comparison src/share/vm/gc_implementation/parNew/parGCAllocBuffer.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_parGCAllocBuffer.cpp.incl"
27
28 ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
29 _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
30 _end(NULL), _hard_end(NULL),
31 _retained(false), _retained_filler(),
32 _allocated(0), _wasted(0)
33 {
34 assert (min_size() > AlignmentReserve, "Inconsistency!");
35 }
36
37 const size_t ParGCAllocBuffer::FillerHeaderSize =
38 align_object_size(arrayOopDesc::header_size(T_INT));
39
40 // If the minimum object size is greater than MinObjAlignment, we can
41 // end up with a shard at the end of the buffer that's smaller than
42 // the smallest object. We can't allow that because the buffer must
43 // look like it's full of objects when we retire it, so we make
44 // sure we have enough space for a filler int array object.
45 const size_t ParGCAllocBuffer::AlignmentReserve =
46 oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
47
48 void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
49 assert(!retain || end_of_gc, "Can only retain at GC end.");
50 if (_retained) {
51 // If the buffer had been retained shorten the previous filler object.
52 assert(_retained_filler.end() <= _top, "INVARIANT");
53 SharedHeap::fill_region_with_object(_retained_filler);
54 // Wasted space book-keeping, otherwise (normally) done in invalidate()
55 _wasted += _retained_filler.word_size();
56 _retained = false;
57 }
58 assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
59 if (_top < _hard_end) {
60 SharedHeap::fill_region_with_object(MemRegion(_top, _hard_end));
61 if (!retain) {
62 invalidate();
63 } else {
64 // Is there wasted space we'd like to retain for the next GC?
65 if (pointer_delta(_end, _top) > FillerHeaderSize) {
66 _retained = true;
67 _retained_filler = MemRegion(_top, FillerHeaderSize);
68 _top = _top + FillerHeaderSize;
69 } else {
70 invalidate();
71 }
72 }
73 }
74 }
75
76 void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
77 assert(ResizePLAB, "Wasted work");
78 stats->add_allocated(_allocated);
79 stats->add_wasted(_wasted);
80 stats->add_unused(pointer_delta(_end, _top));
81 }
82
83 // Compute desired plab size and latch result for later
84 // use. This should be called once at the end of parallel
85 // scavenge; it clears the sensor accumulators.
86 void PLABStats::adjust_desired_plab_sz() {
87 assert(ResizePLAB, "Not set");
88 if (_allocated == 0) {
89 assert(_unused == 0, "Inconsistency in PLAB stats");
90 _allocated = 1;
91 }
92 double wasted_frac = (double)_unused/(double)_allocated;
93 size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
94 TargetPLABWastePct);
95 if (target_refills == 0) {
96 target_refills = 1;
97 }
98 _used = _allocated - _wasted - _unused;
99 size_t plab_sz = _used/(target_refills*ParallelGCThreads);
100 if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
101 // Take historical weighted average
102 _filter.sample(plab_sz);
103 // Clip from above and below, and align to object boundary
104 plab_sz = MAX2(min_size(), (size_t)_filter.average());
105 plab_sz = MIN2(max_size(), plab_sz);
106 plab_sz = align_object_size(plab_sz);
107 // Latch the result
108 if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
109 if (ResizePLAB) {
110 _desired_plab_sz = plab_sz;
111 }
112 // Now clear the accumulators for next round:
113 // note this needs to be fixed in the case where we
114 // are retaining across scavenges. FIX ME !!! XXX
115 _allocated = 0;
116 _wasted = 0;
117 _unused = 0;
118 }
119
120 #ifndef PRODUCT
121 void ParGCAllocBuffer::print() {
122 gclog_or_tty->print("parGCAllocBuffer: _bottom: %p _top: %p _end: %p _hard_end: %p"
123 "_retained: %c _retained_filler: [%p,%p)\n",
124 _bottom, _top, _end, _hard_end,
125 "FT"[_retained], _retained_filler.start(), _retained_filler.end());
126 }
127 #endif // !PRODUCT
128
129 const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
130 MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
131 ((size_t)Generation::GenGrain)/HeapWordSize);
132 const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
133 MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
134 (size_t)Generation::GenGrain);
135
136 ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
137 BlockOffsetSharedArray* bsa) :
138 ParGCAllocBuffer(word_sz),
139 _bsa(bsa),
140 _bt(bsa, MemRegion(_bottom, _hard_end)),
141 _true_end(_hard_end)
142 {}
143
144 // The buffer comes with its own BOT, with a shared (obviously) underlying
145 // BlockOffsetSharedArray. We manipulate this BOT in the normal way
146 // as we would for any contiguous space. However, on accasion we
147 // need to do some buffer surgery at the extremities before we
148 // start using the body of the buffer for allocations. Such surgery
149 // (as explained elsewhere) is to prevent allocation on a card that
150 // is in the process of being walked concurrently by another GC thread.
151 // When such surgery happens at a point that is far removed (to the
152 // right of the current allocation point, top), we use the "contig"
153 // parameter below to directly manipulate the shared array without
154 // modifying the _next_threshold state in the BOT.
155 void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
156 bool contig) {
157 SharedHeap::fill_region_with_object(mr);
158 if (contig) {
159 _bt.alloc_block(mr.start(), mr.end());
160 } else {
161 _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
162 }
163 }
164
165 HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
166 HeapWord* res = NULL;
167 if (_true_end > _hard_end) {
168 assert((HeapWord*)align_size_down(intptr_t(_hard_end),
169 ChunkSizeInBytes) == _hard_end,
170 "or else _true_end should be equal to _hard_end");
171 assert(_retained, "or else _true_end should be equal to _hard_end");
172 assert(_retained_filler.end() <= _top, "INVARIANT");
173 SharedHeap::fill_region_with_object(_retained_filler);
174 if (_top < _hard_end) {
175 fill_region_with_block(MemRegion(_top, _hard_end), true);
176 }
177 HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
178 _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
179 _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
180 _top = _retained_filler.end();
181 _hard_end = next_hard_end;
182 _end = _hard_end - AlignmentReserve;
183 res = ParGCAllocBuffer::allocate(word_sz);
184 if (res != NULL) {
185 _bt.alloc_block(res, word_sz);
186 }
187 }
188 return res;
189 }
190
191 void
192 ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
193 ParGCAllocBuffer::undo_allocation(obj, word_sz);
194 // This may back us up beyond the previous threshold, so reset.
195 _bt.set_region(MemRegion(_top, _hard_end));
196 _bt.initialize_threshold();
197 }
198
199 void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
200 assert(!retain || end_of_gc, "Can only retain at GC end.");
201 if (_retained) {
202 // We're about to make the retained_filler into a block.
203 _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
204 _retained_filler.end());
205 }
206 // Reset _hard_end to _true_end (and update _end)
207 if (retain && _hard_end != NULL) {
208 assert(_hard_end <= _true_end, "Invariant.");
209 _hard_end = _true_end;
210 _end = MAX2(_top, _hard_end - AlignmentReserve);
211 assert(_end <= _hard_end, "Invariant.");
212 }
213 _true_end = _hard_end;
214 HeapWord* pre_top = _top;
215
216 ParGCAllocBuffer::retire(end_of_gc, retain);
217 // Now any old _retained_filler is cut back to size, the free part is
218 // filled with a filler object, and top is past the header of that
219 // object.
220
221 if (retain && _top < _end) {
222 assert(end_of_gc && retain, "Or else retain should be false.");
223 // If the lab does not start on a card boundary, we don't want to
224 // allocate onto that card, since that might lead to concurrent
225 // allocation and card scanning, which we don't support. So we fill
226 // the first card with a garbage object.
227 size_t first_card_index = _bsa->index_for(pre_top);
228 HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
229 if (first_card_start < pre_top) {
230 HeapWord* second_card_start =
231 _bsa->address_for_index(first_card_index + 1);
232
233 // Ensure enough room to fill with the smallest block
234 second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
235
236 // If the end is already in the first card, don't go beyond it!
237 // Or if the remainder is too small for a filler object, gobble it up.
238 if (_hard_end < second_card_start ||
239 pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
240 second_card_start = _hard_end;
241 }
242 if (pre_top < second_card_start) {
243 MemRegion first_card_suffix(pre_top, second_card_start);
244 fill_region_with_block(first_card_suffix, true);
245 }
246 pre_top = second_card_start;
247 _top = pre_top;
248 _end = MAX2(_top, _hard_end - AlignmentReserve);
249 }
250
251 // If the lab does not end on a card boundary, we don't want to
252 // allocate onto that card, since that might lead to concurrent
253 // allocation and card scanning, which we don't support. So we fill
254 // the last card with a garbage object.
255 size_t last_card_index = _bsa->index_for(_hard_end);
256 HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
257 if (last_card_start < _hard_end) {
258
259 // Ensure enough room to fill with the smallest block
260 last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
261
262 // If the top is already in the last card, don't go back beyond it!
263 // Or if the remainder is too small for a filler object, gobble it up.
264 if (_top > last_card_start ||
265 pointer_delta(last_card_start, _top) < AlignmentReserve) {
266 last_card_start = _top;
267 }
268 if (last_card_start < _hard_end) {
269 MemRegion last_card_prefix(last_card_start, _hard_end);
270 fill_region_with_block(last_card_prefix, false);
271 }
272 _hard_end = last_card_start;
273 _end = MAX2(_top, _hard_end - AlignmentReserve);
274 _true_end = _hard_end;
275 assert(_end <= _hard_end, "Invariant.");
276 }
277
278 // At this point:
279 // 1) we had a filler object from the original top to hard_end.
280 // 2) We've filled in any partial cards at the front and back.
281 if (pre_top < _hard_end) {
282 // Now we can reset the _bt to do allocation in the given area.
283 MemRegion new_filler(pre_top, _hard_end);
284 fill_region_with_block(new_filler, false);
285 _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
286 // If there's no space left, don't retain.
287 if (_top >= _end) {
288 _retained = false;
289 invalidate();
290 return;
291 }
292 _retained_filler = MemRegion(pre_top, _top);
293 _bt.set_region(MemRegion(_top, _hard_end));
294 _bt.initialize_threshold();
295 assert(_bt.threshold() > _top, "initialize_threshold failed!");
296
297 // There may be other reasons for queries into the middle of the
298 // filler object. When such queries are done in parallel with
299 // allocation, bad things can happen, if the query involves object
300 // iteration. So we ensure that such queries do not involve object
301 // iteration, by putting another filler object on the boundaries of
302 // such queries. One such is the object spanning a parallel card
303 // chunk boundary.
304
305 // "chunk_boundary" is the address of the first chunk boundary less
306 // than "hard_end".
307 HeapWord* chunk_boundary =
308 (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
309 assert(chunk_boundary < _hard_end, "Or else above did not work.");
310 assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
311 "Consequence of last card handling above.");
312
313 if (_top <= chunk_boundary) {
314 assert(_true_end == _hard_end, "Invariant.");
315 while (_top <= chunk_boundary) {
316 assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
317 "Consequence of last card handling above.");
318 MemRegion chunk_portion(chunk_boundary, _hard_end);
319 _bt.BlockOffsetArray::alloc_block(chunk_portion.start(),
320 chunk_portion.end());
321 SharedHeap::fill_region_with_object(chunk_portion);
322 _hard_end = chunk_portion.start();
323 chunk_boundary -= ChunkSizeInWords;
324 }
325 _end = _hard_end - AlignmentReserve;
326 assert(_top <= _end, "Invariant.");
327 // Now reset the initial filler chunk so it doesn't overlap with
328 // the one(s) inserted above.
329 MemRegion new_filler(pre_top, _hard_end);
330 fill_region_with_block(new_filler, false);
331 }
332 } else {
333 _retained = false;
334 invalidate();
335 }
336 } else {
337 assert(!end_of_gc ||
338 (!_retained && _true_end == _hard_end), "Checking.");
339 }
340 assert(_end <= _hard_end, "Invariant.");
341 assert(_top < _end || _top == _hard_end, "Invariant");
342 }