpp, " fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
3780 fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
3781 fprintf(fp_cpp, " break;\n");
3782 fprintf(fp_cpp, " };\n");
3783
3784 // Generate the closing for method Matcher::MachNodeGenerator
3785 fprintf(fp_cpp, " return NULL;\n");
3786 fprintf(fp_cpp, "}\n");
3787 }
3788
3789
3790 //---------------------------buildInstructMatchCheck--------------------------
3791 // Output the method to Matcher which checks whether or not a specific
3792 // instruction has a matching rule for the host architecture.
3793 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
3794 fprintf(fp_cpp, "\n\n");
3795 fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
3796 fprintf(fp_cpp, " assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
3797 fprintf(fp_cpp, " return _hasMatchRule[opcode];\n");
3798 fprintf(fp_cpp, "}\n\n");
3799
3800 fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
3801 int i;
3802 for (i = 0; i < _last_opcode - 1; i++) {
3803 fprintf(fp_cpp, " %-5s, // %s\n",
3804 _has_match_rule[i] ? "true" : "false",
3805 NodeClassNames[i]);
3806 }
3807 fprintf(fp_cpp, " %-5s // %s\n",
3808 _has_match_rule[i] ? "true" : "false",
3809 NodeClassNames[i]);
3810 fprintf(fp_cpp, "};\n");
3811 }
3812
3813 //---------------------------buildFrameMethods---------------------------------
3814 // Output the methods to Matcher which specify frame behavior
3815 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
3816 fprintf(fp_cpp,"\n\n");
3817 // Stack Direction
3818 fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
3819 _frame->_direction ? "true" : "false");
3820 // Sync Stack Slots
3821 fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
3822 _frame->_sync_stack_slots);
3823 // Java Stack Alignment
3824 fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
3825 _frame->_alignment);
3826 // Java Return Address Location
3827 fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
3828 if (_frame->_return_addr_loc) {
3829 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3830 _frame->_return_addr);
3831 }
3832 else {
3833 fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
3834 _frame->_return_addr);
3835 }
3836 // Java Stack Slot Preservation
3837 fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
3838 fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
3839 // Top Of Stack Slot Preservation, for both Java and C
3840 fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
3841 fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
3842 // varargs C out slots killed
3843 fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
3844 fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
3845 // Java Argument Position
3846 fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
3847 fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
3848 fprintf(fp_cpp,"}\n\n");
3849 // Native Argument Position
3850 fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
3851 fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
3852 fprintf(fp_cpp,"}\n\n");
3853 // Java Return Value Location
3854 fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
3855 fprintf(fp_cpp,"%s\n", _frame->_return_value);
3856 fprintf(fp_cpp,"}\n\n");
3857 // Native Return Value Location
3858 fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
3859 fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
3860 fprintf(fp_cpp,"}\n\n");
3861
3862 // Inline Cache Register, mask definition, and encoding
3863 fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
3864 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3865 _frame->_inline_cache_reg);
3866 fprintf(fp_cpp,"const RegMask &Matcher::inline_cache_reg_mask() {");
3867 fprintf(fp_cpp," return INLINE_CACHE_REG_mask; }\n\n");
3868 fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
3869 fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
3870
3871 // Interpreter's Method Oop Register, mask definition, and encoding
3872 fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
3873 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3874 _frame->_interpreter_method_oop_reg);
3875 fprintf(fp_cpp,"const RegMask &Matcher::interpreter_method_oop_reg_mask() {");
3876 fprintf(fp_cpp," return INTERPRETER_METHOD_OOP_REG_mask; }\n\n");
3877 fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
3878 fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
3879
3880 // Interpreter's Frame Pointer Register, mask definition, and encoding
3881 fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
3882 if (_frame->_interpreter_frame_pointer_reg == NULL)
3883 fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
3884 else
3885 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3886 _frame->_interpreter_frame_pointer_reg);
3887 fprintf(fp_cpp,"const RegMask &Matcher::interpreter_frame_pointer_reg_mask() {");
3888 if (_frame->_interpreter_frame_pointer_reg == NULL)
3889 fprintf(fp_cpp," static RegMask dummy; return dummy; }\n\n");
3890 else
3891 fprintf(fp_cpp," return INTERPRETER_FRAME_POINTER_REG_mask; }\n\n");
3892
3893 // Frame Pointer definition
3894 /* CNC - I can not contemplate having a different frame pointer between
3895 Java and native code; makes my head hurt to think about it.
3896 fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
3897 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3898 _frame->_frame_pointer);
3899 */
3900 // (Native) Frame Pointer definition
3901 fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
3902 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3903 _frame->_frame_pointer);
3904
3905 // Number of callee-save + always-save registers for calling convention
3906 fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
3907 fprintf(fp_cpp, "int Matcher::number_of_saved_registers() {\n");
3908 RegDef *rdef;
3909 int nof_saved_registers = 0;
3910 _register->reset_RegDefs();
3911 while( (rdef = _register->iter_RegDefs()) != NULL ) {
3912 if( !strcmp(rdef->_callconv, "SOE") || !strcmp(rdef->_callconv, "AS") )
3913 ++nof_saved_registers;
3914 }
3915 fprintf(fp_cpp, " return %d;\n", nof_saved_registers);
3916 fprintf(fp_cpp, "};\n\n");
3917 }
3918
3919
3920
3921
3922 static int PrintAdlcCisc = 0;
3923 //---------------------------identify_cisc_spilling----------------------------
3924 // Get info for the CISC_oracle and MachNode::cisc_version()
3925 void ArchDesc::identify_cisc_spill_instructions() {
3926
3927 // Find the user-defined operand for cisc-spilling
3928 if( _frame->_cisc_spilling_operand_name != NULL ) {
3929 const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
3930 OperandForm *oper = form ? form->is_operand() : NULL;
3931 // Verify the user's suggestion
3932 if( oper != NULL ) {
3933 // Ensure that match field is defined.
3934 if ( oper->_matrule != NULL ) {
3935 MatchRule &mrule = *oper->_matrule;
3936 if( strcmp(mrule._opType,"AddP") == 0 ) {
3937 MatchNode *left = mrule._lChild;
3938 MatchNode *right= mrule._rChild;
3939 if( left != NULL && right != NULL ) {
3940 const Form *left_op = _globalNames[left->_opType]->is_operand();
3941 const Form *right_op = _globalNames[right->_opType]->is_operand();
3942 if( (left_op != NULL && right_op != NULL)
3943 && (left_op->interface_type(_globalNames) == Form::register_interface)
3944 && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
3945 // Successfully verified operand
3946 set_cisc_spill_operand( oper );
3947 if( _cisc_spill_debug ) {
3948 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
3949 }
3950 }
3951 }
3952 }
3953 }
3954 }
3955 }
3956
3957 if( cisc_spill_operand() != NULL ) {
3958 // N^2 comparison of instructions looking for a cisc-spilling version
3959 _instructions.reset();
3960 InstructForm *instr;
3961 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3962 // Ensure that match field is defined.
3963 if ( instr->_matrule == NULL ) continue;
3964
3965 MatchRule &mrule = *instr->_matrule;
3966 Predicate *pred = instr->build_predicate();
3967
3968 // Grab the machine type of the operand
3969 const char *rootOp = instr->_ident;
3970 mrule._machType = rootOp;
3971
3972 // Find result type for match
3973 const char *result = instr->reduce_result();
3974
3975 if( PrintAdlcCisc ) fprintf(stderr, " new instruction %s \n", instr->_ident ? instr->_ident : " ");
3976 bool found_cisc_alternate = false;
3977 _instructions.reset2();
3978 InstructForm *instr2;
3979 for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
3980 // Ensure that match field is defined.
3981 if( PrintAdlcCisc ) fprintf(stderr, " instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
3982 if ( instr2->_matrule != NULL
3983 && (instr != instr2 ) // Skip self
3984 && (instr2->reduce_result() != NULL) // want same result
3985 && (strcmp(result, instr2->reduce_result()) == 0)) {
3986 MatchRule &mrule2 = *instr2->_matrule;
3987 Predicate *pred2 = instr2->build_predicate();
3988 found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
3989 }
3990 }
3991 }
3992 }
3993 }
3994
3995 //---------------------------build_cisc_spilling-------------------------------
3996 // Get info for the CISC_oracle and MachNode::cisc_version()
3997 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
3998 // Output the table for cisc spilling
3999 fprintf(fp_cpp, "// The following instructions can cisc-spill\n");
4000 _instructions.reset();
4001 InstructForm *inst = NULL;
4002 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4003 // Ensure this is a machine-world instruction
4004 if ( inst->ideal_only() ) continue;
4005 const char *inst_name = inst->_ident;
4006 int operand = inst->cisc_spill_operand();
4007 if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4008 InstructForm *inst2 = inst->cisc_spill_alternate();
4009 fprintf(fp_cpp, "// %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4010 }
4011 }
4012 fprintf(fp_cpp, "\n\n");
4013 }
4014
4015 //---------------------------identify_short_branches----------------------------
4016 // Get info for our short branch replacement oracle.
4017 void ArchDesc::identify_short_branches() {
4018 // Walk over all instructions, checking to see if they match a short
4019 // branching alternate.
4020 _instructions.reset();
4021 InstructForm *instr;
4022 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4023 // The instruction must have a match rule.
4024 if (instr->_matrule != NULL &&
4025 instr->is_short_branch()) {
4026
4027 _instructions.reset2();
4028 InstructForm *instr2;
4029 while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4030 instr2->check_branch_variant(*this, instr);
4031 }
4032 }
4033 }
4034 }
4035
4036
4037 //---------------------------identify_unique_operands---------------------------
4038 // Identify unique operands.
4039 void ArchDesc::identify_unique_operands() {
4040 // Walk over all instructions.
4041 _instructions.reset();
4042 InstructForm *instr;
4043 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4044 // Ensure this is a machine-world instruction
4045 if (!instr->ideal_only()) {
4046 instr->set_unique_opnds();
4047 }
4048 }
4049 }