comparison src/share/vm/opto/addnode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ff5961f4c095
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 #include "incls/_precompiled.incl"
28 #include "incls/_addnode.cpp.incl"
29
30 #define MAXFLOAT ((float)3.40282346638528860e+38)
31
32 // Classic Add functionality. This covers all the usual 'add' behaviors for
33 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are
34 // all inherited from this class. The various identity values are supplied
35 // by virtual functions.
36
37
38 //=============================================================================
39 //------------------------------hash-------------------------------------------
40 // Hash function over AddNodes. Needs to be commutative; i.e., I swap
41 // (commute) inputs to AddNodes willy-nilly so the hash function must return
42 // the same value in the presence of edge swapping.
43 uint AddNode::hash() const {
44 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
45 }
46
47 //------------------------------Identity---------------------------------------
48 // If either input is a constant 0, return the other input.
49 Node *AddNode::Identity( PhaseTransform *phase ) {
50 const Type *zero = add_id(); // The additive identity
51 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
52 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
53 return this;
54 }
55
56 //------------------------------commute----------------------------------------
57 // Commute operands to move loads and constants to the right.
58 static bool commute( Node *add, int con_left, int con_right ) {
59 Node *in1 = add->in(1);
60 Node *in2 = add->in(2);
61
62 // Convert "1+x" into "x+1".
63 // Right is a constant; leave it
64 if( con_right ) return false;
65 // Left is a constant; move it right.
66 if( con_left ) {
67 add->swap_edges(1, 2);
68 return true;
69 }
70
71 // Convert "Load+x" into "x+Load".
72 // Now check for loads
73 if( in2->is_Load() ) return false;
74 // Left is a Load and Right is not; move it right.
75 if( in1->is_Load() ) {
76 add->swap_edges(1, 2);
77 return true;
78 }
79
80 PhiNode *phi;
81 // Check for tight loop increments: Loop-phi of Add of loop-phi
82 if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
83 return false;
84 if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
85 add->swap_edges(1, 2);
86 return true;
87 }
88
89 // Otherwise, sort inputs (commutativity) to help value numbering.
90 if( in1->_idx > in2->_idx ) {
91 add->swap_edges(1, 2);
92 return true;
93 }
94 return false;
95 }
96
97 //------------------------------Idealize---------------------------------------
98 // If we get here, we assume we are associative!
99 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
100 const Type *t1 = phase->type( in(1) );
101 const Type *t2 = phase->type( in(2) );
102 int con_left = t1->singleton();
103 int con_right = t2->singleton();
104
105 // Check for commutative operation desired
106 if( commute(this,con_left,con_right) ) return this;
107
108 AddNode *progress = NULL; // Progress flag
109
110 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a
111 // constant, and the left input is an add of a constant, flatten the
112 // expression tree.
113 Node *add1 = in(1);
114 Node *add2 = in(2);
115 int add1_op = add1->Opcode();
116 int this_op = Opcode();
117 if( con_right && t2 != Type::TOP && // Right input is a constant?
118 add1_op == this_op ) { // Left input is an Add?
119
120 // Type of left _in right input
121 const Type *t12 = phase->type( add1->in(2) );
122 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
123 // Check for rare case of closed data cycle which can happen inside
124 // unreachable loops. In these cases the computation is undefined.
125 #ifdef ASSERT
126 Node *add11 = add1->in(1);
127 int add11_op = add11->Opcode();
128 if( (add1 == add1->in(1))
129 || (add11_op == this_op && add11->in(1) == add1) ) {
130 assert(false, "dead loop in AddNode::Ideal");
131 }
132 #endif
133 // The Add of the flattened expression
134 Node *x1 = add1->in(1);
135 Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
136 PhaseIterGVN *igvn = phase->is_IterGVN();
137 if( igvn ) {
138 set_req_X(2,x2,igvn);
139 set_req_X(1,x1,igvn);
140 } else {
141 set_req(2,x2);
142 set_req(1,x1);
143 }
144 progress = this; // Made progress
145 add1 = in(1);
146 add1_op = add1->Opcode();
147 }
148 }
149
150 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
151 if( add1_op == this_op && !con_right ) {
152 Node *a12 = add1->in(2);
153 const Type *t12 = phase->type( a12 );
154 if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
155 add2 = add1->clone();
156 add2->set_req(2, in(2));
157 add2 = phase->transform(add2);
158 set_req(1, add2);
159 set_req(2, a12);
160 progress = this;
161 add2 = a12;
162 }
163 }
164
165 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
166 int add2_op = add2->Opcode();
167 if( add2_op == this_op && !con_left ) {
168 Node *a22 = add2->in(2);
169 const Type *t22 = phase->type( a22 );
170 if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
171 Node *addx = add2->clone();
172 addx->set_req(1, in(1));
173 addx->set_req(2, add2->in(1));
174 addx = phase->transform(addx);
175 set_req(1, addx);
176 set_req(2, a22);
177 progress = this;
178 }
179 }
180
181 return progress;
182 }
183
184 //------------------------------Value-----------------------------------------
185 // An add node sums it's two _in. If one input is an RSD, we must mixin
186 // the other input's symbols.
187 const Type *AddNode::Value( PhaseTransform *phase ) const {
188 // Either input is TOP ==> the result is TOP
189 const Type *t1 = phase->type( in(1) );
190 const Type *t2 = phase->type( in(2) );
191 if( t1 == Type::TOP ) return Type::TOP;
192 if( t2 == Type::TOP ) return Type::TOP;
193
194 // Either input is BOTTOM ==> the result is the local BOTTOM
195 const Type *bot = bottom_type();
196 if( (t1 == bot) || (t2 == bot) ||
197 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
198 return bot;
199
200 // Check for an addition involving the additive identity
201 const Type *tadd = add_of_identity( t1, t2 );
202 if( tadd ) return tadd;
203
204 return add_ring(t1,t2); // Local flavor of type addition
205 }
206
207 //------------------------------add_identity-----------------------------------
208 // Check for addition of the identity
209 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
210 const Type *zero = add_id(); // The additive identity
211 if( t1->higher_equal( zero ) ) return t2;
212 if( t2->higher_equal( zero ) ) return t1;
213
214 return NULL;
215 }
216
217
218 //=============================================================================
219 //------------------------------Idealize---------------------------------------
220 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
221 int op1 = in(1)->Opcode();
222 int op2 = in(2)->Opcode();
223 // Fold (con1-x)+con2 into (con1+con2)-x
224 if( op1 == Op_SubI ) {
225 const Type *t_sub1 = phase->type( in(1)->in(1) );
226 const Type *t_2 = phase->type( in(2) );
227 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
228 return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
229 in(1)->in(2) );
230 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
231 if( op2 == Op_SubI ) {
232 // Check for dead cycle: d = (a-b)+(c-d)
233 assert( in(1)->in(2) != this && in(2)->in(2) != this,
234 "dead loop in AddINode::Ideal" );
235 Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
236 sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
237 sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
238 return sub;
239 }
240 }
241
242 // Convert "x+(0-y)" into "(x-y)"
243 if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
244 return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
245
246 // Convert "(0-y)+x" into "(x-y)"
247 if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
248 return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
249
250 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
251 // Helps with array allocation math constant folding
252 // See 4790063:
253 // Unrestricted transformation is unsafe for some runtime values of 'x'
254 // ( x == 0, z == 1, y == -1 ) fails
255 // ( x == -5, z == 1, y == 1 ) fails
256 // Transform works for small z and small negative y when the addition
257 // (x + (y << z)) does not cross zero.
258 // Implement support for negative y and (x >= -(y << z))
259 // Have not observed cases where type information exists to support
260 // positive y and (x <= -(y << z))
261 if( op1 == Op_URShiftI && op2 == Op_ConI &&
262 in(1)->in(2)->Opcode() == Op_ConI ) {
263 jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
264 jint y = phase->type( in(2) )->is_int()->get_con();
265
266 if( z < 5 && -5 < y && y < 0 ) {
267 const Type *t_in11 = phase->type(in(1)->in(1));
268 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
269 Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
270 return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
271 }
272 }
273 }
274
275 return AddNode::Ideal(phase, can_reshape);
276 }
277
278
279 //------------------------------Identity---------------------------------------
280 // Fold (x-y)+y OR y+(x-y) into x
281 Node *AddINode::Identity( PhaseTransform *phase ) {
282 if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
283 return in(1)->in(1);
284 }
285 else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
286 return in(2)->in(1);
287 }
288 return AddNode::Identity(phase);
289 }
290
291
292 //------------------------------add_ring---------------------------------------
293 // Supplied function returns the sum of the inputs. Guaranteed never
294 // to be passed a TOP or BOTTOM type, these are filtered out by
295 // pre-check.
296 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
297 const TypeInt *r0 = t0->is_int(); // Handy access
298 const TypeInt *r1 = t1->is_int();
299 int lo = r0->_lo + r1->_lo;
300 int hi = r0->_hi + r1->_hi;
301 if( !(r0->is_con() && r1->is_con()) ) {
302 // Not both constants, compute approximate result
303 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
304 lo = min_jint; hi = max_jint; // Underflow on the low side
305 }
306 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
307 lo = min_jint; hi = max_jint; // Overflow on the high side
308 }
309 if( lo > hi ) { // Handle overflow
310 lo = min_jint; hi = max_jint;
311 }
312 } else {
313 // both constants, compute precise result using 'lo' and 'hi'
314 // Semantics define overflow and underflow for integer addition
315 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
316 }
317 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
318 }
319
320
321 //=============================================================================
322 //------------------------------Idealize---------------------------------------
323 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
324 int op1 = in(1)->Opcode();
325 int op2 = in(2)->Opcode();
326 // Fold (con1-x)+con2 into (con1+con2)-x
327 if( op1 == Op_SubL ) {
328 const Type *t_sub1 = phase->type( in(1)->in(1) );
329 const Type *t_2 = phase->type( in(2) );
330 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
331 return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
332 in(1)->in(2) );
333 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
334 if( op2 == Op_SubL ) {
335 // Check for dead cycle: d = (a-b)+(c-d)
336 assert( in(1)->in(2) != this && in(2)->in(2) != this,
337 "dead loop in AddLNode::Ideal" );
338 Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
339 sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
340 sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
341 return sub;
342 }
343 }
344
345 // Convert "x+(0-y)" into "(x-y)"
346 if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
347 return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
348
349 // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
350 // into "(X<<1)+Y" and let shift-folding happen.
351 if( op2 == Op_AddL &&
352 in(2)->in(1) == in(1) &&
353 op1 != Op_ConL &&
354 0 ) {
355 Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
356 return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
357 }
358
359 return AddNode::Ideal(phase, can_reshape);
360 }
361
362
363 //------------------------------Identity---------------------------------------
364 // Fold (x-y)+y OR y+(x-y) into x
365 Node *AddLNode::Identity( PhaseTransform *phase ) {
366 if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
367 return in(1)->in(1);
368 }
369 else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
370 return in(2)->in(1);
371 }
372 return AddNode::Identity(phase);
373 }
374
375
376 //------------------------------add_ring---------------------------------------
377 // Supplied function returns the sum of the inputs. Guaranteed never
378 // to be passed a TOP or BOTTOM type, these are filtered out by
379 // pre-check.
380 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
381 const TypeLong *r0 = t0->is_long(); // Handy access
382 const TypeLong *r1 = t1->is_long();
383 jlong lo = r0->_lo + r1->_lo;
384 jlong hi = r0->_hi + r1->_hi;
385 if( !(r0->is_con() && r1->is_con()) ) {
386 // Not both constants, compute approximate result
387 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
388 lo =min_jlong; hi = max_jlong; // Underflow on the low side
389 }
390 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
391 lo = min_jlong; hi = max_jlong; // Overflow on the high side
392 }
393 if( lo > hi ) { // Handle overflow
394 lo = min_jlong; hi = max_jlong;
395 }
396 } else {
397 // both constants, compute precise result using 'lo' and 'hi'
398 // Semantics define overflow and underflow for integer addition
399 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
400 }
401 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
402 }
403
404
405 //=============================================================================
406 //------------------------------add_of_identity--------------------------------
407 // Check for addition of the identity
408 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
409 // x ADD 0 should return x unless 'x' is a -zero
410 //
411 // const Type *zero = add_id(); // The additive identity
412 // jfloat f1 = t1->getf();
413 // jfloat f2 = t2->getf();
414 //
415 // if( t1->higher_equal( zero ) ) return t2;
416 // if( t2->higher_equal( zero ) ) return t1;
417
418 return NULL;
419 }
420
421 //------------------------------add_ring---------------------------------------
422 // Supplied function returns the sum of the inputs.
423 // This also type-checks the inputs for sanity. Guaranteed never to
424 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
425 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
426 // We must be adding 2 float constants.
427 return TypeF::make( t0->getf() + t1->getf() );
428 }
429
430 //------------------------------Ideal------------------------------------------
431 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
432 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
433 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
434 }
435
436 // Floating point additions are not associative because of boundary conditions (infinity)
437 return commute(this,
438 phase->type( in(1) )->singleton(),
439 phase->type( in(2) )->singleton() ) ? this : NULL;
440 }
441
442
443 //=============================================================================
444 //------------------------------add_of_identity--------------------------------
445 // Check for addition of the identity
446 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
447 // x ADD 0 should return x unless 'x' is a -zero
448 //
449 // const Type *zero = add_id(); // The additive identity
450 // jfloat f1 = t1->getf();
451 // jfloat f2 = t2->getf();
452 //
453 // if( t1->higher_equal( zero ) ) return t2;
454 // if( t2->higher_equal( zero ) ) return t1;
455
456 return NULL;
457 }
458 //------------------------------add_ring---------------------------------------
459 // Supplied function returns the sum of the inputs.
460 // This also type-checks the inputs for sanity. Guaranteed never to
461 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
462 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
463 // We must be adding 2 double constants.
464 return TypeD::make( t0->getd() + t1->getd() );
465 }
466
467 //------------------------------Ideal------------------------------------------
468 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
469 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
470 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
471 }
472
473 // Floating point additions are not associative because of boundary conditions (infinity)
474 return commute(this,
475 phase->type( in(1) )->singleton(),
476 phase->type( in(2) )->singleton() ) ? this : NULL;
477 }
478
479
480 //=============================================================================
481 //------------------------------Identity---------------------------------------
482 // If one input is a constant 0, return the other input.
483 Node *AddPNode::Identity( PhaseTransform *phase ) {
484 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
485 }
486
487 //------------------------------Idealize---------------------------------------
488 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
489 // Bail out if dead inputs
490 if( phase->type( in(Address) ) == Type::TOP ) return NULL;
491
492 // If the left input is an add of a constant, flatten the expression tree.
493 const Node *n = in(Address);
494 if (n->is_AddP() && n->in(Base) == in(Base)) {
495 const AddPNode *addp = n->as_AddP(); // Left input is an AddP
496 assert( !addp->in(Address)->is_AddP() ||
497 addp->in(Address)->as_AddP() != addp,
498 "dead loop in AddPNode::Ideal" );
499 // Type of left input's right input
500 const Type *t = phase->type( addp->in(Offset) );
501 if( t == Type::TOP ) return NULL;
502 const TypeX *t12 = t->is_intptr_t();
503 if( t12->is_con() ) { // Left input is an add of a constant?
504 // If the right input is a constant, combine constants
505 const Type *temp_t2 = phase->type( in(Offset) );
506 if( temp_t2 == Type::TOP ) return NULL;
507 const TypeX *t2 = temp_t2->is_intptr_t();
508 if( t2->is_con() ) {
509 // The Add of the flattened expression
510 set_req(Address, addp->in(Address));
511 set_req(Offset , phase->MakeConX(t2->get_con() + t12->get_con()));
512 return this; // Made progress
513 }
514 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
515 set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset))));
516 set_req(Offset , addp->in(Offset));
517 return this;
518 }
519 }
520
521 // Raw pointers?
522 if( in(Base)->bottom_type() == Type::TOP ) {
523 // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
524 if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
525 Node* offset = in(Offset);
526 return new (phase->C, 2) CastX2PNode(offset);
527 }
528 }
529
530 // If the right is an add of a constant, push the offset down.
531 // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
532 // The idea is to merge array_base+scaled_index groups together,
533 // and only have different constant offsets from the same base.
534 const Node *add = in(Offset);
535 if( add->Opcode() == Op_AddX && add->in(1) != add ) {
536 const Type *t22 = phase->type( add->in(2) );
537 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
538 set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
539 set_req(Offset, add->in(2));
540 return this; // Made progress
541 }
542 }
543
544 return NULL; // No progress
545 }
546
547 //------------------------------bottom_type------------------------------------
548 // Bottom-type is the pointer-type with unknown offset.
549 const Type *AddPNode::bottom_type() const {
550 if (in(Address) == NULL) return TypePtr::BOTTOM;
551 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
552 if( !tp ) return Type::TOP; // TOP input means TOP output
553 assert( in(Offset)->Opcode() != Op_ConP, "" );
554 const Type *t = in(Offset)->bottom_type();
555 if( t == Type::TOP )
556 return tp->add_offset(Type::OffsetTop);
557 const TypeX *tx = t->is_intptr_t();
558 intptr_t txoffset = Type::OffsetBot;
559 if (tx->is_con()) { // Left input is an add of a constant?
560 txoffset = tx->get_con();
561 if (txoffset != (int)txoffset)
562 txoffset = Type::OffsetBot; // oops: add_offset will choke on it
563 }
564 return tp->add_offset(txoffset);
565 }
566
567 //------------------------------Value------------------------------------------
568 const Type *AddPNode::Value( PhaseTransform *phase ) const {
569 // Either input is TOP ==> the result is TOP
570 const Type *t1 = phase->type( in(Address) );
571 const Type *t2 = phase->type( in(Offset) );
572 if( t1 == Type::TOP ) return Type::TOP;
573 if( t2 == Type::TOP ) return Type::TOP;
574
575 // Left input is a pointer
576 const TypePtr *p1 = t1->isa_ptr();
577 // Right input is an int
578 const TypeX *p2 = t2->is_intptr_t();
579 // Add 'em
580 intptr_t p2offset = Type::OffsetBot;
581 if (p2->is_con()) { // Left input is an add of a constant?
582 p2offset = p2->get_con();
583 if (p2offset != (int)p2offset)
584 p2offset = Type::OffsetBot; // oops: add_offset will choke on it
585 }
586 return p1->add_offset(p2offset);
587 }
588
589 //------------------------Ideal_base_and_offset--------------------------------
590 // Split an oop pointer into a base and offset.
591 // (The offset might be Type::OffsetBot in the case of an array.)
592 // Return the base, or NULL if failure.
593 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
594 // second return value:
595 intptr_t& offset) {
596 if (ptr->is_AddP()) {
597 Node* base = ptr->in(AddPNode::Base);
598 Node* addr = ptr->in(AddPNode::Address);
599 Node* offs = ptr->in(AddPNode::Offset);
600 if (base == addr || base->is_top()) {
601 offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
602 if (offset != Type::OffsetBot) {
603 return addr;
604 }
605 }
606 }
607 offset = Type::OffsetBot;
608 return NULL;
609 }
610
611 //------------------------------match_edge-------------------------------------
612 // Do we Match on this edge index or not? Do not match base pointer edge
613 uint AddPNode::match_edge(uint idx) const {
614 return idx > Base;
615 }
616
617 //---------------------------mach_bottom_type----------------------------------
618 // Utility function for use by ADLC. Implements bottom_type for matched AddP.
619 const Type *AddPNode::mach_bottom_type( const MachNode* n) {
620 Node* base = n->in(Base);
621 const Type *t = base->bottom_type();
622 if ( t == Type::TOP ) {
623 // an untyped pointer
624 return TypeRawPtr::BOTTOM;
625 }
626 const TypePtr* tp = t->isa_oopptr();
627 if ( tp == NULL ) return t;
628 if ( tp->_offset == TypePtr::OffsetBot ) return tp;
629
630 // We must carefully add up the various offsets...
631 intptr_t offset = 0;
632 const TypePtr* tptr = NULL;
633
634 uint numopnds = n->num_opnds();
635 uint index = n->oper_input_base();
636 for ( uint i = 1; i < numopnds; i++ ) {
637 MachOper *opnd = n->_opnds[i];
638 // Check for any interesting operand info.
639 // In particular, check for both memory and non-memory operands.
640 // %%%%% Clean this up: use xadd_offset
641 int con = opnd->constant();
642 if ( con == TypePtr::OffsetBot ) goto bottom_out;
643 offset += con;
644 con = opnd->constant_disp();
645 if ( con == TypePtr::OffsetBot ) goto bottom_out;
646 offset += con;
647 if( opnd->scale() != 0 ) goto bottom_out;
648
649 // Check each operand input edge. Find the 1 allowed pointer
650 // edge. Other edges must be index edges; track exact constant
651 // inputs and otherwise assume the worst.
652 for ( uint j = opnd->num_edges(); j > 0; j-- ) {
653 Node* edge = n->in(index++);
654 const Type* et = edge->bottom_type();
655 const TypeX* eti = et->isa_intptr_t();
656 if ( eti == NULL ) {
657 // there must be one pointer among the operands
658 guarantee(tptr == NULL, "must be only one pointer operand");
659 tptr = et->isa_oopptr();
660 guarantee(tptr != NULL, "non-int operand must be pointer");
661 continue;
662 }
663 if ( eti->_hi != eti->_lo ) goto bottom_out;
664 offset += eti->_lo;
665 }
666 }
667 guarantee(tptr != NULL, "must be exactly one pointer operand");
668 return tptr->add_offset(offset);
669
670 bottom_out:
671 return tp->add_offset(TypePtr::OffsetBot);
672 }
673
674 //=============================================================================
675 //------------------------------Identity---------------------------------------
676 Node *OrINode::Identity( PhaseTransform *phase ) {
677 // x | x => x
678 if (phase->eqv(in(1), in(2))) {
679 return in(1);
680 }
681
682 return AddNode::Identity(phase);
683 }
684
685 //------------------------------add_ring---------------------------------------
686 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
687 // the logical operations the ring's ADD is really a logical OR function.
688 // This also type-checks the inputs for sanity. Guaranteed never to
689 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
690 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
691 const TypeInt *r0 = t0->is_int(); // Handy access
692 const TypeInt *r1 = t1->is_int();
693
694 // If both args are bool, can figure out better types
695 if ( r0 == TypeInt::BOOL ) {
696 if ( r1 == TypeInt::ONE) {
697 return TypeInt::ONE;
698 } else if ( r1 == TypeInt::BOOL ) {
699 return TypeInt::BOOL;
700 }
701 } else if ( r0 == TypeInt::ONE ) {
702 if ( r1 == TypeInt::BOOL ) {
703 return TypeInt::ONE;
704 }
705 }
706
707 // If either input is not a constant, just return all integers.
708 if( !r0->is_con() || !r1->is_con() )
709 return TypeInt::INT; // Any integer, but still no symbols.
710
711 // Otherwise just OR them bits.
712 return TypeInt::make( r0->get_con() | r1->get_con() );
713 }
714
715 //=============================================================================
716 //------------------------------Identity---------------------------------------
717 Node *OrLNode::Identity( PhaseTransform *phase ) {
718 // x | x => x
719 if (phase->eqv(in(1), in(2))) {
720 return in(1);
721 }
722
723 return AddNode::Identity(phase);
724 }
725
726 //------------------------------add_ring---------------------------------------
727 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
728 const TypeLong *r0 = t0->is_long(); // Handy access
729 const TypeLong *r1 = t1->is_long();
730
731 // If either input is not a constant, just return all integers.
732 if( !r0->is_con() || !r1->is_con() )
733 return TypeLong::LONG; // Any integer, but still no symbols.
734
735 // Otherwise just OR them bits.
736 return TypeLong::make( r0->get_con() | r1->get_con() );
737 }
738
739 //=============================================================================
740 //------------------------------add_ring---------------------------------------
741 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
742 // the logical operations the ring's ADD is really a logical OR function.
743 // This also type-checks the inputs for sanity. Guaranteed never to
744 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
745 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
746 const TypeInt *r0 = t0->is_int(); // Handy access
747 const TypeInt *r1 = t1->is_int();
748
749 // Complementing a boolean?
750 if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
751 || r1 == TypeInt::BOOL))
752 return TypeInt::BOOL;
753
754 if( !r0->is_con() || !r1->is_con() ) // Not constants
755 return TypeInt::INT; // Any integer, but still no symbols.
756
757 // Otherwise just XOR them bits.
758 return TypeInt::make( r0->get_con() ^ r1->get_con() );
759 }
760
761 //=============================================================================
762 //------------------------------add_ring---------------------------------------
763 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
764 const TypeLong *r0 = t0->is_long(); // Handy access
765 const TypeLong *r1 = t1->is_long();
766
767 // If either input is not a constant, just return all integers.
768 if( !r0->is_con() || !r1->is_con() )
769 return TypeLong::LONG; // Any integer, but still no symbols.
770
771 // Otherwise just OR them bits.
772 return TypeLong::make( r0->get_con() ^ r1->get_con() );
773 }
774
775 //=============================================================================
776 //------------------------------add_ring---------------------------------------
777 // Supplied function returns the sum of the inputs.
778 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
779 const TypeInt *r0 = t0->is_int(); // Handy access
780 const TypeInt *r1 = t1->is_int();
781
782 // Otherwise just MAX them bits.
783 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
784 }
785
786 //=============================================================================
787 //------------------------------Idealize---------------------------------------
788 // MINs show up in range-check loop limit calculations. Look for
789 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
790 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
791 Node *progress = NULL;
792 // Force a right-spline graph
793 Node *l = in(1);
794 Node *r = in(2);
795 // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
796 // to force a right-spline graph for the rest of MinINode::Ideal().
797 if( l->Opcode() == Op_MinI ) {
798 assert( l != l->in(1), "dead loop in MinINode::Ideal" );
799 r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
800 l = l->in(1);
801 set_req(1, l);
802 set_req(2, r);
803 return this;
804 }
805
806 // Get left input & constant
807 Node *x = l;
808 int x_off = 0;
809 if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
810 x->in(2)->is_Con() ) {
811 const Type *t = x->in(2)->bottom_type();
812 if( t == Type::TOP ) return NULL; // No progress
813 x_off = t->is_int()->get_con();
814 x = x->in(1);
815 }
816
817 // Scan a right-spline-tree for MINs
818 Node *y = r;
819 int y_off = 0;
820 // Check final part of MIN tree
821 if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
822 y->in(2)->is_Con() ) {
823 const Type *t = y->in(2)->bottom_type();
824 if( t == Type::TOP ) return NULL; // No progress
825 y_off = t->is_int()->get_con();
826 y = y->in(1);
827 }
828 if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
829 swap_edges(1, 2);
830 return this;
831 }
832
833
834 if( r->Opcode() == Op_MinI ) {
835 assert( r != r->in(2), "dead loop in MinINode::Ideal" );
836 y = r->in(1);
837 // Check final part of MIN tree
838 if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
839 y->in(2)->is_Con() ) {
840 const Type *t = y->in(2)->bottom_type();
841 if( t == Type::TOP ) return NULL; // No progress
842 y_off = t->is_int()->get_con();
843 y = y->in(1);
844 }
845
846 if( x->_idx > y->_idx )
847 return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
848
849 // See if covers: MIN2(x+c0,MIN2(y+c1,z))
850 if( !phase->eqv(x,y) ) return NULL;
851 // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
852 // MIN2(x+c0 or x+c1 which less, z).
853 return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
854 } else {
855 // See if covers: MIN2(x+c0,y+c1)
856 if( !phase->eqv(x,y) ) return NULL;
857 // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
858 return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
859 }
860
861 }
862
863 //------------------------------add_ring---------------------------------------
864 // Supplied function returns the sum of the inputs.
865 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
866 const TypeInt *r0 = t0->is_int(); // Handy access
867 const TypeInt *r1 = t1->is_int();
868
869 // Otherwise just MIN them bits.
870 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
871 }