comparison src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 0bfd3fb24150
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2002-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // This class keeps statistical information and computes the
26 // optimal free space for both the young and old generation
27 // based on current application characteristics (based on gc cost
28 // and application footprint).
29 //
30 // It also computes an optimal tenuring threshold between the young
31 // and old generations, so as to equalize the cost of collections
32 // of those generations, as well as optimial survivor space sizes
33 // for the young generation.
34 //
35 // While this class is specifically intended for a generational system
36 // consisting of a young gen (containing an Eden and two semi-spaces)
37 // and a tenured gen, as well as a perm gen for reflective data, it
38 // makes NO references to specific generations.
39 //
40 // 05/02/2003 Update
41 // The 1.5 policy makes use of data gathered for the costs of GC on
42 // specific generations. That data does reference specific
43 // generation. Also diagnostics specific to generations have
44 // been added.
45
46 // Forward decls
47 class elapsedTimer;
48
49 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
50 friend class PSGCAdaptivePolicyCounters;
51 private:
52 // These values are used to record decisions made during the
53 // policy. For example, if the young generation was decreased
54 // to decrease the GC cost of minor collections the value
55 // decrease_young_gen_for_throughput_true is used.
56
57 // Last calculated sizes, in bytes, and aligned
58 // NEEDS_CLEANUP should use sizes.hpp, but it works in ints, not size_t's
59
60 // Time statistics
61 AdaptivePaddedAverage* _avg_major_pause;
62
63 // Footprint statistics
64 AdaptiveWeightedAverage* _avg_base_footprint;
65
66 // Statistical data gathered for GC
67 GCStats _gc_stats;
68
69 size_t _survivor_size_limit; // Limit in bytes of survivor size
70 const double _collection_cost_margin_fraction;
71
72 // Variable for estimating the major and minor pause times.
73 // These variables represent linear least-squares fits of
74 // the data.
75 // major pause time vs. old gen size
76 LinearLeastSquareFit* _major_pause_old_estimator;
77 // major pause time vs. young gen size
78 LinearLeastSquareFit* _major_pause_young_estimator;
79
80
81 // These record the most recent collection times. They
82 // are available as an alternative to using the averages
83 // for making ergonomic decisions.
84 double _latest_major_mutator_interval_seconds;
85
86 const size_t _intra_generation_alignment; // alignment for eden, survivors
87
88 const double _gc_minor_pause_goal_sec; // goal for maximum minor gc pause
89
90 // The amount of live data in the heap at the last full GC, used
91 // as a baseline to help us determine when we need to perform the
92 // next full GC.
93 size_t _live_at_last_full_gc;
94
95 // decrease/increase the old generation for minor pause time
96 int _change_old_gen_for_min_pauses;
97
98 // increase/decrease the young generation for major pause time
99 int _change_young_gen_for_maj_pauses;
100
101
102 // Flag indicating that the adaptive policy is ready to use
103 bool _old_gen_policy_is_ready;
104
105 // Changing the generation sizing depends on the data that is
106 // gathered about the effects of changes on the pause times and
107 // throughput. These variable count the number of data points
108 // gathered. The policy may use these counters as a threshhold
109 // for reliable data.
110 julong _young_gen_change_for_major_pause_count;
111
112 // To facilitate faster growth at start up, supplement the normal
113 // growth percentage for the young gen eden and the
114 // old gen space for promotion with these value which decay
115 // with increasing collections.
116 uint _young_gen_size_increment_supplement;
117 uint _old_gen_size_increment_supplement;
118
119 // The number of bytes absorbed from eden into the old gen by moving the
120 // boundary over live data.
121 size_t _bytes_absorbed_from_eden;
122
123 private:
124
125 // Accessors
126 AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
127 double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
128
129 // Change the young generation size to achieve a minor GC pause time goal
130 void adjust_for_minor_pause_time(bool is_full_gc,
131 size_t* desired_promo_size_ptr,
132 size_t* desired_eden_size_ptr);
133 // Change the generation sizes to achieve a GC pause time goal
134 // Returned sizes are not necessarily aligned.
135 void adjust_for_pause_time(bool is_full_gc,
136 size_t* desired_promo_size_ptr,
137 size_t* desired_eden_size_ptr);
138 // Change the generation sizes to achieve an application throughput goal
139 // Returned sizes are not necessarily aligned.
140 void adjust_for_throughput(bool is_full_gc,
141 size_t* desired_promo_size_ptr,
142 size_t* desired_eden_size_ptr);
143 // Change the generation sizes to achieve minimum footprint
144 // Returned sizes are not aligned.
145 size_t adjust_promo_for_footprint(size_t desired_promo_size,
146 size_t desired_total);
147 size_t adjust_eden_for_footprint(size_t desired_promo_size,
148 size_t desired_total);
149
150 // Size in bytes for an increment or decrement of eden.
151 virtual size_t eden_increment(size_t cur_eden, uint percent_change);
152 virtual size_t eden_decrement(size_t cur_eden);
153 size_t eden_decrement_aligned_down(size_t cur_eden);
154 size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
155
156 // Size in bytes for an increment or decrement of the promotion area
157 virtual size_t promo_increment(size_t cur_promo, uint percent_change);
158 virtual size_t promo_decrement(size_t cur_promo);
159 size_t promo_decrement_aligned_down(size_t cur_promo);
160 size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
161
162 // Decay the supplemental growth additive.
163 void decay_supplemental_growth(bool is_full_gc);
164
165 // Returns a change that has been scaled down. Result
166 // is not aligned. (If useful, move to some shared
167 // location.)
168 size_t scale_down(size_t change, double part, double total);
169
170 protected:
171 // Time accessors
172
173 // Footprint accessors
174 size_t live_space() const {
175 return (size_t)(avg_base_footprint()->average() +
176 avg_young_live()->average() +
177 avg_old_live()->average());
178 }
179 size_t free_space() const {
180 return _eden_size + _promo_size;
181 }
182
183 void set_promo_size(size_t new_size) {
184 _promo_size = new_size;
185 }
186 void set_survivor_size(size_t new_size) {
187 _survivor_size = new_size;
188 }
189
190 // Update estimators
191 void update_minor_pause_old_estimator(double minor_pause_in_ms);
192
193 virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
194
195 public:
196 // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
197 size_t eden_increment_aligned_up(size_t cur_eden);
198 size_t eden_increment_aligned_down(size_t cur_eden);
199 size_t promo_increment_aligned_up(size_t cur_promo);
200 size_t promo_increment_aligned_down(size_t cur_promo);
201
202 virtual size_t eden_increment(size_t cur_eden);
203 virtual size_t promo_increment(size_t cur_promo);
204
205 // Accessors for use by performance counters
206 AdaptivePaddedNoZeroDevAverage* avg_promoted() const {
207 return _gc_stats.avg_promoted();
208 }
209 AdaptiveWeightedAverage* avg_base_footprint() const {
210 return _avg_base_footprint;
211 }
212
213 // Input arguments are initial free space sizes for young and old
214 // generations, the initial survivor space size, the
215 // alignment values and the pause & throughput goals.
216 //
217 // NEEDS_CLEANUP this is a singleton object
218 PSAdaptiveSizePolicy(size_t init_eden_size,
219 size_t init_promo_size,
220 size_t init_survivor_size,
221 size_t intra_generation_alignment,
222 double gc_pause_goal_sec,
223 double gc_minor_pause_goal_sec,
224 uint gc_time_ratio);
225
226 // Methods indicating events of interest to the adaptive size policy,
227 // called by GC algorithms. It is the responsibility of users of this
228 // policy to call these methods at the correct times!
229 void major_collection_begin();
230 void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
231
232 //
233 void tenured_allocation(size_t size) {
234 _avg_pretenured->sample(size);
235 }
236
237 // Accessors
238 // NEEDS_CLEANUP should use sizes.hpp
239
240 size_t calculated_old_free_size_in_bytes() const {
241 return (size_t)(_promo_size + avg_promoted()->padded_average());
242 }
243
244 size_t average_old_live_in_bytes() const {
245 return (size_t) avg_old_live()->average();
246 }
247
248 size_t average_promoted_in_bytes() const {
249 return (size_t)avg_promoted()->average();
250 }
251
252 size_t padded_average_promoted_in_bytes() const {
253 return (size_t)avg_promoted()->padded_average();
254 }
255
256 int change_young_gen_for_maj_pauses() {
257 return _change_young_gen_for_maj_pauses;
258 }
259 void set_change_young_gen_for_maj_pauses(int v) {
260 _change_young_gen_for_maj_pauses = v;
261 }
262
263 int change_old_gen_for_min_pauses() {
264 return _change_old_gen_for_min_pauses;
265 }
266 void set_change_old_gen_for_min_pauses(int v) {
267 _change_old_gen_for_min_pauses = v;
268 }
269
270 // Return true if the old generation size was changed
271 // to try to reach a pause time goal.
272 bool old_gen_changed_for_pauses() {
273 bool result = _change_old_gen_for_maj_pauses != 0 ||
274 _change_old_gen_for_min_pauses != 0;
275 return result;
276 }
277
278 // Return true if the young generation size was changed
279 // to try to reach a pause time goal.
280 bool young_gen_changed_for_pauses() {
281 bool result = _change_young_gen_for_min_pauses != 0 ||
282 _change_young_gen_for_maj_pauses != 0;
283 return result;
284 }
285 // end flags for pause goal
286
287 // Return true if the old generation size was changed
288 // to try to reach a throughput goal.
289 bool old_gen_changed_for_throughput() {
290 bool result = _change_old_gen_for_throughput != 0;
291 return result;
292 }
293
294 // Return true if the young generation size was changed
295 // to try to reach a throughput goal.
296 bool young_gen_changed_for_throughput() {
297 bool result = _change_young_gen_for_throughput != 0;
298 return result;
299 }
300
301 int decrease_for_footprint() { return _decrease_for_footprint; }
302
303
304 // Accessors for estimators. The slope of the linear fit is
305 // currently all that is used for making decisions.
306
307 LinearLeastSquareFit* major_pause_old_estimator() {
308 return _major_pause_old_estimator;
309 }
310
311 LinearLeastSquareFit* major_pause_young_estimator() {
312 return _major_pause_young_estimator;
313 }
314
315
316 virtual void clear_generation_free_space_flags();
317
318 float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
319 float major_pause_young_slope() {
320 return _major_pause_young_estimator->slope();
321 }
322 float major_collection_slope() { return _major_collection_estimator->slope();}
323
324 bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
325
326 // Given the amount of live data in the heap, should we
327 // perform a Full GC?
328 bool should_full_GC(size_t live_in_old_gen);
329
330 // Calculates optimial free space sizes for both the old and young
331 // generations. Stores results in _eden_size and _promo_size.
332 // Takes current used space in all generations as input, as well
333 // as an indication if a full gc has just been performed, for use
334 // in deciding if an OOM error should be thrown.
335 void compute_generation_free_space(size_t young_live,
336 size_t eden_live,
337 size_t old_live,
338 size_t perm_live,
339 size_t cur_eden, // current eden in bytes
340 size_t max_old_gen_size,
341 size_t max_eden_size,
342 bool is_full_gc,
343 GCCause::Cause gc_cause);
344
345 // Calculates new survivor space size; returns a new tenuring threshold
346 // value. Stores new survivor size in _survivor_size.
347 int compute_survivor_space_size_and_threshold(bool is_survivor_overflow,
348 int tenuring_threshold,
349 size_t survivor_limit);
350
351 // Return the maximum size of a survivor space if the young generation were of
352 // size gen_size.
353 size_t max_survivor_size(size_t gen_size) {
354 // Never allow the target survivor size to grow more than MinSurvivorRatio
355 // of the young generation size. We cannot grow into a two semi-space
356 // system, with Eden zero sized. Even if the survivor space grows, from()
357 // might grow by moving the bottom boundary "down" -- so from space will
358 // remain almost full anyway (top() will be near end(), but there will be a
359 // large filler object at the bottom).
360 const size_t sz = gen_size / MinSurvivorRatio;
361 const size_t alignment = _intra_generation_alignment;
362 return sz > alignment ? align_size_down(sz, alignment) : alignment;
363 }
364
365 size_t live_at_last_full_gc() {
366 return _live_at_last_full_gc;
367 }
368
369 size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
370 void reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
371
372 void set_bytes_absorbed_from_eden(size_t val) {
373 _bytes_absorbed_from_eden = val;
374 }
375
376 // Update averages that are always used (even
377 // if adaptive sizing is turned off).
378 void update_averages(bool is_survivor_overflow,
379 size_t survived,
380 size_t promoted);
381
382 // Printing support
383 virtual bool print_adaptive_size_policy_on(outputStream* st) const;
384 };