comparison src/share/vm/memory/blockOffsetTable.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 387a62b4be60 37f87013dfd8
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // The CollectedHeap type requires subtypes to implement a method
26 // "block_start". For some subtypes, notably generational
27 // systems using card-table-based write barriers, the efficiency of this
28 // operation may be important. Implementations of the "BlockOffsetArray"
29 // class may be useful in providing such efficient implementations.
30 //
31 // BlockOffsetTable (abstract)
32 // - BlockOffsetArray (abstract)
33 // - BlockOffsetArrayNonContigSpace
34 // - BlockOffsetArrayContigSpace
35 //
36
37 class ContiguousSpace;
38 class SerializeOopClosure;
39
40 //////////////////////////////////////////////////////////////////////////
41 // The BlockOffsetTable "interface"
42 //////////////////////////////////////////////////////////////////////////
43 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
44 friend class VMStructs;
45 protected:
46 // These members describe the region covered by the table.
47
48 // The space this table is covering.
49 HeapWord* _bottom; // == reserved.start
50 HeapWord* _end; // End of currently allocated region.
51
52 public:
53 // Initialize the table to cover the given space.
54 // The contents of the initial table are undefined.
55 BlockOffsetTable(HeapWord* bottom, HeapWord* end):
56 _bottom(bottom), _end(end) {
57 assert(_bottom <= _end, "arguments out of order");
58 }
59
60 // Note that the committed size of the covered space may have changed,
61 // so the table size might also wish to change.
62 virtual void resize(size_t new_word_size) = 0;
63
64 virtual void set_bottom(HeapWord* new_bottom) {
65 assert(new_bottom <= _end, "new_bottom > _end");
66 _bottom = new_bottom;
67 resize(pointer_delta(_end, _bottom));
68 }
69
70 // Requires "addr" to be contained by a block, and returns the address of
71 // the start of that block.
72 virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
73
74 // Returns the address of the start of the block containing "addr", or
75 // else "null" if it is covered by no block.
76 HeapWord* block_start(const void* addr) const;
77 };
78
79 //////////////////////////////////////////////////////////////////////////
80 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
81 // divides the covered region into "N"-word subregions (where
82 // "N" = 2^"LogN". An array with an entry for each such subregion
83 // indicates how far back one must go to find the start of the
84 // chunk that includes the first word of the subregion.
85 //
86 // Each BlockOffsetArray is owned by a Space. However, the actual array
87 // may be shared by several BlockOffsetArrays; this is useful
88 // when a single resizable area (such as a generation) is divided up into
89 // several spaces in which contiguous allocation takes place. (Consider,
90 // for example, the garbage-first generation.)
91
92 // Here is the shared array type.
93 //////////////////////////////////////////////////////////////////////////
94 // BlockOffsetSharedArray
95 //////////////////////////////////////////////////////////////////////////
96 class BlockOffsetSharedArray: public CHeapObj {
97 friend class BlockOffsetArray;
98 friend class BlockOffsetArrayNonContigSpace;
99 friend class BlockOffsetArrayContigSpace;
100 friend class VMStructs;
101
102 private:
103 enum SomePrivateConstants {
104 LogN = 9,
105 LogN_words = LogN - LogHeapWordSize,
106 N_bytes = 1 << LogN,
107 N_words = 1 << LogN_words
108 };
109
110 // The reserved region covered by the shared array.
111 MemRegion _reserved;
112
113 // End of the current committed region.
114 HeapWord* _end;
115
116 // Array for keeping offsets for retrieving object start fast given an
117 // address.
118 VirtualSpace _vs;
119 u_char* _offset_array; // byte array keeping backwards offsets
120
121 protected:
122 // Bounds checking accessors:
123 // For performance these have to devolve to array accesses in product builds.
124 u_char offset_array(size_t index) const {
125 assert(index < _vs.committed_size(), "index out of range");
126 return _offset_array[index];
127 }
128 void set_offset_array(size_t index, u_char offset) {
129 assert(index < _vs.committed_size(), "index out of range");
130 _offset_array[index] = offset;
131 }
132 void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
133 assert(index < _vs.committed_size(), "index out of range");
134 assert(high >= low, "addresses out of order");
135 assert(pointer_delta(high, low) <= N_words, "offset too large");
136 _offset_array[index] = (u_char)pointer_delta(high, low);
137 }
138 void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
139 assert(index_for(right - 1) < _vs.committed_size(),
140 "right address out of range");
141 assert(left < right, "Heap addresses out of order");
142 size_t num_cards = pointer_delta(right, left) >> LogN_words;
143 memset(&_offset_array[index_for(left)], offset, num_cards);
144 }
145
146 void set_offset_array(size_t left, size_t right, u_char offset) {
147 assert(right < _vs.committed_size(), "right address out of range");
148 assert(left <= right, "indexes out of order");
149 size_t num_cards = right - left + 1;
150 memset(&_offset_array[left], offset, num_cards);
151 }
152
153 void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
154 assert(index < _vs.committed_size(), "index out of range");
155 assert(high >= low, "addresses out of order");
156 assert(pointer_delta(high, low) <= N_words, "offset too large");
157 assert(_offset_array[index] == pointer_delta(high, low),
158 "Wrong offset");
159 }
160
161 bool is_card_boundary(HeapWord* p) const;
162
163 // Return the number of slots needed for an offset array
164 // that covers mem_region_words words.
165 // We always add an extra slot because if an object
166 // ends on a card boundary we put a 0 in the next
167 // offset array slot, so we want that slot always
168 // to be reserved.
169
170 size_t compute_size(size_t mem_region_words) {
171 size_t number_of_slots = (mem_region_words / N_words) + 1;
172 return ReservedSpace::allocation_align_size_up(number_of_slots);
173 }
174
175 public:
176 // Initialize the table to cover from "base" to (at least)
177 // "base + init_word_size". In the future, the table may be expanded
178 // (see "resize" below) up to the size of "_reserved" (which must be at
179 // least "init_word_size".) The contents of the initial table are
180 // undefined; it is the responsibility of the constituent
181 // BlockOffsetTable(s) to initialize cards.
182 BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
183
184 // Notes a change in the committed size of the region covered by the
185 // table. The "new_word_size" may not be larger than the size of the
186 // reserved region this table covers.
187 void resize(size_t new_word_size);
188
189 void set_bottom(HeapWord* new_bottom);
190
191 // Updates all the BlockOffsetArray's sharing this shared array to
192 // reflect the current "top"'s of their spaces.
193 void update_offset_arrays(); // Not yet implemented!
194
195 // Return the appropriate index into "_offset_array" for "p".
196 size_t index_for(const void* p) const;
197
198 // Return the address indicating the start of the region corresponding to
199 // "index" in "_offset_array".
200 HeapWord* address_for_index(size_t index) const;
201
202 // Shared space support
203 void serialize(SerializeOopClosure* soc, HeapWord* start, HeapWord* end);
204 };
205
206 //////////////////////////////////////////////////////////////////////////
207 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
208 //////////////////////////////////////////////////////////////////////////
209 class BlockOffsetArray: public BlockOffsetTable {
210 friend class VMStructs;
211 protected:
212 // The following enums are used by do_block_internal() below
213 enum Action {
214 Action_single, // BOT records a single block (see single_block())
215 Action_mark, // BOT marks the start of a block (see mark_block())
216 Action_check // Check that BOT records block correctly
217 // (see verify_single_block()).
218 };
219
220 enum SomePrivateConstants {
221 N_words = BlockOffsetSharedArray::N_words,
222 LogN = BlockOffsetSharedArray::LogN,
223 // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
224 // All entries are less than "N_words + N_powers".
225 LogBase = 4,
226 Base = (1 << LogBase),
227 N_powers = 14
228 };
229
230 static size_t power_to_cards_back(uint i) {
231 return 1 << (LogBase * i);
232 }
233 static size_t power_to_words_back(uint i) {
234 return power_to_cards_back(i) * N_words;
235 }
236 static size_t entry_to_cards_back(u_char entry) {
237 assert(entry >= N_words, "Precondition");
238 return power_to_cards_back(entry - N_words);
239 }
240 static size_t entry_to_words_back(u_char entry) {
241 assert(entry >= N_words, "Precondition");
242 return power_to_words_back(entry - N_words);
243 }
244
245 // The shared array, which is shared with other BlockOffsetArray's
246 // corresponding to different spaces within a generation or span of
247 // memory.
248 BlockOffsetSharedArray* _array;
249
250 // The space that owns this subregion.
251 Space* _sp;
252
253 // If true, array entries are initialized to 0; otherwise, they are
254 // initialized to point backwards to the beginning of the covered region.
255 bool _init_to_zero;
256
257 // Sets the entries
258 // corresponding to the cards starting at "start" and ending at "end"
259 // to point back to the card before "start": the interval [start, end)
260 // is right-open.
261 void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
262 // Same as above, except that the args here are a card _index_ interval
263 // that is closed: [start_index, end_index]
264 void set_remainder_to_point_to_start_incl(size_t start, size_t end);
265
266 // A helper function for BOT adjustment/verification work
267 void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
268
269 public:
270 // The space may not have its bottom and top set yet, which is why the
271 // region is passed as a parameter. If "init_to_zero" is true, the
272 // elements of the array are initialized to zero. Otherwise, they are
273 // initialized to point backwards to the beginning.
274 BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
275 bool init_to_zero);
276
277 // Note: this ought to be part of the constructor, but that would require
278 // "this" to be passed as a parameter to a member constructor for
279 // the containing concrete subtype of Space.
280 // This would be legal C++, but MS VC++ doesn't allow it.
281 void set_space(Space* sp) { _sp = sp; }
282
283 // Resets the covered region to the given "mr".
284 void set_region(MemRegion mr) {
285 _bottom = mr.start();
286 _end = mr.end();
287 }
288
289 // Note that the committed size of the covered space may have changed,
290 // so the table size might also wish to change.
291 virtual void resize(size_t new_word_size) {
292 HeapWord* new_end = _bottom + new_word_size;
293 if (_end < new_end && !init_to_zero()) {
294 // verify that the old and new boundaries are also card boundaries
295 assert(_array->is_card_boundary(_end),
296 "_end not a card boundary");
297 assert(_array->is_card_boundary(new_end),
298 "new _end would not be a card boundary");
299 // set all the newly added cards
300 _array->set_offset_array(_end, new_end, N_words);
301 }
302 _end = new_end; // update _end
303 }
304
305 // Adjust the BOT to show that it has a single block in the
306 // range [blk_start, blk_start + size). All necessary BOT
307 // cards are adjusted, but _unallocated_block isn't.
308 void single_block(HeapWord* blk_start, HeapWord* blk_end);
309 void single_block(HeapWord* blk, size_t size) {
310 single_block(blk, blk + size);
311 }
312
313 // When the alloc_block() call returns, the block offset table should
314 // have enough information such that any subsequent block_start() call
315 // with an argument equal to an address that is within the range
316 // [blk_start, blk_end) would return the value blk_start, provided
317 // there have been no calls in between that reset this information
318 // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
319 // for an appropriate range covering the said interval).
320 // These methods expect to be called with [blk_start, blk_end)
321 // representing a block of memory in the heap.
322 virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
323 void alloc_block(HeapWord* blk, size_t size) {
324 alloc_block(blk, blk + size);
325 }
326
327 // If true, initialize array slots with no allocated blocks to zero.
328 // Otherwise, make them point back to the front.
329 bool init_to_zero() { return _init_to_zero; }
330
331 // Debugging
332 // Return the index of the last entry in the "active" region.
333 virtual size_t last_active_index() const = 0;
334 // Verify the block offset table
335 void verify() const;
336 void check_all_cards(size_t left_card, size_t right_card) const;
337 };
338
339 ////////////////////////////////////////////////////////////////////////////
340 // A subtype of BlockOffsetArray that takes advantage of the fact
341 // that its underlying space is a NonContiguousSpace, so that some
342 // specialized interfaces can be made available for spaces that
343 // manipulate the table.
344 ////////////////////////////////////////////////////////////////////////////
345 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
346 friend class VMStructs;
347 private:
348 // The portion [_unallocated_block, _sp.end()) of the space that
349 // is a single block known not to contain any objects.
350 // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
351 HeapWord* _unallocated_block;
352
353 public:
354 BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
355 BlockOffsetArray(array, mr, false),
356 _unallocated_block(_bottom) { }
357
358 // accessor
359 HeapWord* unallocated_block() const {
360 assert(BlockOffsetArrayUseUnallocatedBlock,
361 "_unallocated_block is not being maintained");
362 return _unallocated_block;
363 }
364
365 void set_unallocated_block(HeapWord* block) {
366 assert(BlockOffsetArrayUseUnallocatedBlock,
367 "_unallocated_block is not being maintained");
368 assert(block >= _bottom && block <= _end, "out of range");
369 _unallocated_block = block;
370 }
371
372 // These methods expect to be called with [blk_start, blk_end)
373 // representing a block of memory in the heap.
374 void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
375 void alloc_block(HeapWord* blk, size_t size) {
376 alloc_block(blk, blk + size);
377 }
378
379 // The following methods are useful and optimized for a
380 // non-contiguous space.
381
382 // Given a block [blk_start, blk_start + full_blk_size), and
383 // a left_blk_size < full_blk_size, adjust the BOT to show two
384 // blocks [blk_start, blk_start + left_blk_size) and
385 // [blk_start + left_blk_size, blk_start + full_blk_size).
386 // It is assumed (and verified in the non-product VM) that the
387 // BOT was correct for the original block.
388 void split_block(HeapWord* blk_start, size_t full_blk_size,
389 size_t left_blk_size);
390
391 // Adjust BOT to show that it has a block in the range
392 // [blk_start, blk_start + size). Only the first card
393 // of BOT is touched. It is assumed (and verified in the
394 // non-product VM) that the remaining cards of the block
395 // are correct.
396 void mark_block(HeapWord* blk_start, HeapWord* blk_end);
397 void mark_block(HeapWord* blk, size_t size) {
398 mark_block(blk, blk + size);
399 }
400
401 // Adjust _unallocated_block to indicate that a particular
402 // block has been newly allocated or freed. It is assumed (and
403 // verified in the non-product VM) that the BOT is correct for
404 // the given block.
405 void allocated(HeapWord* blk_start, HeapWord* blk_end) {
406 // Verify that the BOT shows [blk, blk + blk_size) to be one block.
407 verify_single_block(blk_start, blk_end);
408 if (BlockOffsetArrayUseUnallocatedBlock) {
409 _unallocated_block = MAX2(_unallocated_block, blk_end);
410 }
411 }
412
413 void allocated(HeapWord* blk, size_t size) {
414 allocated(blk, blk + size);
415 }
416
417 void freed(HeapWord* blk_start, HeapWord* blk_end);
418 void freed(HeapWord* blk, size_t size) {
419 freed(blk, blk + size);
420 }
421
422 HeapWord* block_start_unsafe(const void* addr) const;
423
424 // Requires "addr" to be the start of a card and returns the
425 // start of the block that contains the given address.
426 HeapWord* block_start_careful(const void* addr) const;
427
428
429 // Verification & debugging: ensure that the offset table reflects
430 // the fact that the block [blk_start, blk_end) or [blk, blk + size)
431 // is a single block of storage. NOTE: can't const this because of
432 // call to non-const do_block_internal() below.
433 void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
434 PRODUCT_RETURN;
435 void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
436
437 // Verify that the given block is before _unallocated_block
438 void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
439 const PRODUCT_RETURN;
440 void verify_not_unallocated(HeapWord* blk, size_t size)
441 const PRODUCT_RETURN;
442
443 // Debugging support
444 virtual size_t last_active_index() const;
445 };
446
447 ////////////////////////////////////////////////////////////////////////////
448 // A subtype of BlockOffsetArray that takes advantage of the fact
449 // that its underlying space is a ContiguousSpace, so that its "active"
450 // region can be more efficiently tracked (than for a non-contiguous space).
451 ////////////////////////////////////////////////////////////////////////////
452 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
453 friend class VMStructs;
454 private:
455 // allocation boundary at which offset array must be updated
456 HeapWord* _next_offset_threshold;
457 size_t _next_offset_index; // index corresponding to that boundary
458
459 // Work function when allocation start crosses threshold.
460 void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
461
462 public:
463 BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
464 BlockOffsetArray(array, mr, true) {
465 _next_offset_threshold = NULL;
466 _next_offset_index = 0;
467 }
468
469 void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
470
471 // Initialize the threshold for an empty heap.
472 HeapWord* initialize_threshold();
473 // Zero out the entry for _bottom (offset will be zero)
474 void zero_bottom_entry();
475
476 // Return the next threshold, the point at which the table should be
477 // updated.
478 HeapWord* threshold() const { return _next_offset_threshold; }
479
480 // In general, these methods expect to be called with
481 // [blk_start, blk_end) representing a block of memory in the heap.
482 // In this implementation, however, we are OK even if blk_start and/or
483 // blk_end are NULL because NULL is represented as 0, and thus
484 // never exceeds the "_next_offset_threshold".
485 void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
486 if (blk_end > _next_offset_threshold) {
487 alloc_block_work(blk_start, blk_end);
488 }
489 }
490 void alloc_block(HeapWord* blk, size_t size) {
491 alloc_block(blk, blk + size);
492 }
493
494 HeapWord* block_start_unsafe(const void* addr) const;
495
496 void serialize(SerializeOopClosure* soc);
497
498 // Debugging support
499 virtual size_t last_active_index() const;
500 };