comparison src/share/vm/memory/cardTableModRefBS.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 73e96e5c30df b611e572fc5b
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
26 // enumerate ref fields that have been modified (since the last
27 // enumeration.)
28
29 # include "incls/_precompiled.incl"
30 # include "incls/_cardTableModRefBS.cpp.incl"
31
32 size_t CardTableModRefBS::cards_required(size_t covered_words)
33 {
34 // Add one for a guard card, used to detect errors.
35 const size_t words = align_size_up(covered_words, card_size_in_words);
36 return words / card_size_in_words + 1;
37 }
38
39 size_t CardTableModRefBS::compute_byte_map_size()
40 {
41 assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
42 "unitialized, check declaration order");
43 assert(_page_size != 0, "unitialized, check declaration order");
44 const size_t granularity = os::vm_allocation_granularity();
45 return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
46 }
47
48 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
49 int max_covered_regions):
50 ModRefBarrierSet(max_covered_regions),
51 _whole_heap(whole_heap),
52 _guard_index(cards_required(whole_heap.word_size()) - 1),
53 _last_valid_index(_guard_index - 1),
54 _page_size(os::page_size_for_region(_guard_index + 1, _guard_index + 1, 1)),
55 _byte_map_size(compute_byte_map_size())
56 {
57 _kind = BarrierSet::CardTableModRef;
58
59 HeapWord* low_bound = _whole_heap.start();
60 HeapWord* high_bound = _whole_heap.end();
61 assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
62 assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
63
64 assert(card_size <= 512, "card_size must be less than 512"); // why?
65
66 _covered = new MemRegion[max_covered_regions];
67 _committed = new MemRegion[max_covered_regions];
68 if (_covered == NULL || _committed == NULL)
69 vm_exit_during_initialization("couldn't alloc card table covered region set.");
70 int i;
71 for (i = 0; i < max_covered_regions; i++) {
72 _covered[i].set_word_size(0);
73 _committed[i].set_word_size(0);
74 }
75 _cur_covered_regions = 0;
76
77 const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
78 MAX2(_page_size, (size_t) os::vm_allocation_granularity());
79 ReservedSpace heap_rs(_byte_map_size, rs_align, false);
80 os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
81 _page_size, heap_rs.base(), heap_rs.size());
82 if (!heap_rs.is_reserved()) {
83 vm_exit_during_initialization("Could not reserve enough space for the "
84 "card marking array");
85 }
86
87 // The assember store_check code will do an unsigned shift of the oop,
88 // then add it to byte_map_base, i.e.
89 //
90 // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
91 _byte_map = (jbyte*) heap_rs.base();
92 byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
93 assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
94 assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
95
96 jbyte* guard_card = &_byte_map[_guard_index];
97 uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
98 _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
99 if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
100 // Do better than this for Merlin
101 vm_exit_out_of_memory(_page_size, "card table last card");
102 }
103 *guard_card = last_card;
104
105 _lowest_non_clean =
106 NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
107 _lowest_non_clean_chunk_size =
108 NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
109 _lowest_non_clean_base_chunk_index =
110 NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
111 _last_LNC_resizing_collection =
112 NEW_C_HEAP_ARRAY(int, max_covered_regions);
113 if (_lowest_non_clean == NULL
114 || _lowest_non_clean_chunk_size == NULL
115 || _lowest_non_clean_base_chunk_index == NULL
116 || _last_LNC_resizing_collection == NULL)
117 vm_exit_during_initialization("couldn't allocate an LNC array.");
118 for (i = 0; i < max_covered_regions; i++) {
119 _lowest_non_clean[i] = NULL;
120 _lowest_non_clean_chunk_size[i] = 0;
121 _last_LNC_resizing_collection[i] = -1;
122 }
123
124 if (TraceCardTableModRefBS) {
125 gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
126 gclog_or_tty->print_cr(" "
127 " &_byte_map[0]: " INTPTR_FORMAT
128 " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
129 &_byte_map[0],
130 &_byte_map[_last_valid_index]);
131 gclog_or_tty->print_cr(" "
132 " byte_map_base: " INTPTR_FORMAT,
133 byte_map_base);
134 }
135 }
136
137 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
138 int i;
139 for (i = 0; i < _cur_covered_regions; i++) {
140 if (_covered[i].start() == base) return i;
141 if (_covered[i].start() > base) break;
142 }
143 // If we didn't find it, create a new one.
144 assert(_cur_covered_regions < _max_covered_regions,
145 "too many covered regions");
146 // Move the ones above up, to maintain sorted order.
147 for (int j = _cur_covered_regions; j > i; j--) {
148 _covered[j] = _covered[j-1];
149 _committed[j] = _committed[j-1];
150 }
151 int res = i;
152 _cur_covered_regions++;
153 _covered[res].set_start(base);
154 _covered[res].set_word_size(0);
155 jbyte* ct_start = byte_for(base);
156 uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
157 _committed[res].set_start((HeapWord*)ct_start_aligned);
158 _committed[res].set_word_size(0);
159 return res;
160 }
161
162 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
163 for (int i = 0; i < _cur_covered_regions; i++) {
164 if (_covered[i].contains(addr)) {
165 return i;
166 }
167 }
168 assert(0, "address outside of heap?");
169 return -1;
170 }
171
172 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
173 HeapWord* max_end = NULL;
174 for (int j = 0; j < ind; j++) {
175 HeapWord* this_end = _committed[j].end();
176 if (this_end > max_end) max_end = this_end;
177 }
178 return max_end;
179 }
180
181 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
182 MemRegion mr) const {
183 MemRegion result = mr;
184 for (int r = 0; r < _cur_covered_regions; r += 1) {
185 if (r != self) {
186 result = result.minus(_committed[r]);
187 }
188 }
189 // Never include the guard page.
190 result = result.minus(_guard_region);
191 return result;
192 }
193
194 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
195 // We don't change the start of a region, only the end.
196 assert(_whole_heap.contains(new_region),
197 "attempt to cover area not in reserved area");
198 debug_only(verify_guard();)
199 int ind = find_covering_region_by_base(new_region.start());
200 MemRegion old_region = _covered[ind];
201 assert(old_region.start() == new_region.start(), "just checking");
202 if (new_region.word_size() != old_region.word_size()) {
203 // Commit new or uncommit old pages, if necessary.
204 MemRegion cur_committed = _committed[ind];
205 // Extend the end of this _commited region
206 // to cover the end of any lower _committed regions.
207 // This forms overlapping regions, but never interior regions.
208 HeapWord* max_prev_end = largest_prev_committed_end(ind);
209 if (max_prev_end > cur_committed.end()) {
210 cur_committed.set_end(max_prev_end);
211 }
212 // Align the end up to a page size (starts are already aligned).
213 jbyte* new_end = byte_after(new_region.last());
214 HeapWord* new_end_aligned =
215 (HeapWord*)align_size_up((uintptr_t)new_end, _page_size);
216 assert(new_end_aligned >= (HeapWord*) new_end,
217 "align up, but less");
218 // The guard page is always committed and should not be committed over.
219 HeapWord* new_end_for_commit = MIN2(new_end_aligned, _guard_region.start());
220 if (new_end_for_commit > cur_committed.end()) {
221 // Must commit new pages.
222 MemRegion new_committed =
223 MemRegion(cur_committed.end(), new_end_for_commit);
224
225 assert(!new_committed.is_empty(), "Region should not be empty here");
226 if (!os::commit_memory((char*)new_committed.start(),
227 new_committed.byte_size(), _page_size)) {
228 // Do better than this for Merlin
229 vm_exit_out_of_memory(new_committed.byte_size(),
230 "card table expansion");
231 }
232 // Use new_end_aligned (as opposed to new_end_for_commit) because
233 // the cur_committed region may include the guard region.
234 } else if (new_end_aligned < cur_committed.end()) {
235 // Must uncommit pages.
236 MemRegion uncommit_region =
237 committed_unique_to_self(ind, MemRegion(new_end_aligned,
238 cur_committed.end()));
239 if (!uncommit_region.is_empty()) {
240 if (!os::uncommit_memory((char*)uncommit_region.start(),
241 uncommit_region.byte_size())) {
242 // Do better than this for Merlin
243 vm_exit_out_of_memory(uncommit_region.byte_size(),
244 "card table contraction");
245 }
246 }
247 }
248 // In any case, we can reset the end of the current committed entry.
249 _committed[ind].set_end(new_end_aligned);
250
251 // The default of 0 is not necessarily clean cards.
252 jbyte* entry;
253 if (old_region.last() < _whole_heap.start()) {
254 entry = byte_for(_whole_heap.start());
255 } else {
256 entry = byte_after(old_region.last());
257 }
258 assert(index_for(new_region.last()) < (int) _guard_index,
259 "The guard card will be overwritten");
260 jbyte* end = byte_after(new_region.last());
261 // do nothing if we resized downward.
262 if (entry < end) {
263 memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
264 }
265 }
266 // In any case, the covered size changes.
267 _covered[ind].set_word_size(new_region.word_size());
268 if (TraceCardTableModRefBS) {
269 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
270 gclog_or_tty->print_cr(" "
271 " _covered[%d].start(): " INTPTR_FORMAT
272 " _covered[%d].last(): " INTPTR_FORMAT,
273 ind, _covered[ind].start(),
274 ind, _covered[ind].last());
275 gclog_or_tty->print_cr(" "
276 " _committed[%d].start(): " INTPTR_FORMAT
277 " _committed[%d].last(): " INTPTR_FORMAT,
278 ind, _committed[ind].start(),
279 ind, _committed[ind].last());
280 gclog_or_tty->print_cr(" "
281 " byte_for(start): " INTPTR_FORMAT
282 " byte_for(last): " INTPTR_FORMAT,
283 byte_for(_covered[ind].start()),
284 byte_for(_covered[ind].last()));
285 gclog_or_tty->print_cr(" "
286 " addr_for(start): " INTPTR_FORMAT
287 " addr_for(last): " INTPTR_FORMAT,
288 addr_for((jbyte*) _committed[ind].start()),
289 addr_for((jbyte*) _committed[ind].last()));
290 }
291 debug_only(verify_guard();)
292 }
293
294 // Note that these versions are precise! The scanning code has to handle the
295 // fact that the write barrier may be either precise or imprecise.
296
297 void CardTableModRefBS::write_ref_field_work(oop* field, oop newVal) {
298 inline_write_ref_field(field, newVal);
299 }
300
301
302 void CardTableModRefBS::non_clean_card_iterate(Space* sp,
303 MemRegion mr,
304 DirtyCardToOopClosure* dcto_cl,
305 MemRegionClosure* cl,
306 bool clear) {
307 if (!mr.is_empty()) {
308 int n_threads = SharedHeap::heap()->n_par_threads();
309 if (n_threads > 0) {
310 #ifndef SERIALGC
311 par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, clear, n_threads);
312 #else // SERIALGC
313 fatal("Parallel gc not supported here.");
314 #endif // SERIALGC
315 } else {
316 non_clean_card_iterate_work(mr, cl, clear);
317 }
318 }
319 }
320
321 // NOTE: For this to work correctly, it is important that
322 // we look for non-clean cards below (so as to catch those
323 // marked precleaned), rather than look explicitly for dirty
324 // cards (and miss those marked precleaned). In that sense,
325 // the name precleaned is currently somewhat of a misnomer.
326 void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
327 MemRegionClosure* cl,
328 bool clear) {
329 // Figure out whether we have to worry about parallelism.
330 bool is_par = (SharedHeap::heap()->n_par_threads() > 1);
331 for (int i = 0; i < _cur_covered_regions; i++) {
332 MemRegion mri = mr.intersection(_covered[i]);
333 if (mri.word_size() > 0) {
334 jbyte* cur_entry = byte_for(mri.last());
335 jbyte* limit = byte_for(mri.start());
336 while (cur_entry >= limit) {
337 jbyte* next_entry = cur_entry - 1;
338 if (*cur_entry != clean_card) {
339 size_t non_clean_cards = 1;
340 // Should the next card be included in this range of dirty cards.
341 while (next_entry >= limit && *next_entry != clean_card) {
342 non_clean_cards++;
343 cur_entry = next_entry;
344 next_entry--;
345 }
346 // The memory region may not be on a card boundary. So that
347 // objects beyond the end of the region are not processed, make
348 // cur_cards precise with regard to the end of the memory region.
349 MemRegion cur_cards(addr_for(cur_entry),
350 non_clean_cards * card_size_in_words);
351 MemRegion dirty_region = cur_cards.intersection(mri);
352 if (clear) {
353 for (size_t i = 0; i < non_clean_cards; i++) {
354 // Clean the dirty cards (but leave the other non-clean
355 // alone.) If parallel, do the cleaning atomically.
356 jbyte cur_entry_val = cur_entry[i];
357 if (card_is_dirty_wrt_gen_iter(cur_entry_val)) {
358 if (is_par) {
359 jbyte res = Atomic::cmpxchg(clean_card, &cur_entry[i], cur_entry_val);
360 assert(res != clean_card,
361 "Dirty card mysteriously cleaned");
362 } else {
363 cur_entry[i] = clean_card;
364 }
365 }
366 }
367 }
368 cl->do_MemRegion(dirty_region);
369 }
370 cur_entry = next_entry;
371 }
372 }
373 }
374 }
375
376 void CardTableModRefBS::mod_oop_in_space_iterate(Space* sp,
377 OopClosure* cl,
378 bool clear,
379 bool before_save_marks) {
380 // Note that dcto_cl is resource-allocated, so there is no
381 // corresponding "delete".
382 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision());
383 MemRegion used_mr;
384 if (before_save_marks) {
385 used_mr = sp->used_region_at_save_marks();
386 } else {
387 used_mr = sp->used_region();
388 }
389 non_clean_card_iterate(sp, used_mr, dcto_cl, dcto_cl, clear);
390 }
391
392 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
393 jbyte* cur = byte_for(mr.start());
394 jbyte* last = byte_after(mr.last());
395 while (cur < last) {
396 *cur = dirty_card;
397 cur++;
398 }
399 }
400
401 void CardTableModRefBS::invalidate(MemRegion mr) {
402 for (int i = 0; i < _cur_covered_regions; i++) {
403 MemRegion mri = mr.intersection(_covered[i]);
404 if (!mri.is_empty()) dirty_MemRegion(mri);
405 }
406 }
407
408 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
409 // Be conservative: only clean cards entirely contained within the
410 // region.
411 jbyte* cur;
412 if (mr.start() == _whole_heap.start()) {
413 cur = byte_for(mr.start());
414 } else {
415 assert(mr.start() > _whole_heap.start(), "mr is not covered.");
416 cur = byte_after(mr.start() - 1);
417 }
418 jbyte* last = byte_after(mr.last());
419 memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
420 }
421
422 void CardTableModRefBS::clear(MemRegion mr) {
423 for (int i = 0; i < _cur_covered_regions; i++) {
424 MemRegion mri = mr.intersection(_covered[i]);
425 if (!mri.is_empty()) clear_MemRegion(mri);
426 }
427 }
428
429 // NOTES:
430 // (1) Unlike mod_oop_in_space_iterate() above, dirty_card_iterate()
431 // iterates over dirty cards ranges in increasing address order.
432 // (2) Unlike, e.g., dirty_card_range_after_preclean() below,
433 // this method does not make the dirty cards prelceaned.
434 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
435 MemRegionClosure* cl) {
436 for (int i = 0; i < _cur_covered_regions; i++) {
437 MemRegion mri = mr.intersection(_covered[i]);
438 if (!mri.is_empty()) {
439 jbyte *cur_entry, *next_entry, *limit;
440 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
441 cur_entry <= limit;
442 cur_entry = next_entry) {
443 next_entry = cur_entry + 1;
444 if (*cur_entry == dirty_card) {
445 size_t dirty_cards;
446 // Accumulate maximal dirty card range, starting at cur_entry
447 for (dirty_cards = 1;
448 next_entry <= limit && *next_entry == dirty_card;
449 dirty_cards++, next_entry++);
450 MemRegion cur_cards(addr_for(cur_entry),
451 dirty_cards*card_size_in_words);
452 cl->do_MemRegion(cur_cards);
453 }
454 }
455 }
456 }
457 }
458
459 MemRegion CardTableModRefBS::dirty_card_range_after_preclean(MemRegion mr) {
460 for (int i = 0; i < _cur_covered_regions; i++) {
461 MemRegion mri = mr.intersection(_covered[i]);
462 if (!mri.is_empty()) {
463 jbyte* cur_entry, *next_entry, *limit;
464 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
465 cur_entry <= limit;
466 cur_entry = next_entry) {
467 next_entry = cur_entry + 1;
468 if (*cur_entry == dirty_card) {
469 size_t dirty_cards;
470 // Accumulate maximal dirty card range, starting at cur_entry
471 for (dirty_cards = 1;
472 next_entry <= limit && *next_entry == dirty_card;
473 dirty_cards++, next_entry++);
474 MemRegion cur_cards(addr_for(cur_entry),
475 dirty_cards*card_size_in_words);
476 for (size_t i = 0; i < dirty_cards; i++) {
477 cur_entry[i] = precleaned_card;
478 }
479 return cur_cards;
480 }
481 }
482 }
483 }
484 return MemRegion(mr.end(), mr.end());
485 }
486
487 // Set all the dirty cards in the given region to "precleaned" state.
488 void CardTableModRefBS::preclean_dirty_cards(MemRegion mr) {
489 for (int i = 0; i < _cur_covered_regions; i++) {
490 MemRegion mri = mr.intersection(_covered[i]);
491 if (!mri.is_empty()) {
492 jbyte *cur_entry, *limit;
493 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
494 cur_entry <= limit;
495 cur_entry++) {
496 if (*cur_entry == dirty_card) {
497 *cur_entry = precleaned_card;
498 }
499 }
500 }
501 }
502 }
503
504 uintx CardTableModRefBS::ct_max_alignment_constraint() {
505 return card_size * os::vm_page_size();
506 }
507
508 void CardTableModRefBS::verify_guard() {
509 // For product build verification
510 guarantee(_byte_map[_guard_index] == last_card,
511 "card table guard has been modified");
512 }
513
514 void CardTableModRefBS::verify() {
515 verify_guard();
516 }
517
518 #ifndef PRODUCT
519 class GuaranteeNotModClosure: public MemRegionClosure {
520 CardTableModRefBS* _ct;
521 public:
522 GuaranteeNotModClosure(CardTableModRefBS* ct) : _ct(ct) {}
523 void do_MemRegion(MemRegion mr) {
524 jbyte* entry = _ct->byte_for(mr.start());
525 guarantee(*entry != CardTableModRefBS::clean_card,
526 "Dirty card in region that should be clean");
527 }
528 };
529
530 void CardTableModRefBS::verify_clean_region(MemRegion mr) {
531 GuaranteeNotModClosure blk(this);
532 non_clean_card_iterate_work(mr, &blk, false);
533 }
534 #endif
535
536 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
537 return
538 CardTableModRefBS::card_will_be_scanned(cv) ||
539 _rs->is_prev_nonclean_card_val(cv);
540 };
541
542 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
543 return
544 cv != clean_card &&
545 (CardTableModRefBS::card_may_have_been_dirty(cv) ||
546 CardTableRS::youngergen_may_have_been_dirty(cv));
547 };