comparison src/share/vm/c1/c1_LIR.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children dc7f315e41f7
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 class BlockBegin;
26 class BlockList;
27 class LIR_Assembler;
28 class CodeEmitInfo;
29 class CodeStub;
30 class CodeStubList;
31 class ArrayCopyStub;
32 class LIR_Op;
33 class ciType;
34 class ValueType;
35 class LIR_OpVisitState;
36 class FpuStackSim;
37
38 //---------------------------------------------------------------------
39 // LIR Operands
40 // LIR_OprDesc
41 // LIR_OprPtr
42 // LIR_Const
43 // LIR_Address
44 //---------------------------------------------------------------------
45 class LIR_OprDesc;
46 class LIR_OprPtr;
47 class LIR_Const;
48 class LIR_Address;
49 class LIR_OprVisitor;
50
51
52 typedef LIR_OprDesc* LIR_Opr;
53 typedef int RegNr;
54
55 define_array(LIR_OprArray, LIR_Opr)
56 define_stack(LIR_OprList, LIR_OprArray)
57
58 define_array(LIR_OprRefArray, LIR_Opr*)
59 define_stack(LIR_OprRefList, LIR_OprRefArray)
60
61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
63
64 define_array(LIR_OpArray, LIR_Op*)
65 define_stack(LIR_OpList, LIR_OpArray)
66
67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
68 class LIR_OprPtr: public CompilationResourceObj {
69 public:
70 bool is_oop_pointer() const { return (type() == T_OBJECT); }
71 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
72
73 virtual LIR_Const* as_constant() { return NULL; }
74 virtual LIR_Address* as_address() { return NULL; }
75 virtual BasicType type() const = 0;
76 virtual void print_value_on(outputStream* out) const = 0;
77 };
78
79
80
81 // LIR constants
82 class LIR_Const: public LIR_OprPtr {
83 private:
84 JavaValue _value;
85
86 void type_check(BasicType t) const { assert(type() == t, "type check"); }
87 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); }
88
89 public:
90 LIR_Const(jint i) { _value.set_type(T_INT); _value.set_jint(i); }
91 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); }
92 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); }
93 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); }
94 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); }
95 LIR_Const(void* p) {
96 #ifdef _LP64
97 assert(sizeof(jlong) >= sizeof(p), "too small");;
98 _value.set_type(T_LONG); _value.set_jlong((jlong)p);
99 #else
100 assert(sizeof(jint) >= sizeof(p), "too small");;
101 _value.set_type(T_INT); _value.set_jint((jint)p);
102 #endif
103 }
104
105 virtual BasicType type() const { return _value.get_type(); }
106 virtual LIR_Const* as_constant() { return this; }
107
108 jint as_jint() const { type_check(T_INT ); return _value.get_jint(); }
109 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); }
110 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); }
111 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); }
112 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); }
113 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); }
114 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); }
115
116 #ifdef _LP64
117 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); }
118 #else
119 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); }
120 #endif
121
122
123 jint as_jint_bits() const { type_check(T_FLOAT, T_INT); return _value.get_jint(); }
124 jint as_jint_lo_bits() const {
125 if (type() == T_DOUBLE) {
126 return low(jlong_cast(_value.get_jdouble()));
127 } else {
128 return as_jint_lo();
129 }
130 }
131 jint as_jint_hi_bits() const {
132 if (type() == T_DOUBLE) {
133 return high(jlong_cast(_value.get_jdouble()));
134 } else {
135 return as_jint_hi();
136 }
137 }
138
139 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
140
141
142 bool is_zero_float() {
143 jfloat f = as_jfloat();
144 jfloat ok = 0.0f;
145 return jint_cast(f) == jint_cast(ok);
146 }
147
148 bool is_one_float() {
149 jfloat f = as_jfloat();
150 return !g_isnan(f) && g_isfinite(f) && f == 1.0;
151 }
152
153 bool is_zero_double() {
154 jdouble d = as_jdouble();
155 jdouble ok = 0.0;
156 return jlong_cast(d) == jlong_cast(ok);
157 }
158
159 bool is_one_double() {
160 jdouble d = as_jdouble();
161 return !g_isnan(d) && g_isfinite(d) && d == 1.0;
162 }
163 };
164
165
166 //---------------------LIR Operand descriptor------------------------------------
167 //
168 // The class LIR_OprDesc represents a LIR instruction operand;
169 // it can be a register (ALU/FPU), stack location or a constant;
170 // Constants and addresses are represented as resource area allocated
171 // structures (see above).
172 // Registers and stack locations are inlined into the this pointer
173 // (see value function).
174
175 class LIR_OprDesc: public CompilationResourceObj {
176 public:
177 // value structure:
178 // data opr-type opr-kind
179 // +--------------+-------+-------+
180 // [max...........|7 6 5 4|3 2 1 0]
181 // ^
182 // is_pointer bit
183 //
184 // lowest bit cleared, means it is a structure pointer
185 // we need 4 bits to represent types
186
187 private:
188 friend class LIR_OprFact;
189
190 // Conversion
191 intptr_t value() const { return (intptr_t) this; }
192
193 bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
194 return (value() & mask) == masked_value;
195 }
196
197 enum OprKind {
198 pointer_value = 0
199 , stack_value = 1
200 , cpu_register = 3
201 , fpu_register = 5
202 , illegal_value = 7
203 };
204
205 enum OprBits {
206 pointer_bits = 1
207 , kind_bits = 3
208 , type_bits = 4
209 , size_bits = 2
210 , destroys_bits = 1
211 , virtual_bits = 1
212 , is_xmm_bits = 1
213 , last_use_bits = 1
214 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation
215 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
216 is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
217 , data_bits = BitsPerInt - non_data_bits
218 , reg_bits = data_bits / 2 // for two registers in one value encoding
219 };
220
221 enum OprShift {
222 kind_shift = 0
223 , type_shift = kind_shift + kind_bits
224 , size_shift = type_shift + type_bits
225 , destroys_shift = size_shift + size_bits
226 , last_use_shift = destroys_shift + destroys_bits
227 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
228 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
229 , is_xmm_shift = virtual_shift + virtual_bits
230 , data_shift = is_xmm_shift + is_xmm_bits
231 , reg1_shift = data_shift
232 , reg2_shift = data_shift + reg_bits
233
234 };
235
236 enum OprSize {
237 single_size = 0 << size_shift
238 , double_size = 1 << size_shift
239 };
240
241 enum OprMask {
242 kind_mask = right_n_bits(kind_bits)
243 , type_mask = right_n_bits(type_bits) << type_shift
244 , size_mask = right_n_bits(size_bits) << size_shift
245 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift
246 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
247 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift
248 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift
249 , pointer_mask = right_n_bits(pointer_bits)
250 , lower_reg_mask = right_n_bits(reg_bits)
251 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
252 };
253
254 uintptr_t data() const { return value() >> data_shift; }
255 int lo_reg_half() const { return data() & lower_reg_mask; }
256 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; }
257 OprKind kind_field() const { return (OprKind)(value() & kind_mask); }
258 OprSize size_field() const { return (OprSize)(value() & size_mask); }
259
260 static char type_char(BasicType t);
261
262 public:
263 enum {
264 vreg_base = ConcreteRegisterImpl::number_of_registers,
265 vreg_max = (1 << data_bits) - 1
266 };
267
268 static inline LIR_Opr illegalOpr();
269
270 enum OprType {
271 unknown_type = 0 << type_shift // means: not set (catch uninitialized types)
272 , int_type = 1 << type_shift
273 , long_type = 2 << type_shift
274 , object_type = 3 << type_shift
275 , pointer_type = 4 << type_shift
276 , float_type = 5 << type_shift
277 , double_type = 6 << type_shift
278 };
279 friend OprType as_OprType(BasicType t);
280 friend BasicType as_BasicType(OprType t);
281
282 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
283 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
284
285 static OprSize size_for(BasicType t) {
286 switch (t) {
287 case T_LONG:
288 case T_DOUBLE:
289 return double_size;
290 break;
291
292 case T_FLOAT:
293 case T_BOOLEAN:
294 case T_CHAR:
295 case T_BYTE:
296 case T_SHORT:
297 case T_INT:
298 case T_OBJECT:
299 case T_ARRAY:
300 return single_size;
301 break;
302
303 default:
304 ShouldNotReachHere();
305 }
306 }
307
308
309 void validate_type() const PRODUCT_RETURN;
310
311 BasicType type() const {
312 if (is_pointer()) {
313 return pointer()->type();
314 }
315 return as_BasicType(type_field());
316 }
317
318
319 ValueType* value_type() const { return as_ValueType(type()); }
320
321 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); }
322
323 bool is_equal(LIR_Opr opr) const { return this == opr; }
324 // checks whether types are same
325 bool is_same_type(LIR_Opr opr) const {
326 assert(type_field() != unknown_type &&
327 opr->type_field() != unknown_type, "shouldn't see unknown_type");
328 return type_field() == opr->type_field();
329 }
330 bool is_same_register(LIR_Opr opr) {
331 return (is_register() && opr->is_register() &&
332 kind_field() == opr->kind_field() &&
333 (value() & no_type_mask) == (opr->value() & no_type_mask));
334 }
335
336 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); }
337 bool is_illegal() const { return kind_field() == illegal_value; }
338 bool is_valid() const { return kind_field() != illegal_value; }
339
340 bool is_register() const { return is_cpu_register() || is_fpu_register(); }
341 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); }
342
343 bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; }
344 bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; }
345
346 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
347 bool is_oop() const;
348
349 // semantic for fpu- and xmm-registers:
350 // * is_float and is_double return true for xmm_registers
351 // (so is_single_fpu and is_single_xmm are true)
352 // * So you must always check for is_???_xmm prior to is_???_fpu to
353 // distinguish between fpu- and xmm-registers
354
355 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); }
356 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); }
357 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); }
358
359 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); }
360 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
361 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); }
362 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); }
363 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); }
364
365 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); }
366 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
367 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); }
368 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); }
369 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); }
370
371 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); }
372 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
373 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
374
375 // fast accessor functions for special bits that do not work for pointers
376 // (in this functions, the check for is_pointer() is omitted)
377 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
378 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
379 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); }
380 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
381 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); }
382
383 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
384 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
385 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
386 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
387
388
389 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
390 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
391 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); }
392 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
393 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
394 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); }
395 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
396 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
397 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); }
398 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
399 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
400 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); }
401
402 LIR_OprPtr* pointer() const { assert(is_pointer(), "type check"); return (LIR_OprPtr*)this; }
403 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); }
404 LIR_Address* as_address_ptr() const { return pointer()->as_address(); }
405
406 Register as_register() const;
407 Register as_register_lo() const;
408 Register as_register_hi() const;
409
410 Register as_pointer_register() {
411 #ifdef _LP64
412 if (is_double_cpu()) {
413 assert(as_register_lo() == as_register_hi(), "should be a single register");
414 return as_register_lo();
415 }
416 #endif
417 return as_register();
418 }
419
420 #ifdef IA32
421 XMMRegister as_xmm_float_reg() const;
422 XMMRegister as_xmm_double_reg() const;
423 // for compatibility with RInfo
424 int fpu () const { return lo_reg_half(); }
425 #endif
426
427 #ifdef SPARC
428 FloatRegister as_float_reg () const;
429 FloatRegister as_double_reg () const;
430 #endif
431
432 jint as_jint() const { return as_constant_ptr()->as_jint(); }
433 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); }
434 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); }
435 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
436 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); }
437
438 void print() const PRODUCT_RETURN;
439 void print(outputStream* out) const PRODUCT_RETURN;
440 };
441
442
443 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
444 switch (type) {
445 case T_INT: return LIR_OprDesc::int_type;
446 case T_LONG: return LIR_OprDesc::long_type;
447 case T_FLOAT: return LIR_OprDesc::float_type;
448 case T_DOUBLE: return LIR_OprDesc::double_type;
449 case T_OBJECT:
450 case T_ARRAY: return LIR_OprDesc::object_type;
451 case T_ILLEGAL: // fall through
452 default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
453 }
454 }
455
456 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
457 switch (t) {
458 case LIR_OprDesc::int_type: return T_INT;
459 case LIR_OprDesc::long_type: return T_LONG;
460 case LIR_OprDesc::float_type: return T_FLOAT;
461 case LIR_OprDesc::double_type: return T_DOUBLE;
462 case LIR_OprDesc::object_type: return T_OBJECT;
463 case LIR_OprDesc::unknown_type: // fall through
464 default: ShouldNotReachHere(); return T_ILLEGAL;
465 }
466 }
467
468
469 // LIR_Address
470 class LIR_Address: public LIR_OprPtr {
471 friend class LIR_OpVisitState;
472
473 public:
474 // NOTE: currently these must be the log2 of the scale factor (and
475 // must also be equivalent to the ScaleFactor enum in
476 // assembler_i486.hpp)
477 enum Scale {
478 times_1 = 0,
479 times_2 = 1,
480 times_4 = 2,
481 times_8 = 3
482 };
483
484 private:
485 LIR_Opr _base;
486 LIR_Opr _index;
487 Scale _scale;
488 intx _disp;
489 BasicType _type;
490
491 public:
492 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
493 _base(base)
494 , _index(index)
495 , _scale(times_1)
496 , _type(type)
497 , _disp(0) { verify(); }
498
499 LIR_Address(LIR_Opr base, int disp, BasicType type):
500 _base(base)
501 , _index(LIR_OprDesc::illegalOpr())
502 , _scale(times_1)
503 , _type(type)
504 , _disp(disp) { verify(); }
505
506 #ifdef IA32
507 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, int disp, BasicType type):
508 _base(base)
509 , _index(index)
510 , _scale(scale)
511 , _type(type)
512 , _disp(disp) { verify(); }
513 #endif
514
515 LIR_Opr base() const { return _base; }
516 LIR_Opr index() const { return _index; }
517 Scale scale() const { return _scale; }
518 intx disp() const { return _disp; }
519
520 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
521
522 virtual LIR_Address* as_address() { return this; }
523 virtual BasicType type() const { return _type; }
524 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
525
526 void verify() const PRODUCT_RETURN;
527
528 static Scale scale(BasicType type);
529 };
530
531
532 // operand factory
533 class LIR_OprFact: public AllStatic {
534 public:
535
536 static LIR_Opr illegalOpr;
537
538 static LIR_Opr single_cpu(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::int_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
539 static LIR_Opr single_cpu_oop(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
540 static LIR_Opr double_cpu(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::long_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
541
542 static LIR_Opr single_fpu(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::float_type | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size); }
543
544 #ifdef SPARC
545 static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
546 #endif
547 #ifdef IA32
548 static LIR_Opr double_fpu(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) | (reg << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
549 static LIR_Opr single_xmm(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::float_type | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size | LIR_OprDesc::is_xmm_mask); }
550 static LIR_Opr double_xmm(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) | (reg << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size | LIR_OprDesc::is_xmm_mask); }
551 #endif
552
553
554 static LIR_Opr virtual_register(int index, BasicType type) {
555 LIR_Opr res;
556 switch (type) {
557 case T_OBJECT: // fall through
558 case T_ARRAY: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break;
559 case T_INT: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::int_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break;
560 case T_LONG: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::long_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size | LIR_OprDesc::virtual_mask); break;
561 case T_FLOAT: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::float_type | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break;
562 case T_DOUBLE: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size | LIR_OprDesc::virtual_mask); break;
563
564 default: ShouldNotReachHere(); res = illegalOpr;
565 }
566
567 #ifdef ASSERT
568 res->validate_type();
569 assert(res->vreg_number() == index, "conversion check");
570 assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
571 assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
572
573 // old-style calculation; check if old and new method are equal
574 LIR_OprDesc::OprType t = as_OprType(type);
575 LIR_Opr old_res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | t |
576 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
577 LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
578 assert(res == old_res, "old and new method not equal");
579 #endif
580
581 return res;
582 }
583
584 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
585 // the index is platform independent; a double stack useing indeces 2 and 3 has always
586 // index 2.
587 static LIR_Opr stack(int index, BasicType type) {
588 LIR_Opr res;
589 switch (type) {
590 case T_OBJECT: // fall through
591 case T_ARRAY: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::object_type | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break;
592 case T_INT: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::int_type | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break;
593 case T_LONG: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::long_type | LIR_OprDesc::stack_value | LIR_OprDesc::double_size); break;
594 case T_FLOAT: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::float_type | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break;
595 case T_DOUBLE: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::double_type | LIR_OprDesc::stack_value | LIR_OprDesc::double_size); break;
596
597 default: ShouldNotReachHere(); res = illegalOpr;
598 }
599
600 #ifdef ASSERT
601 assert(index >= 0, "index must be positive");
602 assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
603
604 LIR_Opr old_res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::stack_value | as_OprType(type) | LIR_OprDesc::size_for(type));
605 assert(res == old_res, "old and new method not equal");
606 #endif
607
608 return res;
609 }
610
611 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); }
612 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); }
613 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); }
614 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); }
615 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); }
616 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; }
617 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); }
618 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); }
619 static LIR_Opr illegal() { return (LIR_Opr)-1; }
620
621 static LIR_Opr value_type(ValueType* type);
622 static LIR_Opr dummy_value_type(ValueType* type);
623 };
624
625
626 //-------------------------------------------------------------------------------
627 // LIR Instructions
628 //-------------------------------------------------------------------------------
629 //
630 // Note:
631 // - every instruction has a result operand
632 // - every instruction has an CodeEmitInfo operand (can be revisited later)
633 // - every instruction has a LIR_OpCode operand
634 // - LIR_OpN, means an instruction that has N input operands
635 //
636 // class hierarchy:
637 //
638 class LIR_Op;
639 class LIR_Op0;
640 class LIR_OpLabel;
641 class LIR_Op1;
642 class LIR_OpBranch;
643 class LIR_OpConvert;
644 class LIR_OpAllocObj;
645 class LIR_OpRoundFP;
646 class LIR_Op2;
647 class LIR_OpDelay;
648 class LIR_Op3;
649 class LIR_OpAllocArray;
650 class LIR_OpCall;
651 class LIR_OpJavaCall;
652 class LIR_OpRTCall;
653 class LIR_OpArrayCopy;
654 class LIR_OpLock;
655 class LIR_OpTypeCheck;
656 class LIR_OpCompareAndSwap;
657 class LIR_OpProfileCall;
658
659
660 // LIR operation codes
661 enum LIR_Code {
662 lir_none
663 , begin_op0
664 , lir_word_align
665 , lir_label
666 , lir_nop
667 , lir_backwardbranch_target
668 , lir_std_entry
669 , lir_osr_entry
670 , lir_build_frame
671 , lir_fpop_raw
672 , lir_24bit_FPU
673 , lir_reset_FPU
674 , lir_breakpoint
675 , lir_rtcall
676 , lir_membar
677 , lir_membar_acquire
678 , lir_membar_release
679 , lir_get_thread
680 , end_op0
681 , begin_op1
682 , lir_fxch
683 , lir_fld
684 , lir_ffree
685 , lir_push
686 , lir_pop
687 , lir_null_check
688 , lir_return
689 , lir_leal
690 , lir_neg
691 , lir_branch
692 , lir_cond_float_branch
693 , lir_move
694 , lir_prefetchr
695 , lir_prefetchw
696 , lir_convert
697 , lir_alloc_object
698 , lir_monaddr
699 , lir_roundfp
700 , lir_safepoint
701 , end_op1
702 , begin_op2
703 , lir_cmp
704 , lir_cmp_l2i
705 , lir_ucmp_fd2i
706 , lir_cmp_fd2i
707 , lir_cmove
708 , lir_add
709 , lir_sub
710 , lir_mul
711 , lir_mul_strictfp
712 , lir_div
713 , lir_div_strictfp
714 , lir_rem
715 , lir_sqrt
716 , lir_abs
717 , lir_sin
718 , lir_cos
719 , lir_tan
720 , lir_log
721 , lir_log10
722 , lir_logic_and
723 , lir_logic_or
724 , lir_logic_xor
725 , lir_shl
726 , lir_shr
727 , lir_ushr
728 , lir_alloc_array
729 , lir_throw
730 , lir_unwind
731 , lir_compare_to
732 , end_op2
733 , begin_op3
734 , lir_idiv
735 , lir_irem
736 , end_op3
737 , begin_opJavaCall
738 , lir_static_call
739 , lir_optvirtual_call
740 , lir_icvirtual_call
741 , lir_virtual_call
742 , end_opJavaCall
743 , begin_opArrayCopy
744 , lir_arraycopy
745 , end_opArrayCopy
746 , begin_opLock
747 , lir_lock
748 , lir_unlock
749 , end_opLock
750 , begin_delay_slot
751 , lir_delay_slot
752 , end_delay_slot
753 , begin_opTypeCheck
754 , lir_instanceof
755 , lir_checkcast
756 , lir_store_check
757 , end_opTypeCheck
758 , begin_opCompareAndSwap
759 , lir_cas_long
760 , lir_cas_obj
761 , lir_cas_int
762 , end_opCompareAndSwap
763 , begin_opMDOProfile
764 , lir_profile_call
765 , end_opMDOProfile
766 };
767
768
769 enum LIR_Condition {
770 lir_cond_equal
771 , lir_cond_notEqual
772 , lir_cond_less
773 , lir_cond_lessEqual
774 , lir_cond_greaterEqual
775 , lir_cond_greater
776 , lir_cond_belowEqual
777 , lir_cond_aboveEqual
778 , lir_cond_always
779 , lir_cond_unknown = -1
780 };
781
782
783 enum LIR_PatchCode {
784 lir_patch_none,
785 lir_patch_low,
786 lir_patch_high,
787 lir_patch_normal
788 };
789
790
791 enum LIR_MoveKind {
792 lir_move_normal,
793 lir_move_volatile,
794 lir_move_unaligned,
795 lir_move_max_flag
796 };
797
798
799 // --------------------------------------------------
800 // LIR_Op
801 // --------------------------------------------------
802 class LIR_Op: public CompilationResourceObj {
803 friend class LIR_OpVisitState;
804
805 #ifdef ASSERT
806 private:
807 const char * _file;
808 int _line;
809 #endif
810
811 protected:
812 LIR_Opr _result;
813 unsigned short _code;
814 unsigned short _flags;
815 CodeEmitInfo* _info;
816 int _id; // value id for register allocation
817 int _fpu_pop_count;
818 Instruction* _source; // for debugging
819
820 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
821
822 protected:
823 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; }
824
825 public:
826 LIR_Op()
827 : _result(LIR_OprFact::illegalOpr)
828 , _code(lir_none)
829 , _flags(0)
830 , _info(NULL)
831 #ifdef ASSERT
832 , _file(NULL)
833 , _line(0)
834 #endif
835 , _fpu_pop_count(0)
836 , _source(NULL)
837 , _id(-1) {}
838
839 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
840 : _result(result)
841 , _code(code)
842 , _flags(0)
843 , _info(info)
844 #ifdef ASSERT
845 , _file(NULL)
846 , _line(0)
847 #endif
848 , _fpu_pop_count(0)
849 , _source(NULL)
850 , _id(-1) {}
851
852 CodeEmitInfo* info() const { return _info; }
853 LIR_Code code() const { return (LIR_Code)_code; }
854 LIR_Opr result_opr() const { return _result; }
855 void set_result_opr(LIR_Opr opr) { _result = opr; }
856
857 #ifdef ASSERT
858 void set_file_and_line(const char * file, int line) {
859 _file = file;
860 _line = line;
861 }
862 #endif
863
864 virtual const char * name() const PRODUCT_RETURN0;
865
866 int id() const { return _id; }
867 void set_id(int id) { _id = id; }
868
869 // FPU stack simulation helpers -- only used on Intel
870 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
871 int fpu_pop_count() const { return _fpu_pop_count; }
872 bool pop_fpu_stack() { return _fpu_pop_count > 0; }
873
874 Instruction* source() const { return _source; }
875 void set_source(Instruction* ins) { _source = ins; }
876
877 virtual void emit_code(LIR_Assembler* masm) = 0;
878 virtual void print_instr(outputStream* out) const = 0;
879 virtual void print_on(outputStream* st) const PRODUCT_RETURN;
880
881 virtual LIR_OpCall* as_OpCall() { return NULL; }
882 virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
883 virtual LIR_OpLabel* as_OpLabel() { return NULL; }
884 virtual LIR_OpDelay* as_OpDelay() { return NULL; }
885 virtual LIR_OpLock* as_OpLock() { return NULL; }
886 virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
887 virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
888 virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
889 virtual LIR_OpBranch* as_OpBranch() { return NULL; }
890 virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
891 virtual LIR_OpConvert* as_OpConvert() { return NULL; }
892 virtual LIR_Op0* as_Op0() { return NULL; }
893 virtual LIR_Op1* as_Op1() { return NULL; }
894 virtual LIR_Op2* as_Op2() { return NULL; }
895 virtual LIR_Op3* as_Op3() { return NULL; }
896 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
897 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
898 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
899 virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
900
901 virtual void verify() const {}
902 };
903
904 // for calls
905 class LIR_OpCall: public LIR_Op {
906 friend class LIR_OpVisitState;
907
908 protected:
909 address _addr;
910 LIR_OprList* _arguments;
911 protected:
912 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
913 LIR_OprList* arguments, CodeEmitInfo* info = NULL)
914 : LIR_Op(code, result, info)
915 , _arguments(arguments)
916 , _addr(addr) {}
917
918 public:
919 address addr() const { return _addr; }
920 const LIR_OprList* arguments() const { return _arguments; }
921 virtual LIR_OpCall* as_OpCall() { return this; }
922 };
923
924
925 // --------------------------------------------------
926 // LIR_OpJavaCall
927 // --------------------------------------------------
928 class LIR_OpJavaCall: public LIR_OpCall {
929 friend class LIR_OpVisitState;
930
931 private:
932 ciMethod* _method;
933 LIR_Opr _receiver;
934
935 public:
936 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
937 LIR_Opr receiver, LIR_Opr result,
938 address addr, LIR_OprList* arguments,
939 CodeEmitInfo* info)
940 : LIR_OpCall(code, addr, result, arguments, info)
941 , _receiver(receiver)
942 , _method(method) { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
943
944 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
945 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
946 LIR_OprList* arguments, CodeEmitInfo* info)
947 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
948 , _receiver(receiver)
949 , _method(method) { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
950
951 LIR_Opr receiver() const { return _receiver; }
952 ciMethod* method() const { return _method; }
953
954 intptr_t vtable_offset() const {
955 assert(_code == lir_virtual_call, "only have vtable for real vcall");
956 return (intptr_t) addr();
957 }
958
959 virtual void emit_code(LIR_Assembler* masm);
960 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
961 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
962 };
963
964 // --------------------------------------------------
965 // LIR_OpLabel
966 // --------------------------------------------------
967 // Location where a branch can continue
968 class LIR_OpLabel: public LIR_Op {
969 friend class LIR_OpVisitState;
970
971 private:
972 Label* _label;
973 public:
974 LIR_OpLabel(Label* lbl)
975 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
976 , _label(lbl) {}
977 Label* label() const { return _label; }
978
979 virtual void emit_code(LIR_Assembler* masm);
980 virtual LIR_OpLabel* as_OpLabel() { return this; }
981 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
982 };
983
984 // LIR_OpArrayCopy
985 class LIR_OpArrayCopy: public LIR_Op {
986 friend class LIR_OpVisitState;
987
988 private:
989 ArrayCopyStub* _stub;
990 LIR_Opr _src;
991 LIR_Opr _src_pos;
992 LIR_Opr _dst;
993 LIR_Opr _dst_pos;
994 LIR_Opr _length;
995 LIR_Opr _tmp;
996 ciArrayKlass* _expected_type;
997 int _flags;
998
999 public:
1000 enum Flags {
1001 src_null_check = 1 << 0,
1002 dst_null_check = 1 << 1,
1003 src_pos_positive_check = 1 << 2,
1004 dst_pos_positive_check = 1 << 3,
1005 length_positive_check = 1 << 4,
1006 src_range_check = 1 << 5,
1007 dst_range_check = 1 << 6,
1008 type_check = 1 << 7,
1009 all_flags = (1 << 8) - 1
1010 };
1011
1012 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1013 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1014
1015 LIR_Opr src() const { return _src; }
1016 LIR_Opr src_pos() const { return _src_pos; }
1017 LIR_Opr dst() const { return _dst; }
1018 LIR_Opr dst_pos() const { return _dst_pos; }
1019 LIR_Opr length() const { return _length; }
1020 LIR_Opr tmp() const { return _tmp; }
1021 int flags() const { return _flags; }
1022 ciArrayKlass* expected_type() const { return _expected_type; }
1023 ArrayCopyStub* stub() const { return _stub; }
1024
1025 virtual void emit_code(LIR_Assembler* masm);
1026 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1027 void print_instr(outputStream* out) const PRODUCT_RETURN;
1028 };
1029
1030
1031 // --------------------------------------------------
1032 // LIR_Op0
1033 // --------------------------------------------------
1034 class LIR_Op0: public LIR_Op {
1035 friend class LIR_OpVisitState;
1036
1037 public:
1038 LIR_Op0(LIR_Code code)
1039 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1040 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1041 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1042
1043 virtual void emit_code(LIR_Assembler* masm);
1044 virtual LIR_Op0* as_Op0() { return this; }
1045 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1046 };
1047
1048
1049 // --------------------------------------------------
1050 // LIR_Op1
1051 // --------------------------------------------------
1052
1053 class LIR_Op1: public LIR_Op {
1054 friend class LIR_OpVisitState;
1055
1056 protected:
1057 LIR_Opr _opr; // input operand
1058 BasicType _type; // Operand types
1059 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1060
1061 static void print_patch_code(outputStream* out, LIR_PatchCode code);
1062
1063 void set_kind(LIR_MoveKind kind) {
1064 assert(code() == lir_move, "must be");
1065 _flags = kind;
1066 }
1067
1068 public:
1069 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1070 : LIR_Op(code, result, info)
1071 , _opr(opr)
1072 , _patch(patch)
1073 , _type(type) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1074
1075 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1076 : LIR_Op(code, result, info)
1077 , _opr(opr)
1078 , _patch(patch)
1079 , _type(type) {
1080 assert(code == lir_move, "must be");
1081 set_kind(kind);
1082 }
1083
1084 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1085 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1086 , _opr(opr)
1087 , _patch(lir_patch_none)
1088 , _type(T_ILLEGAL) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1089
1090 LIR_Opr in_opr() const { return _opr; }
1091 LIR_PatchCode patch_code() const { return _patch; }
1092 BasicType type() const { return _type; }
1093
1094 LIR_MoveKind move_kind() const {
1095 assert(code() == lir_move, "must be");
1096 return (LIR_MoveKind)_flags;
1097 }
1098
1099 virtual void emit_code(LIR_Assembler* masm);
1100 virtual LIR_Op1* as_Op1() { return this; }
1101 virtual const char * name() const PRODUCT_RETURN0;
1102
1103 void set_in_opr(LIR_Opr opr) { _opr = opr; }
1104
1105 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1106 virtual void verify() const;
1107 };
1108
1109
1110 // for runtime calls
1111 class LIR_OpRTCall: public LIR_OpCall {
1112 friend class LIR_OpVisitState;
1113
1114 private:
1115 LIR_Opr _tmp;
1116 public:
1117 LIR_OpRTCall(address addr, LIR_Opr tmp,
1118 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1119 : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1120 , _tmp(tmp) {}
1121
1122 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1123 virtual void emit_code(LIR_Assembler* masm);
1124 virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1125
1126 LIR_Opr tmp() const { return _tmp; }
1127
1128 virtual void verify() const;
1129 };
1130
1131
1132 class LIR_OpBranch: public LIR_Op {
1133 friend class LIR_OpVisitState;
1134
1135 private:
1136 LIR_Condition _cond;
1137 BasicType _type;
1138 Label* _label;
1139 BlockBegin* _block; // if this is a branch to a block, this is the block
1140 BlockBegin* _ublock; // if this is a float-branch, this is the unorderd block
1141 CodeStub* _stub; // if this is a branch to a stub, this is the stub
1142
1143 public:
1144 LIR_OpBranch(LIR_Condition cond, Label* lbl)
1145 : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1146 , _cond(cond)
1147 , _label(lbl)
1148 , _block(NULL)
1149 , _ublock(NULL)
1150 , _stub(NULL) { }
1151
1152 LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1153 LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1154
1155 // for unordered comparisons
1156 LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1157
1158 LIR_Condition cond() const { return _cond; }
1159 BasicType type() const { return _type; }
1160 Label* label() const { return _label; }
1161 BlockBegin* block() const { return _block; }
1162 BlockBegin* ublock() const { return _ublock; }
1163 CodeStub* stub() const { return _stub; }
1164
1165 void change_block(BlockBegin* b);
1166 void change_ublock(BlockBegin* b);
1167 void negate_cond();
1168
1169 virtual void emit_code(LIR_Assembler* masm);
1170 virtual LIR_OpBranch* as_OpBranch() { return this; }
1171 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1172 };
1173
1174
1175 class ConversionStub;
1176
1177 class LIR_OpConvert: public LIR_Op1 {
1178 friend class LIR_OpVisitState;
1179
1180 private:
1181 Bytecodes::Code _bytecode;
1182 ConversionStub* _stub;
1183
1184 public:
1185 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1186 : LIR_Op1(lir_convert, opr, result)
1187 , _stub(stub)
1188 , _bytecode(code) {}
1189
1190 Bytecodes::Code bytecode() const { return _bytecode; }
1191 ConversionStub* stub() const { return _stub; }
1192
1193 virtual void emit_code(LIR_Assembler* masm);
1194 virtual LIR_OpConvert* as_OpConvert() { return this; }
1195 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1196
1197 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1198 };
1199
1200
1201 // LIR_OpAllocObj
1202 class LIR_OpAllocObj : public LIR_Op1 {
1203 friend class LIR_OpVisitState;
1204
1205 private:
1206 LIR_Opr _tmp1;
1207 LIR_Opr _tmp2;
1208 LIR_Opr _tmp3;
1209 LIR_Opr _tmp4;
1210 int _hdr_size;
1211 int _obj_size;
1212 CodeStub* _stub;
1213 bool _init_check;
1214
1215 public:
1216 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1217 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1218 int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1219 : LIR_Op1(lir_alloc_object, klass, result)
1220 , _tmp1(t1)
1221 , _tmp2(t2)
1222 , _tmp3(t3)
1223 , _tmp4(t4)
1224 , _hdr_size(hdr_size)
1225 , _obj_size(obj_size)
1226 , _init_check(init_check)
1227 , _stub(stub) { }
1228
1229 LIR_Opr klass() const { return in_opr(); }
1230 LIR_Opr obj() const { return result_opr(); }
1231 LIR_Opr tmp1() const { return _tmp1; }
1232 LIR_Opr tmp2() const { return _tmp2; }
1233 LIR_Opr tmp3() const { return _tmp3; }
1234 LIR_Opr tmp4() const { return _tmp4; }
1235 int header_size() const { return _hdr_size; }
1236 int object_size() const { return _obj_size; }
1237 bool init_check() const { return _init_check; }
1238 CodeStub* stub() const { return _stub; }
1239
1240 virtual void emit_code(LIR_Assembler* masm);
1241 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1242 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1243 };
1244
1245
1246 // LIR_OpRoundFP
1247 class LIR_OpRoundFP : public LIR_Op1 {
1248 friend class LIR_OpVisitState;
1249
1250 private:
1251 LIR_Opr _tmp;
1252
1253 public:
1254 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1255 : LIR_Op1(lir_roundfp, reg, result)
1256 , _tmp(stack_loc_temp) {}
1257
1258 LIR_Opr tmp() const { return _tmp; }
1259 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; }
1260 void print_instr(outputStream* out) const PRODUCT_RETURN;
1261 };
1262
1263 // LIR_OpTypeCheck
1264 class LIR_OpTypeCheck: public LIR_Op {
1265 friend class LIR_OpVisitState;
1266
1267 private:
1268 LIR_Opr _object;
1269 LIR_Opr _array;
1270 ciKlass* _klass;
1271 LIR_Opr _tmp1;
1272 LIR_Opr _tmp2;
1273 LIR_Opr _tmp3;
1274 bool _fast_check;
1275 CodeEmitInfo* _info_for_patch;
1276 CodeEmitInfo* _info_for_exception;
1277 CodeStub* _stub;
1278 // Helpers for Tier1UpdateMethodData
1279 ciMethod* _profiled_method;
1280 int _profiled_bci;
1281
1282 public:
1283 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1284 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1285 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1286 ciMethod* profiled_method, int profiled_bci);
1287 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1288 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception,
1289 ciMethod* profiled_method, int profiled_bci);
1290
1291 LIR_Opr object() const { return _object; }
1292 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; }
1293 LIR_Opr tmp1() const { return _tmp1; }
1294 LIR_Opr tmp2() const { return _tmp2; }
1295 LIR_Opr tmp3() const { return _tmp3; }
1296 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; }
1297 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; }
1298 CodeEmitInfo* info_for_patch() const { return _info_for_patch; }
1299 CodeEmitInfo* info_for_exception() const { return _info_for_exception; }
1300 CodeStub* stub() const { return _stub; }
1301
1302 // methodDataOop profiling
1303 ciMethod* profiled_method() { return _profiled_method; }
1304 int profiled_bci() { return _profiled_bci; }
1305
1306 virtual void emit_code(LIR_Assembler* masm);
1307 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1308 void print_instr(outputStream* out) const PRODUCT_RETURN;
1309 };
1310
1311 // LIR_Op2
1312 class LIR_Op2: public LIR_Op {
1313 friend class LIR_OpVisitState;
1314
1315 int _fpu_stack_size; // for sin/cos implementation on Intel
1316
1317 protected:
1318 LIR_Opr _opr1;
1319 LIR_Opr _opr2;
1320 BasicType _type;
1321 LIR_Opr _tmp;
1322 LIR_Condition _condition;
1323
1324 void verify() const;
1325
1326 public:
1327 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1328 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1329 , _opr1(opr1)
1330 , _opr2(opr2)
1331 , _type(T_ILLEGAL)
1332 , _condition(condition)
1333 , _fpu_stack_size(0)
1334 , _tmp(LIR_OprFact::illegalOpr) {
1335 assert(code == lir_cmp, "code check");
1336 }
1337
1338 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
1339 : LIR_Op(code, result, NULL)
1340 , _opr1(opr1)
1341 , _opr2(opr2)
1342 , _type(T_ILLEGAL)
1343 , _condition(condition)
1344 , _fpu_stack_size(0)
1345 , _tmp(LIR_OprFact::illegalOpr) {
1346 assert(code == lir_cmove, "code check");
1347 }
1348
1349 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1350 CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1351 : LIR_Op(code, result, info)
1352 , _opr1(opr1)
1353 , _opr2(opr2)
1354 , _type(type)
1355 , _condition(lir_cond_unknown)
1356 , _fpu_stack_size(0)
1357 , _tmp(LIR_OprFact::illegalOpr) {
1358 assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1359 }
1360
1361 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
1362 : LIR_Op(code, result, NULL)
1363 , _opr1(opr1)
1364 , _opr2(opr2)
1365 , _type(T_ILLEGAL)
1366 , _condition(lir_cond_unknown)
1367 , _fpu_stack_size(0)
1368 , _tmp(tmp) {
1369 assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1370 }
1371
1372 LIR_Opr in_opr1() const { return _opr1; }
1373 LIR_Opr in_opr2() const { return _opr2; }
1374 BasicType type() const { return _type; }
1375 LIR_Opr tmp_opr() const { return _tmp; }
1376 LIR_Condition condition() const {
1377 assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
1378 }
1379
1380 void set_fpu_stack_size(int size) { _fpu_stack_size = size; }
1381 int fpu_stack_size() const { return _fpu_stack_size; }
1382
1383 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
1384 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
1385
1386 virtual void emit_code(LIR_Assembler* masm);
1387 virtual LIR_Op2* as_Op2() { return this; }
1388 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1389 };
1390
1391 class LIR_OpAllocArray : public LIR_Op {
1392 friend class LIR_OpVisitState;
1393
1394 private:
1395 LIR_Opr _klass;
1396 LIR_Opr _len;
1397 LIR_Opr _tmp1;
1398 LIR_Opr _tmp2;
1399 LIR_Opr _tmp3;
1400 LIR_Opr _tmp4;
1401 BasicType _type;
1402 CodeStub* _stub;
1403
1404 public:
1405 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1406 : LIR_Op(lir_alloc_array, result, NULL)
1407 , _klass(klass)
1408 , _len(len)
1409 , _tmp1(t1)
1410 , _tmp2(t2)
1411 , _tmp3(t3)
1412 , _tmp4(t4)
1413 , _type(type)
1414 , _stub(stub) {}
1415
1416 LIR_Opr klass() const { return _klass; }
1417 LIR_Opr len() const { return _len; }
1418 LIR_Opr obj() const { return result_opr(); }
1419 LIR_Opr tmp1() const { return _tmp1; }
1420 LIR_Opr tmp2() const { return _tmp2; }
1421 LIR_Opr tmp3() const { return _tmp3; }
1422 LIR_Opr tmp4() const { return _tmp4; }
1423 BasicType type() const { return _type; }
1424 CodeStub* stub() const { return _stub; }
1425
1426 virtual void emit_code(LIR_Assembler* masm);
1427 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1428 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1429 };
1430
1431
1432 class LIR_Op3: public LIR_Op {
1433 friend class LIR_OpVisitState;
1434
1435 private:
1436 LIR_Opr _opr1;
1437 LIR_Opr _opr2;
1438 LIR_Opr _opr3;
1439 public:
1440 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1441 : LIR_Op(code, result, info)
1442 , _opr1(opr1)
1443 , _opr2(opr2)
1444 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1445 LIR_Opr in_opr1() const { return _opr1; }
1446 LIR_Opr in_opr2() const { return _opr2; }
1447 LIR_Opr in_opr3() const { return _opr3; }
1448
1449 virtual void emit_code(LIR_Assembler* masm);
1450 virtual LIR_Op3* as_Op3() { return this; }
1451 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1452 };
1453
1454
1455 //--------------------------------
1456 class LabelObj: public CompilationResourceObj {
1457 private:
1458 Label _label;
1459 public:
1460 LabelObj() {}
1461 Label* label() { return &_label; }
1462 };
1463
1464
1465 class LIR_OpLock: public LIR_Op {
1466 friend class LIR_OpVisitState;
1467
1468 private:
1469 LIR_Opr _hdr;
1470 LIR_Opr _obj;
1471 LIR_Opr _lock;
1472 LIR_Opr _scratch;
1473 CodeStub* _stub;
1474 public:
1475 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1476 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1477 , _hdr(hdr)
1478 , _obj(obj)
1479 , _lock(lock)
1480 , _scratch(scratch)
1481 , _stub(stub) {}
1482
1483 LIR_Opr hdr_opr() const { return _hdr; }
1484 LIR_Opr obj_opr() const { return _obj; }
1485 LIR_Opr lock_opr() const { return _lock; }
1486 LIR_Opr scratch_opr() const { return _scratch; }
1487 CodeStub* stub() const { return _stub; }
1488
1489 virtual void emit_code(LIR_Assembler* masm);
1490 virtual LIR_OpLock* as_OpLock() { return this; }
1491 void print_instr(outputStream* out) const PRODUCT_RETURN;
1492 };
1493
1494
1495 class LIR_OpDelay: public LIR_Op {
1496 friend class LIR_OpVisitState;
1497
1498 private:
1499 LIR_Op* _op;
1500
1501 public:
1502 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1503 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1504 _op(op) {
1505 assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1506 }
1507 virtual void emit_code(LIR_Assembler* masm);
1508 virtual LIR_OpDelay* as_OpDelay() { return this; }
1509 void print_instr(outputStream* out) const PRODUCT_RETURN;
1510 LIR_Op* delay_op() const { return _op; }
1511 CodeEmitInfo* call_info() const { return info(); }
1512 };
1513
1514
1515 // LIR_OpCompareAndSwap
1516 class LIR_OpCompareAndSwap : public LIR_Op {
1517 friend class LIR_OpVisitState;
1518
1519 private:
1520 LIR_Opr _addr;
1521 LIR_Opr _cmp_value;
1522 LIR_Opr _new_value;
1523 LIR_Opr _tmp1;
1524 LIR_Opr _tmp2;
1525
1526 public:
1527 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2)
1528 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) // no result, no info
1529 , _addr(addr)
1530 , _cmp_value(cmp_value)
1531 , _new_value(new_value)
1532 , _tmp1(t1)
1533 , _tmp2(t2) { }
1534
1535 LIR_Opr addr() const { return _addr; }
1536 LIR_Opr cmp_value() const { return _cmp_value; }
1537 LIR_Opr new_value() const { return _new_value; }
1538 LIR_Opr tmp1() const { return _tmp1; }
1539 LIR_Opr tmp2() const { return _tmp2; }
1540
1541 virtual void emit_code(LIR_Assembler* masm);
1542 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1543 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1544 };
1545
1546 // LIR_OpProfileCall
1547 class LIR_OpProfileCall : public LIR_Op {
1548 friend class LIR_OpVisitState;
1549
1550 private:
1551 ciMethod* _profiled_method;
1552 int _profiled_bci;
1553 LIR_Opr _mdo;
1554 LIR_Opr _recv;
1555 LIR_Opr _tmp1;
1556 ciKlass* _known_holder;
1557
1558 public:
1559 // Destroys recv
1560 LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1561 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) // no result, no info
1562 , _profiled_method(profiled_method)
1563 , _profiled_bci(profiled_bci)
1564 , _mdo(mdo)
1565 , _recv(recv)
1566 , _tmp1(t1)
1567 , _known_holder(known_holder) { }
1568
1569 ciMethod* profiled_method() const { return _profiled_method; }
1570 int profiled_bci() const { return _profiled_bci; }
1571 LIR_Opr mdo() const { return _mdo; }
1572 LIR_Opr recv() const { return _recv; }
1573 LIR_Opr tmp1() const { return _tmp1; }
1574 ciKlass* known_holder() const { return _known_holder; }
1575
1576 virtual void emit_code(LIR_Assembler* masm);
1577 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1578 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1579 };
1580
1581
1582 class LIR_InsertionBuffer;
1583
1584 //--------------------------------LIR_List---------------------------------------------------
1585 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1586 // The LIR instructions are appended by the LIR_List class itself;
1587 //
1588 // Notes:
1589 // - all offsets are(should be) in bytes
1590 // - local positions are specified with an offset, with offset 0 being local 0
1591
1592 class LIR_List: public CompilationResourceObj {
1593 private:
1594 LIR_OpList _operations;
1595
1596 Compilation* _compilation;
1597 #ifndef PRODUCT
1598 BlockBegin* _block;
1599 #endif
1600 #ifdef ASSERT
1601 const char * _file;
1602 int _line;
1603 #endif
1604
1605 void append(LIR_Op* op) {
1606 if (op->source() == NULL)
1607 op->set_source(_compilation->current_instruction());
1608 #ifndef PRODUCT
1609 if (PrintIRWithLIR) {
1610 _compilation->maybe_print_current_instruction();
1611 op->print(); tty->cr();
1612 }
1613 #endif // PRODUCT
1614
1615 _operations.append(op);
1616
1617 #ifdef ASSERT
1618 op->verify();
1619 op->set_file_and_line(_file, _line);
1620 _file = NULL;
1621 _line = 0;
1622 #endif
1623 }
1624
1625 public:
1626 LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1627
1628 #ifdef ASSERT
1629 void set_file_and_line(const char * file, int line);
1630 #endif
1631
1632 //---------- accessors ---------------
1633 LIR_OpList* instructions_list() { return &_operations; }
1634 int length() const { return _operations.length(); }
1635 LIR_Op* at(int i) const { return _operations.at(i); }
1636
1637 NOT_PRODUCT(BlockBegin* block() const { return _block; });
1638
1639 // insert LIR_Ops in buffer to right places in LIR_List
1640 void append(LIR_InsertionBuffer* buffer);
1641
1642 //---------- mutators ---------------
1643 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); }
1644 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); }
1645
1646 //---------- printing -------------
1647 void print_instructions() PRODUCT_RETURN;
1648
1649
1650 //---------- instructions -------------
1651 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1652 address dest, LIR_OprList* arguments,
1653 CodeEmitInfo* info) {
1654 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
1655 }
1656 void call_static(ciMethod* method, LIR_Opr result,
1657 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1658 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
1659 }
1660 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1661 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1662 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
1663 }
1664 void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1665 intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
1666 append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
1667 }
1668
1669 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); }
1670 void word_align() { append(new LIR_Op0(lir_word_align)); }
1671 void membar() { append(new LIR_Op0(lir_membar)); }
1672 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); }
1673 void membar_release() { append(new LIR_Op0(lir_membar_release)); }
1674
1675 void nop() { append(new LIR_Op0(lir_nop)); }
1676 void build_frame() { append(new LIR_Op0(lir_build_frame)); }
1677
1678 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); }
1679 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
1680
1681 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); }
1682
1683 void negate(LIR_Opr from, LIR_Opr to) { append(new LIR_Op1(lir_neg, from, to)); }
1684 void leal(LIR_Opr from, LIR_Opr result_reg) { append(new LIR_Op1(lir_leal, from, result_reg)); }
1685
1686 // result is a stack location for old backend and vreg for UseLinearScan
1687 // stack_loc_temp is an illegal register for old backend
1688 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
1689 void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1690 void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1691 void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1692 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
1693 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
1694 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
1695
1696 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
1697
1698 void oop2reg (jobject o, LIR_Opr reg) { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); }
1699 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
1700
1701 void return_op(LIR_Opr result) { append(new LIR_Op1(lir_return, result)); }
1702
1703 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); }
1704
1705 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
1706
1707 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); }
1708 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); }
1709 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); }
1710
1711 void null_check(LIR_Opr opr, CodeEmitInfo* info) { append(new LIR_Op1(lir_null_check, opr, info)); }
1712 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
1713 void unwind_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_unwind, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
1714
1715 void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1716 append(new LIR_Op2(lir_compare_to, left, right, dst));
1717 }
1718
1719 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); }
1720 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); }
1721
1722 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
1723 append(new LIR_Op2(lir_cmp, condition, left, right, info));
1724 }
1725 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
1726 cmp(condition, left, LIR_OprFact::intConst(right), info);
1727 }
1728
1729 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
1730 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
1731
1732 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
1733 append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
1734 }
1735
1736 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1737 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1738 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1739
1740 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); }
1741 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
1742 void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log, from, tmp, to)); }
1743 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, tmp, to)); }
1744 void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
1745 void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
1746 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
1747
1748 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); }
1749 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
1750 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
1751 void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
1752 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); }
1753 void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
1754 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); }
1755
1756 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1757 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1758
1759 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1760
1761 void prefetch(LIR_Address* addr, bool is_store);
1762
1763 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1764 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1765 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1766 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1767 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1768
1769 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1770 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1771 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1772 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1773
1774 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
1775 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
1776
1777 // jump is an unconditional branch
1778 void jump(BlockBegin* block) {
1779 append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
1780 }
1781 void jump(CodeStub* stub) {
1782 append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
1783 }
1784 void branch(LIR_Condition cond, Label* lbl) { append(new LIR_OpBranch(cond, lbl)); }
1785 void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
1786 assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1787 append(new LIR_OpBranch(cond, type, block));
1788 }
1789 void branch(LIR_Condition cond, BasicType type, CodeStub* stub) {
1790 assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1791 append(new LIR_OpBranch(cond, type, stub));
1792 }
1793 void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
1794 assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
1795 append(new LIR_OpBranch(cond, type, block, unordered));
1796 }
1797
1798 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1799 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1800 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1801
1802 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1803 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1804 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1805
1806 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); }
1807 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
1808
1809 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
1810 append(new LIR_OpRTCall(routine, tmp, result, arguments));
1811 }
1812
1813 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
1814 LIR_OprList* arguments, CodeEmitInfo* info) {
1815 append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
1816 }
1817
1818 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
1819 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, CodeStub* stub);
1820 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
1821
1822 void set_24bit_fpu() { append(new LIR_Op0(lir_24bit_FPU )); }
1823 void restore_fpu() { append(new LIR_Op0(lir_reset_FPU )); }
1824 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); }
1825
1826 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
1827
1828 void fpop_raw() { append(new LIR_Op0(lir_fpop_raw)); }
1829
1830 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1831 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1832 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1833 ciMethod* profiled_method, int profiled_bci);
1834 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch);
1835 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1836
1837 // methodDataOop profiling
1838 void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); }
1839 };
1840
1841 void print_LIR(BlockList* blocks);
1842
1843 class LIR_InsertionBuffer : public CompilationResourceObj {
1844 private:
1845 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
1846
1847 // list of insertion points. index and count are stored alternately:
1848 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted
1849 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
1850 intStack _index_and_count;
1851
1852 // the LIR_Ops to be inserted
1853 LIR_OpList _ops;
1854
1855 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); }
1856 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); }
1857 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); }
1858
1859 #ifdef ASSERT
1860 void verify();
1861 #endif
1862 public:
1863 LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
1864
1865 // must be called before using the insertion buffer
1866 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
1867 bool initialized() const { return _lir != NULL; }
1868 // called automatically when the buffer is appended to the LIR_List
1869 void finish() { _lir = NULL; }
1870
1871 // accessors
1872 LIR_List* lir_list() const { return _lir; }
1873 int number_of_insertion_points() const { return _index_and_count.length() >> 1; }
1874 int index_at(int i) const { return _index_and_count.at((i << 1)); }
1875 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); }
1876
1877 int number_of_ops() const { return _ops.length(); }
1878 LIR_Op* op_at(int i) const { return _ops.at(i); }
1879
1880 // append an instruction to the buffer
1881 void append(int index, LIR_Op* op);
1882
1883 // instruction
1884 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
1885 };
1886
1887
1888 //
1889 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
1890 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
1891 // information about the input, output and temporaries used by the
1892 // op to be recorded. It also records whether the op has call semantics
1893 // and also records all the CodeEmitInfos used by this op.
1894 //
1895
1896
1897 class LIR_OpVisitState: public StackObj {
1898 public:
1899 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
1900
1901 enum {
1902 maxNumberOfOperands = 14,
1903 maxNumberOfInfos = 4
1904 };
1905
1906 private:
1907 LIR_Op* _op;
1908
1909 // optimization: the operands and infos are not stored in a variable-length
1910 // list, but in a fixed-size array to save time of size checks and resizing
1911 int _oprs_len[numModes];
1912 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands];
1913 int _info_len;
1914 CodeEmitInfo* _info_new[maxNumberOfInfos];
1915
1916 bool _has_call;
1917 bool _has_slow_case;
1918
1919
1920 // only include register operands
1921 // addresses are decomposed to the base and index registers
1922 // constants and stack operands are ignored
1923 void append(LIR_Opr& opr, OprMode mode) {
1924 assert(opr->is_valid(), "should not call this otherwise");
1925 assert(mode >= 0 && mode < numModes, "bad mode");
1926
1927 if (opr->is_register()) {
1928 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
1929 _oprs_new[mode][_oprs_len[mode]++] = &opr;
1930
1931 } else if (opr->is_pointer()) {
1932 LIR_Address* address = opr->as_address_ptr();
1933 if (address != NULL) {
1934 // special handling for addresses: add base and index register of the address
1935 // both are always input operands!
1936 if (address->_base->is_valid()) {
1937 assert(address->_base->is_register(), "must be");
1938 assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
1939 _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
1940 }
1941 if (address->_index->is_valid()) {
1942 assert(address->_index->is_register(), "must be");
1943 assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
1944 _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
1945 }
1946
1947 } else {
1948 assert(opr->is_constant(), "constant operands are not processed");
1949 }
1950 } else {
1951 assert(opr->is_stack(), "stack operands are not processed");
1952 }
1953 }
1954
1955 void append(CodeEmitInfo* info) {
1956 assert(info != NULL, "should not call this otherwise");
1957 assert(_info_len < maxNumberOfInfos, "array overflow");
1958 _info_new[_info_len++] = info;
1959 }
1960
1961 public:
1962 LIR_OpVisitState() { reset(); }
1963
1964 LIR_Op* op() const { return _op; }
1965 void set_op(LIR_Op* op) { reset(); _op = op; }
1966
1967 bool has_call() const { return _has_call; }
1968 bool has_slow_case() const { return _has_slow_case; }
1969
1970 void reset() {
1971 _op = NULL;
1972 _has_call = false;
1973 _has_slow_case = false;
1974
1975 _oprs_len[inputMode] = 0;
1976 _oprs_len[tempMode] = 0;
1977 _oprs_len[outputMode] = 0;
1978 _info_len = 0;
1979 }
1980
1981
1982 int opr_count(OprMode mode) const {
1983 assert(mode >= 0 && mode < numModes, "bad mode");
1984 return _oprs_len[mode];
1985 }
1986
1987 LIR_Opr opr_at(OprMode mode, int index) const {
1988 assert(mode >= 0 && mode < numModes, "bad mode");
1989 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
1990 return *_oprs_new[mode][index];
1991 }
1992
1993 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
1994 assert(mode >= 0 && mode < numModes, "bad mode");
1995 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
1996 *_oprs_new[mode][index] = opr;
1997 }
1998
1999 int info_count() const {
2000 return _info_len;
2001 }
2002
2003 CodeEmitInfo* info_at(int index) const {
2004 assert(index < _info_len, "index out of bounds");
2005 return _info_new[index];
2006 }
2007
2008 XHandlers* all_xhandler();
2009
2010 // collects all register operands of the instruction
2011 void visit(LIR_Op* op);
2012
2013 #if ASSERT
2014 // check that an operation has no operands
2015 bool no_operands(LIR_Op* op);
2016 #endif
2017
2018 // LIR_Op visitor functions use these to fill in the state
2019 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); }
2020 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); }
2021 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); }
2022 void do_info(CodeEmitInfo* info) { append(info); }
2023
2024 void do_stub(CodeStub* stub);
2025 void do_call() { _has_call = true; }
2026 void do_slow_case() { _has_slow_case = true; }
2027 void do_slow_case(CodeEmitInfo* info) {
2028 _has_slow_case = true;
2029 append(info);
2030 }
2031 };
2032
2033
2034 inline LIR_Opr LIR_OprDesc::illegalOpr() { return LIR_OprFact::illegalOpr; };