comparison src/share/vm/gc_implementation/shared/adaptiveSizePolicy.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 0bfd3fb24150
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // This class keeps statistical information and computes the
26 // size of the heap.
27
28 // Forward decls
29 class elapsedTimer;
30
31 class AdaptiveSizePolicy : public CHeapObj {
32 friend class GCAdaptivePolicyCounters;
33 friend class PSGCAdaptivePolicyCounters;
34 friend class CMSGCAdaptivePolicyCounters;
35 protected:
36
37 enum GCPolicyKind {
38 _gc_adaptive_size_policy,
39 _gc_ps_adaptive_size_policy,
40 _gc_cms_adaptive_size_policy
41 };
42 virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
43
44 enum SizePolicyTrueValues {
45 decrease_old_gen_for_throughput_true = -7,
46 decrease_young_gen_for_througput_true = -6,
47
48 increase_old_gen_for_min_pauses_true = -5,
49 decrease_old_gen_for_min_pauses_true = -4,
50 decrease_young_gen_for_maj_pauses_true = -3,
51 increase_young_gen_for_min_pauses_true = -2,
52 increase_old_gen_for_maj_pauses_true = -1,
53
54 decrease_young_gen_for_min_pauses_true = 1,
55 decrease_old_gen_for_maj_pauses_true = 2,
56 increase_young_gen_for_maj_pauses_true = 3,
57
58 increase_old_gen_for_throughput_true = 4,
59 increase_young_gen_for_througput_true = 5,
60
61 decrease_young_gen_for_footprint_true = 6,
62 decrease_old_gen_for_footprint_true = 7,
63 decide_at_full_gc_true = 8
64 };
65
66 // Goal for the fraction of the total time during which application
67 // threads run.
68 const double _throughput_goal;
69
70 // Last calculated sizes, in bytes, and aligned
71 size_t _eden_size; // calculated eden free space in bytes
72 size_t _promo_size; // calculated cms gen free space in bytes
73
74 size_t _survivor_size; // calculated survivor size in bytes
75
76 // This is a hint for the heap: we've detected that gc times
77 // are taking longer than GCTimeLimit allows.
78 bool _gc_time_limit_exceeded;
79 // Use for diagnostics only. If UseGCTimeLimit is false,
80 // this variable is still set.
81 bool _print_gc_time_limit_would_be_exceeded;
82 // Count of consecutive GC that have exceeded the
83 // GC time limit criterion.
84 uint _gc_time_limit_count;
85
86 // Minor collection timers used to determine both
87 // pause and interval times for collections.
88 static elapsedTimer _minor_timer;
89
90 // Major collection timers, used to determine both
91 // pause and interval times for collections
92 static elapsedTimer _major_timer;
93
94 // Time statistics
95 AdaptivePaddedAverage* _avg_minor_pause;
96 AdaptiveWeightedAverage* _avg_minor_interval;
97 AdaptiveWeightedAverage* _avg_minor_gc_cost;
98
99 AdaptiveWeightedAverage* _avg_major_interval;
100 AdaptiveWeightedAverage* _avg_major_gc_cost;
101
102 // Footprint statistics
103 AdaptiveWeightedAverage* _avg_young_live;
104 AdaptiveWeightedAverage* _avg_eden_live;
105 AdaptiveWeightedAverage* _avg_old_live;
106
107 // Statistics for survivor space calculation for young generation
108 AdaptivePaddedAverage* _avg_survived;
109
110 // Objects that have been directly allocated in the old generation.
111 AdaptivePaddedNoZeroDevAverage* _avg_pretenured;
112
113 // Variable for estimating the major and minor pause times.
114 // These variables represent linear least-squares fits of
115 // the data.
116 // minor pause time vs. old gen size
117 LinearLeastSquareFit* _minor_pause_old_estimator;
118 // minor pause time vs. young gen size
119 LinearLeastSquareFit* _minor_pause_young_estimator;
120
121 // Variables for estimating the major and minor collection costs
122 // minor collection time vs. young gen size
123 LinearLeastSquareFit* _minor_collection_estimator;
124 // major collection time vs. cms gen size
125 LinearLeastSquareFit* _major_collection_estimator;
126
127 // These record the most recent collection times. They
128 // are available as an alternative to using the averages
129 // for making ergonomic decisions.
130 double _latest_minor_mutator_interval_seconds;
131
132 // Allowed difference between major and minor gc times, used
133 // for computing tenuring_threshold.
134 const double _threshold_tolerance_percent;
135
136 const double _gc_pause_goal_sec; // goal for maximum gc pause
137
138 // Flag indicating that the adaptive policy is ready to use
139 bool _young_gen_policy_is_ready;
140
141 // decrease/increase the young generation for minor pause time
142 int _change_young_gen_for_min_pauses;
143
144 // decrease/increase the old generation for major pause time
145 int _change_old_gen_for_maj_pauses;
146
147 // change old geneneration for throughput
148 int _change_old_gen_for_throughput;
149
150 // change young generation for throughput
151 int _change_young_gen_for_throughput;
152
153 // Flag indicating that the policy would
154 // increase the tenuring threshold because of the total major gc cost
155 // is greater than the total minor gc cost
156 bool _increment_tenuring_threshold_for_gc_cost;
157 // decrease the tenuring threshold because of the the total minor gc
158 // cost is greater than the total major gc cost
159 bool _decrement_tenuring_threshold_for_gc_cost;
160 // decrease due to survivor size limit
161 bool _decrement_tenuring_threshold_for_survivor_limit;
162
163 // decrease generation sizes for footprint
164 int _decrease_for_footprint;
165
166 // Set if the ergonomic decisions were made at a full GC.
167 int _decide_at_full_gc;
168
169 // Changing the generation sizing depends on the data that is
170 // gathered about the effects of changes on the pause times and
171 // throughput. These variable count the number of data points
172 // gathered. The policy may use these counters as a threshhold
173 // for reliable data.
174 julong _young_gen_change_for_minor_throughput;
175 julong _old_gen_change_for_major_throughput;
176
177 // Accessors
178
179 double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
180 // The value returned is unitless: it's the proportion of time
181 // spent in a particular collection type.
182 // An interval time will be 0.0 if a collection type hasn't occurred yet.
183 // The 1.4.2 implementation put a floor on the values of major_gc_cost
184 // and minor_gc_cost. This was useful because of the way major_gc_cost
185 // and minor_gc_cost was used in calculating the sizes of the generations.
186 // Do not use a floor in this implementation because any finite value
187 // will put a limit on the throughput that can be achieved and any
188 // throughput goal above that limit will drive the generations sizes
189 // to extremes.
190 double major_gc_cost() const {
191 return MAX2(0.0F, _avg_major_gc_cost->average());
192 }
193
194 // The value returned is unitless: it's the proportion of time
195 // spent in a particular collection type.
196 // An interval time will be 0.0 if a collection type hasn't occurred yet.
197 // The 1.4.2 implementation put a floor on the values of major_gc_cost
198 // and minor_gc_cost. This was useful because of the way major_gc_cost
199 // and minor_gc_cost was used in calculating the sizes of the generations.
200 // Do not use a floor in this implementation because any finite value
201 // will put a limit on the throughput that can be achieved and any
202 // throughput goal above that limit will drive the generations sizes
203 // to extremes.
204
205 double minor_gc_cost() const {
206 return MAX2(0.0F, _avg_minor_gc_cost->average());
207 }
208
209 // Because we're dealing with averages, gc_cost() can be
210 // larger than 1.0 if just the sum of the minor cost the
211 // the major cost is used. Worse than that is the
212 // fact that the minor cost and the major cost each
213 // tend toward 1.0 in the extreme of high gc costs.
214 // Limit the value of gc_cost to 1.0 so that the mutator
215 // cost stays non-negative.
216 virtual double gc_cost() const {
217 double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
218 assert(result >= 0.0, "Both minor and major costs are non-negative");
219 return result;
220 }
221
222 // Elapsed time since the last major collection.
223 virtual double time_since_major_gc() const;
224
225 // Average interval between major collections to be used
226 // in calculating the decaying major gc cost. An overestimate
227 // of this time would be a conservative estimate because
228 // this time is used to decide if the major GC cost
229 // should be decayed (i.e., if the time since the last
230 // major gc is long compared to the time returned here,
231 // then the major GC cost will be decayed). See the
232 // implementations for the specifics.
233 virtual double major_gc_interval_average_for_decay() const {
234 return _avg_major_interval->average();
235 }
236
237 // Return the cost of the GC where the major gc cost
238 // has been decayed based on the time since the last
239 // major collection.
240 double decaying_gc_cost() const;
241
242 // Decay the major gc cost. Use this only for decisions on
243 // whether to adjust, not to determine by how much to adjust.
244 // This approximation is crude and may not be good enough for the
245 // latter.
246 double decaying_major_gc_cost() const;
247
248 // Return the mutator cost using the decayed
249 // GC cost.
250 double adjusted_mutator_cost() const {
251 double result = 1.0 - decaying_gc_cost();
252 assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
253 return result;
254 }
255
256 virtual double mutator_cost() const {
257 double result = 1.0 - gc_cost();
258 assert(result >= 0.0, "mutator cost calculation is incorrect");
259 return result;
260 }
261
262
263 bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
264
265 void update_minor_pause_young_estimator(double minor_pause_in_ms);
266 virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
267 // This is not meaningful for all policies but needs to be present
268 // to use minor_collection_end() in its current form.
269 }
270
271 virtual size_t eden_increment(size_t cur_eden);
272 virtual size_t eden_increment(size_t cur_eden, uint percent_change);
273 virtual size_t eden_decrement(size_t cur_eden);
274 virtual size_t promo_increment(size_t cur_eden);
275 virtual size_t promo_increment(size_t cur_eden, uint percent_change);
276 virtual size_t promo_decrement(size_t cur_eden);
277
278 virtual void clear_generation_free_space_flags();
279
280 int change_old_gen_for_throughput() const {
281 return _change_old_gen_for_throughput;
282 }
283 void set_change_old_gen_for_throughput(int v) {
284 _change_old_gen_for_throughput = v;
285 }
286 int change_young_gen_for_throughput() const {
287 return _change_young_gen_for_throughput;
288 }
289 void set_change_young_gen_for_throughput(int v) {
290 _change_young_gen_for_throughput = v;
291 }
292
293 int change_old_gen_for_maj_pauses() const {
294 return _change_old_gen_for_maj_pauses;
295 }
296 void set_change_old_gen_for_maj_pauses(int v) {
297 _change_old_gen_for_maj_pauses = v;
298 }
299
300 bool decrement_tenuring_threshold_for_gc_cost() const {
301 return _decrement_tenuring_threshold_for_gc_cost;
302 }
303 void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
304 _decrement_tenuring_threshold_for_gc_cost = v;
305 }
306 bool increment_tenuring_threshold_for_gc_cost() const {
307 return _increment_tenuring_threshold_for_gc_cost;
308 }
309 void set_increment_tenuring_threshold_for_gc_cost(bool v) {
310 _increment_tenuring_threshold_for_gc_cost = v;
311 }
312 bool decrement_tenuring_threshold_for_survivor_limit() const {
313 return _decrement_tenuring_threshold_for_survivor_limit;
314 }
315 void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
316 _decrement_tenuring_threshold_for_survivor_limit = v;
317 }
318 // Return true if the policy suggested a change.
319 bool tenuring_threshold_change() const;
320
321 public:
322 AdaptiveSizePolicy(size_t init_eden_size,
323 size_t init_promo_size,
324 size_t init_survivor_size,
325 double gc_pause_goal_sec,
326 uint gc_cost_ratio);
327
328 bool is_gc_cms_adaptive_size_policy() {
329 return kind() == _gc_cms_adaptive_size_policy;
330 }
331 bool is_gc_ps_adaptive_size_policy() {
332 return kind() == _gc_ps_adaptive_size_policy;
333 }
334
335 AdaptivePaddedAverage* avg_minor_pause() const { return _avg_minor_pause; }
336 AdaptiveWeightedAverage* avg_minor_interval() const {
337 return _avg_minor_interval;
338 }
339 AdaptiveWeightedAverage* avg_minor_gc_cost() const {
340 return _avg_minor_gc_cost;
341 }
342
343 AdaptiveWeightedAverage* avg_major_gc_cost() const {
344 return _avg_major_gc_cost;
345 }
346
347 AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
348 AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
349 AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
350
351 AdaptivePaddedAverage* avg_survived() const { return _avg_survived; }
352 AdaptivePaddedNoZeroDevAverage* avg_pretenured() { return _avg_pretenured; }
353
354 // Methods indicating events of interest to the adaptive size policy,
355 // called by GC algorithms. It is the responsibility of users of this
356 // policy to call these methods at the correct times!
357 virtual void minor_collection_begin();
358 virtual void minor_collection_end(GCCause::Cause gc_cause);
359 virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
360 return _minor_pause_old_estimator;
361 }
362
363 LinearLeastSquareFit* minor_pause_young_estimator() {
364 return _minor_pause_young_estimator;
365 }
366 LinearLeastSquareFit* minor_collection_estimator() {
367 return _minor_collection_estimator;
368 }
369
370 LinearLeastSquareFit* major_collection_estimator() {
371 return _major_collection_estimator;
372 }
373
374 float minor_pause_young_slope() {
375 return _minor_pause_young_estimator->slope();
376 }
377
378 float minor_collection_slope() { return _minor_collection_estimator->slope();}
379 float major_collection_slope() { return _major_collection_estimator->slope();}
380
381 float minor_pause_old_slope() {
382 return _minor_pause_old_estimator->slope();
383 }
384
385 void set_eden_size(size_t new_size) {
386 _eden_size = new_size;
387 }
388 void set_survivor_size(size_t new_size) {
389 _survivor_size = new_size;
390 }
391
392 size_t calculated_eden_size_in_bytes() const {
393 return _eden_size;
394 }
395
396 size_t calculated_promo_size_in_bytes() const {
397 return _promo_size;
398 }
399
400 size_t calculated_survivor_size_in_bytes() const {
401 return _survivor_size;
402 }
403
404 // This is a hint for the heap: we've detected that gc times
405 // are taking longer than GCTimeLimit allows.
406 // Most heaps will choose to throw an OutOfMemoryError when
407 // this occurs but it is up to the heap to request this information
408 // of the policy
409 bool gc_time_limit_exceeded() {
410 return _gc_time_limit_exceeded;
411 }
412 void set_gc_time_limit_exceeded(bool v) {
413 _gc_time_limit_exceeded = v;
414 }
415 bool print_gc_time_limit_would_be_exceeded() {
416 return _print_gc_time_limit_would_be_exceeded;
417 }
418 void set_print_gc_time_limit_would_be_exceeded(bool v) {
419 _print_gc_time_limit_would_be_exceeded = v;
420 }
421
422 uint gc_time_limit_count() { return _gc_time_limit_count; }
423 void reset_gc_time_limit_count() { _gc_time_limit_count = 0; }
424 void inc_gc_time_limit_count() { _gc_time_limit_count++; }
425 // accessors for flags recording the decisions to resize the
426 // generations to meet the pause goal.
427
428 int change_young_gen_for_min_pauses() const {
429 return _change_young_gen_for_min_pauses;
430 }
431 void set_change_young_gen_for_min_pauses(int v) {
432 _change_young_gen_for_min_pauses = v;
433 }
434 void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
435 int decrease_for_footprint() const { return _decrease_for_footprint; }
436 int decide_at_full_gc() { return _decide_at_full_gc; }
437 void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
438
439 // Printing support
440 virtual bool print_adaptive_size_policy_on(outputStream* st) const;
441 bool print_adaptive_size_policy_on(outputStream* st, int
442 tenuring_threshold) const;
443 };
444
445 // Class that can be used to print information about the
446 // adaptive size policy at intervals specified by
447 // AdaptiveSizePolicyOutputInterval. Only print information
448 // if an adaptive size policy is in use.
449 class AdaptiveSizePolicyOutput : StackObj {
450 AdaptiveSizePolicy* _size_policy;
451 bool _do_print;
452 bool print_test(uint count) {
453 // A count of zero is a special value that indicates that the
454 // interval test should be ignored. An interval is of zero is
455 // a special value that indicates that the interval test should
456 // always fail (never do the print based on the interval test).
457 return PrintGCDetails &&
458 UseAdaptiveSizePolicy &&
459 (UseParallelGC || UseConcMarkSweepGC) &&
460 (AdaptiveSizePolicyOutputInterval > 0) &&
461 ((count == 0) ||
462 ((count % AdaptiveSizePolicyOutputInterval) == 0));
463 }
464 public:
465 // The special value of a zero count can be used to ignore
466 // the count test.
467 AdaptiveSizePolicyOutput(uint count) {
468 if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
469 CollectedHeap* heap = Universe::heap();
470 _size_policy = heap->size_policy();
471 _do_print = print_test(count);
472 } else {
473 _size_policy = NULL;
474 _do_print = false;
475 }
476 }
477 AdaptiveSizePolicyOutput(AdaptiveSizePolicy* size_policy,
478 uint count) :
479 _size_policy(size_policy) {
480 if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
481 _do_print = print_test(count);
482 } else {
483 _do_print = false;
484 }
485 }
486 ~AdaptiveSizePolicyOutput() {
487 if (_do_print) {
488 assert(UseAdaptiveSizePolicy, "Should not be in use");
489 _size_policy->print_adaptive_size_policy_on(gclog_or_tty);
490 }
491 }
492 };