comparison src/share/vm/memory/referenceProcessor.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children f21b879b4c72
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_referenceProcessor.cpp.incl"
27
28 // List of discovered references.
29 class DiscoveredList {
30 public:
31 DiscoveredList() : _head(NULL), _len(0) { }
32 oop head() const { return _head; }
33 oop* head_ptr() { return &_head; }
34 void set_head(oop o) { _head = o; }
35 bool empty() const { return _head == ReferenceProcessor::_sentinelRef; }
36 size_t length() { return _len; }
37 void set_length(size_t len) { _len = len; }
38 private:
39 size_t _len;
40 oop _head;
41 };
42
43 oop ReferenceProcessor::_sentinelRef = NULL;
44
45 const int subclasses_of_ref = REF_PHANTOM - REF_OTHER;
46
47 void referenceProcessor_init() {
48 ReferenceProcessor::init_statics();
49 }
50
51 void ReferenceProcessor::init_statics() {
52 assert(_sentinelRef == NULL, "should be initialized precsiely once");
53 EXCEPTION_MARK;
54 _sentinelRef = instanceKlass::cast(
55 SystemDictionary::object_klass())->
56 allocate_permanent_instance(THREAD);
57
58 // Initialize the master soft ref clock.
59 java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
60
61 if (HAS_PENDING_EXCEPTION) {
62 Handle ex(THREAD, PENDING_EXCEPTION);
63 vm_exit_during_initialization(ex);
64 }
65 assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
66 "Just constructed it!");
67 guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
68 RefDiscoveryPolicy == ReferentBasedDiscovery,
69 "Unrecongnized RefDiscoveryPolicy");
70 }
71
72
73 ReferenceProcessor* ReferenceProcessor::create_ref_processor(
74 MemRegion span,
75 bool atomic_discovery,
76 bool mt_discovery,
77 BoolObjectClosure* is_alive_non_header,
78 int parallel_gc_threads,
79 bool mt_processing)
80 {
81 int mt_degree = 1;
82 if (parallel_gc_threads > 1) {
83 mt_degree = parallel_gc_threads;
84 }
85 ReferenceProcessor* rp =
86 new ReferenceProcessor(span, atomic_discovery,
87 mt_discovery, mt_degree,
88 mt_processing);
89 if (rp == NULL) {
90 vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
91 }
92 rp->set_is_alive_non_header(is_alive_non_header);
93 return rp;
94 }
95
96
97 ReferenceProcessor::ReferenceProcessor(MemRegion span,
98 bool atomic_discovery, bool mt_discovery, int mt_degree,
99 bool mt_processing) :
100 _discovering_refs(false),
101 _enqueuing_is_done(false),
102 _is_alive_non_header(NULL),
103 _processing_is_mt(mt_processing),
104 _next_id(0)
105 {
106 _span = span;
107 _discovery_is_atomic = atomic_discovery;
108 _discovery_is_mt = mt_discovery;
109 _num_q = mt_degree;
110 _discoveredSoftRefs = NEW_C_HEAP_ARRAY(DiscoveredList, _num_q * subclasses_of_ref);
111 if (_discoveredSoftRefs == NULL) {
112 vm_exit_during_initialization("Could not allocated RefProc Array");
113 }
114 _discoveredWeakRefs = &_discoveredSoftRefs[_num_q];
115 _discoveredFinalRefs = &_discoveredWeakRefs[_num_q];
116 _discoveredPhantomRefs = &_discoveredFinalRefs[_num_q];
117 assert(_sentinelRef != NULL, "_sentinelRef is NULL");
118 // Initialized all entries to _sentinelRef
119 for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
120 _discoveredSoftRefs[i].set_head(_sentinelRef);
121 _discoveredSoftRefs[i].set_length(0);
122 }
123 }
124
125 #ifndef PRODUCT
126 void ReferenceProcessor::verify_no_references_recorded() {
127 guarantee(!_discovering_refs, "Discovering refs?");
128 for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
129 guarantee(_discoveredSoftRefs[i].empty(),
130 "Found non-empty discovered list");
131 }
132 }
133 #endif
134
135 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
136 for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
137 f->do_oop(_discoveredSoftRefs[i].head_ptr());
138 }
139 }
140
141 void ReferenceProcessor::oops_do(OopClosure* f) {
142 f->do_oop(&_sentinelRef);
143 }
144
145 void ReferenceProcessor::update_soft_ref_master_clock()
146 {
147 // Update (advance) the soft ref master clock field. This must be done
148 // after processing the soft ref list.
149 jlong now = os::javaTimeMillis();
150 jlong clock = java_lang_ref_SoftReference::clock();
151 NOT_PRODUCT(
152 if (now < clock) {
153 warning("time warp: %d to %d", clock, now);
154 }
155 )
156 // In product mode, protect ourselves from system time being adjusted
157 // externally and going backward; see note in the implementation of
158 // GenCollectedHeap::time_since_last_gc() for the right way to fix
159 // this uniformly throughout the VM; see bug-id 4741166. XXX
160 if (now > clock) {
161 java_lang_ref_SoftReference::set_clock(now);
162 }
163 // Else leave clock stalled at its old value until time progresses
164 // past clock value.
165 }
166
167
168 void
169 ReferenceProcessor::process_discovered_references(
170 ReferencePolicy* policy,
171 BoolObjectClosure* is_alive,
172 OopClosure* keep_alive,
173 VoidClosure* complete_gc,
174 AbstractRefProcTaskExecutor* task_executor) {
175 NOT_PRODUCT(verify_ok_to_handle_reflists());
176
177 assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
178 // Stop treating discovered references specially.
179 disable_discovery();
180
181 bool trace_time = PrintGCDetails && PrintReferenceGC;
182 // Soft references
183 {
184 TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
185 process_discovered_reflist(_discoveredSoftRefs, policy, true,
186 is_alive, keep_alive, complete_gc, task_executor);
187 }
188
189 update_soft_ref_master_clock();
190
191 // Weak references
192 {
193 TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
194 process_discovered_reflist(_discoveredWeakRefs, NULL, true,
195 is_alive, keep_alive, complete_gc, task_executor);
196 }
197
198 // Final references
199 {
200 TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
201 process_discovered_reflist(_discoveredFinalRefs, NULL, false,
202 is_alive, keep_alive, complete_gc, task_executor);
203 }
204
205 // Phantom references
206 {
207 TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
208 process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
209 is_alive, keep_alive, complete_gc, task_executor);
210 }
211
212 // Weak global JNI references. It would make more sense (semantically) to
213 // traverse these simultaneously with the regular weak references above, but
214 // that is not how the JDK1.2 specification is. See #4126360. Native code can
215 // thus use JNI weak references to circumvent the phantom references and
216 // resurrect a "post-mortem" object.
217 {
218 TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
219 if (task_executor != NULL) {
220 task_executor->set_single_threaded_mode();
221 }
222 process_phaseJNI(is_alive, keep_alive, complete_gc);
223 }
224 }
225
226
227 #ifndef PRODUCT
228 // Calculate the number of jni handles.
229 unsigned int ReferenceProcessor::count_jni_refs()
230 {
231 class AlwaysAliveClosure: public BoolObjectClosure {
232 public:
233 bool do_object_b(oop obj) { return true; }
234 void do_object(oop obj) { assert(false, "Don't call"); }
235 };
236
237 class CountHandleClosure: public OopClosure {
238 private:
239 int _count;
240 public:
241 CountHandleClosure(): _count(0) {}
242 void do_oop(oop* unused) {
243 _count++;
244 }
245 int count() { return _count; }
246 };
247 CountHandleClosure global_handle_count;
248 AlwaysAliveClosure always_alive;
249 JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
250 return global_handle_count.count();
251 }
252 #endif
253
254 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
255 OopClosure* keep_alive,
256 VoidClosure* complete_gc) {
257 #ifndef PRODUCT
258 if (PrintGCDetails && PrintReferenceGC) {
259 unsigned int count = count_jni_refs();
260 gclog_or_tty->print(", %u refs", count);
261 }
262 #endif
263 JNIHandles::weak_oops_do(is_alive, keep_alive);
264 // Finally remember to keep sentinel around
265 keep_alive->do_oop(&_sentinelRef);
266 complete_gc->do_void();
267 }
268
269 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
270 NOT_PRODUCT(verify_ok_to_handle_reflists());
271 // Remember old value of pending references list
272 oop* pending_list_addr = java_lang_ref_Reference::pending_list_addr();
273 oop old_pending_list_value = *pending_list_addr;
274
275 // Enqueue references that are not made active again, and
276 // clear the decks for the next collection (cycle).
277 enqueue_discovered_reflists(pending_list_addr, task_executor);
278 // Do the oop-check on pending_list_addr missed in
279 // enqueue_discovered_reflist. We should probably
280 // do a raw oop_check so that future such idempotent
281 // oop_stores relying on the oop-check side-effect
282 // may be elided automatically and safely without
283 // affecting correctness.
284 oop_store(pending_list_addr, *(pending_list_addr));
285
286 // Stop treating discovered references specially.
287 disable_discovery();
288
289 // Return true if new pending references were added
290 return old_pending_list_value != *pending_list_addr;
291 }
292
293 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
294 oop* pending_list_addr) {
295 // Given a list of refs linked through the "discovered" field
296 // (java.lang.ref.Reference.discovered) chain them through the
297 // "next" field (java.lang.ref.Reference.next) and prepend
298 // to the pending list.
299 if (TraceReferenceGC && PrintGCDetails) {
300 gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
301 INTPTR_FORMAT, (address)refs_list.head());
302 }
303 oop obj = refs_list.head();
304 // Walk down the list, copying the discovered field into
305 // the next field and clearing it (except for the last
306 // non-sentinel object which is treated specially to avoid
307 // confusion with an active reference).
308 while (obj != _sentinelRef) {
309 assert(obj->is_instanceRef(), "should be reference object");
310 oop next = java_lang_ref_Reference::discovered(obj);
311 if (TraceReferenceGC && PrintGCDetails) {
312 gclog_or_tty->print_cr(" obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
313 (oopDesc*) obj, (oopDesc*) next);
314 }
315 assert(*java_lang_ref_Reference::next_addr(obj) == NULL,
316 "The reference should not be enqueued");
317 if (next == _sentinelRef) { // obj is last
318 // Swap refs_list into pendling_list_addr and
319 // set obj's next to what we read from pending_list_addr.
320 oop old = (oop)Atomic::xchg_ptr(refs_list.head(), pending_list_addr);
321 // Need oop_check on pending_list_addr above;
322 // see special oop-check code at the end of
323 // enqueue_discovered_reflists() further below.
324 if (old == NULL) {
325 // obj should be made to point to itself, since
326 // pending list was empty.
327 java_lang_ref_Reference::set_next(obj, obj);
328 } else {
329 java_lang_ref_Reference::set_next(obj, old);
330 }
331 } else {
332 java_lang_ref_Reference::set_next(obj, next);
333 }
334 java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
335 obj = next;
336 }
337 }
338
339 // Parallel enqueue task
340 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
341 public:
342 RefProcEnqueueTask(ReferenceProcessor& ref_processor,
343 DiscoveredList discovered_refs[],
344 oop* pending_list_addr,
345 oop sentinel_ref,
346 int n_queues)
347 : EnqueueTask(ref_processor, discovered_refs,
348 pending_list_addr, sentinel_ref, n_queues)
349 { }
350
351 virtual void work(unsigned int work_id)
352 {
353 assert(work_id < (unsigned int)_ref_processor.num_q(), "Index out-of-bounds");
354 // Simplest first cut: static partitioning.
355 int index = work_id;
356 for (int j = 0; j < subclasses_of_ref; j++, index += _n_queues) {
357 _ref_processor.enqueue_discovered_reflist(
358 _refs_lists[index], _pending_list_addr);
359 _refs_lists[index].set_head(_sentinel_ref);
360 _refs_lists[index].set_length(0);
361 }
362 }
363 };
364
365 // Enqueue references that are not made active again
366 void ReferenceProcessor::enqueue_discovered_reflists(oop* pending_list_addr,
367 AbstractRefProcTaskExecutor* task_executor) {
368 if (_processing_is_mt && task_executor != NULL) {
369 // Parallel code
370 RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
371 pending_list_addr, _sentinelRef, _num_q);
372 task_executor->execute(tsk);
373 } else {
374 // Serial code: call the parent class's implementation
375 for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
376 enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
377 _discoveredSoftRefs[i].set_head(_sentinelRef);
378 _discoveredSoftRefs[i].set_length(0);
379 }
380 }
381 }
382
383 // Iterator for the list of discovered references.
384 class DiscoveredListIterator {
385 public:
386 inline DiscoveredListIterator(DiscoveredList& refs_list,
387 OopClosure* keep_alive,
388 BoolObjectClosure* is_alive);
389
390 // End Of List.
391 inline bool has_next() const
392 { return _next != ReferenceProcessor::_sentinelRef; }
393
394 // Get oop to the Reference object.
395 inline oop obj() const { return _ref; }
396
397 // Get oop to the referent object.
398 inline oop referent() const { return _referent; }
399
400 // Returns true if referent is alive.
401 inline bool is_referent_alive() const;
402
403 // Loads data for the current reference.
404 // The "allow_null_referent" argument tells us to allow for the possibility
405 // of a NULL referent in the discovered Reference object. This typically
406 // happens in the case of concurrent collectors that may have done the
407 // discovery concurrently or interleaved with mutator execution.
408 inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
409
410 // Move to the next discovered reference.
411 inline void next();
412
413 // Remove the current reference from the list and move to the next.
414 inline void remove();
415
416 // Make the Reference object active again.
417 inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
418
419 // Make the referent alive.
420 inline void make_referent_alive() { _keep_alive->do_oop(_referent_addr); }
421
422 // Update the discovered field.
423 inline void update_discovered() { _keep_alive->do_oop(_prev_next); }
424
425 // NULL out referent pointer.
426 inline void clear_referent() { *_referent_addr = NULL; }
427
428 // Statistics
429 NOT_PRODUCT(
430 inline size_t processed() const { return _processed; }
431 inline size_t removed() const { return _removed; }
432 )
433
434 private:
435 inline void move_to_next();
436
437 private:
438 DiscoveredList& _refs_list;
439 oop* _prev_next;
440 oop _ref;
441 oop* _discovered_addr;
442 oop _next;
443 oop* _referent_addr;
444 oop _referent;
445 OopClosure* _keep_alive;
446 BoolObjectClosure* _is_alive;
447 DEBUG_ONLY(
448 oop _first_seen; // cyclic linked list check
449 )
450 NOT_PRODUCT(
451 size_t _processed;
452 size_t _removed;
453 )
454 };
455
456 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList& refs_list,
457 OopClosure* keep_alive,
458 BoolObjectClosure* is_alive)
459 : _refs_list(refs_list),
460 _prev_next(refs_list.head_ptr()),
461 _ref(refs_list.head()),
462 #ifdef ASSERT
463 _first_seen(refs_list.head()),
464 #endif
465 #ifndef PRODUCT
466 _processed(0),
467 _removed(0),
468 #endif
469 _next(refs_list.head()),
470 _keep_alive(keep_alive),
471 _is_alive(is_alive)
472 { }
473
474 inline bool DiscoveredListIterator::is_referent_alive() const
475 {
476 return _is_alive->do_object_b(_referent);
477 }
478
479 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent))
480 {
481 _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
482 assert(_discovered_addr && (*_discovered_addr)->is_oop_or_null(),
483 "discovered field is bad");
484 _next = *_discovered_addr;
485 _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
486 _referent = *_referent_addr;
487 assert(Universe::heap()->is_in_reserved_or_null(_referent),
488 "Wrong oop found in java.lang.Reference object");
489 assert(allow_null_referent ?
490 _referent->is_oop_or_null()
491 : _referent->is_oop(),
492 "bad referent");
493 }
494
495 inline void DiscoveredListIterator::next()
496 {
497 _prev_next = _discovered_addr;
498 move_to_next();
499 }
500
501 inline void DiscoveredListIterator::remove()
502 {
503 assert(_ref->is_oop(), "Dropping a bad reference");
504 // Clear the discovered_addr field so that the object does
505 // not look like it has been discovered.
506 *_discovered_addr = NULL;
507 // Remove Reference object from list.
508 *_prev_next = _next;
509 NOT_PRODUCT(_removed++);
510 move_to_next();
511 }
512
513 inline void DiscoveredListIterator::move_to_next()
514 {
515 _ref = _next;
516 assert(_ref != _first_seen, "cyclic ref_list found");
517 NOT_PRODUCT(_processed++);
518 }
519
520
521 // NOTE: process_phase*() are largely similar, and at a high level
522 // merely iterate over the extant list applying a predicate to
523 // each of its elements and possibly removing that element from the
524 // list and applying some further closures to that element.
525 // We should consider the possibility of replacing these
526 // process_phase*() methods by abstracting them into
527 // a single general iterator invocation that receives appropriate
528 // closures that accomplish this work.
529
530 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
531 // referents are not alive, but that should be kept alive for policy reasons.
532 // Keep alive the transitive closure of all such referents.
533 void
534 ReferenceProcessor::process_phase1(DiscoveredList& refs_list_addr,
535 ReferencePolicy* policy,
536 BoolObjectClosure* is_alive,
537 OopClosure* keep_alive,
538 VoidClosure* complete_gc) {
539 assert(policy != NULL, "Must have a non-NULL policy");
540 DiscoveredListIterator iter(refs_list_addr, keep_alive, is_alive);
541 // Decide which softly reachable refs should be kept alive.
542 while (iter.has_next()) {
543 iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
544 bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
545 if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
546 if (TraceReferenceGC) {
547 gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s" ") by policy",
548 (address)iter.obj(), iter.obj()->blueprint()->internal_name());
549 }
550 // Make the Reference object active again
551 iter.make_active();
552 // keep the referent around
553 iter.make_referent_alive();
554 // Remove Reference object from list
555 iter.remove();
556 } else {
557 iter.next();
558 }
559 }
560 // Close the reachable set
561 complete_gc->do_void();
562 NOT_PRODUCT(
563 if (PrintGCDetails && TraceReferenceGC) {
564 gclog_or_tty->print(" Dropped %d dead Refs out of %d "
565 "discovered Refs by policy ", iter.removed(), iter.processed());
566 }
567 )
568 }
569
570 // Traverse the list and remove any Refs that are not active, or
571 // whose referents are either alive or NULL.
572 void
573 ReferenceProcessor::pp2_work(DiscoveredList& refs_list_addr,
574 BoolObjectClosure* is_alive,
575 OopClosure* keep_alive)
576 {
577 assert(discovery_is_atomic(), "Error");
578 DiscoveredListIterator iter(refs_list_addr, keep_alive, is_alive);
579 while (iter.has_next()) {
580 iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
581 DEBUG_ONLY(oop* next_addr = java_lang_ref_Reference::next_addr(iter.obj());)
582 assert(*next_addr == NULL, "Should not discover inactive Reference");
583 if (iter.is_referent_alive()) {
584 if (TraceReferenceGC) {
585 gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
586 (address)iter.obj(), iter.obj()->blueprint()->internal_name());
587 }
588 // The referent is reachable after all.
589 // Update the referent pointer as necessary: Note that this
590 // should not entail any recursive marking because the
591 // referent must already have been traversed.
592 iter.make_referent_alive();
593 // Remove Reference object from list
594 iter.remove();
595 } else {
596 iter.next();
597 }
598 }
599 NOT_PRODUCT(
600 if (PrintGCDetails && TraceReferenceGC) {
601 gclog_or_tty->print(" Dropped %d active Refs out of %d "
602 "Refs in discovered list ", iter.removed(), iter.processed());
603 }
604 )
605 }
606
607 void
608 ReferenceProcessor::pp2_work_concurrent_discovery(
609 DiscoveredList& refs_list_addr,
610 BoolObjectClosure* is_alive,
611 OopClosure* keep_alive,
612 VoidClosure* complete_gc)
613 {
614 assert(!discovery_is_atomic(), "Error");
615 DiscoveredListIterator iter(refs_list_addr, keep_alive, is_alive);
616 while (iter.has_next()) {
617 iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
618 oop* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
619 if ((iter.referent() == NULL || iter.is_referent_alive() ||
620 *next_addr != NULL)) {
621 assert((*next_addr)->is_oop_or_null(), "bad next field");
622 // Remove Reference object from list
623 iter.remove();
624 // Trace the cohorts
625 iter.make_referent_alive();
626 keep_alive->do_oop(next_addr);
627 } else {
628 iter.next();
629 }
630 }
631 // Now close the newly reachable set
632 complete_gc->do_void();
633 NOT_PRODUCT(
634 if (PrintGCDetails && TraceReferenceGC) {
635 gclog_or_tty->print(" Dropped %d active Refs out of %d "
636 "Refs in discovered list ", iter.removed(), iter.processed());
637 }
638 )
639 }
640
641 // Traverse the list and process the referents, by either
642 // either clearing them or keeping them (and their reachable
643 // closure) alive.
644 void
645 ReferenceProcessor::process_phase3(DiscoveredList& refs_list_addr,
646 bool clear_referent,
647 BoolObjectClosure* is_alive,
648 OopClosure* keep_alive,
649 VoidClosure* complete_gc) {
650 DiscoveredListIterator iter(refs_list_addr, keep_alive, is_alive);
651 while (iter.has_next()) {
652 iter.update_discovered();
653 iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
654 if (clear_referent) {
655 // NULL out referent pointer
656 iter.clear_referent();
657 } else {
658 // keep the referent around
659 iter.make_referent_alive();
660 }
661 if (TraceReferenceGC) {
662 gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
663 clear_referent ? "cleared " : "",
664 (address)iter.obj(), iter.obj()->blueprint()->internal_name());
665 }
666 assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
667 // If discovery is concurrent, we may have objects with null referents,
668 // being those that were concurrently cleared after they were discovered
669 // (and not subsequently precleaned).
670 assert( (discovery_is_atomic() && iter.referent()->is_oop())
671 || (!discovery_is_atomic() && iter.referent()->is_oop_or_null(UseConcMarkSweepGC)),
672 "Adding a bad referent");
673 iter.next();
674 }
675 // Remember to keep sentinel pointer around
676 iter.update_discovered();
677 // Close the reachable set
678 complete_gc->do_void();
679 }
680
681 void
682 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& ref_list) {
683 oop obj = ref_list.head();
684 while (obj != _sentinelRef) {
685 oop* discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
686 obj = *discovered_addr;
687 *discovered_addr = NULL;
688 }
689 ref_list.set_head(_sentinelRef);
690 ref_list.set_length(0);
691 }
692
693 void
694 ReferenceProcessor::abandon_partial_discovered_list_arr(DiscoveredList refs_lists[]) {
695 for (int i = 0; i < _num_q; i++) {
696 abandon_partial_discovered_list(refs_lists[i]);
697 }
698 }
699
700 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
701 public:
702 RefProcPhase1Task(ReferenceProcessor& ref_processor,
703 DiscoveredList refs_lists[],
704 ReferencePolicy* policy,
705 bool marks_oops_alive)
706 : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
707 _policy(policy)
708 { }
709 virtual void work(unsigned int i, BoolObjectClosure& is_alive,
710 OopClosure& keep_alive,
711 VoidClosure& complete_gc)
712 {
713 _ref_processor.process_phase1(_refs_lists[i], _policy,
714 &is_alive, &keep_alive, &complete_gc);
715 }
716 private:
717 ReferencePolicy* _policy;
718 };
719
720 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
721 public:
722 RefProcPhase2Task(ReferenceProcessor& ref_processor,
723 DiscoveredList refs_lists[],
724 bool marks_oops_alive)
725 : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
726 { }
727 virtual void work(unsigned int i, BoolObjectClosure& is_alive,
728 OopClosure& keep_alive,
729 VoidClosure& complete_gc)
730 {
731 _ref_processor.process_phase2(_refs_lists[i],
732 &is_alive, &keep_alive, &complete_gc);
733 }
734 };
735
736 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
737 public:
738 RefProcPhase3Task(ReferenceProcessor& ref_processor,
739 DiscoveredList refs_lists[],
740 bool clear_referent,
741 bool marks_oops_alive)
742 : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
743 _clear_referent(clear_referent)
744 { }
745 virtual void work(unsigned int i, BoolObjectClosure& is_alive,
746 OopClosure& keep_alive,
747 VoidClosure& complete_gc)
748 {
749 _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
750 &is_alive, &keep_alive, &complete_gc);
751 }
752 private:
753 bool _clear_referent;
754 };
755
756 // Balances reference queues.
757 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
758 {
759 // calculate total length
760 size_t total_refs = 0;
761 for (int i = 0; i < _num_q; ++i) {
762 total_refs += ref_lists[i].length();
763 }
764 size_t avg_refs = total_refs / _num_q + 1;
765 int to_idx = 0;
766 for (int from_idx = 0; from_idx < _num_q; from_idx++) {
767 while (ref_lists[from_idx].length() > avg_refs) {
768 assert(to_idx < _num_q, "Sanity Check!");
769 if (ref_lists[to_idx].length() < avg_refs) {
770 // move superfluous refs
771 size_t refs_to_move =
772 MIN2(ref_lists[from_idx].length() - avg_refs,
773 avg_refs - ref_lists[to_idx].length());
774 oop move_head = ref_lists[from_idx].head();
775 oop move_tail = move_head;
776 oop new_head = move_head;
777 // find an element to split the list on
778 for (size_t j = 0; j < refs_to_move; ++j) {
779 move_tail = new_head;
780 new_head = *java_lang_ref_Reference::discovered_addr(new_head);
781 }
782 java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
783 ref_lists[to_idx].set_head(move_head);
784 ref_lists[to_idx].set_length(ref_lists[to_idx].length() + refs_to_move);
785 ref_lists[from_idx].set_head(new_head);
786 ref_lists[from_idx].set_length(ref_lists[from_idx].length() - refs_to_move);
787 } else {
788 ++to_idx;
789 }
790 }
791 }
792 }
793
794 void
795 ReferenceProcessor::process_discovered_reflist(
796 DiscoveredList refs_lists[],
797 ReferencePolicy* policy,
798 bool clear_referent,
799 BoolObjectClosure* is_alive,
800 OopClosure* keep_alive,
801 VoidClosure* complete_gc,
802 AbstractRefProcTaskExecutor* task_executor)
803 {
804 bool mt = task_executor != NULL && _processing_is_mt;
805 if (mt && ParallelRefProcBalancingEnabled) {
806 balance_queues(refs_lists);
807 }
808 if (PrintReferenceGC && PrintGCDetails) {
809 size_t total = 0;
810 for (int i = 0; i < _num_q; ++i) {
811 total += refs_lists[i].length();
812 }
813 gclog_or_tty->print(", %u refs", total);
814 }
815
816 // Phase 1 (soft refs only):
817 // . Traverse the list and remove any SoftReferences whose
818 // referents are not alive, but that should be kept alive for
819 // policy reasons. Keep alive the transitive closure of all
820 // such referents.
821 if (policy != NULL) {
822 if (mt) {
823 RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
824 task_executor->execute(phase1);
825 } else {
826 for (int i = 0; i < _num_q; i++) {
827 process_phase1(refs_lists[i], policy,
828 is_alive, keep_alive, complete_gc);
829 }
830 }
831 } else { // policy == NULL
832 assert(refs_lists != _discoveredSoftRefs,
833 "Policy must be specified for soft references.");
834 }
835
836 // Phase 2:
837 // . Traverse the list and remove any refs whose referents are alive.
838 if (mt) {
839 RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
840 task_executor->execute(phase2);
841 } else {
842 for (int i = 0; i < _num_q; i++) {
843 process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
844 }
845 }
846
847 // Phase 3:
848 // . Traverse the list and process referents as appropriate.
849 if (mt) {
850 RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
851 task_executor->execute(phase3);
852 } else {
853 for (int i = 0; i < _num_q; i++) {
854 process_phase3(refs_lists[i], clear_referent,
855 is_alive, keep_alive, complete_gc);
856 }
857 }
858 }
859
860 void ReferenceProcessor::clean_up_discovered_references() {
861 // loop over the lists
862 for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
863 if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
864 gclog_or_tty->print_cr(
865 "\nScrubbing %s discovered list of Null referents",
866 list_name(i));
867 }
868 clean_up_discovered_reflist(_discoveredSoftRefs[i]);
869 }
870 }
871
872 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
873 assert(!discovery_is_atomic(), "Else why call this method?");
874 DiscoveredListIterator iter(refs_list, NULL, NULL);
875 size_t length = refs_list.length();
876 while (iter.has_next()) {
877 iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
878 oop* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
879 assert((*next_addr)->is_oop_or_null(), "bad next field");
880 // If referent has been cleared or Reference is not active,
881 // drop it.
882 if (iter.referent() == NULL || *next_addr != NULL) {
883 debug_only(
884 if (PrintGCDetails && TraceReferenceGC) {
885 gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
886 INTPTR_FORMAT " with next field: " INTPTR_FORMAT
887 " and referent: " INTPTR_FORMAT,
888 (address)iter.obj(), (address)*next_addr, (address)iter.referent());
889 }
890 )
891 // Remove Reference object from list
892 iter.remove();
893 --length;
894 } else {
895 iter.next();
896 }
897 }
898 refs_list.set_length(length);
899 NOT_PRODUCT(
900 if (PrintGCDetails && TraceReferenceGC) {
901 gclog_or_tty->print(
902 " Removed %d Refs with NULL referents out of %d discovered Refs",
903 iter.removed(), iter.processed());
904 }
905 )
906 }
907
908 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
909 int id = 0;
910 // Determine the queue index to use for this object.
911 if (_discovery_is_mt) {
912 // During a multi-threaded discovery phase,
913 // each thread saves to its "own" list.
914 Thread* thr = Thread::current();
915 assert(thr->is_GC_task_thread(),
916 "Dubious cast from Thread* to WorkerThread*?");
917 id = ((WorkerThread*)thr)->id();
918 } else {
919 // single-threaded discovery, we save in round-robin
920 // fashion to each of the lists.
921 if (_processing_is_mt) {
922 id = next_id();
923 }
924 }
925 assert(0 <= id && id < _num_q, "Id is out-of-bounds (call Freud?)");
926
927 // Get the discovered queue to which we will add
928 DiscoveredList* list = NULL;
929 switch (rt) {
930 case REF_OTHER:
931 // Unknown reference type, no special treatment
932 break;
933 case REF_SOFT:
934 list = &_discoveredSoftRefs[id];
935 break;
936 case REF_WEAK:
937 list = &_discoveredWeakRefs[id];
938 break;
939 case REF_FINAL:
940 list = &_discoveredFinalRefs[id];
941 break;
942 case REF_PHANTOM:
943 list = &_discoveredPhantomRefs[id];
944 break;
945 case REF_NONE:
946 // we should not reach here if we are an instanceRefKlass
947 default:
948 ShouldNotReachHere();
949 }
950 return list;
951 }
952
953 inline void ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& list,
954 oop obj, oop* discovered_addr) {
955 assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
956 // First we must make sure this object is only enqueued once. CAS in a non null
957 // discovered_addr.
958 oop retest = (oop)Atomic::cmpxchg_ptr(list.head(), discovered_addr, NULL);
959 if (retest == NULL) {
960 // This thread just won the right to enqueue the object.
961 // We have separate lists for enqueueing so no synchronization
962 // is necessary.
963 list.set_head(obj);
964 list.set_length(list.length() + 1);
965 } else {
966 // If retest was non NULL, another thread beat us to it:
967 // The reference has already been discovered...
968 if (TraceReferenceGC) {
969 gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
970 obj, obj->blueprint()->internal_name());
971 }
972 }
973 }
974
975
976 // We mention two of several possible choices here:
977 // #0: if the reference object is not in the "originating generation"
978 // (or part of the heap being collected, indicated by our "span"
979 // we don't treat it specially (i.e. we scan it as we would
980 // a normal oop, treating its references as strong references).
981 // This means that references can't be enqueued unless their
982 // referent is also in the same span. This is the simplest,
983 // most "local" and most conservative approach, albeit one
984 // that may cause weak references to be enqueued least promptly.
985 // We call this choice the "ReferenceBasedDiscovery" policy.
986 // #1: the reference object may be in any generation (span), but if
987 // the referent is in the generation (span) being currently collected
988 // then we can discover the reference object, provided
989 // the object has not already been discovered by
990 // a different concurrently running collector (as may be the
991 // case, for instance, if the reference object is in CMS and
992 // the referent in DefNewGeneration), and provided the processing
993 // of this reference object by the current collector will
994 // appear atomic to every other collector in the system.
995 // (Thus, for instance, a concurrent collector may not
996 // discover references in other generations even if the
997 // referent is in its own generation). This policy may,
998 // in certain cases, enqueue references somewhat sooner than
999 // might Policy #0 above, but at marginally increased cost
1000 // and complexity in processing these references.
1001 // We call this choice the "RefeferentBasedDiscovery" policy.
1002 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1003 // We enqueue references only if we are discovering refs
1004 // (rather than processing discovered refs).
1005 if (!_discovering_refs || !RegisterReferences) {
1006 return false;
1007 }
1008 // We only enqueue active references.
1009 oop* next_addr = java_lang_ref_Reference::next_addr(obj);
1010 if (*next_addr != NULL) {
1011 return false;
1012 }
1013
1014 HeapWord* obj_addr = (HeapWord*)obj;
1015 if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1016 !_span.contains(obj_addr)) {
1017 // Reference is not in the originating generation;
1018 // don't treat it specially (i.e. we want to scan it as a normal
1019 // object with strong references).
1020 return false;
1021 }
1022
1023 // We only enqueue references whose referents are not (yet) strongly
1024 // reachable.
1025 if (is_alive_non_header() != NULL) {
1026 oop referent = java_lang_ref_Reference::referent(obj);
1027 // We'd like to assert the following:
1028 // assert(referent != NULL, "Refs with null referents already filtered");
1029 // However, since this code may be executed concurrently with
1030 // mutators, which can clear() the referent, it is not
1031 // guaranteed that the referent is non-NULL.
1032 if (is_alive_non_header()->do_object_b(referent)) {
1033 return false; // referent is reachable
1034 }
1035 }
1036
1037 oop* discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1038 assert(discovered_addr != NULL && (*discovered_addr)->is_oop_or_null(),
1039 "bad discovered field");
1040 if (*discovered_addr != NULL) {
1041 // The reference has already been discovered...
1042 if (TraceReferenceGC) {
1043 gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1044 (oopDesc*)obj, obj->blueprint()->internal_name());
1045 }
1046 if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1047 // assumes that an object is not processed twice;
1048 // if it's been already discovered it must be on another
1049 // generation's discovered list; so we won't discover it.
1050 return false;
1051 } else {
1052 assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1053 "Unrecognized policy");
1054 // Check assumption that an object is not potentially
1055 // discovered twice except by concurrent collectors that potentially
1056 // trace the same Reference object twice.
1057 assert(UseConcMarkSweepGC,
1058 "Only possible with a concurrent collector");
1059 return true;
1060 }
1061 }
1062
1063 if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1064 oop referent = java_lang_ref_Reference::referent(obj);
1065 assert(referent->is_oop(), "bad referent");
1066 // enqueue if and only if either:
1067 // reference is in our span or
1068 // we are an atomic collector and referent is in our span
1069 if (_span.contains(obj_addr) ||
1070 (discovery_is_atomic() && _span.contains(referent))) {
1071 // should_enqueue = true;
1072 } else {
1073 return false;
1074 }
1075 } else {
1076 assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1077 _span.contains(obj_addr), "code inconsistency");
1078 }
1079
1080 // Get the right type of discovered queue head.
1081 DiscoveredList* list = get_discovered_list(rt);
1082 if (list == NULL) {
1083 return false; // nothing special needs to be done
1084 }
1085
1086 // We do a raw store here, the field will be visited later when
1087 // processing the discovered references.
1088 if (_discovery_is_mt) {
1089 add_to_discovered_list_mt(*list, obj, discovered_addr);
1090 } else {
1091 *discovered_addr = list->head();
1092 list->set_head(obj);
1093 list->set_length(list->length() + 1);
1094 }
1095
1096 // In the MT discovery case, it is currently possible to see
1097 // the following message multiple times if several threads
1098 // discover a reference about the same time. Only one will
1099 // however have actually added it to the disocvered queue.
1100 // One could let add_to_discovered_list_mt() return an
1101 // indication for success in queueing (by 1 thread) or
1102 // failure (by all other threads), but I decided the extra
1103 // code was not worth the effort for something that is
1104 // only used for debugging support.
1105 if (TraceReferenceGC) {
1106 oop referent = java_lang_ref_Reference::referent(obj);
1107 if (PrintGCDetails) {
1108 gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
1109 (oopDesc*) obj, obj->blueprint()->internal_name());
1110 }
1111 assert(referent->is_oop(), "Enqueued a bad referent");
1112 }
1113 assert(obj->is_oop(), "Enqueued a bad reference");
1114 return true;
1115 }
1116
1117 // Preclean the discovered references by removing those
1118 // whose referents are alive, and by marking from those that
1119 // are not active. These lists can be handled here
1120 // in any order and, indeed, concurrently.
1121 void ReferenceProcessor::preclean_discovered_references(
1122 BoolObjectClosure* is_alive,
1123 OopClosure* keep_alive,
1124 VoidClosure* complete_gc,
1125 YieldClosure* yield) {
1126
1127 NOT_PRODUCT(verify_ok_to_handle_reflists());
1128
1129 // Soft references
1130 {
1131 TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1132 false, gclog_or_tty);
1133 for (int i = 0; i < _num_q; i++) {
1134 preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1135 keep_alive, complete_gc, yield);
1136 }
1137 }
1138 if (yield->should_return()) {
1139 return;
1140 }
1141
1142 // Weak references
1143 {
1144 TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1145 false, gclog_or_tty);
1146 for (int i = 0; i < _num_q; i++) {
1147 preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1148 keep_alive, complete_gc, yield);
1149 }
1150 }
1151 if (yield->should_return()) {
1152 return;
1153 }
1154
1155 // Final references
1156 {
1157 TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1158 false, gclog_or_tty);
1159 for (int i = 0; i < _num_q; i++) {
1160 preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1161 keep_alive, complete_gc, yield);
1162 }
1163 }
1164 if (yield->should_return()) {
1165 return;
1166 }
1167
1168 // Phantom references
1169 {
1170 TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1171 false, gclog_or_tty);
1172 for (int i = 0; i < _num_q; i++) {
1173 preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1174 keep_alive, complete_gc, yield);
1175 }
1176 }
1177 }
1178
1179 // Walk the given discovered ref list, and remove all reference objects
1180 // whose referents are still alive, whose referents are NULL or which
1181 // are not active (have a non-NULL next field). NOTE: For this to work
1182 // correctly, refs discovery can not be happening concurrently with this
1183 // step.
1184 void ReferenceProcessor::preclean_discovered_reflist(
1185 DiscoveredList& refs_list, BoolObjectClosure* is_alive,
1186 OopClosure* keep_alive, VoidClosure* complete_gc, YieldClosure* yield) {
1187
1188 DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1189 size_t length = refs_list.length();
1190 while (iter.has_next()) {
1191 iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1192 oop* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
1193 if (iter.referent() == NULL || iter.is_referent_alive() ||
1194 *next_addr != NULL) {
1195 // The referent has been cleared, or is alive, or the Reference is not
1196 // active; we need to trace and mark its cohort.
1197 if (TraceReferenceGC) {
1198 gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1199 iter.obj(), iter.obj()->blueprint()->internal_name());
1200 }
1201 // Remove Reference object from list
1202 iter.remove();
1203 --length;
1204 // Keep alive its cohort.
1205 iter.make_referent_alive();
1206 keep_alive->do_oop(next_addr);
1207 } else {
1208 iter.next();
1209 }
1210 }
1211 refs_list.set_length(length);
1212
1213 // Close the reachable set
1214 complete_gc->do_void();
1215
1216 NOT_PRODUCT(
1217 if (PrintGCDetails && PrintReferenceGC) {
1218 gclog_or_tty->print(" Dropped %d Refs out of %d "
1219 "Refs in discovered list ", iter.removed(), iter.processed());
1220 }
1221 )
1222 }
1223
1224 const char* ReferenceProcessor::list_name(int i) {
1225 assert(i >= 0 && i <= _num_q * subclasses_of_ref, "Out of bounds index");
1226 int j = i / _num_q;
1227 switch (j) {
1228 case 0: return "SoftRef";
1229 case 1: return "WeakRef";
1230 case 2: return "FinalRef";
1231 case 3: return "PhantomRef";
1232 }
1233 ShouldNotReachHere();
1234 return NULL;
1235 }
1236
1237 #ifndef PRODUCT
1238 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1239 // empty for now
1240 }
1241 #endif
1242
1243 void ReferenceProcessor::verify() {
1244 guarantee(_sentinelRef != NULL && _sentinelRef->is_oop(), "Lost _sentinelRef");
1245 }
1246
1247 #ifndef PRODUCT
1248 void ReferenceProcessor::clear_discovered_references() {
1249 guarantee(!_discovering_refs, "Discovering refs?");
1250 for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
1251 oop obj = _discoveredSoftRefs[i].head();
1252 while (obj != _sentinelRef) {
1253 oop next = java_lang_ref_Reference::discovered(obj);
1254 java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
1255 obj = next;
1256 }
1257 _discoveredSoftRefs[i].set_head(_sentinelRef);
1258 _discoveredSoftRefs[i].set_length(0);
1259 }
1260 }
1261 #endif // PRODUCT