comparison src/share/vm/memory/collectorPolicy.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 183f41cf8bfe
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_collectorPolicy.cpp.incl"
27
28 // CollectorPolicy methods.
29
30 void CollectorPolicy::initialize_flags() {
31 if (PermSize > MaxPermSize) {
32 MaxPermSize = PermSize;
33 }
34 PermSize = align_size_down(PermSize, min_alignment());
35 MaxPermSize = align_size_up(MaxPermSize, max_alignment());
36
37 MinPermHeapExpansion = align_size_down(MinPermHeapExpansion, min_alignment());
38 MaxPermHeapExpansion = align_size_down(MaxPermHeapExpansion, min_alignment());
39
40 MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
41
42 SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
43 SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
44 SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
45
46 assert(PermSize % min_alignment() == 0, "permanent space alignment");
47 assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
48 assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
49 assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
50 assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
51 if (PermSize < M) {
52 vm_exit_during_initialization("Too small initial permanent heap");
53 }
54 }
55
56 void CollectorPolicy::initialize_size_info() {
57 // User inputs from -mx and ms are aligned
58 _initial_heap_byte_size = align_size_up(Arguments::initial_heap_size(),
59 min_alignment());
60 _min_heap_byte_size = align_size_up(Arguments::min_heap_size(),
61 min_alignment());
62 _max_heap_byte_size = align_size_up(MaxHeapSize, max_alignment());
63
64 // Check validity of heap parameters from launcher
65 if (_initial_heap_byte_size == 0) {
66 _initial_heap_byte_size = NewSize + OldSize;
67 } else {
68 Universe::check_alignment(_initial_heap_byte_size, min_alignment(),
69 "initial heap");
70 }
71 if (_min_heap_byte_size == 0) {
72 _min_heap_byte_size = NewSize + OldSize;
73 } else {
74 Universe::check_alignment(_min_heap_byte_size, min_alignment(),
75 "initial heap");
76 }
77
78 // Check heap parameter properties
79 if (_initial_heap_byte_size < M) {
80 vm_exit_during_initialization("Too small initial heap");
81 }
82 // Check heap parameter properties
83 if (_min_heap_byte_size < M) {
84 vm_exit_during_initialization("Too small minimum heap");
85 }
86 if (_initial_heap_byte_size <= NewSize) {
87 // make sure there is at least some room in old space
88 vm_exit_during_initialization("Too small initial heap for new size specified");
89 }
90 if (_max_heap_byte_size < _min_heap_byte_size) {
91 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
92 }
93 if (_initial_heap_byte_size < _min_heap_byte_size) {
94 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
95 }
96 if (_max_heap_byte_size < _initial_heap_byte_size) {
97 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
98 }
99 }
100
101 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
102 _permanent_generation =
103 new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
104 SharedReadOnlySize,
105 SharedReadWriteSize,
106 SharedMiscDataSize,
107 SharedMiscCodeSize);
108 if (_permanent_generation == NULL) {
109 vm_exit_during_initialization("Unable to allocate gen spec");
110 }
111 }
112
113
114 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
115 int max_covered_regions) {
116 switch (rem_set_name()) {
117 case GenRemSet::CardTable: {
118 if (barrier_set_name() != BarrierSet::CardTableModRef)
119 vm_exit_during_initialization("Mismatch between RS and BS.");
120 CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
121 return res;
122 }
123 default:
124 guarantee(false, "unrecognized GenRemSet::Name");
125 return NULL;
126 }
127 }
128
129 // GenCollectorPolicy methods.
130
131 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
132 size_t init_promo_size,
133 size_t init_survivor_size) {
134 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
135 _size_policy = new AdaptiveSizePolicy(init_eden_size,
136 init_promo_size,
137 init_survivor_size,
138 max_gc_minor_pause_sec,
139 GCTimeRatio);
140 }
141
142 size_t GenCollectorPolicy::compute_max_alignment() {
143 // The card marking array and the offset arrays for old generations are
144 // committed in os pages as well. Make sure they are entirely full (to
145 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
146 // byte entry and the os page size is 4096, the maximum heap size should
147 // be 512*4096 = 2MB aligned.
148 size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
149
150 // Parallel GC does its own alignment of the generations to avoid requiring a
151 // large page (256M on some platforms) for the permanent generation. The
152 // other collectors should also be updated to do their own alignment and then
153 // this use of lcm() should be removed.
154 if (UseLargePages && !UseParallelGC) {
155 // in presence of large pages we have to make sure that our
156 // alignment is large page aware
157 alignment = lcm(os::large_page_size(), alignment);
158 }
159
160 return alignment;
161 }
162
163 void GenCollectorPolicy::initialize_flags() {
164 // All sizes must be multiples of the generation granularity.
165 set_min_alignment((uintx) Generation::GenGrain);
166 set_max_alignment(compute_max_alignment());
167 assert(max_alignment() >= min_alignment() &&
168 max_alignment() % min_alignment() == 0,
169 "invalid alignment constraints");
170
171 CollectorPolicy::initialize_flags();
172
173 // All generational heaps have a youngest gen; handle those flags here.
174
175 // Adjust max size parameters
176 if (NewSize > MaxNewSize) {
177 MaxNewSize = NewSize;
178 }
179 NewSize = align_size_down(NewSize, min_alignment());
180 MaxNewSize = align_size_down(MaxNewSize, min_alignment());
181
182 // Check validity of heap flags
183 assert(NewSize % min_alignment() == 0, "eden space alignment");
184 assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
185
186 if (NewSize < 3*min_alignment()) {
187 // make sure there room for eden and two survivor spaces
188 vm_exit_during_initialization("Too small new size specified");
189 }
190 if (SurvivorRatio < 1 || NewRatio < 1) {
191 vm_exit_during_initialization("Invalid heap ratio specified");
192 }
193 }
194
195 void TwoGenerationCollectorPolicy::initialize_flags() {
196 GenCollectorPolicy::initialize_flags();
197
198 OldSize = align_size_down(OldSize, min_alignment());
199 if (NewSize + OldSize > MaxHeapSize) {
200 MaxHeapSize = NewSize + OldSize;
201 }
202 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
203
204 always_do_update_barrier = UseConcMarkSweepGC;
205 BlockOffsetArrayUseUnallocatedBlock =
206 BlockOffsetArrayUseUnallocatedBlock || ParallelGCThreads > 0;
207
208 // Check validity of heap flags
209 assert(OldSize % min_alignment() == 0, "old space alignment");
210 assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
211 }
212
213 void GenCollectorPolicy::initialize_size_info() {
214 CollectorPolicy::initialize_size_info();
215
216 // Minimum sizes of the generations may be different than
217 // the initial sizes.
218 if (!FLAG_IS_DEFAULT(NewSize)) {
219 _min_gen0_size = NewSize;
220 } else {
221 _min_gen0_size = align_size_down(_min_heap_byte_size / (NewRatio+1),
222 min_alignment());
223 // We bound the minimum size by NewSize below (since it historically
224 // would have been NewSize and because the NewRatio calculation could
225 // yield a size that is too small) and bound it by MaxNewSize above.
226 // This is not always best. The NewSize calculated by CMS (which has
227 // a fixed minimum of 16m) can sometimes be "too" large. Consider
228 // the case where -Xmx32m. The CMS calculated NewSize would be about
229 // half the entire heap which seems too large. But the counter
230 // example is seen when the client defaults for NewRatio are used.
231 // An initial young generation size of 640k was observed
232 // with -Xmx128m -XX:MaxNewSize=32m when NewSize was not used
233 // as a lower bound as with
234 // _min_gen0_size = MIN2(_min_gen0_size, MaxNewSize);
235 // and 640k seemed too small a young generation.
236 _min_gen0_size = MIN2(MAX2(_min_gen0_size, NewSize), MaxNewSize);
237 }
238
239 // Parameters are valid, compute area sizes.
240 size_t max_new_size = align_size_down(_max_heap_byte_size / (NewRatio+1),
241 min_alignment());
242 max_new_size = MIN2(MAX2(max_new_size, _min_gen0_size), MaxNewSize);
243
244 // desired_new_size is used to set the initial size. The
245 // initial size must be greater than the minimum size.
246 size_t desired_new_size =
247 align_size_down(_initial_heap_byte_size / (NewRatio+1),
248 min_alignment());
249
250 size_t new_size = MIN2(MAX2(desired_new_size, _min_gen0_size), max_new_size);
251
252 _initial_gen0_size = new_size;
253 _max_gen0_size = max_new_size;
254 }
255
256 void TwoGenerationCollectorPolicy::initialize_size_info() {
257 GenCollectorPolicy::initialize_size_info();
258
259 // Minimum sizes of the generations may be different than
260 // the initial sizes. An inconsistently is permitted here
261 // in the total size that can be specified explicitly by
262 // command line specification of OldSize and NewSize and
263 // also a command line specification of -Xms. Issue a warning
264 // but allow the values to pass.
265 if (!FLAG_IS_DEFAULT(OldSize)) {
266 _min_gen1_size = OldSize;
267 // The generation minimums and the overall heap mimimum should
268 // be within one heap alignment.
269 if ((_min_gen1_size + _min_gen0_size + max_alignment()) <
270 _min_heap_byte_size) {
271 warning("Inconsistency between minimum heap size and minimum "
272 "generation sizes: using min heap = " SIZE_FORMAT,
273 _min_heap_byte_size);
274 }
275 } else {
276 _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
277 }
278
279 _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
280 _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
281 }
282
283 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
284 bool is_tlab,
285 bool* gc_overhead_limit_was_exceeded) {
286 GenCollectedHeap *gch = GenCollectedHeap::heap();
287
288 debug_only(gch->check_for_valid_allocation_state());
289 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
290 HeapWord* result = NULL;
291
292 // Loop until the allocation is satisified,
293 // or unsatisfied after GC.
294 for (int try_count = 1; /* return or throw */; try_count += 1) {
295 HandleMark hm; // discard any handles allocated in each iteration
296
297 // First allocation attempt is lock-free.
298 Generation *gen0 = gch->get_gen(0);
299 assert(gen0->supports_inline_contig_alloc(),
300 "Otherwise, must do alloc within heap lock");
301 if (gen0->should_allocate(size, is_tlab)) {
302 result = gen0->par_allocate(size, is_tlab);
303 if (result != NULL) {
304 assert(gch->is_in_reserved(result), "result not in heap");
305 return result;
306 }
307 }
308 unsigned int gc_count_before; // read inside the Heap_lock locked region
309 {
310 MutexLocker ml(Heap_lock);
311 if (PrintGC && Verbose) {
312 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
313 " attempting locked slow path allocation");
314 }
315 // Note that only large objects get a shot at being
316 // allocated in later generations.
317 bool first_only = ! should_try_older_generation_allocation(size);
318
319 result = gch->attempt_allocation(size, is_tlab, first_only);
320 if (result != NULL) {
321 assert(gch->is_in_reserved(result), "result not in heap");
322 return result;
323 }
324
325 // There are NULL's returned for different circumstances below.
326 // In general gc_overhead_limit_was_exceeded should be false so
327 // set it so here and reset it to true only if the gc time
328 // limit is being exceeded as checked below.
329 *gc_overhead_limit_was_exceeded = false;
330
331 if (GC_locker::is_active_and_needs_gc()) {
332 if (is_tlab) {
333 return NULL; // Caller will retry allocating individual object
334 }
335 if (!gch->is_maximal_no_gc()) {
336 // Try and expand heap to satisfy request
337 result = expand_heap_and_allocate(size, is_tlab);
338 // result could be null if we are out of space
339 if (result != NULL) {
340 return result;
341 }
342 }
343
344 // If this thread is not in a jni critical section, we stall
345 // the requestor until the critical section has cleared and
346 // GC allowed. When the critical section clears, a GC is
347 // initiated by the last thread exiting the critical section; so
348 // we retry the allocation sequence from the beginning of the loop,
349 // rather than causing more, now probably unnecessary, GC attempts.
350 JavaThread* jthr = JavaThread::current();
351 if (!jthr->in_critical()) {
352 MutexUnlocker mul(Heap_lock);
353 // Wait for JNI critical section to be exited
354 GC_locker::stall_until_clear();
355 continue;
356 } else {
357 if (CheckJNICalls) {
358 fatal("Possible deadlock due to allocating while"
359 " in jni critical section");
360 }
361 return NULL;
362 }
363 }
364
365 // Read the gc count while the heap lock is held.
366 gc_count_before = Universe::heap()->total_collections();
367 }
368
369 // Allocation has failed and a collection is about
370 // to be done. If the gc time limit was exceeded the
371 // last time a collection was done, return NULL so
372 // that an out-of-memory will be thrown. Clear
373 // gc_time_limit_exceeded so that subsequent attempts
374 // at a collection will be made.
375 if (size_policy()->gc_time_limit_exceeded()) {
376 *gc_overhead_limit_was_exceeded = true;
377 size_policy()->set_gc_time_limit_exceeded(false);
378 return NULL;
379 }
380
381 VM_GenCollectForAllocation op(size,
382 is_tlab,
383 gc_count_before);
384 VMThread::execute(&op);
385 if (op.prologue_succeeded()) {
386 result = op.result();
387 if (op.gc_locked()) {
388 assert(result == NULL, "must be NULL if gc_locked() is true");
389 continue; // retry and/or stall as necessary
390 }
391 assert(result == NULL || gch->is_in_reserved(result),
392 "result not in heap");
393 return result;
394 }
395
396 // Give a warning if we seem to be looping forever.
397 if ((QueuedAllocationWarningCount > 0) &&
398 (try_count % QueuedAllocationWarningCount == 0)) {
399 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
400 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
401 }
402 }
403 }
404
405 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
406 bool is_tlab) {
407 GenCollectedHeap *gch = GenCollectedHeap::heap();
408 HeapWord* result = NULL;
409 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
410 Generation *gen = gch->get_gen(i);
411 if (gen->should_allocate(size, is_tlab)) {
412 result = gen->expand_and_allocate(size, is_tlab);
413 }
414 }
415 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
416 return result;
417 }
418
419 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
420 bool is_tlab) {
421 GenCollectedHeap *gch = GenCollectedHeap::heap();
422 GCCauseSetter x(gch, GCCause::_allocation_failure);
423 HeapWord* result = NULL;
424
425 assert(size != 0, "Precondition violated");
426 if (GC_locker::is_active_and_needs_gc()) {
427 // GC locker is active; instead of a collection we will attempt
428 // to expand the heap, if there's room for expansion.
429 if (!gch->is_maximal_no_gc()) {
430 result = expand_heap_and_allocate(size, is_tlab);
431 }
432 return result; // could be null if we are out of space
433 } else if (!gch->incremental_collection_will_fail()) {
434 // The gc_prologues have not executed yet. The value
435 // for incremental_collection_will_fail() is the remanent
436 // of the last collection.
437 // Do an incremental collection.
438 gch->do_collection(false /* full */,
439 false /* clear_all_soft_refs */,
440 size /* size */,
441 is_tlab /* is_tlab */,
442 number_of_generations() - 1 /* max_level */);
443 } else {
444 // Try a full collection; see delta for bug id 6266275
445 // for the original code and why this has been simplified
446 // with from-space allocation criteria modified and
447 // such allocation moved out of the safepoint path.
448 gch->do_collection(true /* full */,
449 false /* clear_all_soft_refs */,
450 size /* size */,
451 is_tlab /* is_tlab */,
452 number_of_generations() - 1 /* max_level */);
453 }
454
455 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
456
457 if (result != NULL) {
458 assert(gch->is_in_reserved(result), "result not in heap");
459 return result;
460 }
461
462 // OK, collection failed, try expansion.
463 result = expand_heap_and_allocate(size, is_tlab);
464 if (result != NULL) {
465 return result;
466 }
467
468 // If we reach this point, we're really out of memory. Try every trick
469 // we can to reclaim memory. Force collection of soft references. Force
470 // a complete compaction of the heap. Any additional methods for finding
471 // free memory should be here, especially if they are expensive. If this
472 // attempt fails, an OOM exception will be thrown.
473 {
474 IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
475
476 gch->do_collection(true /* full */,
477 true /* clear_all_soft_refs */,
478 size /* size */,
479 is_tlab /* is_tlab */,
480 number_of_generations() - 1 /* max_level */);
481 }
482
483 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
484 if (result != NULL) {
485 assert(gch->is_in_reserved(result), "result not in heap");
486 return result;
487 }
488
489 // What else? We might try synchronous finalization later. If the total
490 // space available is large enough for the allocation, then a more
491 // complete compaction phase than we've tried so far might be
492 // appropriate.
493 return NULL;
494 }
495
496 size_t GenCollectorPolicy::large_typearray_limit() {
497 return FastAllocateSizeLimit;
498 }
499
500 // Return true if any of the following is true:
501 // . the allocation won't fit into the current young gen heap
502 // . gc locker is occupied (jni critical section)
503 // . heap memory is tight -- the most recent previous collection
504 // was a full collection because a partial collection (would
505 // have) failed and is likely to fail again
506 bool GenCollectorPolicy::should_try_older_generation_allocation(
507 size_t word_size) const {
508 GenCollectedHeap* gch = GenCollectedHeap::heap();
509 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
510 return (word_size > heap_word_size(gen0_capacity))
511 || (GC_locker::is_active_and_needs_gc())
512 || ( gch->last_incremental_collection_failed()
513 && gch->incremental_collection_will_fail());
514 }
515
516
517 //
518 // MarkSweepPolicy methods
519 //
520
521 MarkSweepPolicy::MarkSweepPolicy() {
522 initialize_all();
523 }
524
525 void MarkSweepPolicy::initialize_generations() {
526 initialize_perm_generation(PermGen::MarkSweepCompact);
527 _generations = new GenerationSpecPtr[number_of_generations()];
528 if (_generations == NULL)
529 vm_exit_during_initialization("Unable to allocate gen spec");
530
531 if (UseParNewGC && ParallelGCThreads > 0) {
532 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
533 } else {
534 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
535 }
536 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
537
538 if (_generations[0] == NULL || _generations[1] == NULL)
539 vm_exit_during_initialization("Unable to allocate gen spec");
540 }
541
542 void MarkSweepPolicy::initialize_gc_policy_counters() {
543 // initialize the policy counters - 2 collectors, 3 generations
544 if (UseParNewGC && ParallelGCThreads > 0) {
545 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
546 }
547 else {
548 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
549 }
550 }