comparison src/share/vm/gc_interface/collectedHeap.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This
26 // is an abstract class: there may be many different kinds of heaps. This
27 // class defines the functions that a heap must implement, and contains
28 // infrastructure common to all heaps.
29
30 class BarrierSet;
31 class ThreadClosure;
32 class AdaptiveSizePolicy;
33 class Thread;
34
35 //
36 // CollectedHeap
37 // SharedHeap
38 // GenCollectedHeap
39 // G1CollectedHeap
40 // ParallelScavengeHeap
41 //
42 class CollectedHeap : public CHeapObj {
43 friend class VMStructs;
44 friend class IsGCActiveMark; // Block structured external access to _is_gc_active
45
46 #ifdef ASSERT
47 static int _fire_out_of_memory_count;
48 #endif
49
50 protected:
51 MemRegion _reserved;
52 BarrierSet* _barrier_set;
53 bool _is_gc_active;
54 unsigned int _total_collections; // ... started
55 unsigned int _total_full_collections; // ... started
56 size_t _max_heap_capacity;
57 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
58 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
59
60 // Reason for current garbage collection. Should be set to
61 // a value reflecting no collection between collections.
62 GCCause::Cause _gc_cause;
63 GCCause::Cause _gc_lastcause;
64 PerfStringVariable* _perf_gc_cause;
65 PerfStringVariable* _perf_gc_lastcause;
66
67 // Constructor
68 CollectedHeap();
69
70 // Create a new tlab
71 virtual HeapWord* allocate_new_tlab(size_t size);
72
73 // Fix up tlabs to make the heap well-formed again,
74 // optionally retiring the tlabs.
75 virtual void fill_all_tlabs(bool retire);
76
77 // Accumulate statistics on all tlabs.
78 virtual void accumulate_statistics_all_tlabs();
79
80 // Reinitialize tlabs before resuming mutators.
81 virtual void resize_all_tlabs();
82
83 debug_only(static void check_for_valid_allocation_state();)
84
85 protected:
86 // Allocate from the current thread's TLAB, with broken-out slow path.
87 inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
88 static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
89
90 // Allocate an uninitialized block of the given size, or returns NULL if
91 // this is impossible.
92 inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
93
94 // Like allocate_init, but the block returned by a successful allocation
95 // is guaranteed initialized to zeros.
96 inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
97
98 // Same as common_mem version, except memory is allocated in the permanent area
99 // If there is no permanent area, revert to common_mem_allocate_noinit
100 inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
101
102 // Same as common_mem version, except memory is allocated in the permanent area
103 // If there is no permanent area, revert to common_mem_allocate_init
104 inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
105
106 // Helper functions for (VM) allocation.
107 inline static void post_allocation_setup_common(KlassHandle klass,
108 HeapWord* obj, size_t size);
109 inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
110 HeapWord* objPtr,
111 size_t size);
112
113 inline static void post_allocation_setup_obj(KlassHandle klass,
114 HeapWord* obj, size_t size);
115
116 inline static void post_allocation_setup_array(KlassHandle klass,
117 HeapWord* obj, size_t size,
118 int length);
119
120 // Clears an allocated object.
121 inline static void init_obj(HeapWord* obj, size_t size);
122
123 // Verification functions
124 virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
125 PRODUCT_RETURN;
126 virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
127 PRODUCT_RETURN;
128
129 public:
130 enum Name {
131 Abstract,
132 SharedHeap,
133 GenCollectedHeap,
134 ParallelScavengeHeap,
135 G1CollectedHeap
136 };
137
138 virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
139
140 /**
141 * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
142 * and JNI_OK on success.
143 */
144 virtual jint initialize() = 0;
145
146 // In many heaps, there will be a need to perform some initialization activities
147 // after the Universe is fully formed, but before general heap allocation is allowed.
148 // This is the correct place to place such initialization methods.
149 virtual void post_initialize() = 0;
150
151 MemRegion reserved_region() const { return _reserved; }
152
153 // Return the number of bytes currently reserved, committed, and used,
154 // respectively, for holding objects.
155 size_t reserved_obj_bytes() const { return _reserved.byte_size(); }
156
157 // Future cleanup here. The following functions should specify bytes or
158 // heapwords as part of their signature.
159 virtual size_t capacity() const = 0;
160 virtual size_t used() const = 0;
161
162 // Return "true" if the part of the heap that allocates Java
163 // objects has reached the maximal committed limit that it can
164 // reach, without a garbage collection.
165 virtual bool is_maximal_no_gc() const = 0;
166
167 virtual size_t permanent_capacity() const = 0;
168 virtual size_t permanent_used() const = 0;
169
170 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of
171 // memory that the vm could make available for storing 'normal' java objects.
172 // This is based on the reserved address space, but should not include space
173 // that the vm uses internally for bookkeeping or temporary storage (e.g.,
174 // perm gen space or, in the case of the young gen, one of the survivor
175 // spaces).
176 virtual size_t max_capacity() const = 0;
177
178 // Returns "TRUE" if "p" points into the reserved area of the heap.
179 bool is_in_reserved(const void* p) const {
180 return _reserved.contains(p);
181 }
182
183 bool is_in_reserved_or_null(const void* p) const {
184 return p == NULL || is_in_reserved(p);
185 }
186
187 // Returns "TRUE" if "p" points to the head of an allocated object in the
188 // heap. Since this method can be expensive in general, we restrict its
189 // use to assertion checking only.
190 virtual bool is_in(const void* p) const = 0;
191
192 bool is_in_or_null(const void* p) const {
193 return p == NULL || is_in(p);
194 }
195
196 // Let's define some terms: a "closed" subset of a heap is one that
197 //
198 // 1) contains all currently-allocated objects, and
199 //
200 // 2) is closed under reference: no object in the closed subset
201 // references one outside the closed subset.
202 //
203 // Membership in a heap's closed subset is useful for assertions.
204 // Clearly, the entire heap is a closed subset, so the default
205 // implementation is to use "is_in_reserved". But this may not be too
206 // liberal to perform useful checking. Also, the "is_in" predicate
207 // defines a closed subset, but may be too expensive, since "is_in"
208 // verifies that its argument points to an object head. The
209 // "closed_subset" method allows a heap to define an intermediate
210 // predicate, allowing more precise checking than "is_in_reserved" at
211 // lower cost than "is_in."
212
213 // One important case is a heap composed of disjoint contiguous spaces,
214 // such as the Garbage-First collector. Such heaps have a convenient
215 // closed subset consisting of the allocated portions of those
216 // contiguous spaces.
217
218 // Return "TRUE" iff the given pointer points into the heap's defined
219 // closed subset (which defaults to the entire heap).
220 virtual bool is_in_closed_subset(const void* p) const {
221 return is_in_reserved(p);
222 }
223
224 bool is_in_closed_subset_or_null(const void* p) const {
225 return p == NULL || is_in_closed_subset(p);
226 }
227
228 // Returns "TRUE" if "p" is allocated as "permanent" data.
229 // If the heap does not use "permanent" data, returns the same
230 // value is_in_reserved() would return.
231 // NOTE: this actually returns true if "p" is in reserved space
232 // for the space not that it is actually allocated (i.e. in committed
233 // space). If you need the more conservative answer use is_permanent().
234 virtual bool is_in_permanent(const void *p) const = 0;
235
236 // Returns "TRUE" if "p" is in the committed area of "permanent" data.
237 // If the heap does not use "permanent" data, returns the same
238 // value is_in() would return.
239 virtual bool is_permanent(const void *p) const = 0;
240
241 bool is_in_permanent_or_null(const void *p) const {
242 return p == NULL || is_in_permanent(p);
243 }
244
245 // Returns "TRUE" if "p" is a method oop in the
246 // current heap, with high probability. This predicate
247 // is not stable, in general.
248 bool is_valid_method(oop p) const;
249
250 void set_gc_cause(GCCause::Cause v) {
251 if (UsePerfData) {
252 _gc_lastcause = _gc_cause;
253 _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
254 _perf_gc_cause->set_value(GCCause::to_string(v));
255 }
256 _gc_cause = v;
257 }
258 GCCause::Cause gc_cause() { return _gc_cause; }
259
260 // Preload classes into the shared portion of the heap, and then dump
261 // that data to a file so that it can be loaded directly by another
262 // VM (then terminate).
263 virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
264
265 // General obj/array allocation facilities.
266 inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
267 inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
268 inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
269
270 // Special obj/array allocation facilities.
271 // Some heaps may want to manage "permanent" data uniquely. These default
272 // to the general routines if the heap does not support such handling.
273 inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
274 // permanent_obj_allocate_no_klass_install() does not do the installation of
275 // the klass pointer in the newly created object (as permanent_obj_allocate()
276 // above does). This allows for a delay in the installation of the klass
277 // pointer that is needed during the create of klassKlass's. The
278 // method post_allocation_install_obj_klass() is used to install the
279 // klass pointer.
280 inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
281 int size,
282 TRAPS);
283 inline static void post_allocation_install_obj_klass(KlassHandle klass,
284 oop obj,
285 int size);
286 inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
287
288 // Raw memory allocation facilities
289 // The obj and array allocate methods are covers for these methods.
290 // The permanent allocation method should default to mem_allocate if
291 // permanent memory isn't supported.
292 virtual HeapWord* mem_allocate(size_t size,
293 bool is_noref,
294 bool is_tlab,
295 bool* gc_overhead_limit_was_exceeded) = 0;
296 virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
297
298 // The boundary between a "large" and "small" array of primitives, in words.
299 virtual size_t large_typearray_limit() = 0;
300
301 // Some heaps may offer a contiguous region for shared non-blocking
302 // allocation, via inlined code (by exporting the address of the top and
303 // end fields defining the extent of the contiguous allocation region.)
304
305 // This function returns "true" iff the heap supports this kind of
306 // allocation. (Default is "no".)
307 virtual bool supports_inline_contig_alloc() const {
308 return false;
309 }
310 // These functions return the addresses of the fields that define the
311 // boundaries of the contiguous allocation area. (These fields should be
312 // physically near to one another.)
313 virtual HeapWord** top_addr() const {
314 guarantee(false, "inline contiguous allocation not supported");
315 return NULL;
316 }
317 virtual HeapWord** end_addr() const {
318 guarantee(false, "inline contiguous allocation not supported");
319 return NULL;
320 }
321
322 // Some heaps may be in an unparseable state at certain times between
323 // collections. This may be necessary for efficient implementation of
324 // certain allocation-related activities. Calling this function before
325 // attempting to parse a heap ensures that the heap is in a parsable
326 // state (provided other concurrent activity does not introduce
327 // unparsability). It is normally expected, therefore, that this
328 // method is invoked with the world stopped.
329 // NOTE: if you override this method, make sure you call
330 // super::ensure_parsability so that the non-generational
331 // part of the work gets done. See implementation of
332 // CollectedHeap::ensure_parsability and, for instance,
333 // that of GenCollectedHeap::ensure_parsability().
334 // The argument "retire_tlabs" controls whether existing TLABs
335 // are merely filled or also retired, thus preventing further
336 // allocation from them and necessitating allocation of new TLABs.
337 virtual void ensure_parsability(bool retire_tlabs);
338
339 // Return an estimate of the maximum allocation that could be performed
340 // without triggering any collection or expansion activity. In a
341 // generational collector, for example, this is probably the largest
342 // allocation that could be supported (without expansion) in the youngest
343 // generation. It is "unsafe" because no locks are taken; the result
344 // should be treated as an approximation, not a guarantee, for use in
345 // heuristic resizing decisions.
346 virtual size_t unsafe_max_alloc() = 0;
347
348 // Section on thread-local allocation buffers (TLABs)
349 // If the heap supports thread-local allocation buffers, it should override
350 // the following methods:
351 // Returns "true" iff the heap supports thread-local allocation buffers.
352 // The default is "no".
353 virtual bool supports_tlab_allocation() const {
354 return false;
355 }
356 // The amount of space available for thread-local allocation buffers.
357 virtual size_t tlab_capacity(Thread *thr) const {
358 guarantee(false, "thread-local allocation buffers not supported");
359 return 0;
360 }
361 // An estimate of the maximum allocation that could be performed
362 // for thread-local allocation buffers without triggering any
363 // collection or expansion activity.
364 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
365 guarantee(false, "thread-local allocation buffers not supported");
366 return 0;
367 }
368 // Can a compiler initialize a new object without store barriers?
369 // This permission only extends from the creation of a new object
370 // via a TLAB up to the first subsequent safepoint.
371 virtual bool can_elide_tlab_store_barriers() const {
372 guarantee(kind() < CollectedHeap::G1CollectedHeap, "else change or refactor this");
373 return true;
374 }
375 // If a compiler is eliding store barriers for TLAB-allocated objects,
376 // there is probably a corresponding slow path which can produce
377 // an object allocated anywhere. The compiler's runtime support
378 // promises to call this function on such a slow-path-allocated
379 // object before performing initializations that have elided
380 // store barriers. Returns new_obj, or maybe a safer copy thereof.
381 virtual oop new_store_barrier(oop new_obj);
382
383 // Can a compiler elide a store barrier when it writes
384 // a permanent oop into the heap? Applies when the compiler
385 // is storing x to the heap, where x->is_perm() is true.
386 virtual bool can_elide_permanent_oop_store_barriers() const;
387
388 // Does this heap support heap inspection (+PrintClassHistogram?)
389 virtual bool supports_heap_inspection() const {
390 return false; // Until RFE 5023697 is implemented
391 }
392
393 // Perform a collection of the heap; intended for use in implementing
394 // "System.gc". This probably implies as full a collection as the
395 // "CollectedHeap" supports.
396 virtual void collect(GCCause::Cause cause) = 0;
397
398 // This interface assumes that it's being called by the
399 // vm thread. It collects the heap assuming that the
400 // heap lock is already held and that we are executing in
401 // the context of the vm thread.
402 virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
403
404 // Returns the barrier set for this heap
405 BarrierSet* barrier_set() { return _barrier_set; }
406
407 // Returns "true" iff there is a stop-world GC in progress. (I assume
408 // that it should answer "false" for the concurrent part of a concurrent
409 // collector -- dld).
410 bool is_gc_active() const { return _is_gc_active; }
411
412 // Total number of GC collections (started)
413 unsigned int total_collections() const { return _total_collections; }
414 unsigned int total_full_collections() const { return _total_full_collections;}
415
416 // Increment total number of GC collections (started)
417 // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
418 void increment_total_collections(bool full = false) {
419 _total_collections++;
420 if (full) {
421 increment_total_full_collections();
422 }
423 }
424
425 void increment_total_full_collections() { _total_full_collections++; }
426
427 // Return the AdaptiveSizePolicy for the heap.
428 virtual AdaptiveSizePolicy* size_policy() = 0;
429
430 // Iterate over all the ref-containing fields of all objects, calling
431 // "cl.do_oop" on each. This includes objects in permanent memory.
432 virtual void oop_iterate(OopClosure* cl) = 0;
433
434 // Iterate over all objects, calling "cl.do_object" on each.
435 // This includes objects in permanent memory.
436 virtual void object_iterate(ObjectClosure* cl) = 0;
437
438 // Behaves the same as oop_iterate, except only traverses
439 // interior pointers contained in permanent memory. If there
440 // is no permanent memory, does nothing.
441 virtual void permanent_oop_iterate(OopClosure* cl) = 0;
442
443 // Behaves the same as object_iterate, except only traverses
444 // object contained in permanent memory. If there is no
445 // permanent memory, does nothing.
446 virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
447
448 // NOTE! There is no requirement that a collector implement these
449 // functions.
450 //
451 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
452 // each address in the (reserved) heap is a member of exactly
453 // one block. The defining characteristic of a block is that it is
454 // possible to find its size, and thus to progress forward to the next
455 // block. (Blocks may be of different sizes.) Thus, blocks may
456 // represent Java objects, or they might be free blocks in a
457 // free-list-based heap (or subheap), as long as the two kinds are
458 // distinguishable and the size of each is determinable.
459
460 // Returns the address of the start of the "block" that contains the
461 // address "addr". We say "blocks" instead of "object" since some heaps
462 // may not pack objects densely; a chunk may either be an object or a
463 // non-object.
464 virtual HeapWord* block_start(const void* addr) const = 0;
465
466 // Requires "addr" to be the start of a chunk, and returns its size.
467 // "addr + size" is required to be the start of a new chunk, or the end
468 // of the active area of the heap.
469 virtual size_t block_size(const HeapWord* addr) const = 0;
470
471 // Requires "addr" to be the start of a block, and returns "TRUE" iff
472 // the block is an object.
473 virtual bool block_is_obj(const HeapWord* addr) const = 0;
474
475 // Returns the longest time (in ms) that has elapsed since the last
476 // time that any part of the heap was examined by a garbage collection.
477 virtual jlong millis_since_last_gc() = 0;
478
479 // Perform any cleanup actions necessary before allowing a verification.
480 virtual void prepare_for_verify() = 0;
481
482 virtual void print() const = 0;
483 virtual void print_on(outputStream* st) const = 0;
484
485 // Print all GC threads (other than the VM thread)
486 // used by this heap.
487 virtual void print_gc_threads_on(outputStream* st) const = 0;
488 void print_gc_threads() { print_gc_threads_on(tty); }
489 // Iterator for all GC threads (other than VM thread)
490 virtual void gc_threads_do(ThreadClosure* tc) const = 0;
491
492 // Print any relevant tracing info that flags imply.
493 // Default implementation does nothing.
494 virtual void print_tracing_info() const = 0;
495
496 // Heap verification
497 virtual void verify(bool allow_dirty, bool silent) = 0;
498
499 // Non product verification and debugging.
500 #ifndef PRODUCT
501 // Support for PromotionFailureALot. Return true if it's time to cause a
502 // promotion failure. The no-argument version uses
503 // this->_promotion_failure_alot_count as the counter.
504 inline bool promotion_should_fail(volatile size_t* count);
505 inline bool promotion_should_fail();
506
507 // Reset the PromotionFailureALot counters. Should be called at the end of a
508 // GC in which promotion failure ocurred.
509 inline void reset_promotion_should_fail(volatile size_t* count);
510 inline void reset_promotion_should_fail();
511 #endif // #ifndef PRODUCT
512
513 #ifdef ASSERT
514 static int fired_fake_oom() {
515 return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
516 }
517 #endif
518 };
519
520 // Class to set and reset the GC cause for a CollectedHeap.
521
522 class GCCauseSetter : StackObj {
523 CollectedHeap* _heap;
524 GCCause::Cause _previous_cause;
525 public:
526 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
527 assert(SafepointSynchronize::is_at_safepoint(),
528 "This method manipulates heap state without locking");
529 _heap = heap;
530 _previous_cause = _heap->gc_cause();
531 _heap->set_gc_cause(cause);
532 }
533
534 ~GCCauseSetter() {
535 assert(SafepointSynchronize::is_at_safepoint(),
536 "This method manipulates heap state without locking");
537 _heap->set_gc_cause(_previous_cause);
538 }
539 };