comparison src/share/vm/interpreter/templateInterpreter.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children e5b0439ef4ae
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_templateInterpreter.cpp.incl"
27
28 #ifndef CC_INTERP
29
30 # define __ _masm->
31
32 void TemplateInterpreter::initialize() {
33 if (_code != NULL) return;
34 // assertions
35 assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
36 "dispatch table too small");
37
38 AbstractInterpreter::initialize();
39
40 TemplateTable::initialize();
41
42 // generate interpreter
43 { ResourceMark rm;
44 TraceTime timer("Interpreter generation", TraceStartupTime);
45 int code_size = InterpreterCodeSize;
46 NOT_PRODUCT(code_size *= 4;) // debug uses extra interpreter code space
47 _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
48 "Interpreter");
49 InterpreterGenerator g(_code);
50 if (PrintInterpreter) print();
51 }
52
53 // initialize dispatch table
54 _active_table = _normal_table;
55 }
56
57 //------------------------------------------------------------------------------------------------------------------------
58 // Implementation of EntryPoint
59
60 EntryPoint::EntryPoint() {
61 assert(number_of_states == 9, "check the code below");
62 _entry[btos] = NULL;
63 _entry[ctos] = NULL;
64 _entry[stos] = NULL;
65 _entry[atos] = NULL;
66 _entry[itos] = NULL;
67 _entry[ltos] = NULL;
68 _entry[ftos] = NULL;
69 _entry[dtos] = NULL;
70 _entry[vtos] = NULL;
71 }
72
73
74 EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
75 assert(number_of_states == 9, "check the code below");
76 _entry[btos] = bentry;
77 _entry[ctos] = centry;
78 _entry[stos] = sentry;
79 _entry[atos] = aentry;
80 _entry[itos] = ientry;
81 _entry[ltos] = lentry;
82 _entry[ftos] = fentry;
83 _entry[dtos] = dentry;
84 _entry[vtos] = ventry;
85 }
86
87
88 void EntryPoint::set_entry(TosState state, address entry) {
89 assert(0 <= state && state < number_of_states, "state out of bounds");
90 _entry[state] = entry;
91 }
92
93
94 address EntryPoint::entry(TosState state) const {
95 assert(0 <= state && state < number_of_states, "state out of bounds");
96 return _entry[state];
97 }
98
99
100 void EntryPoint::print() {
101 tty->print("[");
102 for (int i = 0; i < number_of_states; i++) {
103 if (i > 0) tty->print(", ");
104 tty->print(INTPTR_FORMAT, _entry[i]);
105 }
106 tty->print("]");
107 }
108
109
110 bool EntryPoint::operator == (const EntryPoint& y) {
111 int i = number_of_states;
112 while (i-- > 0) {
113 if (_entry[i] != y._entry[i]) return false;
114 }
115 return true;
116 }
117
118
119 //------------------------------------------------------------------------------------------------------------------------
120 // Implementation of DispatchTable
121
122 EntryPoint DispatchTable::entry(int i) const {
123 assert(0 <= i && i < length, "index out of bounds");
124 return
125 EntryPoint(
126 _table[btos][i],
127 _table[ctos][i],
128 _table[stos][i],
129 _table[atos][i],
130 _table[itos][i],
131 _table[ltos][i],
132 _table[ftos][i],
133 _table[dtos][i],
134 _table[vtos][i]
135 );
136 }
137
138
139 void DispatchTable::set_entry(int i, EntryPoint& entry) {
140 assert(0 <= i && i < length, "index out of bounds");
141 assert(number_of_states == 9, "check the code below");
142 _table[btos][i] = entry.entry(btos);
143 _table[ctos][i] = entry.entry(ctos);
144 _table[stos][i] = entry.entry(stos);
145 _table[atos][i] = entry.entry(atos);
146 _table[itos][i] = entry.entry(itos);
147 _table[ltos][i] = entry.entry(ltos);
148 _table[ftos][i] = entry.entry(ftos);
149 _table[dtos][i] = entry.entry(dtos);
150 _table[vtos][i] = entry.entry(vtos);
151 }
152
153
154 bool DispatchTable::operator == (DispatchTable& y) {
155 int i = length;
156 while (i-- > 0) {
157 EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
158 if (!(entry(i) == t)) return false;
159 }
160 return true;
161 }
162
163 address TemplateInterpreter::_remove_activation_entry = NULL;
164 address TemplateInterpreter::_remove_activation_preserving_args_entry = NULL;
165
166
167 address TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
168 address TemplateInterpreter::_throw_ArrayStoreException_entry = NULL;
169 address TemplateInterpreter::_throw_ArithmeticException_entry = NULL;
170 address TemplateInterpreter::_throw_ClassCastException_entry = NULL;
171 address TemplateInterpreter::_throw_NullPointerException_entry = NULL;
172 address TemplateInterpreter::_throw_StackOverflowError_entry = NULL;
173 address TemplateInterpreter::_throw_exception_entry = NULL;
174
175 #ifndef PRODUCT
176 EntryPoint TemplateInterpreter::_trace_code;
177 #endif // !PRODUCT
178 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
179 EntryPoint TemplateInterpreter::_earlyret_entry;
180 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
181 EntryPoint TemplateInterpreter::_continuation_entry;
182 EntryPoint TemplateInterpreter::_safept_entry;
183
184 address TemplateInterpreter::_return_3_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
185 address TemplateInterpreter::_return_5_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
186
187 DispatchTable TemplateInterpreter::_active_table;
188 DispatchTable TemplateInterpreter::_normal_table;
189 DispatchTable TemplateInterpreter::_safept_table;
190 address TemplateInterpreter::_wentry_point[DispatchTable::length];
191
192 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
193 _unimplemented_bytecode = NULL;
194 _illegal_bytecode_sequence = NULL;
195 }
196
197 static const BasicType types[Interpreter::number_of_result_handlers] = {
198 T_BOOLEAN,
199 T_CHAR ,
200 T_BYTE ,
201 T_SHORT ,
202 T_INT ,
203 T_LONG ,
204 T_VOID ,
205 T_FLOAT ,
206 T_DOUBLE ,
207 T_OBJECT
208 };
209
210 void TemplateInterpreterGenerator::generate_all() {
211 AbstractInterpreterGenerator::generate_all();
212
213 { CodeletMark cm(_masm, "error exits");
214 _unimplemented_bytecode = generate_error_exit("unimplemented bytecode");
215 _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
216 }
217
218 #ifndef PRODUCT
219 if (TraceBytecodes) {
220 CodeletMark cm(_masm, "bytecode tracing support");
221 Interpreter::_trace_code =
222 EntryPoint(
223 generate_trace_code(btos),
224 generate_trace_code(ctos),
225 generate_trace_code(stos),
226 generate_trace_code(atos),
227 generate_trace_code(itos),
228 generate_trace_code(ltos),
229 generate_trace_code(ftos),
230 generate_trace_code(dtos),
231 generate_trace_code(vtos)
232 );
233 }
234 #endif // !PRODUCT
235
236 { CodeletMark cm(_masm, "return entry points");
237 for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
238 Interpreter::_return_entry[i] =
239 EntryPoint(
240 generate_return_entry_for(itos, i),
241 generate_return_entry_for(itos, i),
242 generate_return_entry_for(itos, i),
243 generate_return_entry_for(atos, i),
244 generate_return_entry_for(itos, i),
245 generate_return_entry_for(ltos, i),
246 generate_return_entry_for(ftos, i),
247 generate_return_entry_for(dtos, i),
248 generate_return_entry_for(vtos, i)
249 );
250 }
251 }
252
253 { CodeletMark cm(_masm, "earlyret entry points");
254 Interpreter::_earlyret_entry =
255 EntryPoint(
256 generate_earlyret_entry_for(btos),
257 generate_earlyret_entry_for(ctos),
258 generate_earlyret_entry_for(stos),
259 generate_earlyret_entry_for(atos),
260 generate_earlyret_entry_for(itos),
261 generate_earlyret_entry_for(ltos),
262 generate_earlyret_entry_for(ftos),
263 generate_earlyret_entry_for(dtos),
264 generate_earlyret_entry_for(vtos)
265 );
266 }
267
268 { CodeletMark cm(_masm, "deoptimization entry points");
269 for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
270 Interpreter::_deopt_entry[i] =
271 EntryPoint(
272 generate_deopt_entry_for(itos, i),
273 generate_deopt_entry_for(itos, i),
274 generate_deopt_entry_for(itos, i),
275 generate_deopt_entry_for(atos, i),
276 generate_deopt_entry_for(itos, i),
277 generate_deopt_entry_for(ltos, i),
278 generate_deopt_entry_for(ftos, i),
279 generate_deopt_entry_for(dtos, i),
280 generate_deopt_entry_for(vtos, i)
281 );
282 }
283 }
284
285 { CodeletMark cm(_masm, "result handlers for native calls");
286 // The various result converter stublets.
287 int is_generated[Interpreter::number_of_result_handlers];
288 memset(is_generated, 0, sizeof(is_generated));
289
290 for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
291 BasicType type = types[i];
292 if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
293 Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
294 }
295 }
296 }
297
298 for (int j = 0; j < number_of_states; j++) {
299 const TosState states[] = {btos, ctos, stos, itos, ltos, ftos, dtos, atos, vtos};
300 Interpreter::_return_3_addrs_by_index[Interpreter::TosState_as_index(states[j])] = Interpreter::return_entry(states[j], 3);
301 Interpreter::_return_5_addrs_by_index[Interpreter::TosState_as_index(states[j])] = Interpreter::return_entry(states[j], 5);
302 }
303
304 { CodeletMark cm(_masm, "continuation entry points");
305 Interpreter::_continuation_entry =
306 EntryPoint(
307 generate_continuation_for(btos),
308 generate_continuation_for(ctos),
309 generate_continuation_for(stos),
310 generate_continuation_for(atos),
311 generate_continuation_for(itos),
312 generate_continuation_for(ltos),
313 generate_continuation_for(ftos),
314 generate_continuation_for(dtos),
315 generate_continuation_for(vtos)
316 );
317 }
318
319 { CodeletMark cm(_masm, "safepoint entry points");
320 Interpreter::_safept_entry =
321 EntryPoint(
322 generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
323 generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
324 generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
325 generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
326 generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
327 generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
328 generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
329 generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
330 generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
331 );
332 }
333
334 { CodeletMark cm(_masm, "exception handling");
335 // (Note: this is not safepoint safe because thread may return to compiled code)
336 generate_throw_exception();
337 }
338
339 { CodeletMark cm(_masm, "throw exception entrypoints");
340 Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
341 Interpreter::_throw_ArrayStoreException_entry = generate_klass_exception_handler("java/lang/ArrayStoreException" );
342 Interpreter::_throw_ArithmeticException_entry = generate_exception_handler("java/lang/ArithmeticException" , "/ by zero");
343 Interpreter::_throw_ClassCastException_entry = generate_ClassCastException_handler();
344 Interpreter::_throw_NullPointerException_entry = generate_exception_handler("java/lang/NullPointerException" , NULL );
345 Interpreter::_throw_StackOverflowError_entry = generate_StackOverflowError_handler();
346 }
347
348
349
350 #define method_entry(kind) \
351 { CodeletMark cm(_masm, "method entry point (kind = " #kind ")"); \
352 Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind); \
353 }
354
355 // all non-native method kinds
356 method_entry(zerolocals)
357 method_entry(zerolocals_synchronized)
358 method_entry(empty)
359 method_entry(accessor)
360 method_entry(abstract)
361 method_entry(java_lang_math_sin )
362 method_entry(java_lang_math_cos )
363 method_entry(java_lang_math_tan )
364 method_entry(java_lang_math_abs )
365 method_entry(java_lang_math_sqrt )
366 method_entry(java_lang_math_log )
367 method_entry(java_lang_math_log10)
368
369 // all native method kinds (must be one contiguous block)
370 Interpreter::_native_entry_begin = Interpreter::code()->code_end();
371 method_entry(native)
372 method_entry(native_synchronized)
373 Interpreter::_native_entry_end = Interpreter::code()->code_end();
374
375 #undef method_entry
376
377 // Bytecodes
378 set_entry_points_for_all_bytes();
379 set_safepoints_for_all_bytes();
380 }
381
382 //------------------------------------------------------------------------------------------------------------------------
383
384 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
385 address entry = __ pc();
386 __ stop(msg);
387 return entry;
388 }
389
390
391 //------------------------------------------------------------------------------------------------------------------------
392
393 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
394 for (int i = 0; i < DispatchTable::length; i++) {
395 Bytecodes::Code code = (Bytecodes::Code)i;
396 if (Bytecodes::is_defined(code)) {
397 set_entry_points(code);
398 } else {
399 set_unimplemented(i);
400 }
401 }
402 }
403
404
405 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
406 for (int i = 0; i < DispatchTable::length; i++) {
407 Bytecodes::Code code = (Bytecodes::Code)i;
408 if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
409 }
410 }
411
412
413 void TemplateInterpreterGenerator::set_unimplemented(int i) {
414 address e = _unimplemented_bytecode;
415 EntryPoint entry(e, e, e, e, e, e, e, e, e);
416 Interpreter::_normal_table.set_entry(i, entry);
417 Interpreter::_wentry_point[i] = _unimplemented_bytecode;
418 }
419
420
421 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
422 CodeletMark cm(_masm, Bytecodes::name(code), code);
423 // initialize entry points
424 assert(_unimplemented_bytecode != NULL, "should have been generated before");
425 assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
426 address bep = _illegal_bytecode_sequence;
427 address cep = _illegal_bytecode_sequence;
428 address sep = _illegal_bytecode_sequence;
429 address aep = _illegal_bytecode_sequence;
430 address iep = _illegal_bytecode_sequence;
431 address lep = _illegal_bytecode_sequence;
432 address fep = _illegal_bytecode_sequence;
433 address dep = _illegal_bytecode_sequence;
434 address vep = _unimplemented_bytecode;
435 address wep = _unimplemented_bytecode;
436 // code for short & wide version of bytecode
437 if (Bytecodes::is_defined(code)) {
438 Template* t = TemplateTable::template_for(code);
439 assert(t->is_valid(), "just checking");
440 set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
441 }
442 if (Bytecodes::wide_is_defined(code)) {
443 Template* t = TemplateTable::template_for_wide(code);
444 assert(t->is_valid(), "just checking");
445 set_wide_entry_point(t, wep);
446 }
447 // set entry points
448 EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
449 Interpreter::_normal_table.set_entry(code, entry);
450 Interpreter::_wentry_point[code] = wep;
451 }
452
453
454 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
455 assert(t->is_valid(), "template must exist");
456 assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions")
457 wep = __ pc(); generate_and_dispatch(t);
458 }
459
460
461 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
462 assert(t->is_valid(), "template must exist");
463 switch (t->tos_in()) {
464 case btos: vep = __ pc(); __ pop(btos); bep = __ pc(); generate_and_dispatch(t); break;
465 case ctos: vep = __ pc(); __ pop(ctos); sep = __ pc(); generate_and_dispatch(t); break;
466 case stos: vep = __ pc(); __ pop(stos); sep = __ pc(); generate_and_dispatch(t); break;
467 case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
468 case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
469 case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
470 case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
471 case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
472 case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); break;
473 default : ShouldNotReachHere(); break;
474 }
475 }
476
477
478 //------------------------------------------------------------------------------------------------------------------------
479
480 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
481 if (PrintBytecodeHistogram) histogram_bytecode(t);
482 #ifndef PRODUCT
483 // debugging code
484 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
485 if (PrintBytecodePairHistogram) histogram_bytecode_pair(t);
486 if (TraceBytecodes) trace_bytecode(t);
487 if (StopInterpreterAt > 0) stop_interpreter_at();
488 __ verify_FPU(1, t->tos_in());
489 #endif // !PRODUCT
490 int step;
491 if (!t->does_dispatch()) {
492 step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
493 if (tos_out == ilgl) tos_out = t->tos_out();
494 // compute bytecode size
495 assert(step > 0, "just checkin'");
496 // setup stuff for dispatching next bytecode
497 if (ProfileInterpreter && VerifyDataPointer
498 && methodDataOopDesc::bytecode_has_profile(t->bytecode())) {
499 __ verify_method_data_pointer();
500 }
501 __ dispatch_prolog(tos_out, step);
502 }
503 // generate template
504 t->generate(_masm);
505 // advance
506 if (t->does_dispatch()) {
507 #ifdef ASSERT
508 // make sure execution doesn't go beyond this point if code is broken
509 __ should_not_reach_here();
510 #endif // ASSERT
511 } else {
512 // dispatch to next bytecode
513 __ dispatch_epilog(tos_out, step);
514 }
515 }
516
517 //------------------------------------------------------------------------------------------------------------------------
518 // Entry points
519
520 address TemplateInterpreter::return_entry(TosState state, int length) {
521 guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
522 return _return_entry[length].entry(state);
523 }
524
525
526 address TemplateInterpreter::deopt_entry(TosState state, int length) {
527 guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
528 return _deopt_entry[length].entry(state);
529 }
530
531 //------------------------------------------------------------------------------------------------------------------------
532 // Suport for invokes
533
534 int TemplateInterpreter::TosState_as_index(TosState state) {
535 assert( state < number_of_states , "Invalid state in TosState_as_index");
536 assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
537 return (int)state;
538 }
539
540
541 //------------------------------------------------------------------------------------------------------------------------
542 // Safepoint suppport
543
544 static inline void copy_table(address* from, address* to, int size) {
545 // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
546 while (size-- > 0) *to++ = *from++;
547 }
548
549 void TemplateInterpreter::notice_safepoints() {
550 if (!_notice_safepoints) {
551 // switch to safepoint dispatch table
552 _notice_safepoints = true;
553 copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
554 }
555 }
556
557 // switch from the dispatch table which notices safepoints back to the
558 // normal dispatch table. So that we can notice single stepping points,
559 // keep the safepoint dispatch table if we are single stepping in JVMTI.
560 // Note that the should_post_single_step test is exactly as fast as the
561 // JvmtiExport::_enabled test and covers both cases.
562 void TemplateInterpreter::ignore_safepoints() {
563 if (_notice_safepoints) {
564 if (!JvmtiExport::should_post_single_step()) {
565 // switch to normal dispatch table
566 _notice_safepoints = false;
567 copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
568 }
569 }
570 }
571
572 // If deoptimization happens, this method returns the point where to continue in
573 // interpreter. For calls (invokexxxx, newxxxx) the continuation is at next
574 // bci and the top of stack is in eax/edx/FPU tos.
575 // For putfield/getfield, put/getstatic, the continuation is at the same
576 // bci and the TOS is on stack.
577
578 // Note: deopt_entry(type, 0) means reexecute bytecode
579 // deopt_entry(type, length) means continue at next bytecode
580
581 address TemplateInterpreter::continuation_for(methodOop method, address bcp, int callee_parameters, bool is_top_frame, bool& use_next_mdp) {
582 assert(method->contains(bcp), "just checkin'");
583 Bytecodes::Code code = Bytecodes::java_code_at(bcp);
584 if (code == Bytecodes::_return) {
585 // This is used for deopt during registration of finalizers
586 // during Object.<init>. We simply need to resume execution at
587 // the standard return vtos bytecode to pop the frame normally.
588 // reexecuting the real bytecode would cause double registration
589 // of the finalizable object.
590 assert(is_top_frame, "must be on top");
591 return _normal_table.entry(Bytecodes::_return).entry(vtos);
592 } else {
593 return AbstractInterpreter::continuation_for(method, bcp, callee_parameters, is_top_frame, use_next_mdp);
594 }
595 }
596
597 #endif // !CC_INTERP