comparison src/share/vm/c1/c1_GraphBuilder.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3a86a8dcf27c
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_c1_GraphBuilder.cpp.incl"
27
28 class BlockListBuilder VALUE_OBJ_CLASS_SPEC {
29 private:
30 Compilation* _compilation;
31 IRScope* _scope;
32
33 BlockList _blocks; // internal list of all blocks
34 BlockList* _bci2block; // mapping from bci to blocks for GraphBuilder
35
36 // fields used by mark_loops
37 BitMap _active; // for iteration of control flow graph
38 BitMap _visited; // for iteration of control flow graph
39 intArray _loop_map; // caches the information if a block is contained in a loop
40 int _next_loop_index; // next free loop number
41 int _next_block_number; // for reverse postorder numbering of blocks
42
43 // accessors
44 Compilation* compilation() const { return _compilation; }
45 IRScope* scope() const { return _scope; }
46 ciMethod* method() const { return scope()->method(); }
47 XHandlers* xhandlers() const { return scope()->xhandlers(); }
48
49 // unified bailout support
50 void bailout(const char* msg) const { compilation()->bailout(msg); }
51 bool bailed_out() const { return compilation()->bailed_out(); }
52
53 // helper functions
54 BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
55 void handle_exceptions(BlockBegin* current, int cur_bci);
56 void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
57 void store_one(BlockBegin* current, int local);
58 void store_two(BlockBegin* current, int local);
59 void set_entries(int osr_bci);
60 void set_leaders();
61
62 void make_loop_header(BlockBegin* block);
63 void mark_loops();
64 int mark_loops(BlockBegin* b, bool in_subroutine);
65
66 // debugging
67 #ifndef PRODUCT
68 void print();
69 #endif
70
71 public:
72 // creation
73 BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
74
75 // accessors for GraphBuilder
76 BlockList* bci2block() const { return _bci2block; }
77 };
78
79
80 // Implementation of BlockListBuilder
81
82 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
83 : _compilation(compilation)
84 , _scope(scope)
85 , _blocks(16)
86 , _bci2block(new BlockList(scope->method()->code_size(), NULL))
87 , _next_block_number(0)
88 , _active() // size not known yet
89 , _visited() // size not known yet
90 , _next_loop_index(0)
91 , _loop_map() // size not known yet
92 {
93 set_entries(osr_bci);
94 set_leaders();
95 CHECK_BAILOUT();
96
97 mark_loops();
98 NOT_PRODUCT(if (PrintInitialBlockList) print());
99
100 #ifndef PRODUCT
101 if (PrintCFGToFile) {
102 stringStream title;
103 title.print("BlockListBuilder ");
104 scope->method()->print_name(&title);
105 CFGPrinter::print_cfg(_bci2block, title.as_string(), false, false);
106 }
107 #endif
108 }
109
110
111 void BlockListBuilder::set_entries(int osr_bci) {
112 // generate start blocks
113 BlockBegin* std_entry = make_block_at(0, NULL);
114 if (scope()->caller() == NULL) {
115 std_entry->set(BlockBegin::std_entry_flag);
116 }
117 if (osr_bci != -1) {
118 BlockBegin* osr_entry = make_block_at(osr_bci, NULL);
119 osr_entry->set(BlockBegin::osr_entry_flag);
120 }
121
122 // generate exception entry blocks
123 XHandlers* list = xhandlers();
124 const int n = list->length();
125 for (int i = 0; i < n; i++) {
126 XHandler* h = list->handler_at(i);
127 BlockBegin* entry = make_block_at(h->handler_bci(), NULL);
128 entry->set(BlockBegin::exception_entry_flag);
129 h->set_entry_block(entry);
130 }
131 }
132
133
134 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
135 assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
136
137 BlockBegin* block = _bci2block->at(cur_bci);
138 if (block == NULL) {
139 block = new BlockBegin(cur_bci);
140 block->init_stores_to_locals(method()->max_locals());
141 _bci2block->at_put(cur_bci, block);
142 _blocks.append(block);
143
144 assert(predecessor == NULL || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
145 }
146
147 if (predecessor != NULL) {
148 if (block->is_set(BlockBegin::exception_entry_flag)) {
149 BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
150 }
151
152 predecessor->add_successor(block);
153 block->increment_total_preds();
154 }
155
156 return block;
157 }
158
159
160 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
161 current->stores_to_locals().set_bit(local);
162 }
163 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
164 store_one(current, local);
165 store_one(current, local + 1);
166 }
167
168
169 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
170 // Draws edges from a block to its exception handlers
171 XHandlers* list = xhandlers();
172 const int n = list->length();
173
174 for (int i = 0; i < n; i++) {
175 XHandler* h = list->handler_at(i);
176
177 if (h->covers(cur_bci)) {
178 BlockBegin* entry = h->entry_block();
179 assert(entry != NULL && entry == _bci2block->at(h->handler_bci()), "entry must be set");
180 assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
181
182 // add each exception handler only once
183 if (!current->is_successor(entry)) {
184 current->add_successor(entry);
185 entry->increment_total_preds();
186 }
187
188 // stop when reaching catchall
189 if (h->catch_type() == 0) break;
190 }
191 }
192 }
193
194 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
195 // start a new block after jsr-bytecode and link this block into cfg
196 make_block_at(next_bci, current);
197
198 // start a new block at the subroutine entry at mark it with special flag
199 BlockBegin* sr_block = make_block_at(sr_bci, current);
200 if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
201 sr_block->set(BlockBegin::subroutine_entry_flag);
202 }
203 }
204
205
206 void BlockListBuilder::set_leaders() {
207 bool has_xhandlers = xhandlers()->has_handlers();
208 BlockBegin* current = NULL;
209
210 // The information which bci starts a new block simplifies the analysis
211 // Without it, backward branches could jump to a bci where no block was created
212 // during bytecode iteration. This would require the creation of a new block at the
213 // branch target and a modification of the successor lists.
214 BitMap bci_block_start = method()->bci_block_start();
215
216 ciBytecodeStream s(method());
217 while (s.next() != ciBytecodeStream::EOBC()) {
218 int cur_bci = s.cur_bci();
219
220 if (bci_block_start.at(cur_bci)) {
221 current = make_block_at(cur_bci, current);
222 }
223 assert(current != NULL, "must have current block");
224
225 if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
226 handle_exceptions(current, cur_bci);
227 }
228
229 switch (s.cur_bc()) {
230 // track stores to local variables for selective creation of phi functions
231 case Bytecodes::_iinc: store_one(current, s.get_index()); break;
232 case Bytecodes::_istore: store_one(current, s.get_index()); break;
233 case Bytecodes::_lstore: store_two(current, s.get_index()); break;
234 case Bytecodes::_fstore: store_one(current, s.get_index()); break;
235 case Bytecodes::_dstore: store_two(current, s.get_index()); break;
236 case Bytecodes::_astore: store_one(current, s.get_index()); break;
237 case Bytecodes::_istore_0: store_one(current, 0); break;
238 case Bytecodes::_istore_1: store_one(current, 1); break;
239 case Bytecodes::_istore_2: store_one(current, 2); break;
240 case Bytecodes::_istore_3: store_one(current, 3); break;
241 case Bytecodes::_lstore_0: store_two(current, 0); break;
242 case Bytecodes::_lstore_1: store_two(current, 1); break;
243 case Bytecodes::_lstore_2: store_two(current, 2); break;
244 case Bytecodes::_lstore_3: store_two(current, 3); break;
245 case Bytecodes::_fstore_0: store_one(current, 0); break;
246 case Bytecodes::_fstore_1: store_one(current, 1); break;
247 case Bytecodes::_fstore_2: store_one(current, 2); break;
248 case Bytecodes::_fstore_3: store_one(current, 3); break;
249 case Bytecodes::_dstore_0: store_two(current, 0); break;
250 case Bytecodes::_dstore_1: store_two(current, 1); break;
251 case Bytecodes::_dstore_2: store_two(current, 2); break;
252 case Bytecodes::_dstore_3: store_two(current, 3); break;
253 case Bytecodes::_astore_0: store_one(current, 0); break;
254 case Bytecodes::_astore_1: store_one(current, 1); break;
255 case Bytecodes::_astore_2: store_one(current, 2); break;
256 case Bytecodes::_astore_3: store_one(current, 3); break;
257
258 // track bytecodes that affect the control flow
259 case Bytecodes::_athrow: // fall through
260 case Bytecodes::_ret: // fall through
261 case Bytecodes::_ireturn: // fall through
262 case Bytecodes::_lreturn: // fall through
263 case Bytecodes::_freturn: // fall through
264 case Bytecodes::_dreturn: // fall through
265 case Bytecodes::_areturn: // fall through
266 case Bytecodes::_return:
267 current = NULL;
268 break;
269
270 case Bytecodes::_ifeq: // fall through
271 case Bytecodes::_ifne: // fall through
272 case Bytecodes::_iflt: // fall through
273 case Bytecodes::_ifge: // fall through
274 case Bytecodes::_ifgt: // fall through
275 case Bytecodes::_ifle: // fall through
276 case Bytecodes::_if_icmpeq: // fall through
277 case Bytecodes::_if_icmpne: // fall through
278 case Bytecodes::_if_icmplt: // fall through
279 case Bytecodes::_if_icmpge: // fall through
280 case Bytecodes::_if_icmpgt: // fall through
281 case Bytecodes::_if_icmple: // fall through
282 case Bytecodes::_if_acmpeq: // fall through
283 case Bytecodes::_if_acmpne: // fall through
284 case Bytecodes::_ifnull: // fall through
285 case Bytecodes::_ifnonnull:
286 make_block_at(s.next_bci(), current);
287 make_block_at(s.get_dest(), current);
288 current = NULL;
289 break;
290
291 case Bytecodes::_goto:
292 make_block_at(s.get_dest(), current);
293 current = NULL;
294 break;
295
296 case Bytecodes::_goto_w:
297 make_block_at(s.get_far_dest(), current);
298 current = NULL;
299 break;
300
301 case Bytecodes::_jsr:
302 handle_jsr(current, s.get_dest(), s.next_bci());
303 current = NULL;
304 break;
305
306 case Bytecodes::_jsr_w:
307 handle_jsr(current, s.get_far_dest(), s.next_bci());
308 current = NULL;
309 break;
310
311 case Bytecodes::_tableswitch: {
312 // set block for each case
313 Bytecode_tableswitch *switch_ = Bytecode_tableswitch_at(s.cur_bcp());
314 int l = switch_->length();
315 for (int i = 0; i < l; i++) {
316 make_block_at(cur_bci + switch_->dest_offset_at(i), current);
317 }
318 make_block_at(cur_bci + switch_->default_offset(), current);
319 current = NULL;
320 break;
321 }
322
323 case Bytecodes::_lookupswitch: {
324 // set block for each case
325 Bytecode_lookupswitch *switch_ = Bytecode_lookupswitch_at(s.cur_bcp());
326 int l = switch_->number_of_pairs();
327 for (int i = 0; i < l; i++) {
328 make_block_at(cur_bci + switch_->pair_at(i)->offset(), current);
329 }
330 make_block_at(cur_bci + switch_->default_offset(), current);
331 current = NULL;
332 break;
333 }
334 }
335 }
336 }
337
338
339 void BlockListBuilder::mark_loops() {
340 ResourceMark rm;
341
342 _active = BitMap(BlockBegin::number_of_blocks()); _active.clear();
343 _visited = BitMap(BlockBegin::number_of_blocks()); _visited.clear();
344 _loop_map = intArray(BlockBegin::number_of_blocks(), 0);
345 _next_loop_index = 0;
346 _next_block_number = _blocks.length();
347
348 // recursively iterate the control flow graph
349 mark_loops(_bci2block->at(0), false);
350 assert(_next_block_number >= 0, "invalid block numbers");
351 }
352
353 void BlockListBuilder::make_loop_header(BlockBegin* block) {
354 if (block->is_set(BlockBegin::exception_entry_flag)) {
355 // exception edges may look like loops but don't mark them as such
356 // since it screws up block ordering.
357 return;
358 }
359 if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
360 block->set(BlockBegin::parser_loop_header_flag);
361
362 assert(_loop_map.at(block->block_id()) == 0, "must not be set yet");
363 assert(0 <= _next_loop_index && _next_loop_index < BitsPerInt, "_next_loop_index is used as a bit-index in integer");
364 _loop_map.at_put(block->block_id(), 1 << _next_loop_index);
365 if (_next_loop_index < 31) _next_loop_index++;
366 } else {
367 // block already marked as loop header
368 assert(is_power_of_2(_loop_map.at(block->block_id())), "exactly one bit must be set");
369 }
370 }
371
372 int BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
373 int block_id = block->block_id();
374
375 if (_visited.at(block_id)) {
376 if (_active.at(block_id)) {
377 // reached block via backward branch
378 make_loop_header(block);
379 }
380 // return cached loop information for this block
381 return _loop_map.at(block_id);
382 }
383
384 if (block->is_set(BlockBegin::subroutine_entry_flag)) {
385 in_subroutine = true;
386 }
387
388 // set active and visited bits before successors are processed
389 _visited.set_bit(block_id);
390 _active.set_bit(block_id);
391
392 intptr_t loop_state = 0;
393 for (int i = block->number_of_sux() - 1; i >= 0; i--) {
394 // recursively process all successors
395 loop_state |= mark_loops(block->sux_at(i), in_subroutine);
396 }
397
398 // clear active-bit after all successors are processed
399 _active.clear_bit(block_id);
400
401 // reverse-post-order numbering of all blocks
402 block->set_depth_first_number(_next_block_number);
403 _next_block_number--;
404
405 if (loop_state != 0 || in_subroutine ) {
406 // block is contained at least in one loop, so phi functions are necessary
407 // phi functions are also necessary for all locals stored in a subroutine
408 scope()->requires_phi_function().set_union(block->stores_to_locals());
409 }
410
411 if (block->is_set(BlockBegin::parser_loop_header_flag)) {
412 int header_loop_state = _loop_map.at(block_id);
413 assert(is_power_of_2((unsigned)header_loop_state), "exactly one bit must be set");
414
415 // If the highest bit is set (i.e. when integer value is negative), the method
416 // has 32 or more loops. This bit is never cleared because it is used for multiple loops
417 if (header_loop_state >= 0) {
418 clear_bits(loop_state, header_loop_state);
419 }
420 }
421
422 // cache and return loop information for this block
423 _loop_map.at_put(block_id, loop_state);
424 return loop_state;
425 }
426
427
428 #ifndef PRODUCT
429
430 int compare_depth_first(BlockBegin** a, BlockBegin** b) {
431 return (*a)->depth_first_number() - (*b)->depth_first_number();
432 }
433
434 void BlockListBuilder::print() {
435 tty->print("----- initial block list of BlockListBuilder for method ");
436 method()->print_short_name();
437 tty->cr();
438
439 // better readability if blocks are sorted in processing order
440 _blocks.sort(compare_depth_first);
441
442 for (int i = 0; i < _blocks.length(); i++) {
443 BlockBegin* cur = _blocks.at(i);
444 tty->print("%4d: B%-4d bci: %-4d preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
445
446 tty->print(cur->is_set(BlockBegin::std_entry_flag) ? " std" : " ");
447 tty->print(cur->is_set(BlockBegin::osr_entry_flag) ? " osr" : " ");
448 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
449 tty->print(cur->is_set(BlockBegin::subroutine_entry_flag) ? " sr" : " ");
450 tty->print(cur->is_set(BlockBegin::parser_loop_header_flag) ? " lh" : " ");
451
452 if (cur->number_of_sux() > 0) {
453 tty->print(" sux: ");
454 for (int j = 0; j < cur->number_of_sux(); j++) {
455 BlockBegin* sux = cur->sux_at(j);
456 tty->print("B%d ", sux->block_id());
457 }
458 }
459 tty->cr();
460 }
461 }
462
463 #endif
464
465
466 // A simple growable array of Values indexed by ciFields
467 class FieldBuffer: public CompilationResourceObj {
468 private:
469 GrowableArray<Value> _values;
470
471 public:
472 FieldBuffer() {}
473
474 void kill() {
475 _values.trunc_to(0);
476 }
477
478 Value at(ciField* field) {
479 assert(field->holder()->is_loaded(), "must be a loaded field");
480 int offset = field->offset();
481 if (offset < _values.length()) {
482 return _values.at(offset);
483 } else {
484 return NULL;
485 }
486 }
487
488 void at_put(ciField* field, Value value) {
489 assert(field->holder()->is_loaded(), "must be a loaded field");
490 int offset = field->offset();
491 _values.at_put_grow(offset, value, NULL);
492 }
493
494 };
495
496
497 // MemoryBuffer is fairly simple model of the current state of memory.
498 // It partitions memory into several pieces. The first piece is
499 // generic memory where little is known about the owner of the memory.
500 // This is conceptually represented by the tuple <O, F, V> which says
501 // that the field F of object O has value V. This is flattened so
502 // that F is represented by the offset of the field and the parallel
503 // arrays _objects and _values are used for O and V. Loads of O.F can
504 // simply use V. Newly allocated objects are kept in a separate list
505 // along with a parallel array for each object which represents the
506 // current value of its fields. Stores of the default value to fields
507 // which have never been stored to before are eliminated since they
508 // are redundant. Once newly allocated objects are stored into
509 // another object or they are passed out of the current compile they
510 // are treated like generic memory.
511
512 class MemoryBuffer: public CompilationResourceObj {
513 private:
514 FieldBuffer _values;
515 GrowableArray<Value> _objects;
516 GrowableArray<Value> _newobjects;
517 GrowableArray<FieldBuffer*> _fields;
518
519 public:
520 MemoryBuffer() {}
521
522 StoreField* store(StoreField* st) {
523 if (!EliminateFieldAccess) {
524 return st;
525 }
526
527 Value object = st->obj();
528 Value value = st->value();
529 ciField* field = st->field();
530 if (field->holder()->is_loaded()) {
531 int offset = field->offset();
532 int index = _newobjects.find(object);
533 if (index != -1) {
534 // newly allocated object with no other stores performed on this field
535 FieldBuffer* buf = _fields.at(index);
536 if (buf->at(field) == NULL && is_default_value(value)) {
537 #ifndef PRODUCT
538 if (PrintIRDuringConstruction && Verbose) {
539 tty->print_cr("Eliminated store for object %d:", index);
540 st->print_line();
541 }
542 #endif
543 return NULL;
544 } else {
545 buf->at_put(field, value);
546 }
547 } else {
548 _objects.at_put_grow(offset, object, NULL);
549 _values.at_put(field, value);
550 }
551
552 store_value(value);
553 } else {
554 // if we held onto field names we could alias based on names but
555 // we don't know what's being stored to so kill it all.
556 kill();
557 }
558 return st;
559 }
560
561
562 // return true if this value correspond to the default value of a field.
563 bool is_default_value(Value value) {
564 Constant* con = value->as_Constant();
565 if (con) {
566 switch (con->type()->tag()) {
567 case intTag: return con->type()->as_IntConstant()->value() == 0;
568 case longTag: return con->type()->as_LongConstant()->value() == 0;
569 case floatTag: return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
570 case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
571 case objectTag: return con->type() == objectNull;
572 default: ShouldNotReachHere();
573 }
574 }
575 return false;
576 }
577
578
579 // return either the actual value of a load or the load itself
580 Value load(LoadField* load) {
581 if (!EliminateFieldAccess) {
582 return load;
583 }
584
585 if (RoundFPResults && UseSSE < 2 && load->type()->is_float_kind()) {
586 // can't skip load since value might get rounded as a side effect
587 return load;
588 }
589
590 ciField* field = load->field();
591 Value object = load->obj();
592 if (field->holder()->is_loaded() && !field->is_volatile()) {
593 int offset = field->offset();
594 Value result = NULL;
595 int index = _newobjects.find(object);
596 if (index != -1) {
597 result = _fields.at(index)->at(field);
598 } else if (_objects.at_grow(offset, NULL) == object) {
599 result = _values.at(field);
600 }
601 if (result != NULL) {
602 #ifndef PRODUCT
603 if (PrintIRDuringConstruction && Verbose) {
604 tty->print_cr("Eliminated load: ");
605 load->print_line();
606 }
607 #endif
608 assert(result->type()->tag() == load->type()->tag(), "wrong types");
609 return result;
610 }
611 }
612 return load;
613 }
614
615 // Record this newly allocated object
616 void new_instance(NewInstance* object) {
617 int index = _newobjects.length();
618 _newobjects.append(object);
619 if (_fields.at_grow(index, NULL) == NULL) {
620 _fields.at_put(index, new FieldBuffer());
621 } else {
622 _fields.at(index)->kill();
623 }
624 }
625
626 void store_value(Value value) {
627 int index = _newobjects.find(value);
628 if (index != -1) {
629 // stored a newly allocated object into another object.
630 // Assume we've lost track of it as separate slice of memory.
631 // We could do better by keeping track of whether individual
632 // fields could alias each other.
633 _newobjects.remove_at(index);
634 // pull out the field info and store it at the end up the list
635 // of field info list to be reused later.
636 _fields.append(_fields.at(index));
637 _fields.remove_at(index);
638 }
639 }
640
641 void kill() {
642 _newobjects.trunc_to(0);
643 _objects.trunc_to(0);
644 _values.kill();
645 }
646 };
647
648
649 // Implementation of GraphBuilder's ScopeData
650
651 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
652 : _parent(parent)
653 , _bci2block(NULL)
654 , _scope(NULL)
655 , _has_handler(false)
656 , _stream(NULL)
657 , _work_list(NULL)
658 , _parsing_jsr(false)
659 , _jsr_xhandlers(NULL)
660 , _caller_stack_size(-1)
661 , _continuation(NULL)
662 , _continuation_state(NULL)
663 , _num_returns(0)
664 , _cleanup_block(NULL)
665 , _cleanup_return_prev(NULL)
666 , _cleanup_state(NULL)
667 {
668 if (parent != NULL) {
669 _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
670 } else {
671 _max_inline_size = MaxInlineSize;
672 }
673 if (_max_inline_size < MaxTrivialSize) {
674 _max_inline_size = MaxTrivialSize;
675 }
676 }
677
678
679 void GraphBuilder::kill_field(ciField* field) {
680 if (UseLocalValueNumbering) {
681 vmap()->kill_field(field);
682 }
683 }
684
685
686 void GraphBuilder::kill_array(Value value) {
687 if (UseLocalValueNumbering) {
688 vmap()->kill_array(value->type());
689 }
690 _memory->store_value(value);
691 }
692
693
694 void GraphBuilder::kill_all() {
695 if (UseLocalValueNumbering) {
696 vmap()->kill_all();
697 }
698 _memory->kill();
699 }
700
701
702 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
703 if (parsing_jsr()) {
704 // It is necessary to clone all blocks associated with a
705 // subroutine, including those for exception handlers in the scope
706 // of the method containing the jsr (because those exception
707 // handlers may contain ret instructions in some cases).
708 BlockBegin* block = bci2block()->at(bci);
709 if (block != NULL && block == parent()->bci2block()->at(bci)) {
710 BlockBegin* new_block = new BlockBegin(block->bci());
711 #ifndef PRODUCT
712 if (PrintInitialBlockList) {
713 tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
714 block->block_id(), block->bci(), new_block->block_id());
715 }
716 #endif
717 // copy data from cloned blocked
718 new_block->set_depth_first_number(block->depth_first_number());
719 if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
720 // Preserve certain flags for assertion checking
721 if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
722 if (block->is_set(BlockBegin::exception_entry_flag)) new_block->set(BlockBegin::exception_entry_flag);
723
724 // copy was_visited_flag to allow early detection of bailouts
725 // if a block that is used in a jsr has already been visited before,
726 // it is shared between the normal control flow and a subroutine
727 // BlockBegin::try_merge returns false when the flag is set, this leads
728 // to a compilation bailout
729 if (block->is_set(BlockBegin::was_visited_flag)) new_block->set(BlockBegin::was_visited_flag);
730
731 bci2block()->at_put(bci, new_block);
732 block = new_block;
733 }
734 return block;
735 } else {
736 return bci2block()->at(bci);
737 }
738 }
739
740
741 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
742 if (_jsr_xhandlers == NULL) {
743 assert(!parsing_jsr(), "");
744 return scope()->xhandlers();
745 }
746 assert(parsing_jsr(), "");
747 return _jsr_xhandlers;
748 }
749
750
751 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
752 _scope = scope;
753 bool parent_has_handler = false;
754 if (parent() != NULL) {
755 parent_has_handler = parent()->has_handler();
756 }
757 _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
758 }
759
760
761 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
762 Instruction* return_prev,
763 ValueStack* return_state) {
764 _cleanup_block = block;
765 _cleanup_return_prev = return_prev;
766 _cleanup_state = return_state;
767 }
768
769
770 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
771 if (_work_list == NULL) {
772 _work_list = new BlockList();
773 }
774
775 if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
776 // Do not start parsing the continuation block while in a
777 // sub-scope
778 if (parsing_jsr()) {
779 if (block == jsr_continuation()) {
780 return;
781 }
782 } else {
783 if (block == continuation()) {
784 return;
785 }
786 }
787 block->set(BlockBegin::is_on_work_list_flag);
788 _work_list->push(block);
789
790 sort_top_into_worklist(_work_list, block);
791 }
792 }
793
794
795 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
796 assert(worklist->top() == top, "");
797 // sort block descending into work list
798 const int dfn = top->depth_first_number();
799 assert(dfn != -1, "unknown depth first number");
800 int i = worklist->length()-2;
801 while (i >= 0) {
802 BlockBegin* b = worklist->at(i);
803 if (b->depth_first_number() < dfn) {
804 worklist->at_put(i+1, b);
805 } else {
806 break;
807 }
808 i --;
809 }
810 if (i >= -1) worklist->at_put(i + 1, top);
811 }
812
813 int GraphBuilder::ScopeData::caller_stack_size() const {
814 ValueStack* state = scope()->caller_state();
815 if (state == NULL) {
816 return 0;
817 }
818 return state->stack_size();
819 }
820
821
822 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
823 if (is_work_list_empty()) {
824 return NULL;
825 }
826 return _work_list->pop();
827 }
828
829
830 bool GraphBuilder::ScopeData::is_work_list_empty() const {
831 return (_work_list == NULL || _work_list->length() == 0);
832 }
833
834
835 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
836 assert(parsing_jsr(), "");
837 // clone all the exception handlers from the scope
838 XHandlers* handlers = new XHandlers(scope()->xhandlers());
839 const int n = handlers->length();
840 for (int i = 0; i < n; i++) {
841 // The XHandlers need to be adjusted to dispatch to the cloned
842 // handler block instead of the default one but the synthetic
843 // unlocker needs to be handled specially. The synthetic unlocker
844 // should be left alone since there can be only one and all code
845 // should dispatch to the same one.
846 XHandler* h = handlers->handler_at(i);
847 if (h->handler_bci() != SynchronizationEntryBCI) {
848 h->set_entry_block(block_at(h->handler_bci()));
849 } else {
850 assert(h->entry_block()->is_set(BlockBegin::default_exception_handler_flag),
851 "should be the synthetic unlock block");
852 }
853 }
854 _jsr_xhandlers = handlers;
855 }
856
857
858 int GraphBuilder::ScopeData::num_returns() {
859 if (parsing_jsr()) {
860 return parent()->num_returns();
861 }
862 return _num_returns;
863 }
864
865
866 void GraphBuilder::ScopeData::incr_num_returns() {
867 if (parsing_jsr()) {
868 parent()->incr_num_returns();
869 } else {
870 ++_num_returns;
871 }
872 }
873
874
875 // Implementation of GraphBuilder
876
877 #define INLINE_BAILOUT(msg) { inline_bailout(msg); return false; }
878
879
880 void GraphBuilder::load_constant() {
881 ciConstant con = stream()->get_constant();
882 if (con.basic_type() == T_ILLEGAL) {
883 BAILOUT("could not resolve a constant");
884 } else {
885 ValueType* t = illegalType;
886 ValueStack* patch_state = NULL;
887 switch (con.basic_type()) {
888 case T_BOOLEAN: t = new IntConstant (con.as_boolean()); break;
889 case T_BYTE : t = new IntConstant (con.as_byte ()); break;
890 case T_CHAR : t = new IntConstant (con.as_char ()); break;
891 case T_SHORT : t = new IntConstant (con.as_short ()); break;
892 case T_INT : t = new IntConstant (con.as_int ()); break;
893 case T_LONG : t = new LongConstant (con.as_long ()); break;
894 case T_FLOAT : t = new FloatConstant (con.as_float ()); break;
895 case T_DOUBLE : t = new DoubleConstant (con.as_double ()); break;
896 case T_ARRAY : t = new ArrayConstant (con.as_object ()->as_array ()); break;
897 case T_OBJECT :
898 {
899 ciObject* obj = con.as_object();
900 if (obj->is_klass()) {
901 ciKlass* klass = obj->as_klass();
902 if (!klass->is_loaded() || PatchALot) {
903 patch_state = state()->copy();
904 t = new ObjectConstant(obj);
905 } else {
906 t = new InstanceConstant(klass->java_mirror());
907 }
908 } else {
909 t = new InstanceConstant(obj->as_instance());
910 }
911 break;
912 }
913 default : ShouldNotReachHere();
914 }
915 Value x;
916 if (patch_state != NULL) {
917 x = new Constant(t, patch_state);
918 } else {
919 x = new Constant(t);
920 }
921 push(t, append(x));
922 }
923 }
924
925
926 void GraphBuilder::load_local(ValueType* type, int index) {
927 Value x = state()->load_local(index);
928 push(type, x);
929 }
930
931
932 void GraphBuilder::store_local(ValueType* type, int index) {
933 Value x = pop(type);
934 store_local(state(), x, type, index);
935 }
936
937
938 void GraphBuilder::store_local(ValueStack* state, Value x, ValueType* type, int index) {
939 if (parsing_jsr()) {
940 // We need to do additional tracking of the location of the return
941 // address for jsrs since we don't handle arbitrary jsr/ret
942 // constructs. Here we are figuring out in which circumstances we
943 // need to bail out.
944 if (x->type()->is_address()) {
945 scope_data()->set_jsr_return_address_local(index);
946
947 // Also check parent jsrs (if any) at this time to see whether
948 // they are using this local. We don't handle skipping over a
949 // ret.
950 for (ScopeData* cur_scope_data = scope_data()->parent();
951 cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
952 cur_scope_data = cur_scope_data->parent()) {
953 if (cur_scope_data->jsr_return_address_local() == index) {
954 BAILOUT("subroutine overwrites return address from previous subroutine");
955 }
956 }
957 } else if (index == scope_data()->jsr_return_address_local()) {
958 scope_data()->set_jsr_return_address_local(-1);
959 }
960 }
961
962 state->store_local(index, round_fp(x));
963 }
964
965
966 void GraphBuilder::load_indexed(BasicType type) {
967 Value index = ipop();
968 Value array = apop();
969 Value length = NULL;
970 if (CSEArrayLength ||
971 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
972 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
973 length = append(new ArrayLength(array, lock_stack()));
974 }
975 push(as_ValueType(type), append(new LoadIndexed(array, index, length, type, lock_stack())));
976 }
977
978
979 void GraphBuilder::store_indexed(BasicType type) {
980 Value value = pop(as_ValueType(type));
981 Value index = ipop();
982 Value array = apop();
983 Value length = NULL;
984 if (CSEArrayLength ||
985 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
986 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
987 length = append(new ArrayLength(array, lock_stack()));
988 }
989 StoreIndexed* result = new StoreIndexed(array, index, length, type, value, lock_stack());
990 kill_array(value); // invalidate all CSEs that are memory accesses of the same type
991 append(result);
992 }
993
994
995 void GraphBuilder::stack_op(Bytecodes::Code code) {
996 switch (code) {
997 case Bytecodes::_pop:
998 { state()->raw_pop();
999 }
1000 break;
1001 case Bytecodes::_pop2:
1002 { state()->raw_pop();
1003 state()->raw_pop();
1004 }
1005 break;
1006 case Bytecodes::_dup:
1007 { Value w = state()->raw_pop();
1008 state()->raw_push(w);
1009 state()->raw_push(w);
1010 }
1011 break;
1012 case Bytecodes::_dup_x1:
1013 { Value w1 = state()->raw_pop();
1014 Value w2 = state()->raw_pop();
1015 state()->raw_push(w1);
1016 state()->raw_push(w2);
1017 state()->raw_push(w1);
1018 }
1019 break;
1020 case Bytecodes::_dup_x2:
1021 { Value w1 = state()->raw_pop();
1022 Value w2 = state()->raw_pop();
1023 Value w3 = state()->raw_pop();
1024 state()->raw_push(w1);
1025 state()->raw_push(w3);
1026 state()->raw_push(w2);
1027 state()->raw_push(w1);
1028 }
1029 break;
1030 case Bytecodes::_dup2:
1031 { Value w1 = state()->raw_pop();
1032 Value w2 = state()->raw_pop();
1033 state()->raw_push(w2);
1034 state()->raw_push(w1);
1035 state()->raw_push(w2);
1036 state()->raw_push(w1);
1037 }
1038 break;
1039 case Bytecodes::_dup2_x1:
1040 { Value w1 = state()->raw_pop();
1041 Value w2 = state()->raw_pop();
1042 Value w3 = state()->raw_pop();
1043 state()->raw_push(w2);
1044 state()->raw_push(w1);
1045 state()->raw_push(w3);
1046 state()->raw_push(w2);
1047 state()->raw_push(w1);
1048 }
1049 break;
1050 case Bytecodes::_dup2_x2:
1051 { Value w1 = state()->raw_pop();
1052 Value w2 = state()->raw_pop();
1053 Value w3 = state()->raw_pop();
1054 Value w4 = state()->raw_pop();
1055 state()->raw_push(w2);
1056 state()->raw_push(w1);
1057 state()->raw_push(w4);
1058 state()->raw_push(w3);
1059 state()->raw_push(w2);
1060 state()->raw_push(w1);
1061 }
1062 break;
1063 case Bytecodes::_swap:
1064 { Value w1 = state()->raw_pop();
1065 Value w2 = state()->raw_pop();
1066 state()->raw_push(w1);
1067 state()->raw_push(w2);
1068 }
1069 break;
1070 default:
1071 ShouldNotReachHere();
1072 break;
1073 }
1074 }
1075
1076
1077 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* stack) {
1078 Value y = pop(type);
1079 Value x = pop(type);
1080 // NOTE: strictfp can be queried from current method since we don't
1081 // inline methods with differing strictfp bits
1082 Value res = new ArithmeticOp(code, x, y, method()->is_strict(), stack);
1083 // Note: currently single-precision floating-point rounding on Intel is handled at the LIRGenerator level
1084 res = append(res);
1085 if (method()->is_strict()) {
1086 res = round_fp(res);
1087 }
1088 push(type, res);
1089 }
1090
1091
1092 void GraphBuilder::negate_op(ValueType* type) {
1093 push(type, append(new NegateOp(pop(type))));
1094 }
1095
1096
1097 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1098 Value s = ipop();
1099 Value x = pop(type);
1100 // try to simplify
1101 // Note: This code should go into the canonicalizer as soon as it can
1102 // can handle canonicalized forms that contain more than one node.
1103 if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1104 // pattern: x >>> s
1105 IntConstant* s1 = s->type()->as_IntConstant();
1106 if (s1 != NULL) {
1107 // pattern: x >>> s1, with s1 constant
1108 ShiftOp* l = x->as_ShiftOp();
1109 if (l != NULL && l->op() == Bytecodes::_ishl) {
1110 // pattern: (a << b) >>> s1
1111 IntConstant* s0 = l->y()->type()->as_IntConstant();
1112 if (s0 != NULL) {
1113 // pattern: (a << s0) >>> s1
1114 const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1115 const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1116 if (s0c == s1c) {
1117 if (s0c == 0) {
1118 // pattern: (a << 0) >>> 0 => simplify to: a
1119 ipush(l->x());
1120 } else {
1121 // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1122 assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1123 const int m = (1 << (BitsPerInt - s0c)) - 1;
1124 Value s = append(new Constant(new IntConstant(m)));
1125 ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1126 }
1127 return;
1128 }
1129 }
1130 }
1131 }
1132 }
1133 // could not simplify
1134 push(type, append(new ShiftOp(code, x, s)));
1135 }
1136
1137
1138 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1139 Value y = pop(type);
1140 Value x = pop(type);
1141 push(type, append(new LogicOp(code, x, y)));
1142 }
1143
1144
1145 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1146 ValueStack* state_before = state()->copy();
1147 Value y = pop(type);
1148 Value x = pop(type);
1149 ipush(append(new CompareOp(code, x, y, state_before)));
1150 }
1151
1152
1153 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1154 push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1155 }
1156
1157
1158 void GraphBuilder::increment() {
1159 int index = stream()->get_index();
1160 int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1161 load_local(intType, index);
1162 ipush(append(new Constant(new IntConstant(delta))));
1163 arithmetic_op(intType, Bytecodes::_iadd);
1164 store_local(intType, index);
1165 }
1166
1167
1168 void GraphBuilder::_goto(int from_bci, int to_bci) {
1169 profile_bci(from_bci);
1170 append(new Goto(block_at(to_bci), to_bci <= from_bci));
1171 }
1172
1173
1174 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1175 BlockBegin* tsux = block_at(stream()->get_dest());
1176 BlockBegin* fsux = block_at(stream()->next_bci());
1177 bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
1178 If* if_node = append(new If(x, cond, false, y, tsux, fsux, is_bb ? state_before : NULL, is_bb))->as_If();
1179 if (profile_branches() && (if_node != NULL)) {
1180 if_node->set_profiled_method(method());
1181 if_node->set_profiled_bci(bci());
1182 if_node->set_should_profile(true);
1183 }
1184 }
1185
1186
1187 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1188 Value y = append(new Constant(intZero));
1189 ValueStack* state_before = state()->copy();
1190 Value x = ipop();
1191 if_node(x, cond, y, state_before);
1192 }
1193
1194
1195 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1196 Value y = append(new Constant(objectNull));
1197 ValueStack* state_before = state()->copy();
1198 Value x = apop();
1199 if_node(x, cond, y, state_before);
1200 }
1201
1202
1203 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1204 ValueStack* state_before = state()->copy();
1205 Value y = pop(type);
1206 Value x = pop(type);
1207 if_node(x, cond, y, state_before);
1208 }
1209
1210
1211 void GraphBuilder::jsr(int dest) {
1212 // We only handle well-formed jsrs (those which are "block-structured").
1213 // If the bytecodes are strange (jumping out of a jsr block) then we
1214 // might end up trying to re-parse a block containing a jsr which
1215 // has already been activated. Watch for this case and bail out.
1216 for (ScopeData* cur_scope_data = scope_data();
1217 cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1218 cur_scope_data = cur_scope_data->parent()) {
1219 if (cur_scope_data->jsr_entry_bci() == dest) {
1220 BAILOUT("too-complicated jsr/ret structure");
1221 }
1222 }
1223
1224 push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1225 if (!try_inline_jsr(dest)) {
1226 return; // bailed out while parsing and inlining subroutine
1227 }
1228 }
1229
1230
1231 void GraphBuilder::ret(int local_index) {
1232 if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1233
1234 if (local_index != scope_data()->jsr_return_address_local()) {
1235 BAILOUT("can not handle complicated jsr/ret constructs");
1236 }
1237
1238 // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1239 append(new Goto(scope_data()->jsr_continuation(), false));
1240 }
1241
1242
1243 void GraphBuilder::table_switch() {
1244 Bytecode_tableswitch* switch_ = Bytecode_tableswitch_at(method()->code() + bci());
1245 const int l = switch_->length();
1246 if (CanonicalizeNodes && l == 1) {
1247 // total of 2 successors => use If instead of switch
1248 // Note: This code should go into the canonicalizer as soon as it can
1249 // can handle canonicalized forms that contain more than one node.
1250 Value key = append(new Constant(new IntConstant(switch_->low_key())));
1251 BlockBegin* tsux = block_at(bci() + switch_->dest_offset_at(0));
1252 BlockBegin* fsux = block_at(bci() + switch_->default_offset());
1253 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1254 ValueStack* state_before = is_bb ? state() : NULL;
1255 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1256 } else {
1257 // collect successors
1258 BlockList* sux = new BlockList(l + 1, NULL);
1259 int i;
1260 bool has_bb = false;
1261 for (i = 0; i < l; i++) {
1262 sux->at_put(i, block_at(bci() + switch_->dest_offset_at(i)));
1263 if (switch_->dest_offset_at(i) < 0) has_bb = true;
1264 }
1265 // add default successor
1266 sux->at_put(i, block_at(bci() + switch_->default_offset()));
1267 ValueStack* state_before = has_bb ? state() : NULL;
1268 append(new TableSwitch(ipop(), sux, switch_->low_key(), state_before, has_bb));
1269 }
1270 }
1271
1272
1273 void GraphBuilder::lookup_switch() {
1274 Bytecode_lookupswitch* switch_ = Bytecode_lookupswitch_at(method()->code() + bci());
1275 const int l = switch_->number_of_pairs();
1276 if (CanonicalizeNodes && l == 1) {
1277 // total of 2 successors => use If instead of switch
1278 // Note: This code should go into the canonicalizer as soon as it can
1279 // can handle canonicalized forms that contain more than one node.
1280 // simplify to If
1281 LookupswitchPair* pair = switch_->pair_at(0);
1282 Value key = append(new Constant(new IntConstant(pair->match())));
1283 BlockBegin* tsux = block_at(bci() + pair->offset());
1284 BlockBegin* fsux = block_at(bci() + switch_->default_offset());
1285 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1286 ValueStack* state_before = is_bb ? state() : NULL;
1287 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1288 } else {
1289 // collect successors & keys
1290 BlockList* sux = new BlockList(l + 1, NULL);
1291 intArray* keys = new intArray(l, 0);
1292 int i;
1293 bool has_bb = false;
1294 for (i = 0; i < l; i++) {
1295 LookupswitchPair* pair = switch_->pair_at(i);
1296 if (pair->offset() < 0) has_bb = true;
1297 sux->at_put(i, block_at(bci() + pair->offset()));
1298 keys->at_put(i, pair->match());
1299 }
1300 // add default successor
1301 sux->at_put(i, block_at(bci() + switch_->default_offset()));
1302 ValueStack* state_before = has_bb ? state() : NULL;
1303 append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1304 }
1305 }
1306
1307 void GraphBuilder::call_register_finalizer() {
1308 // If the receiver requires finalization then emit code to perform
1309 // the registration on return.
1310
1311 // Gather some type information about the receiver
1312 Value receiver = state()->load_local(0);
1313 assert(receiver != NULL, "must have a receiver");
1314 ciType* declared_type = receiver->declared_type();
1315 ciType* exact_type = receiver->exact_type();
1316 if (exact_type == NULL &&
1317 receiver->as_Local() &&
1318 receiver->as_Local()->java_index() == 0) {
1319 ciInstanceKlass* ik = compilation()->method()->holder();
1320 if (ik->is_final()) {
1321 exact_type = ik;
1322 } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1323 // test class is leaf class
1324 compilation()->dependency_recorder()->assert_leaf_type(ik);
1325 exact_type = ik;
1326 } else {
1327 declared_type = ik;
1328 }
1329 }
1330
1331 // see if we know statically that registration isn't required
1332 bool needs_check = true;
1333 if (exact_type != NULL) {
1334 needs_check = exact_type->as_instance_klass()->has_finalizer();
1335 } else if (declared_type != NULL) {
1336 ciInstanceKlass* ik = declared_type->as_instance_klass();
1337 if (!Dependencies::has_finalizable_subclass(ik)) {
1338 compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1339 needs_check = false;
1340 }
1341 }
1342
1343 if (needs_check) {
1344 // Perform the registration of finalizable objects.
1345 load_local(objectType, 0);
1346 append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1347 state()->pop_arguments(1),
1348 true, lock_stack(), true));
1349 }
1350 }
1351
1352
1353 void GraphBuilder::method_return(Value x) {
1354 if (RegisterFinalizersAtInit &&
1355 method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1356 call_register_finalizer();
1357 }
1358
1359 // Check to see whether we are inlining. If so, Return
1360 // instructions become Gotos to the continuation point.
1361 if (continuation() != NULL) {
1362 assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1363
1364 // If the inlined method is synchronized, the monitor must be
1365 // released before we jump to the continuation block.
1366 if (method()->is_synchronized()) {
1367 int i = state()->caller_state()->locks_size();
1368 assert(state()->locks_size() == i + 1, "receiver must be locked here");
1369 monitorexit(state()->lock_at(i), SynchronizationEntryBCI);
1370 }
1371
1372 state()->truncate_stack(caller_stack_size());
1373 if (x != NULL) {
1374 state()->push(x->type(), x);
1375 }
1376 Goto* goto_callee = new Goto(continuation(), false);
1377
1378 // See whether this is the first return; if so, store off some
1379 // of the state for later examination
1380 if (num_returns() == 0) {
1381 set_inline_cleanup_info(_block, _last, state());
1382 }
1383
1384 // State at end of inlined method is the state of the caller
1385 // without the method parameters on stack, including the
1386 // return value, if any, of the inlined method on operand stack.
1387 set_state(scope_data()->continuation_state()->copy());
1388 if (x) {
1389 state()->push(x->type(), x);
1390 }
1391
1392 // The current bci() is in the wrong scope, so use the bci() of
1393 // the continuation point.
1394 append_with_bci(goto_callee, scope_data()->continuation()->bci());
1395 incr_num_returns();
1396
1397 return;
1398 }
1399
1400 state()->truncate_stack(0);
1401 if (method()->is_synchronized()) {
1402 // perform the unlocking before exiting the method
1403 Value receiver;
1404 if (!method()->is_static()) {
1405 receiver = _initial_state->local_at(0);
1406 } else {
1407 receiver = append(new Constant(new ClassConstant(method()->holder())));
1408 }
1409 append_split(new MonitorExit(receiver, state()->unlock()));
1410 }
1411
1412 append(new Return(x));
1413 }
1414
1415
1416 void GraphBuilder::access_field(Bytecodes::Code code) {
1417 bool will_link;
1418 ciField* field = stream()->get_field(will_link);
1419 ciInstanceKlass* holder = field->holder();
1420 BasicType field_type = field->type()->basic_type();
1421 ValueType* type = as_ValueType(field_type);
1422 // call will_link again to determine if the field is valid.
1423 const bool is_loaded = holder->is_loaded() &&
1424 field->will_link(method()->holder(), code);
1425 const bool is_initialized = is_loaded && holder->is_initialized();
1426
1427 ValueStack* state_copy = NULL;
1428 if (!is_initialized || PatchALot) {
1429 // save state before instruction for debug info when
1430 // deoptimization happens during patching
1431 state_copy = state()->copy();
1432 }
1433
1434 Value obj = NULL;
1435 if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1436 // commoning of class constants should only occur if the class is
1437 // fully initialized and resolved in this constant pool. The will_link test
1438 // above essentially checks if this class is resolved in this constant pool
1439 // so, the is_initialized flag should be suffiect.
1440 if (state_copy != NULL) {
1441 // build a patching constant
1442 obj = new Constant(new ClassConstant(holder), state_copy);
1443 } else {
1444 obj = new Constant(new ClassConstant(holder));
1445 }
1446 }
1447
1448
1449 const int offset = is_loaded ? field->offset() : -1;
1450 switch (code) {
1451 case Bytecodes::_getstatic: {
1452 // check for compile-time constants, i.e., initialized static final fields
1453 Instruction* constant = NULL;
1454 if (field->is_constant() && !PatchALot) {
1455 ciConstant field_val = field->constant_value();
1456 BasicType field_type = field_val.basic_type();
1457 switch (field_type) {
1458 case T_ARRAY:
1459 case T_OBJECT:
1460 if (field_val.as_object()->has_encoding()) {
1461 constant = new Constant(as_ValueType(field_val));
1462 }
1463 break;
1464
1465 default:
1466 constant = new Constant(as_ValueType(field_val));
1467 }
1468 }
1469 if (constant != NULL) {
1470 push(type, append(constant));
1471 state_copy = NULL; // Not a potential deoptimization point (see set_state_before logic below)
1472 } else {
1473 push(type, append(new LoadField(append(obj), offset, field, true,
1474 lock_stack(), state_copy, is_loaded, is_initialized)));
1475 }
1476 break;
1477 }
1478 case Bytecodes::_putstatic:
1479 { Value val = pop(type);
1480 append(new StoreField(append(obj), offset, field, val, true, lock_stack(), state_copy, is_loaded, is_initialized));
1481 if (UseLocalValueNumbering) {
1482 vmap()->kill_field(field); // invalidate all CSEs that are memory accesses
1483 }
1484 }
1485 break;
1486 case Bytecodes::_getfield :
1487 {
1488 LoadField* load = new LoadField(apop(), offset, field, false, lock_stack(), state_copy, is_loaded, true);
1489 Value replacement = is_loaded ? _memory->load(load) : load;
1490 if (replacement != load) {
1491 assert(replacement->bci() != -99 || replacement->as_Phi() || replacement->as_Local(),
1492 "should already by linked");
1493 push(type, replacement);
1494 } else {
1495 push(type, append(load));
1496 }
1497 break;
1498 }
1499
1500 case Bytecodes::_putfield :
1501 { Value val = pop(type);
1502 StoreField* store = new StoreField(apop(), offset, field, val, false, lock_stack(), state_copy, is_loaded, true);
1503 if (is_loaded) store = _memory->store(store);
1504 if (store != NULL) {
1505 append(store);
1506 kill_field(field); // invalidate all CSEs that are accesses of this field
1507 }
1508 }
1509 break;
1510 default :
1511 ShouldNotReachHere();
1512 break;
1513 }
1514 }
1515
1516
1517 Dependencies* GraphBuilder::dependency_recorder() const {
1518 assert(DeoptC1, "need debug information");
1519 compilation()->set_needs_debug_information(true);
1520 return compilation()->dependency_recorder();
1521 }
1522
1523
1524 void GraphBuilder::invoke(Bytecodes::Code code) {
1525 bool will_link;
1526 ciMethod* target = stream()->get_method(will_link);
1527 // we have to make sure the argument size (incl. the receiver)
1528 // is correct for compilation (the call would fail later during
1529 // linkage anyway) - was bug (gri 7/28/99)
1530 if (target->is_loaded() && target->is_static() != (code == Bytecodes::_invokestatic)) BAILOUT("will cause link error");
1531 ciInstanceKlass* klass = target->holder();
1532
1533 // check if CHA possible: if so, change the code to invoke_special
1534 ciInstanceKlass* calling_klass = method()->holder();
1535 ciKlass* holder = stream()->get_declared_method_holder();
1536 ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1537 ciInstanceKlass* actual_recv = callee_holder;
1538
1539 // some methods are obviously bindable without any type checks so
1540 // convert them directly to an invokespecial.
1541 if (target->is_loaded() && !target->is_abstract() &&
1542 target->can_be_statically_bound() && code == Bytecodes::_invokevirtual) {
1543 code = Bytecodes::_invokespecial;
1544 }
1545
1546 // NEEDS_CLEANUP
1547 // I've added the target-is_loaded() test below but I don't really understand
1548 // how klass->is_loaded() can be true and yet target->is_loaded() is false.
1549 // this happened while running the JCK invokevirtual tests under doit. TKR
1550 ciMethod* cha_monomorphic_target = NULL;
1551 ciMethod* exact_target = NULL;
1552 if (UseCHA && DeoptC1 && klass->is_loaded() && target->is_loaded()) {
1553 Value receiver = NULL;
1554 ciInstanceKlass* receiver_klass = NULL;
1555 bool type_is_exact = false;
1556 // try to find a precise receiver type
1557 if (will_link && !target->is_static()) {
1558 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
1559 receiver = state()->stack_at(index);
1560 ciType* type = receiver->exact_type();
1561 if (type != NULL && type->is_loaded() &&
1562 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
1563 receiver_klass = (ciInstanceKlass*) type;
1564 type_is_exact = true;
1565 }
1566 if (type == NULL) {
1567 type = receiver->declared_type();
1568 if (type != NULL && type->is_loaded() &&
1569 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
1570 receiver_klass = (ciInstanceKlass*) type;
1571 if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
1572 // Insert a dependency on this type since
1573 // find_monomorphic_target may assume it's already done.
1574 dependency_recorder()->assert_leaf_type(receiver_klass);
1575 type_is_exact = true;
1576 }
1577 }
1578 }
1579 }
1580 if (receiver_klass != NULL && type_is_exact &&
1581 receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
1582 // If we have the exact receiver type we can bind directly to
1583 // the method to call.
1584 exact_target = target->resolve_invoke(calling_klass, receiver_klass);
1585 if (exact_target != NULL) {
1586 target = exact_target;
1587 code = Bytecodes::_invokespecial;
1588 }
1589 }
1590 if (receiver_klass != NULL &&
1591 receiver_klass->is_subtype_of(actual_recv) &&
1592 actual_recv->is_initialized()) {
1593 actual_recv = receiver_klass;
1594 }
1595
1596 if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
1597 (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
1598 // Use CHA on the receiver to select a more precise method.
1599 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
1600 } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != NULL) {
1601 // if there is only one implementor of this interface then we
1602 // may be able bind this invoke directly to the implementing
1603 // klass but we need both a dependence on the single interface
1604 // and on the method we bind to. Additionally since all we know
1605 // about the receiver type is the it's supposed to implement the
1606 // interface we have to insert a check that it's the class we
1607 // expect. Interface types are not checked by the verifier so
1608 // they are roughly equivalent to Object.
1609 ciInstanceKlass* singleton = NULL;
1610 if (target->holder()->nof_implementors() == 1) {
1611 singleton = target->holder()->implementor(0);
1612 }
1613 if (singleton) {
1614 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, target->holder(), singleton);
1615 if (cha_monomorphic_target != NULL) {
1616 // If CHA is able to bind this invoke then update the class
1617 // to match that class, otherwise klass will refer to the
1618 // interface.
1619 klass = cha_monomorphic_target->holder();
1620 actual_recv = target->holder();
1621
1622 // insert a check it's really the expected class.
1623 CheckCast* c = new CheckCast(klass, receiver, NULL);
1624 c->set_incompatible_class_change_check();
1625 c->set_direct_compare(klass->is_final());
1626 append_split(c);
1627 }
1628 }
1629 }
1630 }
1631
1632 if (cha_monomorphic_target != NULL) {
1633 if (cha_monomorphic_target->is_abstract()) {
1634 // Do not optimize for abstract methods
1635 cha_monomorphic_target = NULL;
1636 }
1637 }
1638
1639 if (cha_monomorphic_target != NULL) {
1640 if (!(target->is_final_method())) {
1641 // If we inlined because CHA revealed only a single target method,
1642 // then we are dependent on that target method not getting overridden
1643 // by dynamic class loading. Be sure to test the "static" receiver
1644 // dest_method here, as opposed to the actual receiver, which may
1645 // falsely lead us to believe that the receiver is final or private.
1646 dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target);
1647 }
1648 code = Bytecodes::_invokespecial;
1649 }
1650 // check if we could do inlining
1651 if (!PatchALot && Inline && klass->is_loaded() &&
1652 (klass->is_initialized() || klass->is_interface() && target->holder()->is_initialized())
1653 && target->will_link(klass, callee_holder, code)) {
1654 // callee is known => check if we have static binding
1655 assert(target->is_loaded(), "callee must be known");
1656 if (code == Bytecodes::_invokestatic
1657 || code == Bytecodes::_invokespecial
1658 || code == Bytecodes::_invokevirtual && target->is_final_method()
1659 ) {
1660 // static binding => check if callee is ok
1661 ciMethod* inline_target = (cha_monomorphic_target != NULL)
1662 ? cha_monomorphic_target
1663 : target;
1664 bool res = try_inline(inline_target, (cha_monomorphic_target != NULL) || (exact_target != NULL));
1665 CHECK_BAILOUT();
1666
1667 #ifndef PRODUCT
1668 // printing
1669 if (PrintInlining && !res) {
1670 // if it was successfully inlined, then it was already printed.
1671 print_inline_result(inline_target, res);
1672 }
1673 #endif
1674 clear_inline_bailout();
1675 if (res) {
1676 // Register dependence if JVMTI has either breakpoint
1677 // setting or hotswapping of methods capabilities since they may
1678 // cause deoptimization.
1679 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1680 dependency_recorder()->assert_evol_method(inline_target);
1681 }
1682 return;
1683 }
1684 }
1685 }
1686 // If we attempted an inline which did not succeed because of a
1687 // bailout during construction of the callee graph, the entire
1688 // compilation has to be aborted. This is fairly rare and currently
1689 // seems to only occur for jasm-generated classes which contain
1690 // jsr/ret pairs which are not associated with finally clauses and
1691 // do not have exception handlers in the containing method, and are
1692 // therefore not caught early enough to abort the inlining without
1693 // corrupting the graph. (We currently bail out with a non-empty
1694 // stack at a ret in these situations.)
1695 CHECK_BAILOUT();
1696
1697 // inlining not successful => standard invoke
1698 bool is_static = code == Bytecodes::_invokestatic;
1699 ValueType* result_type = as_ValueType(target->return_type());
1700 Values* args = state()->pop_arguments(target->arg_size_no_receiver());
1701 Value recv = is_static ? NULL : apop();
1702 bool is_loaded = target->is_loaded();
1703 int vtable_index = methodOopDesc::invalid_vtable_index;
1704
1705 #ifdef SPARC
1706 // Currently only supported on Sparc.
1707 // The UseInlineCaches only controls dispatch to invokevirtuals for
1708 // loaded classes which we weren't able to statically bind.
1709 if (!UseInlineCaches && is_loaded && code == Bytecodes::_invokevirtual
1710 && !target->can_be_statically_bound()) {
1711 // Find a vtable index if one is available
1712 vtable_index = target->resolve_vtable_index(calling_klass, callee_holder);
1713 }
1714 #endif
1715
1716 if (recv != NULL &&
1717 (code == Bytecodes::_invokespecial ||
1718 !is_loaded || target->is_final() ||
1719 profile_calls())) {
1720 // invokespecial always needs a NULL check. invokevirtual where
1721 // the target is final or where it's not known that whether the
1722 // target is final requires a NULL check. Otherwise normal
1723 // invokevirtual will perform the null check during the lookup
1724 // logic or the unverified entry point. Profiling of calls
1725 // requires that the null check is performed in all cases.
1726 null_check(recv);
1727 }
1728
1729 if (profile_calls()) {
1730 assert(cha_monomorphic_target == NULL || exact_target == NULL, "both can not be set");
1731 ciKlass* target_klass = NULL;
1732 if (cha_monomorphic_target != NULL) {
1733 target_klass = cha_monomorphic_target->holder();
1734 } else if (exact_target != NULL) {
1735 target_klass = exact_target->holder();
1736 }
1737 profile_call(recv, target_klass);
1738 }
1739
1740 Invoke* result = new Invoke(code, result_type, recv, args, vtable_index, target);
1741 // push result
1742 append_split(result);
1743
1744 if (result_type != voidType) {
1745 if (method()->is_strict()) {
1746 push(result_type, round_fp(result));
1747 } else {
1748 push(result_type, result);
1749 }
1750 }
1751 }
1752
1753
1754 void GraphBuilder::new_instance(int klass_index) {
1755 bool will_link;
1756 ciKlass* klass = stream()->get_klass(will_link);
1757 assert(klass->is_instance_klass(), "must be an instance klass");
1758 NewInstance* new_instance = new NewInstance(klass->as_instance_klass());
1759 _memory->new_instance(new_instance);
1760 apush(append_split(new_instance));
1761 }
1762
1763
1764 void GraphBuilder::new_type_array() {
1765 apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index())));
1766 }
1767
1768
1769 void GraphBuilder::new_object_array() {
1770 bool will_link;
1771 ciKlass* klass = stream()->get_klass(will_link);
1772 ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
1773 NewArray* n = new NewObjectArray(klass, ipop(), state_before);
1774 apush(append_split(n));
1775 }
1776
1777
1778 bool GraphBuilder::direct_compare(ciKlass* k) {
1779 if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
1780 ciInstanceKlass* ik = k->as_instance_klass();
1781 if (ik->is_final()) {
1782 return true;
1783 } else {
1784 if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1785 // test class is leaf class
1786 dependency_recorder()->assert_leaf_type(ik);
1787 return true;
1788 }
1789 }
1790 }
1791 return false;
1792 }
1793
1794
1795 void GraphBuilder::check_cast(int klass_index) {
1796 bool will_link;
1797 ciKlass* klass = stream()->get_klass(will_link);
1798 ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
1799 CheckCast* c = new CheckCast(klass, apop(), state_before);
1800 apush(append_split(c));
1801 c->set_direct_compare(direct_compare(klass));
1802 if (profile_checkcasts()) {
1803 c->set_profiled_method(method());
1804 c->set_profiled_bci(bci());
1805 c->set_should_profile(true);
1806 }
1807 }
1808
1809
1810 void GraphBuilder::instance_of(int klass_index) {
1811 bool will_link;
1812 ciKlass* klass = stream()->get_klass(will_link);
1813 ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
1814 InstanceOf* i = new InstanceOf(klass, apop(), state_before);
1815 ipush(append_split(i));
1816 i->set_direct_compare(direct_compare(klass));
1817 }
1818
1819
1820 void GraphBuilder::monitorenter(Value x, int bci) {
1821 // save state before locking in case of deoptimization after a NullPointerException
1822 ValueStack* lock_stack_before = lock_stack();
1823 append_with_bci(new MonitorEnter(x, state()->lock(scope(), x), lock_stack_before), bci);
1824 kill_all();
1825 }
1826
1827
1828 void GraphBuilder::monitorexit(Value x, int bci) {
1829 // Note: the comment below is only relevant for the case where we do
1830 // not deoptimize due to asynchronous exceptions (!(DeoptC1 &&
1831 // DeoptOnAsyncException), which is not used anymore)
1832
1833 // Note: Potentially, the monitor state in an exception handler
1834 // can be wrong due to wrong 'initialization' of the handler
1835 // via a wrong asynchronous exception path. This can happen,
1836 // if the exception handler range for asynchronous exceptions
1837 // is too long (see also java bug 4327029, and comment in
1838 // GraphBuilder::handle_exception()). This may cause 'under-
1839 // flow' of the monitor stack => bailout instead.
1840 if (state()->locks_size() < 1) BAILOUT("monitor stack underflow");
1841 append_with_bci(new MonitorExit(x, state()->unlock()), bci);
1842 kill_all();
1843 }
1844
1845
1846 void GraphBuilder::new_multi_array(int dimensions) {
1847 bool will_link;
1848 ciKlass* klass = stream()->get_klass(will_link);
1849 ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
1850
1851 Values* dims = new Values(dimensions, NULL);
1852 // fill in all dimensions
1853 int i = dimensions;
1854 while (i-- > 0) dims->at_put(i, ipop());
1855 // create array
1856 NewArray* n = new NewMultiArray(klass, dims, state_before);
1857 apush(append_split(n));
1858 }
1859
1860
1861 void GraphBuilder::throw_op(int bci) {
1862 // We require that the debug info for a Throw be the "state before"
1863 // the Throw (i.e., exception oop is still on TOS)
1864 ValueStack* state_before = state()->copy();
1865 Throw* t = new Throw(apop(), state_before);
1866 append_with_bci(t, bci);
1867 }
1868
1869
1870 Value GraphBuilder::round_fp(Value fp_value) {
1871 // no rounding needed if SSE2 is used
1872 if (RoundFPResults && UseSSE < 2) {
1873 // Must currently insert rounding node for doubleword values that
1874 // are results of expressions (i.e., not loads from memory or
1875 // constants)
1876 if (fp_value->type()->tag() == doubleTag &&
1877 fp_value->as_Constant() == NULL &&
1878 fp_value->as_Local() == NULL && // method parameters need no rounding
1879 fp_value->as_RoundFP() == NULL) {
1880 return append(new RoundFP(fp_value));
1881 }
1882 }
1883 return fp_value;
1884 }
1885
1886
1887 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
1888 Canonicalizer canon(instr, bci);
1889 Instruction* i1 = canon.canonical();
1890 if (i1->bci() != -99) {
1891 // Canonicalizer returned an instruction which was already
1892 // appended so simply return it.
1893 return i1;
1894 } else if (UseLocalValueNumbering) {
1895 // Lookup the instruction in the ValueMap and add it to the map if
1896 // it's not found.
1897 Instruction* i2 = vmap()->find_insert(i1);
1898 if (i2 != i1) {
1899 // found an entry in the value map, so just return it.
1900 assert(i2->bci() != -1, "should already be linked");
1901 return i2;
1902 }
1903 }
1904
1905 if (i1->as_Phi() == NULL && i1->as_Local() == NULL) {
1906 // i1 was not eliminated => append it
1907 assert(i1->next() == NULL, "shouldn't already be linked");
1908 _last = _last->set_next(i1, canon.bci());
1909 if (++_instruction_count >= InstructionCountCutoff
1910 && !bailed_out()) {
1911 // set the bailout state but complete normal processing. We
1912 // might do a little more work before noticing the bailout so we
1913 // want processing to continue normally until it's noticed.
1914 bailout("Method and/or inlining is too large");
1915 }
1916
1917 #ifndef PRODUCT
1918 if (PrintIRDuringConstruction) {
1919 InstructionPrinter ip;
1920 ip.print_line(i1);
1921 if (Verbose) {
1922 state()->print();
1923 }
1924 }
1925 #endif
1926 assert(_last == i1, "adjust code below");
1927 StateSplit* s = i1->as_StateSplit();
1928 if (s != NULL && i1->as_BlockEnd() == NULL) {
1929 // Continue CSE across certain intrinsics
1930 Intrinsic* intrinsic = s->as_Intrinsic();
1931 if (UseLocalValueNumbering) {
1932 if (intrinsic == NULL || !intrinsic->preserves_state()) {
1933 vmap()->kill_all(); // for now, hopefully we need this only for calls eventually
1934 }
1935 }
1936 if (EliminateFieldAccess) {
1937 if (s->as_Invoke() != NULL || (intrinsic && !intrinsic->preserves_state())) {
1938 _memory->kill();
1939 }
1940 }
1941 s->set_state(state()->copy());
1942 }
1943 // set up exception handlers for this instruction if necessary
1944 if (i1->can_trap()) {
1945 assert(exception_state() != NULL || !has_handler(), "must have setup exception state");
1946 i1->set_exception_handlers(handle_exception(bci));
1947 }
1948 }
1949 return i1;
1950 }
1951
1952
1953 Instruction* GraphBuilder::append(Instruction* instr) {
1954 assert(instr->as_StateSplit() == NULL || instr->as_BlockEnd() != NULL, "wrong append used");
1955 return append_with_bci(instr, bci());
1956 }
1957
1958
1959 Instruction* GraphBuilder::append_split(StateSplit* instr) {
1960 return append_with_bci(instr, bci());
1961 }
1962
1963
1964 void GraphBuilder::null_check(Value value) {
1965 if (value->as_NewArray() != NULL || value->as_NewInstance() != NULL) {
1966 return;
1967 } else {
1968 Constant* con = value->as_Constant();
1969 if (con) {
1970 ObjectType* c = con->type()->as_ObjectType();
1971 if (c && c->is_loaded()) {
1972 ObjectConstant* oc = c->as_ObjectConstant();
1973 if (!oc || !oc->value()->is_null_object()) {
1974 return;
1975 }
1976 }
1977 }
1978 }
1979 append(new NullCheck(value, lock_stack()));
1980 }
1981
1982
1983
1984 XHandlers* GraphBuilder::handle_exception(int cur_bci) {
1985 // fast path if it is guaranteed that no exception handlers are present
1986 if (!has_handler()) {
1987 // TODO: check if return NULL is possible (avoids empty lists)
1988 return new XHandlers();
1989 }
1990
1991 XHandlers* exception_handlers = new XHandlers();
1992 ScopeData* cur_scope_data = scope_data();
1993 ValueStack* s = exception_state();
1994 int scope_count = 0;
1995
1996 assert(s != NULL, "exception state must be set");
1997 do {
1998 assert(cur_scope_data->scope() == s->scope(), "scopes do not match");
1999 assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci(), "invalid bci");
2000
2001 // join with all potential exception handlers
2002 XHandlers* list = cur_scope_data->xhandlers();
2003 const int n = list->length();
2004 for (int i = 0; i < n; i++) {
2005 XHandler* h = list->handler_at(i);
2006 if (h->covers(cur_bci)) {
2007 // h is a potential exception handler => join it
2008 compilation()->set_has_exception_handlers(true);
2009
2010 BlockBegin* entry = h->entry_block();
2011 if (entry == block()) {
2012 // It's acceptable for an exception handler to cover itself
2013 // but we don't handle that in the parser currently. It's
2014 // very rare so we bailout instead of trying to handle it.
2015 BAILOUT_("exception handler covers itself", exception_handlers);
2016 }
2017 assert(entry->bci() == h->handler_bci(), "must match");
2018 assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2019
2020 // previously this was a BAILOUT, but this is not necessary
2021 // now because asynchronous exceptions are not handled this way.
2022 assert(entry->state() == NULL || s->locks_size() == entry->state()->locks_size(), "locks do not match");
2023
2024 // xhandler start with an empty expression stack
2025 s->truncate_stack(cur_scope_data->caller_stack_size());
2026
2027 // Note: Usually this join must work. However, very
2028 // complicated jsr-ret structures where we don't ret from
2029 // the subroutine can cause the objects on the monitor
2030 // stacks to not match because blocks can be parsed twice.
2031 // The only test case we've seen so far which exhibits this
2032 // problem is caught by the infinite recursion test in
2033 // GraphBuilder::jsr() if the join doesn't work.
2034 if (!entry->try_merge(s)) {
2035 BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2036 }
2037
2038 // add current state for correct handling of phi functions at begin of xhandler
2039 int phi_operand = entry->add_exception_state(s);
2040
2041 // add entry to the list of xhandlers of this block
2042 _block->add_exception_handler(entry);
2043
2044 // add back-edge from xhandler entry to this block
2045 if (!entry->is_predecessor(_block)) {
2046 entry->add_predecessor(_block);
2047 }
2048
2049 // clone XHandler because phi_operand and scope_count can not be shared
2050 XHandler* new_xhandler = new XHandler(h);
2051 new_xhandler->set_phi_operand(phi_operand);
2052 new_xhandler->set_scope_count(scope_count);
2053 exception_handlers->append(new_xhandler);
2054
2055 // fill in exception handler subgraph lazily
2056 assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2057 cur_scope_data->add_to_work_list(entry);
2058
2059 // stop when reaching catchall
2060 if (h->catch_type() == 0) {
2061 return exception_handlers;
2062 }
2063 }
2064 }
2065
2066 // Set up iteration for next time.
2067 // If parsing a jsr, do not grab exception handlers from the
2068 // parent scopes for this method (already got them, and they
2069 // needed to be cloned)
2070 if (cur_scope_data->parsing_jsr()) {
2071 IRScope* tmp_scope = cur_scope_data->scope();
2072 while (cur_scope_data->parent() != NULL &&
2073 cur_scope_data->parent()->scope() == tmp_scope) {
2074 cur_scope_data = cur_scope_data->parent();
2075 }
2076 }
2077 if (cur_scope_data != NULL) {
2078 if (cur_scope_data->parent() != NULL) {
2079 // must use pop_scope instead of caller_state to preserve all monitors
2080 s = s->pop_scope();
2081 }
2082 cur_bci = cur_scope_data->scope()->caller_bci();
2083 cur_scope_data = cur_scope_data->parent();
2084 scope_count++;
2085 }
2086 } while (cur_scope_data != NULL);
2087
2088 return exception_handlers;
2089 }
2090
2091
2092 // Helper class for simplifying Phis.
2093 class PhiSimplifier : public BlockClosure {
2094 private:
2095 bool _has_substitutions;
2096 Value simplify(Value v);
2097
2098 public:
2099 PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2100 start->iterate_preorder(this);
2101 if (_has_substitutions) {
2102 SubstitutionResolver sr(start);
2103 }
2104 }
2105 void block_do(BlockBegin* b);
2106 bool has_substitutions() const { return _has_substitutions; }
2107 };
2108
2109
2110 Value PhiSimplifier::simplify(Value v) {
2111 Phi* phi = v->as_Phi();
2112
2113 if (phi == NULL) {
2114 // no phi function
2115 return v;
2116 } else if (v->has_subst()) {
2117 // already substituted; subst can be phi itself -> simplify
2118 return simplify(v->subst());
2119 } else if (phi->is_set(Phi::cannot_simplify)) {
2120 // already tried to simplify phi before
2121 return phi;
2122 } else if (phi->is_set(Phi::visited)) {
2123 // break cycles in phi functions
2124 return phi;
2125 } else if (phi->type()->is_illegal()) {
2126 // illegal phi functions are ignored anyway
2127 return phi;
2128
2129 } else {
2130 // mark phi function as processed to break cycles in phi functions
2131 phi->set(Phi::visited);
2132
2133 // simplify x = [y, x] and x = [y, y] to y
2134 Value subst = NULL;
2135 int opd_count = phi->operand_count();
2136 for (int i = 0; i < opd_count; i++) {
2137 Value opd = phi->operand_at(i);
2138 assert(opd != NULL, "Operand must exist!");
2139
2140 if (opd->type()->is_illegal()) {
2141 // if one operand is illegal, the entire phi function is illegal
2142 phi->make_illegal();
2143 phi->clear(Phi::visited);
2144 return phi;
2145 }
2146
2147 Value new_opd = simplify(opd);
2148 assert(new_opd != NULL, "Simplified operand must exist!");
2149
2150 if (new_opd != phi && new_opd != subst) {
2151 if (subst == NULL) {
2152 subst = new_opd;
2153 } else {
2154 // no simplification possible
2155 phi->set(Phi::cannot_simplify);
2156 phi->clear(Phi::visited);
2157 return phi;
2158 }
2159 }
2160 }
2161
2162 // sucessfully simplified phi function
2163 assert(subst != NULL, "illegal phi function");
2164 _has_substitutions = true;
2165 phi->clear(Phi::visited);
2166 phi->set_subst(subst);
2167
2168 #ifndef PRODUCT
2169 if (PrintPhiFunctions) {
2170 tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
2171 }
2172 #endif
2173
2174 return subst;
2175 }
2176 }
2177
2178
2179 void PhiSimplifier::block_do(BlockBegin* b) {
2180 for_each_phi_fun(b, phi,
2181 simplify(phi);
2182 );
2183
2184 #ifdef ASSERT
2185 for_each_phi_fun(b, phi,
2186 assert(phi->operand_count() != 1 || phi->subst() != phi, "missed trivial simplification");
2187 );
2188
2189 ValueStack* state = b->state()->caller_state();
2190 int index;
2191 Value value;
2192 for_each_state(state) {
2193 for_each_local_value(state, index, value) {
2194 Phi* phi = value->as_Phi();
2195 assert(phi == NULL || phi->block() != b, "must not have phi function to simplify in caller state");
2196 }
2197 }
2198 #endif
2199 }
2200
2201 // This method is called after all blocks are filled with HIR instructions
2202 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
2203 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
2204 PhiSimplifier simplifier(start);
2205 }
2206
2207
2208 void GraphBuilder::connect_to_end(BlockBegin* beg) {
2209 // setup iteration
2210 kill_all();
2211 _block = beg;
2212 _state = beg->state()->copy();
2213 _last = beg;
2214 iterate_bytecodes_for_block(beg->bci());
2215 }
2216
2217
2218 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
2219 #ifndef PRODUCT
2220 if (PrintIRDuringConstruction) {
2221 tty->cr();
2222 InstructionPrinter ip;
2223 ip.print_instr(_block); tty->cr();
2224 ip.print_stack(_block->state()); tty->cr();
2225 ip.print_inline_level(_block);
2226 ip.print_head();
2227 tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
2228 }
2229 #endif
2230 _skip_block = false;
2231 assert(state() != NULL, "ValueStack missing!");
2232 ciBytecodeStream s(method());
2233 s.reset_to_bci(bci);
2234 int prev_bci = bci;
2235 scope_data()->set_stream(&s);
2236 // iterate
2237 Bytecodes::Code code = Bytecodes::_illegal;
2238 bool push_exception = false;
2239
2240 if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == NULL) {
2241 // first thing in the exception entry block should be the exception object.
2242 push_exception = true;
2243 }
2244
2245 while (!bailed_out() && last()->as_BlockEnd() == NULL &&
2246 (code = stream()->next()) != ciBytecodeStream::EOBC() &&
2247 (block_at(s.cur_bci()) == NULL || block_at(s.cur_bci()) == block())) {
2248
2249 if (has_handler() && can_trap(method(), code)) {
2250 // copy the state because it is modified before handle_exception is called
2251 set_exception_state(state()->copy());
2252 } else {
2253 // handle_exception is not called for this bytecode
2254 set_exception_state(NULL);
2255 }
2256
2257 // Check for active jsr during OSR compilation
2258 if (compilation()->is_osr_compile()
2259 && scope()->is_top_scope()
2260 && parsing_jsr()
2261 && s.cur_bci() == compilation()->osr_bci()) {
2262 bailout("OSR not supported while a jsr is active");
2263 }
2264
2265 if (push_exception) {
2266 apush(append(new ExceptionObject()));
2267 push_exception = false;
2268 }
2269
2270 // handle bytecode
2271 switch (code) {
2272 case Bytecodes::_nop : /* nothing to do */ break;
2273 case Bytecodes::_aconst_null : apush(append(new Constant(objectNull ))); break;
2274 case Bytecodes::_iconst_m1 : ipush(append(new Constant(new IntConstant (-1)))); break;
2275 case Bytecodes::_iconst_0 : ipush(append(new Constant(intZero ))); break;
2276 case Bytecodes::_iconst_1 : ipush(append(new Constant(intOne ))); break;
2277 case Bytecodes::_iconst_2 : ipush(append(new Constant(new IntConstant ( 2)))); break;
2278 case Bytecodes::_iconst_3 : ipush(append(new Constant(new IntConstant ( 3)))); break;
2279 case Bytecodes::_iconst_4 : ipush(append(new Constant(new IntConstant ( 4)))); break;
2280 case Bytecodes::_iconst_5 : ipush(append(new Constant(new IntConstant ( 5)))); break;
2281 case Bytecodes::_lconst_0 : lpush(append(new Constant(new LongConstant ( 0)))); break;
2282 case Bytecodes::_lconst_1 : lpush(append(new Constant(new LongConstant ( 1)))); break;
2283 case Bytecodes::_fconst_0 : fpush(append(new Constant(new FloatConstant ( 0)))); break;
2284 case Bytecodes::_fconst_1 : fpush(append(new Constant(new FloatConstant ( 1)))); break;
2285 case Bytecodes::_fconst_2 : fpush(append(new Constant(new FloatConstant ( 2)))); break;
2286 case Bytecodes::_dconst_0 : dpush(append(new Constant(new DoubleConstant( 0)))); break;
2287 case Bytecodes::_dconst_1 : dpush(append(new Constant(new DoubleConstant( 1)))); break;
2288 case Bytecodes::_bipush : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
2289 case Bytecodes::_sipush : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
2290 case Bytecodes::_ldc : // fall through
2291 case Bytecodes::_ldc_w : // fall through
2292 case Bytecodes::_ldc2_w : load_constant(); break;
2293 case Bytecodes::_iload : load_local(intType , s.get_index()); break;
2294 case Bytecodes::_lload : load_local(longType , s.get_index()); break;
2295 case Bytecodes::_fload : load_local(floatType , s.get_index()); break;
2296 case Bytecodes::_dload : load_local(doubleType , s.get_index()); break;
2297 case Bytecodes::_aload : load_local(instanceType, s.get_index()); break;
2298 case Bytecodes::_iload_0 : load_local(intType , 0); break;
2299 case Bytecodes::_iload_1 : load_local(intType , 1); break;
2300 case Bytecodes::_iload_2 : load_local(intType , 2); break;
2301 case Bytecodes::_iload_3 : load_local(intType , 3); break;
2302 case Bytecodes::_lload_0 : load_local(longType , 0); break;
2303 case Bytecodes::_lload_1 : load_local(longType , 1); break;
2304 case Bytecodes::_lload_2 : load_local(longType , 2); break;
2305 case Bytecodes::_lload_3 : load_local(longType , 3); break;
2306 case Bytecodes::_fload_0 : load_local(floatType , 0); break;
2307 case Bytecodes::_fload_1 : load_local(floatType , 1); break;
2308 case Bytecodes::_fload_2 : load_local(floatType , 2); break;
2309 case Bytecodes::_fload_3 : load_local(floatType , 3); break;
2310 case Bytecodes::_dload_0 : load_local(doubleType, 0); break;
2311 case Bytecodes::_dload_1 : load_local(doubleType, 1); break;
2312 case Bytecodes::_dload_2 : load_local(doubleType, 2); break;
2313 case Bytecodes::_dload_3 : load_local(doubleType, 3); break;
2314 case Bytecodes::_aload_0 : load_local(objectType, 0); break;
2315 case Bytecodes::_aload_1 : load_local(objectType, 1); break;
2316 case Bytecodes::_aload_2 : load_local(objectType, 2); break;
2317 case Bytecodes::_aload_3 : load_local(objectType, 3); break;
2318 case Bytecodes::_iaload : load_indexed(T_INT ); break;
2319 case Bytecodes::_laload : load_indexed(T_LONG ); break;
2320 case Bytecodes::_faload : load_indexed(T_FLOAT ); break;
2321 case Bytecodes::_daload : load_indexed(T_DOUBLE); break;
2322 case Bytecodes::_aaload : load_indexed(T_OBJECT); break;
2323 case Bytecodes::_baload : load_indexed(T_BYTE ); break;
2324 case Bytecodes::_caload : load_indexed(T_CHAR ); break;
2325 case Bytecodes::_saload : load_indexed(T_SHORT ); break;
2326 case Bytecodes::_istore : store_local(intType , s.get_index()); break;
2327 case Bytecodes::_lstore : store_local(longType , s.get_index()); break;
2328 case Bytecodes::_fstore : store_local(floatType , s.get_index()); break;
2329 case Bytecodes::_dstore : store_local(doubleType, s.get_index()); break;
2330 case Bytecodes::_astore : store_local(objectType, s.get_index()); break;
2331 case Bytecodes::_istore_0 : store_local(intType , 0); break;
2332 case Bytecodes::_istore_1 : store_local(intType , 1); break;
2333 case Bytecodes::_istore_2 : store_local(intType , 2); break;
2334 case Bytecodes::_istore_3 : store_local(intType , 3); break;
2335 case Bytecodes::_lstore_0 : store_local(longType , 0); break;
2336 case Bytecodes::_lstore_1 : store_local(longType , 1); break;
2337 case Bytecodes::_lstore_2 : store_local(longType , 2); break;
2338 case Bytecodes::_lstore_3 : store_local(longType , 3); break;
2339 case Bytecodes::_fstore_0 : store_local(floatType , 0); break;
2340 case Bytecodes::_fstore_1 : store_local(floatType , 1); break;
2341 case Bytecodes::_fstore_2 : store_local(floatType , 2); break;
2342 case Bytecodes::_fstore_3 : store_local(floatType , 3); break;
2343 case Bytecodes::_dstore_0 : store_local(doubleType, 0); break;
2344 case Bytecodes::_dstore_1 : store_local(doubleType, 1); break;
2345 case Bytecodes::_dstore_2 : store_local(doubleType, 2); break;
2346 case Bytecodes::_dstore_3 : store_local(doubleType, 3); break;
2347 case Bytecodes::_astore_0 : store_local(objectType, 0); break;
2348 case Bytecodes::_astore_1 : store_local(objectType, 1); break;
2349 case Bytecodes::_astore_2 : store_local(objectType, 2); break;
2350 case Bytecodes::_astore_3 : store_local(objectType, 3); break;
2351 case Bytecodes::_iastore : store_indexed(T_INT ); break;
2352 case Bytecodes::_lastore : store_indexed(T_LONG ); break;
2353 case Bytecodes::_fastore : store_indexed(T_FLOAT ); break;
2354 case Bytecodes::_dastore : store_indexed(T_DOUBLE); break;
2355 case Bytecodes::_aastore : store_indexed(T_OBJECT); break;
2356 case Bytecodes::_bastore : store_indexed(T_BYTE ); break;
2357 case Bytecodes::_castore : store_indexed(T_CHAR ); break;
2358 case Bytecodes::_sastore : store_indexed(T_SHORT ); break;
2359 case Bytecodes::_pop : // fall through
2360 case Bytecodes::_pop2 : // fall through
2361 case Bytecodes::_dup : // fall through
2362 case Bytecodes::_dup_x1 : // fall through
2363 case Bytecodes::_dup_x2 : // fall through
2364 case Bytecodes::_dup2 : // fall through
2365 case Bytecodes::_dup2_x1 : // fall through
2366 case Bytecodes::_dup2_x2 : // fall through
2367 case Bytecodes::_swap : stack_op(code); break;
2368 case Bytecodes::_iadd : arithmetic_op(intType , code); break;
2369 case Bytecodes::_ladd : arithmetic_op(longType , code); break;
2370 case Bytecodes::_fadd : arithmetic_op(floatType , code); break;
2371 case Bytecodes::_dadd : arithmetic_op(doubleType, code); break;
2372 case Bytecodes::_isub : arithmetic_op(intType , code); break;
2373 case Bytecodes::_lsub : arithmetic_op(longType , code); break;
2374 case Bytecodes::_fsub : arithmetic_op(floatType , code); break;
2375 case Bytecodes::_dsub : arithmetic_op(doubleType, code); break;
2376 case Bytecodes::_imul : arithmetic_op(intType , code); break;
2377 case Bytecodes::_lmul : arithmetic_op(longType , code); break;
2378 case Bytecodes::_fmul : arithmetic_op(floatType , code); break;
2379 case Bytecodes::_dmul : arithmetic_op(doubleType, code); break;
2380 case Bytecodes::_idiv : arithmetic_op(intType , code, lock_stack()); break;
2381 case Bytecodes::_ldiv : arithmetic_op(longType , code, lock_stack()); break;
2382 case Bytecodes::_fdiv : arithmetic_op(floatType , code); break;
2383 case Bytecodes::_ddiv : arithmetic_op(doubleType, code); break;
2384 case Bytecodes::_irem : arithmetic_op(intType , code, lock_stack()); break;
2385 case Bytecodes::_lrem : arithmetic_op(longType , code, lock_stack()); break;
2386 case Bytecodes::_frem : arithmetic_op(floatType , code); break;
2387 case Bytecodes::_drem : arithmetic_op(doubleType, code); break;
2388 case Bytecodes::_ineg : negate_op(intType ); break;
2389 case Bytecodes::_lneg : negate_op(longType ); break;
2390 case Bytecodes::_fneg : negate_op(floatType ); break;
2391 case Bytecodes::_dneg : negate_op(doubleType); break;
2392 case Bytecodes::_ishl : shift_op(intType , code); break;
2393 case Bytecodes::_lshl : shift_op(longType, code); break;
2394 case Bytecodes::_ishr : shift_op(intType , code); break;
2395 case Bytecodes::_lshr : shift_op(longType, code); break;
2396 case Bytecodes::_iushr : shift_op(intType , code); break;
2397 case Bytecodes::_lushr : shift_op(longType, code); break;
2398 case Bytecodes::_iand : logic_op(intType , code); break;
2399 case Bytecodes::_land : logic_op(longType, code); break;
2400 case Bytecodes::_ior : logic_op(intType , code); break;
2401 case Bytecodes::_lor : logic_op(longType, code); break;
2402 case Bytecodes::_ixor : logic_op(intType , code); break;
2403 case Bytecodes::_lxor : logic_op(longType, code); break;
2404 case Bytecodes::_iinc : increment(); break;
2405 case Bytecodes::_i2l : convert(code, T_INT , T_LONG ); break;
2406 case Bytecodes::_i2f : convert(code, T_INT , T_FLOAT ); break;
2407 case Bytecodes::_i2d : convert(code, T_INT , T_DOUBLE); break;
2408 case Bytecodes::_l2i : convert(code, T_LONG , T_INT ); break;
2409 case Bytecodes::_l2f : convert(code, T_LONG , T_FLOAT ); break;
2410 case Bytecodes::_l2d : convert(code, T_LONG , T_DOUBLE); break;
2411 case Bytecodes::_f2i : convert(code, T_FLOAT , T_INT ); break;
2412 case Bytecodes::_f2l : convert(code, T_FLOAT , T_LONG ); break;
2413 case Bytecodes::_f2d : convert(code, T_FLOAT , T_DOUBLE); break;
2414 case Bytecodes::_d2i : convert(code, T_DOUBLE, T_INT ); break;
2415 case Bytecodes::_d2l : convert(code, T_DOUBLE, T_LONG ); break;
2416 case Bytecodes::_d2f : convert(code, T_DOUBLE, T_FLOAT ); break;
2417 case Bytecodes::_i2b : convert(code, T_INT , T_BYTE ); break;
2418 case Bytecodes::_i2c : convert(code, T_INT , T_CHAR ); break;
2419 case Bytecodes::_i2s : convert(code, T_INT , T_SHORT ); break;
2420 case Bytecodes::_lcmp : compare_op(longType , code); break;
2421 case Bytecodes::_fcmpl : compare_op(floatType , code); break;
2422 case Bytecodes::_fcmpg : compare_op(floatType , code); break;
2423 case Bytecodes::_dcmpl : compare_op(doubleType, code); break;
2424 case Bytecodes::_dcmpg : compare_op(doubleType, code); break;
2425 case Bytecodes::_ifeq : if_zero(intType , If::eql); break;
2426 case Bytecodes::_ifne : if_zero(intType , If::neq); break;
2427 case Bytecodes::_iflt : if_zero(intType , If::lss); break;
2428 case Bytecodes::_ifge : if_zero(intType , If::geq); break;
2429 case Bytecodes::_ifgt : if_zero(intType , If::gtr); break;
2430 case Bytecodes::_ifle : if_zero(intType , If::leq); break;
2431 case Bytecodes::_if_icmpeq : if_same(intType , If::eql); break;
2432 case Bytecodes::_if_icmpne : if_same(intType , If::neq); break;
2433 case Bytecodes::_if_icmplt : if_same(intType , If::lss); break;
2434 case Bytecodes::_if_icmpge : if_same(intType , If::geq); break;
2435 case Bytecodes::_if_icmpgt : if_same(intType , If::gtr); break;
2436 case Bytecodes::_if_icmple : if_same(intType , If::leq); break;
2437 case Bytecodes::_if_acmpeq : if_same(objectType, If::eql); break;
2438 case Bytecodes::_if_acmpne : if_same(objectType, If::neq); break;
2439 case Bytecodes::_goto : _goto(s.cur_bci(), s.get_dest()); break;
2440 case Bytecodes::_jsr : jsr(s.get_dest()); break;
2441 case Bytecodes::_ret : ret(s.get_index()); break;
2442 case Bytecodes::_tableswitch : table_switch(); break;
2443 case Bytecodes::_lookupswitch : lookup_switch(); break;
2444 case Bytecodes::_ireturn : method_return(ipop()); break;
2445 case Bytecodes::_lreturn : method_return(lpop()); break;
2446 case Bytecodes::_freturn : method_return(fpop()); break;
2447 case Bytecodes::_dreturn : method_return(dpop()); break;
2448 case Bytecodes::_areturn : method_return(apop()); break;
2449 case Bytecodes::_return : method_return(NULL ); break;
2450 case Bytecodes::_getstatic : // fall through
2451 case Bytecodes::_putstatic : // fall through
2452 case Bytecodes::_getfield : // fall through
2453 case Bytecodes::_putfield : access_field(code); break;
2454 case Bytecodes::_invokevirtual : // fall through
2455 case Bytecodes::_invokespecial : // fall through
2456 case Bytecodes::_invokestatic : // fall through
2457 case Bytecodes::_invokeinterface: invoke(code); break;
2458 case Bytecodes::_xxxunusedxxx : ShouldNotReachHere(); break;
2459 case Bytecodes::_new : new_instance(s.get_index_big()); break;
2460 case Bytecodes::_newarray : new_type_array(); break;
2461 case Bytecodes::_anewarray : new_object_array(); break;
2462 case Bytecodes::_arraylength : ipush(append(new ArrayLength(apop(), lock_stack()))); break;
2463 case Bytecodes::_athrow : throw_op(s.cur_bci()); break;
2464 case Bytecodes::_checkcast : check_cast(s.get_index_big()); break;
2465 case Bytecodes::_instanceof : instance_of(s.get_index_big()); break;
2466 // Note: we do not have special handling for the monitorenter bytecode if DeoptC1 && DeoptOnAsyncException
2467 case Bytecodes::_monitorenter : monitorenter(apop(), s.cur_bci()); break;
2468 case Bytecodes::_monitorexit : monitorexit (apop(), s.cur_bci()); break;
2469 case Bytecodes::_wide : ShouldNotReachHere(); break;
2470 case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
2471 case Bytecodes::_ifnull : if_null(objectType, If::eql); break;
2472 case Bytecodes::_ifnonnull : if_null(objectType, If::neq); break;
2473 case Bytecodes::_goto_w : _goto(s.cur_bci(), s.get_far_dest()); break;
2474 case Bytecodes::_jsr_w : jsr(s.get_far_dest()); break;
2475 case Bytecodes::_breakpoint : BAILOUT_("concurrent setting of breakpoint", NULL);
2476 default : ShouldNotReachHere(); break;
2477 }
2478 // save current bci to setup Goto at the end
2479 prev_bci = s.cur_bci();
2480 }
2481 CHECK_BAILOUT_(NULL);
2482 // stop processing of this block (see try_inline_full)
2483 if (_skip_block) {
2484 _skip_block = false;
2485 assert(_last && _last->as_BlockEnd(), "");
2486 return _last->as_BlockEnd();
2487 }
2488 // if there are any, check if last instruction is a BlockEnd instruction
2489 BlockEnd* end = last()->as_BlockEnd();
2490 if (end == NULL) {
2491 // all blocks must end with a BlockEnd instruction => add a Goto
2492 end = new Goto(block_at(s.cur_bci()), false);
2493 _last = _last->set_next(end, prev_bci);
2494 }
2495 assert(end == last()->as_BlockEnd(), "inconsistency");
2496
2497 // if the method terminates, we don't need the stack anymore
2498 if (end->as_Return() != NULL) {
2499 state()->clear_stack();
2500 } else if (end->as_Throw() != NULL) {
2501 // May have exception handler in caller scopes
2502 state()->truncate_stack(scope()->lock_stack_size());
2503 }
2504
2505 // connect to begin & set state
2506 // NOTE that inlining may have changed the block we are parsing
2507 block()->set_end(end);
2508 end->set_state(state());
2509 // propagate state
2510 for (int i = end->number_of_sux() - 1; i >= 0; i--) {
2511 BlockBegin* sux = end->sux_at(i);
2512 assert(sux->is_predecessor(block()), "predecessor missing");
2513 // be careful, bailout if bytecodes are strange
2514 if (!sux->try_merge(state())) BAILOUT_("block join failed", NULL);
2515 scope_data()->add_to_work_list(end->sux_at(i));
2516 }
2517
2518 scope_data()->set_stream(NULL);
2519
2520 // done
2521 return end;
2522 }
2523
2524
2525 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
2526 do {
2527 if (start_in_current_block_for_inlining && !bailed_out()) {
2528 iterate_bytecodes_for_block(0);
2529 start_in_current_block_for_inlining = false;
2530 } else {
2531 BlockBegin* b;
2532 while ((b = scope_data()->remove_from_work_list()) != NULL) {
2533 if (!b->is_set(BlockBegin::was_visited_flag)) {
2534 if (b->is_set(BlockBegin::osr_entry_flag)) {
2535 // we're about to parse the osr entry block, so make sure
2536 // we setup the OSR edge leading into this block so that
2537 // Phis get setup correctly.
2538 setup_osr_entry_block();
2539 // this is no longer the osr entry block, so clear it.
2540 b->clear(BlockBegin::osr_entry_flag);
2541 }
2542 b->set(BlockBegin::was_visited_flag);
2543 connect_to_end(b);
2544 }
2545 }
2546 }
2547 } while (!bailed_out() && !scope_data()->is_work_list_empty());
2548 }
2549
2550
2551 bool GraphBuilder::_is_initialized = false;
2552 bool GraphBuilder::_can_trap [Bytecodes::number_of_java_codes];
2553 bool GraphBuilder::_is_async[Bytecodes::number_of_java_codes];
2554
2555 void GraphBuilder::initialize() {
2556 // make sure initialization happens only once (need a
2557 // lock here, if we allow the compiler to be re-entrant)
2558 if (is_initialized()) return;
2559 _is_initialized = true;
2560
2561 // the following bytecodes are assumed to potentially
2562 // throw exceptions in compiled code - note that e.g.
2563 // monitorexit & the return bytecodes do not throw
2564 // exceptions since monitor pairing proved that they
2565 // succeed (if monitor pairing succeeded)
2566 Bytecodes::Code can_trap_list[] =
2567 { Bytecodes::_ldc
2568 , Bytecodes::_ldc_w
2569 , Bytecodes::_ldc2_w
2570 , Bytecodes::_iaload
2571 , Bytecodes::_laload
2572 , Bytecodes::_faload
2573 , Bytecodes::_daload
2574 , Bytecodes::_aaload
2575 , Bytecodes::_baload
2576 , Bytecodes::_caload
2577 , Bytecodes::_saload
2578 , Bytecodes::_iastore
2579 , Bytecodes::_lastore
2580 , Bytecodes::_fastore
2581 , Bytecodes::_dastore
2582 , Bytecodes::_aastore
2583 , Bytecodes::_bastore
2584 , Bytecodes::_castore
2585 , Bytecodes::_sastore
2586 , Bytecodes::_idiv
2587 , Bytecodes::_ldiv
2588 , Bytecodes::_irem
2589 , Bytecodes::_lrem
2590 , Bytecodes::_getstatic
2591 , Bytecodes::_putstatic
2592 , Bytecodes::_getfield
2593 , Bytecodes::_putfield
2594 , Bytecodes::_invokevirtual
2595 , Bytecodes::_invokespecial
2596 , Bytecodes::_invokestatic
2597 , Bytecodes::_invokeinterface
2598 , Bytecodes::_new
2599 , Bytecodes::_newarray
2600 , Bytecodes::_anewarray
2601 , Bytecodes::_arraylength
2602 , Bytecodes::_athrow
2603 , Bytecodes::_checkcast
2604 , Bytecodes::_instanceof
2605 , Bytecodes::_monitorenter
2606 , Bytecodes::_multianewarray
2607 };
2608
2609 // the following bytecodes are assumed to potentially
2610 // throw asynchronous exceptions in compiled code due
2611 // to safepoints (note: these entries could be merged
2612 // with the can_trap_list - however, we need to know
2613 // which ones are asynchronous for now - see also the
2614 // comment in GraphBuilder::handle_exception)
2615 Bytecodes::Code is_async_list[] =
2616 { Bytecodes::_ifeq
2617 , Bytecodes::_ifne
2618 , Bytecodes::_iflt
2619 , Bytecodes::_ifge
2620 , Bytecodes::_ifgt
2621 , Bytecodes::_ifle
2622 , Bytecodes::_if_icmpeq
2623 , Bytecodes::_if_icmpne
2624 , Bytecodes::_if_icmplt
2625 , Bytecodes::_if_icmpge
2626 , Bytecodes::_if_icmpgt
2627 , Bytecodes::_if_icmple
2628 , Bytecodes::_if_acmpeq
2629 , Bytecodes::_if_acmpne
2630 , Bytecodes::_goto
2631 , Bytecodes::_jsr
2632 , Bytecodes::_ret
2633 , Bytecodes::_tableswitch
2634 , Bytecodes::_lookupswitch
2635 , Bytecodes::_ireturn
2636 , Bytecodes::_lreturn
2637 , Bytecodes::_freturn
2638 , Bytecodes::_dreturn
2639 , Bytecodes::_areturn
2640 , Bytecodes::_return
2641 , Bytecodes::_ifnull
2642 , Bytecodes::_ifnonnull
2643 , Bytecodes::_goto_w
2644 , Bytecodes::_jsr_w
2645 };
2646
2647 // inititialize trap tables
2648 for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
2649 _can_trap[i] = false;
2650 _is_async[i] = false;
2651 }
2652 // set standard trap info
2653 for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
2654 _can_trap[can_trap_list[j]] = true;
2655 }
2656
2657 // We now deoptimize if an asynchronous exception is thrown. This
2658 // considerably cleans up corner case issues related to javac's
2659 // incorrect exception handler ranges for async exceptions and
2660 // allows us to precisely analyze the types of exceptions from
2661 // certain bytecodes.
2662 if (!(DeoptC1 && DeoptOnAsyncException)) {
2663 // set asynchronous trap info
2664 for (uint k = 0; k < ARRAY_SIZE(is_async_list); k++) {
2665 assert(!_can_trap[is_async_list[k]], "can_trap_list and is_async_list should be disjoint");
2666 _can_trap[is_async_list[k]] = true;
2667 _is_async[is_async_list[k]] = true;
2668 }
2669 }
2670 }
2671
2672
2673 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
2674 assert(entry->is_set(f), "entry/flag mismatch");
2675 // create header block
2676 BlockBegin* h = new BlockBegin(entry->bci());
2677 h->set_depth_first_number(0);
2678
2679 Value l = h;
2680 if (profile_branches()) {
2681 // Increment the invocation count on entry to the method. We
2682 // can't use profile_invocation here because append isn't setup to
2683 // work properly at this point. The instruction have to be
2684 // appended to the instruction stream by hand.
2685 Value m = new Constant(new ObjectConstant(compilation()->method()));
2686 h->set_next(m, 0);
2687 Value p = new ProfileCounter(m, methodOopDesc::interpreter_invocation_counter_offset_in_bytes(), 1);
2688 m->set_next(p, 0);
2689 l = p;
2690 }
2691
2692 BlockEnd* g = new Goto(entry, false);
2693 l->set_next(g, entry->bci());
2694 h->set_end(g);
2695 h->set(f);
2696 // setup header block end state
2697 ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
2698 assert(s->stack_is_empty(), "must have empty stack at entry point");
2699 g->set_state(s);
2700 return h;
2701 }
2702
2703
2704
2705 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
2706 BlockBegin* start = new BlockBegin(0);
2707
2708 // This code eliminates the empty start block at the beginning of
2709 // each method. Previously, each method started with the
2710 // start-block created below, and this block was followed by the
2711 // header block that was always empty. This header block is only
2712 // necesary if std_entry is also a backward branch target because
2713 // then phi functions may be necessary in the header block. It's
2714 // also necessary when profiling so that there's a single block that
2715 // can increment the interpreter_invocation_count.
2716 BlockBegin* new_header_block;
2717 if (std_entry->number_of_preds() == 0 && !profile_branches()) {
2718 new_header_block = std_entry;
2719 } else {
2720 new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
2721 }
2722
2723 // setup start block (root for the IR graph)
2724 Base* base =
2725 new Base(
2726 new_header_block,
2727 osr_entry
2728 );
2729 start->set_next(base, 0);
2730 start->set_end(base);
2731 // create & setup state for start block
2732 start->set_state(state->copy());
2733 base->set_state(state->copy());
2734
2735 if (base->std_entry()->state() == NULL) {
2736 // setup states for header blocks
2737 base->std_entry()->merge(state);
2738 }
2739
2740 assert(base->std_entry()->state() != NULL, "");
2741 return start;
2742 }
2743
2744
2745 void GraphBuilder::setup_osr_entry_block() {
2746 assert(compilation()->is_osr_compile(), "only for osrs");
2747
2748 int osr_bci = compilation()->osr_bci();
2749 ciBytecodeStream s(method());
2750 s.reset_to_bci(osr_bci);
2751 s.next();
2752 scope_data()->set_stream(&s);
2753
2754 // create a new block to be the osr setup code
2755 _osr_entry = new BlockBegin(osr_bci);
2756 _osr_entry->set(BlockBegin::osr_entry_flag);
2757 _osr_entry->set_depth_first_number(0);
2758 BlockBegin* target = bci2block()->at(osr_bci);
2759 assert(target != NULL && target->is_set(BlockBegin::osr_entry_flag), "must be there");
2760 // the osr entry has no values for locals
2761 ValueStack* state = target->state()->copy();
2762 _osr_entry->set_state(state);
2763
2764 kill_all();
2765 _block = _osr_entry;
2766 _state = _osr_entry->state()->copy();
2767 _last = _osr_entry;
2768 Value e = append(new OsrEntry());
2769 e->set_needs_null_check(false);
2770
2771 // OSR buffer is
2772 //
2773 // locals[nlocals-1..0]
2774 // monitors[number_of_locks-1..0]
2775 //
2776 // locals is a direct copy of the interpreter frame so in the osr buffer
2777 // so first slot in the local array is the last local from the interpreter
2778 // and last slot is local[0] (receiver) from the interpreter
2779 //
2780 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
2781 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
2782 // in the interpreter frame (the method lock if a sync method)
2783
2784 // Initialize monitors in the compiled activation.
2785
2786 int index;
2787 Value local;
2788
2789 // find all the locals that the interpreter thinks contain live oops
2790 const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
2791
2792 // compute the offset into the locals so that we can treat the buffer
2793 // as if the locals were still in the interpreter frame
2794 int locals_offset = BytesPerWord * (method()->max_locals() - 1);
2795 for_each_local_value(state, index, local) {
2796 int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
2797 Value get;
2798 if (local->type()->is_object_kind() && !live_oops.at(index)) {
2799 // The interpreter thinks this local is dead but the compiler
2800 // doesn't so pretend that the interpreter passed in null.
2801 get = append(new Constant(objectNull));
2802 } else {
2803 get = append(new UnsafeGetRaw(as_BasicType(local->type()), e,
2804 append(new Constant(new IntConstant(offset))),
2805 0,
2806 true));
2807 }
2808 _state->store_local(index, get);
2809 }
2810
2811 // the storage for the OSR buffer is freed manually in the LIRGenerator.
2812
2813 assert(state->caller_state() == NULL, "should be top scope");
2814 state->clear_locals();
2815 Goto* g = new Goto(target, false);
2816 g->set_state(_state->copy());
2817 append(g);
2818 _osr_entry->set_end(g);
2819 target->merge(_osr_entry->end()->state());
2820
2821 scope_data()->set_stream(NULL);
2822 }
2823
2824
2825 ValueStack* GraphBuilder::state_at_entry() {
2826 ValueStack* state = new ValueStack(scope(), method()->max_locals(), method()->max_stack());
2827
2828 // Set up locals for receiver
2829 int idx = 0;
2830 if (!method()->is_static()) {
2831 // we should always see the receiver
2832 state->store_local(idx, new Local(objectType, idx));
2833 idx = 1;
2834 }
2835
2836 // Set up locals for incoming arguments
2837 ciSignature* sig = method()->signature();
2838 for (int i = 0; i < sig->count(); i++) {
2839 ciType* type = sig->type_at(i);
2840 BasicType basic_type = type->basic_type();
2841 // don't allow T_ARRAY to propagate into locals types
2842 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2843 ValueType* vt = as_ValueType(basic_type);
2844 state->store_local(idx, new Local(vt, idx));
2845 idx += type->size();
2846 }
2847
2848 // lock synchronized method
2849 if (method()->is_synchronized()) {
2850 state->lock(scope(), NULL);
2851 }
2852
2853 return state;
2854 }
2855
2856
2857 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
2858 : _scope_data(NULL)
2859 , _exception_state(NULL)
2860 , _instruction_count(0)
2861 , _osr_entry(NULL)
2862 , _memory(new MemoryBuffer())
2863 , _compilation(compilation)
2864 , _inline_bailout_msg(NULL)
2865 {
2866 int osr_bci = compilation->osr_bci();
2867
2868 // determine entry points and bci2block mapping
2869 BlockListBuilder blm(compilation, scope, osr_bci);
2870 CHECK_BAILOUT();
2871
2872 BlockList* bci2block = blm.bci2block();
2873 BlockBegin* start_block = bci2block->at(0);
2874
2875 assert(is_initialized(), "GraphBuilder must have been initialized");
2876 push_root_scope(scope, bci2block, start_block);
2877
2878 // setup state for std entry
2879 _initial_state = state_at_entry();
2880 start_block->merge(_initial_state);
2881
2882 BlockBegin* sync_handler = NULL;
2883 if (method()->is_synchronized() || DTraceMethodProbes) {
2884 // setup an exception handler to do the unlocking and/or notification
2885 sync_handler = new BlockBegin(-1);
2886 sync_handler->set(BlockBegin::exception_entry_flag);
2887 sync_handler->set(BlockBegin::is_on_work_list_flag);
2888 sync_handler->set(BlockBegin::default_exception_handler_flag);
2889
2890 ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
2891 XHandler* h = new XHandler(desc);
2892 h->set_entry_block(sync_handler);
2893 scope_data()->xhandlers()->append(h);
2894 scope_data()->set_has_handler();
2895 }
2896
2897 // complete graph
2898 _vmap = new ValueMap();
2899 scope->compute_lock_stack_size();
2900 switch (scope->method()->intrinsic_id()) {
2901 case vmIntrinsics::_dabs : // fall through
2902 case vmIntrinsics::_dsqrt : // fall through
2903 case vmIntrinsics::_dsin : // fall through
2904 case vmIntrinsics::_dcos : // fall through
2905 case vmIntrinsics::_dtan : // fall through
2906 case vmIntrinsics::_dlog : // fall through
2907 case vmIntrinsics::_dlog10 : // fall through
2908 {
2909 // Compiles where the root method is an intrinsic need a special
2910 // compilation environment because the bytecodes for the method
2911 // shouldn't be parsed during the compilation, only the special
2912 // Intrinsic node should be emitted. If this isn't done the the
2913 // code for the inlined version will be different than the root
2914 // compiled version which could lead to monotonicity problems on
2915 // intel.
2916
2917 // Set up a stream so that appending instructions works properly.
2918 ciBytecodeStream s(scope->method());
2919 s.reset_to_bci(0);
2920 scope_data()->set_stream(&s);
2921 s.next();
2922
2923 // setup the initial block state
2924 _block = start_block;
2925 _state = start_block->state()->copy();
2926 _last = start_block;
2927 load_local(doubleType, 0);
2928
2929 // Emit the intrinsic node.
2930 bool result = try_inline_intrinsics(scope->method());
2931 if (!result) BAILOUT("failed to inline intrinsic");
2932 method_return(dpop());
2933
2934 // connect the begin and end blocks and we're all done.
2935 BlockEnd* end = last()->as_BlockEnd();
2936 block()->set_end(end);
2937 end->set_state(state());
2938 break;
2939 }
2940 default:
2941 scope_data()->add_to_work_list(start_block);
2942 iterate_all_blocks();
2943 break;
2944 }
2945 CHECK_BAILOUT();
2946
2947 if (sync_handler && sync_handler->state() != NULL) {
2948 Value lock = NULL;
2949 if (method()->is_synchronized()) {
2950 lock = method()->is_static() ? new Constant(new InstanceConstant(method()->holder()->java_mirror())) :
2951 _initial_state->local_at(0);
2952
2953 sync_handler->state()->unlock();
2954 sync_handler->state()->lock(scope, lock);
2955
2956 }
2957 fill_sync_handler(lock, sync_handler, true);
2958 }
2959
2960 _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
2961
2962 eliminate_redundant_phis(_start);
2963
2964 NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
2965 // for osr compile, bailout if some requirements are not fulfilled
2966 if (osr_bci != -1) {
2967 BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
2968 assert(osr_block->is_set(BlockBegin::was_visited_flag),"osr entry must have been visited for osr compile");
2969
2970 // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
2971 if (!osr_block->state()->stack_is_empty()) {
2972 BAILOUT("stack not empty at OSR entry point");
2973 }
2974 }
2975 #ifndef PRODUCT
2976 if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
2977 #endif
2978 }
2979
2980
2981 ValueStack* GraphBuilder::lock_stack() {
2982 // return a new ValueStack representing just the current lock stack
2983 // (for debug info at safepoints in exception throwing or handling)
2984 ValueStack* new_stack = state()->copy_locks();
2985 return new_stack;
2986 }
2987
2988
2989 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
2990 int recur_level = 0;
2991 for (IRScope* s = scope(); s != NULL; s = s->caller()) {
2992 if (s->method() == cur_callee) {
2993 ++recur_level;
2994 }
2995 }
2996 return recur_level;
2997 }
2998
2999
3000 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known) {
3001 // Clear out any existing inline bailout condition
3002 clear_inline_bailout();
3003
3004 if (callee->should_exclude()) {
3005 // callee is excluded
3006 INLINE_BAILOUT("excluded by CompilerOracle")
3007 } else if (!callee->can_be_compiled()) {
3008 // callee is not compilable (prob. has breakpoints)
3009 INLINE_BAILOUT("not compilable")
3010 } else if (callee->intrinsic_id() != vmIntrinsics::_none && try_inline_intrinsics(callee)) {
3011 // intrinsics can be native or not
3012 return true;
3013 } else if (callee->is_native()) {
3014 // non-intrinsic natives cannot be inlined
3015 INLINE_BAILOUT("non-intrinsic native")
3016 } else if (callee->is_abstract()) {
3017 INLINE_BAILOUT("abstract")
3018 } else {
3019 return try_inline_full(callee, holder_known);
3020 }
3021 }
3022
3023
3024 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
3025 if (!InlineNatives ) INLINE_BAILOUT("intrinsic method inlining disabled");
3026 if (callee->is_synchronized()) INLINE_BAILOUT("intrinsic method is synchronized");
3027 // callee seems like a good candidate
3028 // determine id
3029 bool preserves_state = false;
3030 bool cantrap = true;
3031 vmIntrinsics::ID id = callee->intrinsic_id();
3032 switch (id) {
3033 case vmIntrinsics::_arraycopy :
3034 if (!InlineArrayCopy) return false;
3035 break;
3036
3037 case vmIntrinsics::_currentTimeMillis:
3038 case vmIntrinsics::_nanoTime:
3039 preserves_state = true;
3040 cantrap = false;
3041 break;
3042
3043 case vmIntrinsics::_floatToRawIntBits :
3044 case vmIntrinsics::_intBitsToFloat :
3045 case vmIntrinsics::_doubleToRawLongBits :
3046 case vmIntrinsics::_longBitsToDouble :
3047 if (!InlineMathNatives) return false;
3048 preserves_state = true;
3049 cantrap = false;
3050 break;
3051
3052 case vmIntrinsics::_getClass :
3053 if (!InlineClassNatives) return false;
3054 preserves_state = true;
3055 break;
3056
3057 case vmIntrinsics::_currentThread :
3058 if (!InlineThreadNatives) return false;
3059 preserves_state = true;
3060 cantrap = false;
3061 break;
3062
3063 case vmIntrinsics::_dabs : // fall through
3064 case vmIntrinsics::_dsqrt : // fall through
3065 case vmIntrinsics::_dsin : // fall through
3066 case vmIntrinsics::_dcos : // fall through
3067 case vmIntrinsics::_dtan : // fall through
3068 case vmIntrinsics::_dlog : // fall through
3069 case vmIntrinsics::_dlog10 : // fall through
3070 if (!InlineMathNatives) return false;
3071 cantrap = false;
3072 preserves_state = true;
3073 break;
3074
3075 // sun/misc/AtomicLong.attemptUpdate
3076 case vmIntrinsics::_attemptUpdate :
3077 if (!VM_Version::supports_cx8()) return false;
3078 if (!InlineAtomicLong) return false;
3079 preserves_state = true;
3080 break;
3081
3082 // Use special nodes for Unsafe instructions so we can more easily
3083 // perform an address-mode optimization on the raw variants
3084 case vmIntrinsics::_getObject : return append_unsafe_get_obj(callee, T_OBJECT, false);
3085 case vmIntrinsics::_getBoolean: return append_unsafe_get_obj(callee, T_BOOLEAN, false);
3086 case vmIntrinsics::_getByte : return append_unsafe_get_obj(callee, T_BYTE, false);
3087 case vmIntrinsics::_getShort : return append_unsafe_get_obj(callee, T_SHORT, false);
3088 case vmIntrinsics::_getChar : return append_unsafe_get_obj(callee, T_CHAR, false);
3089 case vmIntrinsics::_getInt : return append_unsafe_get_obj(callee, T_INT, false);
3090 case vmIntrinsics::_getLong : return append_unsafe_get_obj(callee, T_LONG, false);
3091 case vmIntrinsics::_getFloat : return append_unsafe_get_obj(callee, T_FLOAT, false);
3092 case vmIntrinsics::_getDouble : return append_unsafe_get_obj(callee, T_DOUBLE, false);
3093
3094 case vmIntrinsics::_putObject : return append_unsafe_put_obj(callee, T_OBJECT, false);
3095 case vmIntrinsics::_putBoolean: return append_unsafe_put_obj(callee, T_BOOLEAN, false);
3096 case vmIntrinsics::_putByte : return append_unsafe_put_obj(callee, T_BYTE, false);
3097 case vmIntrinsics::_putShort : return append_unsafe_put_obj(callee, T_SHORT, false);
3098 case vmIntrinsics::_putChar : return append_unsafe_put_obj(callee, T_CHAR, false);
3099 case vmIntrinsics::_putInt : return append_unsafe_put_obj(callee, T_INT, false);
3100 case vmIntrinsics::_putLong : return append_unsafe_put_obj(callee, T_LONG, false);
3101 case vmIntrinsics::_putFloat : return append_unsafe_put_obj(callee, T_FLOAT, false);
3102 case vmIntrinsics::_putDouble : return append_unsafe_put_obj(callee, T_DOUBLE, false);
3103
3104 case vmIntrinsics::_getObjectVolatile : return append_unsafe_get_obj(callee, T_OBJECT, true);
3105 case vmIntrinsics::_getBooleanVolatile: return append_unsafe_get_obj(callee, T_BOOLEAN, true);
3106 case vmIntrinsics::_getByteVolatile : return append_unsafe_get_obj(callee, T_BYTE, true);
3107 case vmIntrinsics::_getShortVolatile : return append_unsafe_get_obj(callee, T_SHORT, true);
3108 case vmIntrinsics::_getCharVolatile : return append_unsafe_get_obj(callee, T_CHAR, true);
3109 case vmIntrinsics::_getIntVolatile : return append_unsafe_get_obj(callee, T_INT, true);
3110 case vmIntrinsics::_getLongVolatile : return append_unsafe_get_obj(callee, T_LONG, true);
3111 case vmIntrinsics::_getFloatVolatile : return append_unsafe_get_obj(callee, T_FLOAT, true);
3112 case vmIntrinsics::_getDoubleVolatile : return append_unsafe_get_obj(callee, T_DOUBLE, true);
3113
3114 case vmIntrinsics::_putObjectVolatile : return append_unsafe_put_obj(callee, T_OBJECT, true);
3115 case vmIntrinsics::_putBooleanVolatile: return append_unsafe_put_obj(callee, T_BOOLEAN, true);
3116 case vmIntrinsics::_putByteVolatile : return append_unsafe_put_obj(callee, T_BYTE, true);
3117 case vmIntrinsics::_putShortVolatile : return append_unsafe_put_obj(callee, T_SHORT, true);
3118 case vmIntrinsics::_putCharVolatile : return append_unsafe_put_obj(callee, T_CHAR, true);
3119 case vmIntrinsics::_putIntVolatile : return append_unsafe_put_obj(callee, T_INT, true);
3120 case vmIntrinsics::_putLongVolatile : return append_unsafe_put_obj(callee, T_LONG, true);
3121 case vmIntrinsics::_putFloatVolatile : return append_unsafe_put_obj(callee, T_FLOAT, true);
3122 case vmIntrinsics::_putDoubleVolatile : return append_unsafe_put_obj(callee, T_DOUBLE, true);
3123
3124 case vmIntrinsics::_getByte_raw : return append_unsafe_get_raw(callee, T_BYTE);
3125 case vmIntrinsics::_getShort_raw : return append_unsafe_get_raw(callee, T_SHORT);
3126 case vmIntrinsics::_getChar_raw : return append_unsafe_get_raw(callee, T_CHAR);
3127 case vmIntrinsics::_getInt_raw : return append_unsafe_get_raw(callee, T_INT);
3128 case vmIntrinsics::_getLong_raw : return append_unsafe_get_raw(callee, T_LONG);
3129 case vmIntrinsics::_getFloat_raw : return append_unsafe_get_raw(callee, T_FLOAT);
3130 case vmIntrinsics::_getDouble_raw : return append_unsafe_get_raw(callee, T_DOUBLE);
3131
3132 case vmIntrinsics::_putByte_raw : return append_unsafe_put_raw(callee, T_BYTE);
3133 case vmIntrinsics::_putShort_raw : return append_unsafe_put_raw(callee, T_SHORT);
3134 case vmIntrinsics::_putChar_raw : return append_unsafe_put_raw(callee, T_CHAR);
3135 case vmIntrinsics::_putInt_raw : return append_unsafe_put_raw(callee, T_INT);
3136 case vmIntrinsics::_putLong_raw : return append_unsafe_put_raw(callee, T_LONG);
3137 case vmIntrinsics::_putFloat_raw : return append_unsafe_put_raw(callee, T_FLOAT);
3138 case vmIntrinsics::_putDouble_raw : return append_unsafe_put_raw(callee, T_DOUBLE);
3139
3140 case vmIntrinsics::_prefetchRead : return append_unsafe_prefetch(callee, false, false);
3141 case vmIntrinsics::_prefetchWrite : return append_unsafe_prefetch(callee, false, true);
3142 case vmIntrinsics::_prefetchReadStatic : return append_unsafe_prefetch(callee, true, false);
3143 case vmIntrinsics::_prefetchWriteStatic : return append_unsafe_prefetch(callee, true, true);
3144
3145 case vmIntrinsics::_checkIndex :
3146 if (!InlineNIOCheckIndex) return false;
3147 preserves_state = true;
3148 break;
3149 case vmIntrinsics::_putOrderedObject : return append_unsafe_put_obj(callee, T_OBJECT, true);
3150 case vmIntrinsics::_putOrderedInt : return append_unsafe_put_obj(callee, T_INT, true);
3151 case vmIntrinsics::_putOrderedLong : return append_unsafe_put_obj(callee, T_LONG, true);
3152
3153 case vmIntrinsics::_compareAndSwapLong:
3154 if (!VM_Version::supports_cx8()) return false;
3155 // fall through
3156 case vmIntrinsics::_compareAndSwapInt:
3157 case vmIntrinsics::_compareAndSwapObject:
3158 append_unsafe_CAS(callee);
3159 return true;
3160
3161 default : return false; // do not inline
3162 }
3163 // create intrinsic node
3164 const bool has_receiver = !callee->is_static();
3165 ValueType* result_type = as_ValueType(callee->return_type());
3166
3167 Values* args = state()->pop_arguments(callee->arg_size());
3168 ValueStack* locks = lock_stack();
3169 if (profile_calls()) {
3170 // Don't profile in the special case where the root method
3171 // is the intrinsic
3172 if (callee != method()) {
3173 Value recv = NULL;
3174 if (has_receiver) {
3175 recv = args->at(0);
3176 null_check(recv);
3177 }
3178 profile_call(recv, NULL);
3179 }
3180 }
3181
3182 Intrinsic* result = new Intrinsic(result_type, id, args, has_receiver, lock_stack(),
3183 preserves_state, cantrap);
3184 // append instruction & push result
3185 Value value = append_split(result);
3186 if (result_type != voidType) push(result_type, value);
3187
3188 #ifndef PRODUCT
3189 // printing
3190 if (PrintInlining) {
3191 print_inline_result(callee, true);
3192 }
3193 #endif
3194
3195 // done
3196 return true;
3197 }
3198
3199
3200 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
3201 // Introduce a new callee continuation point - all Ret instructions
3202 // will be replaced with Gotos to this point.
3203 BlockBegin* cont = block_at(next_bci());
3204 assert(cont != NULL, "continuation must exist (BlockListBuilder starts a new block after a jsr");
3205
3206 // Note: can not assign state to continuation yet, as we have to
3207 // pick up the state from the Ret instructions.
3208
3209 // Push callee scope
3210 push_scope_for_jsr(cont, jsr_dest_bci);
3211
3212 // Temporarily set up bytecode stream so we can append instructions
3213 // (only using the bci of this stream)
3214 scope_data()->set_stream(scope_data()->parent()->stream());
3215
3216 BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
3217 assert(jsr_start_block != NULL, "jsr start block must exist");
3218 assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
3219 Goto* goto_sub = new Goto(jsr_start_block, false);
3220 goto_sub->set_state(state());
3221 // Must copy state to avoid wrong sharing when parsing bytecodes
3222 assert(jsr_start_block->state() == NULL, "should have fresh jsr starting block");
3223 jsr_start_block->set_state(state()->copy());
3224 append(goto_sub);
3225 _block->set_end(goto_sub);
3226 _last = _block = jsr_start_block;
3227
3228 // Clear out bytecode stream
3229 scope_data()->set_stream(NULL);
3230
3231 scope_data()->add_to_work_list(jsr_start_block);
3232
3233 // Ready to resume parsing in subroutine
3234 iterate_all_blocks();
3235
3236 // If we bailed out during parsing, return immediately (this is bad news)
3237 CHECK_BAILOUT_(false);
3238
3239 // Detect whether the continuation can actually be reached. If not,
3240 // it has not had state set by the join() operations in
3241 // iterate_bytecodes_for_block()/ret() and we should not touch the
3242 // iteration state. The calling activation of
3243 // iterate_bytecodes_for_block will then complete normally.
3244 if (cont->state() != NULL) {
3245 if (!cont->is_set(BlockBegin::was_visited_flag)) {
3246 // add continuation to work list instead of parsing it immediately
3247 scope_data()->parent()->add_to_work_list(cont);
3248 }
3249 }
3250
3251 assert(jsr_continuation() == cont, "continuation must not have changed");
3252 assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
3253 jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
3254 "continuation can only be visited in case of backward branches");
3255 assert(_last && _last->as_BlockEnd(), "block must have end");
3256
3257 // continuation is in work list, so end iteration of current block
3258 _skip_block = true;
3259 pop_scope_for_jsr();
3260
3261 return true;
3262 }
3263
3264
3265 // Inline the entry of a synchronized method as a monitor enter and
3266 // register the exception handler which releases the monitor if an
3267 // exception is thrown within the callee. Note that the monitor enter
3268 // cannot throw an exception itself, because the receiver is
3269 // guaranteed to be non-null by the explicit null check at the
3270 // beginning of inlining.
3271 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
3272 assert(lock != NULL && sync_handler != NULL, "lock or handler missing");
3273
3274 set_exception_state(state()->copy());
3275 monitorenter(lock, SynchronizationEntryBCI);
3276 assert(_last->as_MonitorEnter() != NULL, "monitor enter expected");
3277 _last->set_needs_null_check(false);
3278
3279 sync_handler->set(BlockBegin::exception_entry_flag);
3280 sync_handler->set(BlockBegin::is_on_work_list_flag);
3281
3282 ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
3283 XHandler* h = new XHandler(desc);
3284 h->set_entry_block(sync_handler);
3285 scope_data()->xhandlers()->append(h);
3286 scope_data()->set_has_handler();
3287 }
3288
3289
3290 // If an exception is thrown and not handled within an inlined
3291 // synchronized method, the monitor must be released before the
3292 // exception is rethrown in the outer scope. Generate the appropriate
3293 // instructions here.
3294 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
3295 BlockBegin* orig_block = _block;
3296 ValueStack* orig_state = _state;
3297 Instruction* orig_last = _last;
3298 _last = _block = sync_handler;
3299 _state = sync_handler->state()->copy();
3300
3301 assert(sync_handler != NULL, "handler missing");
3302 assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
3303
3304 assert(lock != NULL || default_handler, "lock or handler missing");
3305
3306 XHandler* h = scope_data()->xhandlers()->remove_last();
3307 assert(h->entry_block() == sync_handler, "corrupt list of handlers");
3308
3309 block()->set(BlockBegin::was_visited_flag);
3310 Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
3311 assert(exception->is_pinned(), "must be");
3312
3313 int bci = SynchronizationEntryBCI;
3314 if (lock) {
3315 assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
3316 if (lock->bci() == -99) {
3317 lock = append_with_bci(lock, -1);
3318 }
3319
3320 // exit the monitor in the context of the synchronized method
3321 monitorexit(lock, SynchronizationEntryBCI);
3322
3323 // exit the context of the synchronized method
3324 if (!default_handler) {
3325 pop_scope();
3326 _state = _state->copy();
3327 bci = _state->scope()->caller_bci();
3328 _state = _state->pop_scope()->copy();
3329 }
3330 }
3331
3332 // perform the throw as if at the the call site
3333 apush(exception);
3334
3335 set_exception_state(state()->copy());
3336 throw_op(bci);
3337
3338 BlockEnd* end = last()->as_BlockEnd();
3339 block()->set_end(end);
3340 end->set_state(state());
3341
3342 _block = orig_block;
3343 _state = orig_state;
3344 _last = orig_last;
3345 }
3346
3347
3348 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known) {
3349 assert(!callee->is_native(), "callee must not be native");
3350
3351 // first perform tests of things it's not possible to inline
3352 if (callee->has_exception_handlers() &&
3353 !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
3354 if (callee->is_synchronized() &&
3355 !InlineSynchronizedMethods ) INLINE_BAILOUT("callee is synchronized");
3356 if (!callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
3357 if (!callee->has_balanced_monitors()) INLINE_BAILOUT("callee's monitors do not match");
3358
3359 // Proper inlining of methods with jsrs requires a little more work.
3360 if (callee->has_jsrs() ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
3361
3362 // now perform tests that are based on flag settings
3363 if (inline_level() > MaxInlineLevel ) INLINE_BAILOUT("too-deep inlining");
3364 if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("too-deep recursive inlining");
3365 if (callee->code_size() > max_inline_size() ) INLINE_BAILOUT("callee is too large");
3366
3367 // don't inline throwable methods unless the inlining tree is rooted in a throwable class
3368 if (callee->name() == ciSymbol::object_initializer_name() &&
3369 callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3370 // Throwable constructor call
3371 IRScope* top = scope();
3372 while (top->caller() != NULL) {
3373 top = top->caller();
3374 }
3375 if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3376 INLINE_BAILOUT("don't inline Throwable constructors");
3377 }
3378 }
3379
3380 // When SSE2 is used on intel, then no special handling is needed
3381 // for strictfp because the enum-constant is fixed at compile time,
3382 // the check for UseSSE2 is needed here
3383 if (strict_fp_requires_explicit_rounding && UseSSE < 2 && method()->is_strict() != callee->is_strict()) {
3384 INLINE_BAILOUT("caller and callee have different strict fp requirements");
3385 }
3386
3387 if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
3388 INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
3389 }
3390
3391 #ifndef PRODUCT
3392 // printing
3393 if (PrintInlining) {
3394 print_inline_result(callee, true);
3395 }
3396 #endif
3397
3398 // NOTE: Bailouts from this point on, which occur at the
3399 // GraphBuilder level, do not cause bailout just of the inlining but
3400 // in fact of the entire compilation.
3401
3402 BlockBegin* orig_block = block();
3403
3404 const int args_base = state()->stack_size() - callee->arg_size();
3405 assert(args_base >= 0, "stack underflow during inlining");
3406
3407 // Insert null check if necessary
3408 Value recv = NULL;
3409 if (code() != Bytecodes::_invokestatic) {
3410 // note: null check must happen even if first instruction of callee does
3411 // an implicit null check since the callee is in a different scope
3412 // and we must make sure exception handling does the right thing
3413 assert(!callee->is_static(), "callee must not be static");
3414 assert(callee->arg_size() > 0, "must have at least a receiver");
3415 recv = state()->stack_at(args_base);
3416 null_check(recv);
3417 }
3418
3419 if (profile_inlined_calls()) {
3420 profile_call(recv, holder_known ? callee->holder() : NULL);
3421 }
3422
3423 profile_invocation(callee);
3424
3425 // Introduce a new callee continuation point - if the callee has
3426 // more than one return instruction or the return does not allow
3427 // fall-through of control flow, all return instructions of the
3428 // callee will need to be replaced by Goto's pointing to this
3429 // continuation point.
3430 BlockBegin* cont = block_at(next_bci());
3431 bool continuation_existed = true;
3432 if (cont == NULL) {
3433 cont = new BlockBegin(next_bci());
3434 // low number so that continuation gets parsed as early as possible
3435 cont->set_depth_first_number(0);
3436 #ifndef PRODUCT
3437 if (PrintInitialBlockList) {
3438 tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
3439 cont->block_id(), cont->bci(), bci());
3440 }
3441 #endif
3442 continuation_existed = false;
3443 }
3444 // Record number of predecessors of continuation block before
3445 // inlining, to detect if inlined method has edges to its
3446 // continuation after inlining.
3447 int continuation_preds = cont->number_of_preds();
3448
3449 // Push callee scope
3450 push_scope(callee, cont);
3451
3452 // the BlockListBuilder for the callee could have bailed out
3453 CHECK_BAILOUT_(false);
3454
3455 // Temporarily set up bytecode stream so we can append instructions
3456 // (only using the bci of this stream)
3457 scope_data()->set_stream(scope_data()->parent()->stream());
3458
3459 // Pass parameters into callee state: add assignments
3460 // note: this will also ensure that all arguments are computed before being passed
3461 ValueStack* callee_state = state();
3462 ValueStack* caller_state = scope()->caller_state();
3463 { int i = args_base;
3464 while (i < caller_state->stack_size()) {
3465 const int par_no = i - args_base;
3466 Value arg = caller_state->stack_at_inc(i);
3467 // NOTE: take base() of arg->type() to avoid problems storing
3468 // constants
3469 store_local(callee_state, arg, arg->type()->base(), par_no);
3470 }
3471 }
3472
3473 // Remove args from stack.
3474 // Note that we preserve locals state in case we can use it later
3475 // (see use of pop_scope() below)
3476 caller_state->truncate_stack(args_base);
3477 callee_state->truncate_stack(args_base);
3478
3479 // Setup state that is used at returns form the inlined method.
3480 // This is essentially the state of the continuation block,
3481 // but without the return value on stack, if any, this will
3482 // be pushed at the return instruction (see method_return).
3483 scope_data()->set_continuation_state(caller_state->copy());
3484
3485 // Compute lock stack size for callee scope now that args have been passed
3486 scope()->compute_lock_stack_size();
3487
3488 Value lock;
3489 BlockBegin* sync_handler;
3490
3491 // Inline the locking of the receiver if the callee is synchronized
3492 if (callee->is_synchronized()) {
3493 lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
3494 : state()->local_at(0);
3495 sync_handler = new BlockBegin(-1);
3496 inline_sync_entry(lock, sync_handler);
3497
3498 // recompute the lock stack size
3499 scope()->compute_lock_stack_size();
3500 }
3501
3502
3503 BlockBegin* callee_start_block = block_at(0);
3504 if (callee_start_block != NULL) {
3505 assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
3506 Goto* goto_callee = new Goto(callee_start_block, false);
3507 goto_callee->set_state(state());
3508 // The state for this goto is in the scope of the callee, so use
3509 // the entry bci for the callee instead of the call site bci.
3510 append_with_bci(goto_callee, 0);
3511 _block->set_end(goto_callee);
3512 callee_start_block->merge(callee_state);
3513
3514 _last = _block = callee_start_block;
3515
3516 scope_data()->add_to_work_list(callee_start_block);
3517 }
3518
3519 // Clear out bytecode stream
3520 scope_data()->set_stream(NULL);
3521
3522 // Ready to resume parsing in callee (either in the same block we
3523 // were in before or in the callee's start block)
3524 iterate_all_blocks(callee_start_block == NULL);
3525
3526 // If we bailed out during parsing, return immediately (this is bad news)
3527 if (bailed_out()) return false;
3528
3529 // iterate_all_blocks theoretically traverses in random order; in
3530 // practice, we have only traversed the continuation if we are
3531 // inlining into a subroutine
3532 assert(continuation_existed ||
3533 !continuation()->is_set(BlockBegin::was_visited_flag),
3534 "continuation should not have been parsed yet if we created it");
3535
3536 // If we bailed out during parsing, return immediately (this is bad news)
3537 CHECK_BAILOUT_(false);
3538
3539 // At this point we are almost ready to return and resume parsing of
3540 // the caller back in the GraphBuilder. The only thing we want to do
3541 // first is an optimization: during parsing of the callee we
3542 // generated at least one Goto to the continuation block. If we
3543 // generated exactly one, and if the inlined method spanned exactly
3544 // one block (and we didn't have to Goto its entry), then we snip
3545 // off the Goto to the continuation, allowing control to fall
3546 // through back into the caller block and effectively performing
3547 // block merging. This allows load elimination and CSE to take place
3548 // across multiple callee scopes if they are relatively simple, and
3549 // is currently essential to making inlining profitable.
3550 if ( num_returns() == 1
3551 && block() == orig_block
3552 && block() == inline_cleanup_block()) {
3553 _last = inline_cleanup_return_prev();
3554 _state = inline_cleanup_state()->pop_scope();
3555 } else if (continuation_preds == cont->number_of_preds()) {
3556 // Inlining caused that the instructions after the invoke in the
3557 // caller are not reachable any more. So skip filling this block
3558 // with instructions!
3559 assert (cont == continuation(), "");
3560 assert(_last && _last->as_BlockEnd(), "");
3561 _skip_block = true;
3562 } else {
3563 // Resume parsing in continuation block unless it was already parsed.
3564 // Note that if we don't change _last here, iteration in
3565 // iterate_bytecodes_for_block will stop when we return.
3566 if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
3567 // add continuation to work list instead of parsing it immediately
3568 assert(_last && _last->as_BlockEnd(), "");
3569 scope_data()->parent()->add_to_work_list(continuation());
3570 _skip_block = true;
3571 }
3572 }
3573
3574 // Fill the exception handler for synchronized methods with instructions
3575 if (callee->is_synchronized() && sync_handler->state() != NULL) {
3576 fill_sync_handler(lock, sync_handler);
3577 } else {
3578 pop_scope();
3579 }
3580
3581 compilation()->notice_inlined_method(callee);
3582
3583 return true;
3584 }
3585
3586
3587 void GraphBuilder::inline_bailout(const char* msg) {
3588 assert(msg != NULL, "inline bailout msg must exist");
3589 _inline_bailout_msg = msg;
3590 }
3591
3592
3593 void GraphBuilder::clear_inline_bailout() {
3594 _inline_bailout_msg = NULL;
3595 }
3596
3597
3598 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
3599 ScopeData* data = new ScopeData(NULL);
3600 data->set_scope(scope);
3601 data->set_bci2block(bci2block);
3602 _scope_data = data;
3603 _block = start;
3604 }
3605
3606
3607 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
3608 IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
3609 scope()->add_callee(callee_scope);
3610
3611 BlockListBuilder blb(compilation(), callee_scope, -1);
3612 CHECK_BAILOUT();
3613
3614 if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
3615 // this scope can be inlined directly into the caller so remove
3616 // the block at bci 0.
3617 blb.bci2block()->at_put(0, NULL);
3618 }
3619
3620 callee_scope->set_caller_state(state());
3621 set_state(state()->push_scope(callee_scope));
3622
3623 ScopeData* data = new ScopeData(scope_data());
3624 data->set_scope(callee_scope);
3625 data->set_bci2block(blb.bci2block());
3626 data->set_continuation(continuation);
3627 _scope_data = data;
3628 }
3629
3630
3631 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
3632 ScopeData* data = new ScopeData(scope_data());
3633 data->set_parsing_jsr();
3634 data->set_jsr_entry_bci(jsr_dest_bci);
3635 data->set_jsr_return_address_local(-1);
3636 // Must clone bci2block list as we will be mutating it in order to
3637 // properly clone all blocks in jsr region as well as exception
3638 // handlers containing rets
3639 BlockList* new_bci2block = new BlockList(bci2block()->length());
3640 new_bci2block->push_all(bci2block());
3641 data->set_bci2block(new_bci2block);
3642 data->set_scope(scope());
3643 data->setup_jsr_xhandlers();
3644 data->set_continuation(continuation());
3645 if (continuation() != NULL) {
3646 assert(continuation_state() != NULL, "");
3647 data->set_continuation_state(continuation_state()->copy());
3648 }
3649 data->set_jsr_continuation(jsr_continuation);
3650 _scope_data = data;
3651 }
3652
3653
3654 void GraphBuilder::pop_scope() {
3655 int number_of_locks = scope()->number_of_locks();
3656 _scope_data = scope_data()->parent();
3657 // accumulate minimum number of monitor slots to be reserved
3658 scope()->set_min_number_of_locks(number_of_locks);
3659 }
3660
3661
3662 void GraphBuilder::pop_scope_for_jsr() {
3663 _scope_data = scope_data()->parent();
3664 }
3665
3666 bool GraphBuilder::append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile) {
3667 if (InlineUnsafeOps) {
3668 Values* args = state()->pop_arguments(callee->arg_size());
3669 null_check(args->at(0));
3670 Instruction* offset = args->at(2);
3671 #ifndef _LP64
3672 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3673 #endif
3674 Instruction* op = append(new UnsafeGetObject(t, args->at(1), offset, is_volatile));
3675 push(op->type(), op);
3676 compilation()->set_has_unsafe_access(true);
3677 }
3678 return InlineUnsafeOps;
3679 }
3680
3681
3682 bool GraphBuilder::append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile) {
3683 if (InlineUnsafeOps) {
3684 Values* args = state()->pop_arguments(callee->arg_size());
3685 null_check(args->at(0));
3686 Instruction* offset = args->at(2);
3687 #ifndef _LP64
3688 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3689 #endif
3690 Instruction* op = append(new UnsafePutObject(t, args->at(1), offset, args->at(3), is_volatile));
3691 compilation()->set_has_unsafe_access(true);
3692 kill_all();
3693 }
3694 return InlineUnsafeOps;
3695 }
3696
3697
3698 bool GraphBuilder::append_unsafe_get_raw(ciMethod* callee, BasicType t) {
3699 if (InlineUnsafeOps) {
3700 Values* args = state()->pop_arguments(callee->arg_size());
3701 null_check(args->at(0));
3702 Instruction* op = append(new UnsafeGetRaw(t, args->at(1), false));
3703 push(op->type(), op);
3704 compilation()->set_has_unsafe_access(true);
3705 }
3706 return InlineUnsafeOps;
3707 }
3708
3709
3710 bool GraphBuilder::append_unsafe_put_raw(ciMethod* callee, BasicType t) {
3711 if (InlineUnsafeOps) {
3712 Values* args = state()->pop_arguments(callee->arg_size());
3713 null_check(args->at(0));
3714 Instruction* op = append(new UnsafePutRaw(t, args->at(1), args->at(2)));
3715 compilation()->set_has_unsafe_access(true);
3716 }
3717 return InlineUnsafeOps;
3718 }
3719
3720
3721 bool GraphBuilder::append_unsafe_prefetch(ciMethod* callee, bool is_static, bool is_store) {
3722 if (InlineUnsafeOps) {
3723 Values* args = state()->pop_arguments(callee->arg_size());
3724 int obj_arg_index = 1; // Assume non-static case
3725 if (is_static) {
3726 obj_arg_index = 0;
3727 } else {
3728 null_check(args->at(0));
3729 }
3730 Instruction* offset = args->at(obj_arg_index + 1);
3731 #ifndef _LP64
3732 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3733 #endif
3734 Instruction* op = is_store ? append(new UnsafePrefetchWrite(args->at(obj_arg_index), offset))
3735 : append(new UnsafePrefetchRead (args->at(obj_arg_index), offset));
3736 compilation()->set_has_unsafe_access(true);
3737 }
3738 return InlineUnsafeOps;
3739 }
3740
3741
3742 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
3743 ValueType* result_type = as_ValueType(callee->return_type());
3744 assert(result_type->is_int(), "int result");
3745 Values* args = state()->pop_arguments(callee->arg_size());
3746
3747 // Pop off some args to speically handle, then push back
3748 Value newval = args->pop();
3749 Value cmpval = args->pop();
3750 Value offset = args->pop();
3751 Value src = args->pop();
3752 Value unsafe_obj = args->pop();
3753
3754 // Separately handle the unsafe arg. It is not needed for code
3755 // generation, but must be null checked
3756 null_check(unsafe_obj);
3757
3758 #ifndef _LP64
3759 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3760 #endif
3761
3762 args->push(src);
3763 args->push(offset);
3764 args->push(cmpval);
3765 args->push(newval);
3766
3767 // An unsafe CAS can alias with other field accesses, but we don't
3768 // know which ones so mark the state as no preserved. This will
3769 // cause CSE to invalidate memory across it.
3770 bool preserves_state = false;
3771 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, lock_stack(), preserves_state);
3772 append_split(result);
3773 push(result_type, result);
3774 compilation()->set_has_unsafe_access(true);
3775 }
3776
3777
3778 #ifndef PRODUCT
3779 void GraphBuilder::print_inline_result(ciMethod* callee, bool res) {
3780 const char sync_char = callee->is_synchronized() ? 's' : ' ';
3781 const char exception_char = callee->has_exception_handlers() ? '!' : ' ';
3782 const char monitors_char = callee->has_monitor_bytecodes() ? 'm' : ' ';
3783 tty->print(" %c%c%c ", sync_char, exception_char, monitors_char);
3784 for (int i = 0; i < scope()->level(); i++) tty->print(" ");
3785 if (res) {
3786 tty->print(" ");
3787 } else {
3788 tty->print("- ");
3789 }
3790 tty->print("@ %d ", bci());
3791 callee->print_short_name();
3792 tty->print(" (%d bytes)", callee->code_size());
3793 if (_inline_bailout_msg) {
3794 tty->print(" %s", _inline_bailout_msg);
3795 }
3796 tty->cr();
3797
3798 if (res && CIPrintMethodCodes) {
3799 callee->print_codes();
3800 }
3801 }
3802
3803
3804 void GraphBuilder::print_stats() {
3805 vmap()->print();
3806 }
3807 #endif // PRODUCT
3808
3809
3810 void GraphBuilder::profile_call(Value recv, ciKlass* known_holder) {
3811 append(new ProfileCall(method(), bci(), recv, known_holder));
3812 }
3813
3814
3815 void GraphBuilder::profile_invocation(ciMethod* callee) {
3816 if (profile_calls()) {
3817 // increment the interpreter_invocation_count for the inlinee
3818 Value m = append(new Constant(new ObjectConstant(callee)));
3819 append(new ProfileCounter(m, methodOopDesc::interpreter_invocation_counter_offset_in_bytes(), 1));
3820 }
3821 }
3822
3823
3824 void GraphBuilder::profile_bci(int bci) {
3825 if (profile_branches()) {
3826 ciMethodData* md = method()->method_data();
3827 if (md == NULL) {
3828 BAILOUT("out of memory building methodDataOop");
3829 }
3830 ciProfileData* data = md->bci_to_data(bci);
3831 assert(data != NULL && data->is_JumpData(), "need JumpData for goto");
3832 Value mdo = append(new Constant(new ObjectConstant(md)));
3833 append(new ProfileCounter(mdo, md->byte_offset_of_slot(data, JumpData::taken_offset()), 1));
3834 }
3835 }