comparison src/share/vm/opto/compile.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children b789bcaf2dd9
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_compile.cpp.incl"
27
28 /// Support for intrinsics.
29
30 // Return the index at which m must be inserted (or already exists).
31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
33 #ifdef ASSERT
34 for (int i = 1; i < _intrinsics->length(); i++) {
35 CallGenerator* cg1 = _intrinsics->at(i-1);
36 CallGenerator* cg2 = _intrinsics->at(i);
37 assert(cg1->method() != cg2->method()
38 ? cg1->method() < cg2->method()
39 : cg1->is_virtual() < cg2->is_virtual(),
40 "compiler intrinsics list must stay sorted");
41 }
42 #endif
43 // Binary search sorted list, in decreasing intervals [lo, hi].
44 int lo = 0, hi = _intrinsics->length()-1;
45 while (lo <= hi) {
46 int mid = (uint)(hi + lo) / 2;
47 ciMethod* mid_m = _intrinsics->at(mid)->method();
48 if (m < mid_m) {
49 hi = mid-1;
50 } else if (m > mid_m) {
51 lo = mid+1;
52 } else {
53 // look at minor sort key
54 bool mid_virt = _intrinsics->at(mid)->is_virtual();
55 if (is_virtual < mid_virt) {
56 hi = mid-1;
57 } else if (is_virtual > mid_virt) {
58 lo = mid+1;
59 } else {
60 return mid; // exact match
61 }
62 }
63 }
64 return lo; // inexact match
65 }
66
67 void Compile::register_intrinsic(CallGenerator* cg) {
68 if (_intrinsics == NULL) {
69 _intrinsics = new GrowableArray<CallGenerator*>(60);
70 }
71 // This code is stolen from ciObjectFactory::insert.
72 // Really, GrowableArray should have methods for
73 // insert_at, remove_at, and binary_search.
74 int len = _intrinsics->length();
75 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
76 if (index == len) {
77 _intrinsics->append(cg);
78 } else {
79 #ifdef ASSERT
80 CallGenerator* oldcg = _intrinsics->at(index);
81 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
82 #endif
83 _intrinsics->append(_intrinsics->at(len-1));
84 int pos;
85 for (pos = len-2; pos >= index; pos--) {
86 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
87 }
88 _intrinsics->at_put(index, cg);
89 }
90 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
91 }
92
93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
94 assert(m->is_loaded(), "don't try this on unloaded methods");
95 if (_intrinsics != NULL) {
96 int index = intrinsic_insertion_index(m, is_virtual);
97 if (index < _intrinsics->length()
98 && _intrinsics->at(index)->method() == m
99 && _intrinsics->at(index)->is_virtual() == is_virtual) {
100 return _intrinsics->at(index);
101 }
102 }
103 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
104 if (m->intrinsic_id() != vmIntrinsics::_none) {
105 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
106 if (cg != NULL) {
107 // Save it for next time:
108 register_intrinsic(cg);
109 return cg;
110 } else {
111 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
112 }
113 }
114 return NULL;
115 }
116
117 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
118 // in library_call.cpp.
119
120
121 #ifndef PRODUCT
122 // statistics gathering...
123
124 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
125 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
126
127 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
128 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
129 int oflags = _intrinsic_hist_flags[id];
130 assert(flags != 0, "what happened?");
131 if (is_virtual) {
132 flags |= _intrinsic_virtual;
133 }
134 bool changed = (flags != oflags);
135 if ((flags & _intrinsic_worked) != 0) {
136 juint count = (_intrinsic_hist_count[id] += 1);
137 if (count == 1) {
138 changed = true; // first time
139 }
140 // increment the overall count also:
141 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
142 }
143 if (changed) {
144 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
145 // Something changed about the intrinsic's virtuality.
146 if ((flags & _intrinsic_virtual) != 0) {
147 // This is the first use of this intrinsic as a virtual call.
148 if (oflags != 0) {
149 // We already saw it as a non-virtual, so note both cases.
150 flags |= _intrinsic_both;
151 }
152 } else if ((oflags & _intrinsic_both) == 0) {
153 // This is the first use of this intrinsic as a non-virtual
154 flags |= _intrinsic_both;
155 }
156 }
157 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
158 }
159 // update the overall flags also:
160 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
161 return changed;
162 }
163
164 static char* format_flags(int flags, char* buf) {
165 buf[0] = 0;
166 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
167 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
168 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
169 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
170 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
171 if (buf[0] == 0) strcat(buf, ",");
172 assert(buf[0] == ',', "must be");
173 return &buf[1];
174 }
175
176 void Compile::print_intrinsic_statistics() {
177 char flagsbuf[100];
178 ttyLocker ttyl;
179 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
180 tty->print_cr("Compiler intrinsic usage:");
181 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
182 if (total == 0) total = 1; // avoid div0 in case of no successes
183 #define PRINT_STAT_LINE(name, c, f) \
184 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
185 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
186 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
187 int flags = _intrinsic_hist_flags[id];
188 juint count = _intrinsic_hist_count[id];
189 if ((flags | count) != 0) {
190 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
191 }
192 }
193 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
194 if (xtty != NULL) xtty->tail("statistics");
195 }
196
197 void Compile::print_statistics() {
198 { ttyLocker ttyl;
199 if (xtty != NULL) xtty->head("statistics type='opto'");
200 Parse::print_statistics();
201 PhaseCCP::print_statistics();
202 PhaseRegAlloc::print_statistics();
203 Scheduling::print_statistics();
204 PhasePeephole::print_statistics();
205 PhaseIdealLoop::print_statistics();
206 if (xtty != NULL) xtty->tail("statistics");
207 }
208 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
209 // put this under its own <statistics> element.
210 print_intrinsic_statistics();
211 }
212 }
213 #endif //PRODUCT
214
215 // Support for bundling info
216 Bundle* Compile::node_bundling(const Node *n) {
217 assert(valid_bundle_info(n), "oob");
218 return &_node_bundling_base[n->_idx];
219 }
220
221 bool Compile::valid_bundle_info(const Node *n) {
222 return (_node_bundling_limit > n->_idx);
223 }
224
225
226 // Identify all nodes that are reachable from below, useful.
227 // Use breadth-first pass that records state in a Unique_Node_List,
228 // recursive traversal is slower.
229 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
230 int estimated_worklist_size = unique();
231 useful.map( estimated_worklist_size, NULL ); // preallocate space
232
233 // Initialize worklist
234 if (root() != NULL) { useful.push(root()); }
235 // If 'top' is cached, declare it useful to preserve cached node
236 if( cached_top_node() ) { useful.push(cached_top_node()); }
237
238 // Push all useful nodes onto the list, breadthfirst
239 for( uint next = 0; next < useful.size(); ++next ) {
240 assert( next < unique(), "Unique useful nodes < total nodes");
241 Node *n = useful.at(next);
242 uint max = n->len();
243 for( uint i = 0; i < max; ++i ) {
244 Node *m = n->in(i);
245 if( m == NULL ) continue;
246 useful.push(m);
247 }
248 }
249 }
250
251 // Disconnect all useless nodes by disconnecting those at the boundary.
252 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
253 uint next = 0;
254 while( next < useful.size() ) {
255 Node *n = useful.at(next++);
256 // Use raw traversal of out edges since this code removes out edges
257 int max = n->outcnt();
258 for (int j = 0; j < max; ++j ) {
259 Node* child = n->raw_out(j);
260 if( ! useful.member(child) ) {
261 assert( !child->is_top() || child != top(),
262 "If top is cached in Compile object it is in useful list");
263 // Only need to remove this out-edge to the useless node
264 n->raw_del_out(j);
265 --j;
266 --max;
267 }
268 }
269 if (n->outcnt() == 1 && n->has_special_unique_user()) {
270 record_for_igvn( n->unique_out() );
271 }
272 }
273 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
274 }
275
276 //------------------------------frame_size_in_words-----------------------------
277 // frame_slots in units of words
278 int Compile::frame_size_in_words() const {
279 // shift is 0 in LP32 and 1 in LP64
280 const int shift = (LogBytesPerWord - LogBytesPerInt);
281 int words = _frame_slots >> shift;
282 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
283 return words;
284 }
285
286 // ============================================================================
287 //------------------------------CompileWrapper---------------------------------
288 class CompileWrapper : public StackObj {
289 Compile *const _compile;
290 public:
291 CompileWrapper(Compile* compile);
292
293 ~CompileWrapper();
294 };
295
296 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
297 // the Compile* pointer is stored in the current ciEnv:
298 ciEnv* env = compile->env();
299 assert(env == ciEnv::current(), "must already be a ciEnv active");
300 assert(env->compiler_data() == NULL, "compile already active?");
301 env->set_compiler_data(compile);
302 assert(compile == Compile::current(), "sanity");
303
304 compile->set_type_dict(NULL);
305 compile->set_type_hwm(NULL);
306 compile->set_type_last_size(0);
307 compile->set_last_tf(NULL, NULL);
308 compile->set_indexSet_arena(NULL);
309 compile->set_indexSet_free_block_list(NULL);
310 compile->init_type_arena();
311 Type::Initialize(compile);
312 _compile->set_scratch_buffer_blob(NULL);
313 _compile->begin_method();
314 }
315 CompileWrapper::~CompileWrapper() {
316 if (_compile->failing()) {
317 _compile->print_method("Failed");
318 }
319 _compile->end_method();
320 if (_compile->scratch_buffer_blob() != NULL)
321 BufferBlob::free(_compile->scratch_buffer_blob());
322 _compile->env()->set_compiler_data(NULL);
323 }
324
325
326 //----------------------------print_compile_messages---------------------------
327 void Compile::print_compile_messages() {
328 #ifndef PRODUCT
329 // Check if recompiling
330 if (_subsume_loads == false && PrintOpto) {
331 // Recompiling without allowing machine instructions to subsume loads
332 tty->print_cr("*********************************************************");
333 tty->print_cr("** Bailout: Recompile without subsuming loads **");
334 tty->print_cr("*********************************************************");
335 }
336 if (env()->break_at_compile()) {
337 // Open the debugger when compiing this method.
338 tty->print("### Breaking when compiling: ");
339 method()->print_short_name();
340 tty->cr();
341 BREAKPOINT;
342 }
343
344 if( PrintOpto ) {
345 if (is_osr_compilation()) {
346 tty->print("[OSR]%3d", _compile_id);
347 } else {
348 tty->print("%3d", _compile_id);
349 }
350 }
351 #endif
352 }
353
354
355 void Compile::init_scratch_buffer_blob() {
356 if( scratch_buffer_blob() != NULL ) return;
357
358 // Construct a temporary CodeBuffer to have it construct a BufferBlob
359 // Cache this BufferBlob for this compile.
360 ResourceMark rm;
361 int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
362 BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
363 // Record the buffer blob for next time.
364 set_scratch_buffer_blob(blob);
365 guarantee(scratch_buffer_blob() != NULL, "Need BufferBlob for code generation");
366
367 // Initialize the relocation buffers
368 relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
369 set_scratch_locs_memory(locs_buf);
370 }
371
372
373 //-----------------------scratch_emit_size-------------------------------------
374 // Helper function that computes size by emitting code
375 uint Compile::scratch_emit_size(const Node* n) {
376 // Emit into a trash buffer and count bytes emitted.
377 // This is a pretty expensive way to compute a size,
378 // but it works well enough if seldom used.
379 // All common fixed-size instructions are given a size
380 // method by the AD file.
381 // Note that the scratch buffer blob and locs memory are
382 // allocated at the beginning of the compile task, and
383 // may be shared by several calls to scratch_emit_size.
384 // The allocation of the scratch buffer blob is particularly
385 // expensive, since it has to grab the code cache lock.
386 BufferBlob* blob = this->scratch_buffer_blob();
387 assert(blob != NULL, "Initialize BufferBlob at start");
388 assert(blob->size() > MAX_inst_size, "sanity");
389 relocInfo* locs_buf = scratch_locs_memory();
390 address blob_begin = blob->instructions_begin();
391 address blob_end = (address)locs_buf;
392 assert(blob->instructions_contains(blob_end), "sanity");
393 CodeBuffer buf(blob_begin, blob_end - blob_begin);
394 buf.initialize_consts_size(MAX_const_size);
395 buf.initialize_stubs_size(MAX_stubs_size);
396 assert(locs_buf != NULL, "sanity");
397 int lsize = MAX_locs_size / 2;
398 buf.insts()->initialize_shared_locs(&locs_buf[0], lsize);
399 buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
400 n->emit(buf, this->regalloc());
401 return buf.code_size();
402 }
403
404 void Compile::record_for_escape_analysis(Node* n) {
405 if (_congraph != NULL)
406 _congraph->record_for_escape_analysis(n);
407 }
408
409
410 // ============================================================================
411 //------------------------------Compile standard-------------------------------
412 debug_only( int Compile::_debug_idx = 100000; )
413
414 // Compile a method. entry_bci is -1 for normal compilations and indicates
415 // the continuation bci for on stack replacement.
416
417
418 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads )
419 : Phase(Compiler),
420 _env(ci_env),
421 _log(ci_env->log()),
422 _compile_id(ci_env->compile_id()),
423 _save_argument_registers(false),
424 _stub_name(NULL),
425 _stub_function(NULL),
426 _stub_entry_point(NULL),
427 _method(target),
428 _entry_bci(osr_bci),
429 _initial_gvn(NULL),
430 _for_igvn(NULL),
431 _warm_calls(NULL),
432 _subsume_loads(subsume_loads),
433 _failure_reason(NULL),
434 _code_buffer("Compile::Fill_buffer"),
435 _orig_pc_slot(0),
436 _orig_pc_slot_offset_in_bytes(0),
437 _node_bundling_limit(0),
438 _node_bundling_base(NULL),
439 #ifndef PRODUCT
440 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
441 _printer(IdealGraphPrinter::printer()),
442 #endif
443 _congraph(NULL) {
444 C = this;
445
446 CompileWrapper cw(this);
447 #ifndef PRODUCT
448 if (TimeCompiler2) {
449 tty->print(" ");
450 target->holder()->name()->print();
451 tty->print(".");
452 target->print_short_name();
453 tty->print(" ");
454 }
455 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
456 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
457 set_print_assembly(PrintOptoAssembly || _method->should_print_assembly());
458 #endif
459
460 if (ProfileTraps) {
461 // Make sure the method being compiled gets its own MDO,
462 // so we can at least track the decompile_count().
463 method()->build_method_data();
464 }
465
466 Init(::AliasLevel);
467
468
469 print_compile_messages();
470
471 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
472 _ilt = InlineTree::build_inline_tree_root();
473 else
474 _ilt = NULL;
475
476 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
477 assert(num_alias_types() >= AliasIdxRaw, "");
478
479 #define MINIMUM_NODE_HASH 1023
480 // Node list that Iterative GVN will start with
481 Unique_Node_List for_igvn(comp_arena());
482 set_for_igvn(&for_igvn);
483
484 // GVN that will be run immediately on new nodes
485 uint estimated_size = method()->code_size()*4+64;
486 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
487 PhaseGVN gvn(node_arena(), estimated_size);
488 set_initial_gvn(&gvn);
489
490 if (DoEscapeAnalysis)
491 _congraph = new ConnectionGraph(this);
492
493 { // Scope for timing the parser
494 TracePhase t3("parse", &_t_parser, true);
495
496 // Put top into the hash table ASAP.
497 initial_gvn()->transform_no_reclaim(top());
498
499 // Set up tf(), start(), and find a CallGenerator.
500 CallGenerator* cg;
501 if (is_osr_compilation()) {
502 const TypeTuple *domain = StartOSRNode::osr_domain();
503 const TypeTuple *range = TypeTuple::make_range(method()->signature());
504 init_tf(TypeFunc::make(domain, range));
505 StartNode* s = new (this, 2) StartOSRNode(root(), domain);
506 initial_gvn()->set_type_bottom(s);
507 init_start(s);
508 cg = CallGenerator::for_osr(method(), entry_bci());
509 } else {
510 // Normal case.
511 init_tf(TypeFunc::make(method()));
512 StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
513 initial_gvn()->set_type_bottom(s);
514 init_start(s);
515 float past_uses = method()->interpreter_invocation_count();
516 float expected_uses = past_uses;
517 cg = CallGenerator::for_inline(method(), expected_uses);
518 }
519 if (failing()) return;
520 if (cg == NULL) {
521 record_method_not_compilable_all_tiers("cannot parse method");
522 return;
523 }
524 JVMState* jvms = build_start_state(start(), tf());
525 if ((jvms = cg->generate(jvms)) == NULL) {
526 record_method_not_compilable("method parse failed");
527 return;
528 }
529 GraphKit kit(jvms);
530
531 if (!kit.stopped()) {
532 // Accept return values, and transfer control we know not where.
533 // This is done by a special, unique ReturnNode bound to root.
534 return_values(kit.jvms());
535 }
536
537 if (kit.has_exceptions()) {
538 // Any exceptions that escape from this call must be rethrown
539 // to whatever caller is dynamically above us on the stack.
540 // This is done by a special, unique RethrowNode bound to root.
541 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
542 }
543
544 // Remove clutter produced by parsing.
545 if (!failing()) {
546 ResourceMark rm;
547 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
548 }
549 }
550
551 // Note: Large methods are capped off in do_one_bytecode().
552 if (failing()) return;
553
554 // After parsing, node notes are no longer automagic.
555 // They must be propagated by register_new_node_with_optimizer(),
556 // clone(), or the like.
557 set_default_node_notes(NULL);
558
559 for (;;) {
560 int successes = Inline_Warm();
561 if (failing()) return;
562 if (successes == 0) break;
563 }
564
565 // Drain the list.
566 Finish_Warm();
567 #ifndef PRODUCT
568 if (_printer) {
569 _printer->print_inlining(this);
570 }
571 #endif
572
573 if (failing()) return;
574 NOT_PRODUCT( verify_graph_edges(); )
575
576 // Perform escape analysis
577 if (_congraph != NULL) {
578 NOT_PRODUCT( TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, TimeCompiler); )
579 _congraph->compute_escape();
580 #ifndef PRODUCT
581 if (PrintEscapeAnalysis) {
582 _congraph->dump();
583 }
584 #endif
585 }
586 // Now optimize
587 Optimize();
588 if (failing()) return;
589 NOT_PRODUCT( verify_graph_edges(); )
590
591 #ifndef PRODUCT
592 if (PrintIdeal) {
593 ttyLocker ttyl; // keep the following output all in one block
594 // This output goes directly to the tty, not the compiler log.
595 // To enable tools to match it up with the compilation activity,
596 // be sure to tag this tty output with the compile ID.
597 if (xtty != NULL) {
598 xtty->head("ideal compile_id='%d'%s", compile_id(),
599 is_osr_compilation() ? " compile_kind='osr'" :
600 "");
601 }
602 root()->dump(9999);
603 if (xtty != NULL) {
604 xtty->tail("ideal");
605 }
606 }
607 #endif
608
609 // Now that we know the size of all the monitors we can add a fixed slot
610 // for the original deopt pc.
611
612 _orig_pc_slot = fixed_slots();
613 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
614 set_fixed_slots(next_slot);
615
616 // Now generate code
617 Code_Gen();
618 if (failing()) return;
619
620 // Check if we want to skip execution of all compiled code.
621 {
622 #ifndef PRODUCT
623 if (OptoNoExecute) {
624 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
625 return;
626 }
627 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
628 #endif
629
630 if (is_osr_compilation()) {
631 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
632 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
633 } else {
634 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
635 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
636 }
637
638 env()->register_method(_method, _entry_bci,
639 &_code_offsets,
640 _orig_pc_slot_offset_in_bytes,
641 code_buffer(),
642 frame_size_in_words(), _oop_map_set,
643 &_handler_table, &_inc_table,
644 compiler,
645 env()->comp_level(),
646 true, /*has_debug_info*/
647 has_unsafe_access()
648 );
649 }
650 }
651
652 //------------------------------Compile----------------------------------------
653 // Compile a runtime stub
654 Compile::Compile( ciEnv* ci_env,
655 TypeFunc_generator generator,
656 address stub_function,
657 const char *stub_name,
658 int is_fancy_jump,
659 bool pass_tls,
660 bool save_arg_registers,
661 bool return_pc )
662 : Phase(Compiler),
663 _env(ci_env),
664 _log(ci_env->log()),
665 _compile_id(-1),
666 _save_argument_registers(save_arg_registers),
667 _method(NULL),
668 _stub_name(stub_name),
669 _stub_function(stub_function),
670 _stub_entry_point(NULL),
671 _entry_bci(InvocationEntryBci),
672 _initial_gvn(NULL),
673 _for_igvn(NULL),
674 _warm_calls(NULL),
675 _orig_pc_slot(0),
676 _orig_pc_slot_offset_in_bytes(0),
677 _subsume_loads(true),
678 _failure_reason(NULL),
679 _code_buffer("Compile::Fill_buffer"),
680 _node_bundling_limit(0),
681 _node_bundling_base(NULL),
682 #ifndef PRODUCT
683 _trace_opto_output(TraceOptoOutput),
684 _printer(NULL),
685 #endif
686 _congraph(NULL) {
687 C = this;
688
689 #ifndef PRODUCT
690 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
691 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
692 set_print_assembly(PrintFrameConverterAssembly);
693 #endif
694 CompileWrapper cw(this);
695 Init(/*AliasLevel=*/ 0);
696 init_tf((*generator)());
697
698 {
699 // The following is a dummy for the sake of GraphKit::gen_stub
700 Unique_Node_List for_igvn(comp_arena());
701 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
702 PhaseGVN gvn(Thread::current()->resource_area(),255);
703 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
704 gvn.transform_no_reclaim(top());
705
706 GraphKit kit;
707 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
708 }
709
710 NOT_PRODUCT( verify_graph_edges(); )
711 Code_Gen();
712 if (failing()) return;
713
714
715 // Entry point will be accessed using compile->stub_entry_point();
716 if (code_buffer() == NULL) {
717 Matcher::soft_match_failure();
718 } else {
719 if (PrintAssembly && (WizardMode || Verbose))
720 tty->print_cr("### Stub::%s", stub_name);
721
722 if (!failing()) {
723 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
724
725 // Make the NMethod
726 // For now we mark the frame as never safe for profile stackwalking
727 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
728 code_buffer(),
729 CodeOffsets::frame_never_safe,
730 // _code_offsets.value(CodeOffsets::Frame_Complete),
731 frame_size_in_words(),
732 _oop_map_set,
733 save_arg_registers);
734 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
735
736 _stub_entry_point = rs->entry_point();
737 }
738 }
739 }
740
741 #ifndef PRODUCT
742 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
743 if(PrintOpto && Verbose) {
744 tty->print("%s ", stub_name); j_sig->print_flattened(); tty->cr();
745 }
746 }
747 #endif
748
749 void Compile::print_codes() {
750 }
751
752 //------------------------------Init-------------------------------------------
753 // Prepare for a single compilation
754 void Compile::Init(int aliaslevel) {
755 _unique = 0;
756 _regalloc = NULL;
757
758 _tf = NULL; // filled in later
759 _top = NULL; // cached later
760 _matcher = NULL; // filled in later
761 _cfg = NULL; // filled in later
762
763 set_24_bit_selection_and_mode(Use24BitFP, false);
764
765 _node_note_array = NULL;
766 _default_node_notes = NULL;
767
768 _immutable_memory = NULL; // filled in at first inquiry
769
770 // Globally visible Nodes
771 // First set TOP to NULL to give safe behavior during creation of RootNode
772 set_cached_top_node(NULL);
773 set_root(new (this, 3) RootNode());
774 // Now that you have a Root to point to, create the real TOP
775 set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
776 set_recent_alloc(NULL, NULL);
777
778 // Create Debug Information Recorder to record scopes, oopmaps, etc.
779 env()->set_oop_recorder(new OopRecorder(comp_arena()));
780 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
781 env()->set_dependencies(new Dependencies(env()));
782
783 _fixed_slots = 0;
784 set_has_split_ifs(false);
785 set_has_loops(has_method() && method()->has_loops()); // first approximation
786 _deopt_happens = true; // start out assuming the worst
787 _trap_can_recompile = false; // no traps emitted yet
788 _major_progress = true; // start out assuming good things will happen
789 set_has_unsafe_access(false);
790 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
791 set_decompile_count(0);
792
793 // Compilation level related initialization
794 if (env()->comp_level() == CompLevel_fast_compile) {
795 set_num_loop_opts(Tier1LoopOptsCount);
796 set_do_inlining(Tier1Inline != 0);
797 set_max_inline_size(Tier1MaxInlineSize);
798 set_freq_inline_size(Tier1FreqInlineSize);
799 set_do_scheduling(false);
800 set_do_count_invocations(Tier1CountInvocations);
801 set_do_method_data_update(Tier1UpdateMethodData);
802 } else {
803 assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
804 set_num_loop_opts(LoopOptsCount);
805 set_do_inlining(Inline);
806 set_max_inline_size(MaxInlineSize);
807 set_freq_inline_size(FreqInlineSize);
808 set_do_scheduling(OptoScheduling);
809 set_do_count_invocations(false);
810 set_do_method_data_update(false);
811 }
812
813 if (debug_info()->recording_non_safepoints()) {
814 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
815 (comp_arena(), 8, 0, NULL));
816 set_default_node_notes(Node_Notes::make(this));
817 }
818
819 // // -- Initialize types before each compile --
820 // // Update cached type information
821 // if( _method && _method->constants() )
822 // Type::update_loaded_types(_method, _method->constants());
823
824 // Init alias_type map.
825 if (!DoEscapeAnalysis && aliaslevel == 3)
826 aliaslevel = 2; // No unique types without escape analysis
827 _AliasLevel = aliaslevel;
828 const int grow_ats = 16;
829 _max_alias_types = grow_ats;
830 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
831 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
832 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
833 {
834 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
835 }
836 // Initialize the first few types.
837 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
838 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
839 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
840 _num_alias_types = AliasIdxRaw+1;
841 // Zero out the alias type cache.
842 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
843 // A NULL adr_type hits in the cache right away. Preload the right answer.
844 probe_alias_cache(NULL)->_index = AliasIdxTop;
845
846 _intrinsics = NULL;
847 _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
848 register_library_intrinsics();
849 }
850
851 //---------------------------init_start----------------------------------------
852 // Install the StartNode on this compile object.
853 void Compile::init_start(StartNode* s) {
854 if (failing())
855 return; // already failing
856 assert(s == start(), "");
857 }
858
859 StartNode* Compile::start() const {
860 assert(!failing(), "");
861 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
862 Node* start = root()->fast_out(i);
863 if( start->is_Start() )
864 return start->as_Start();
865 }
866 ShouldNotReachHere();
867 return NULL;
868 }
869
870 //-------------------------------immutable_memory-------------------------------------
871 // Access immutable memory
872 Node* Compile::immutable_memory() {
873 if (_immutable_memory != NULL) {
874 return _immutable_memory;
875 }
876 StartNode* s = start();
877 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
878 Node *p = s->fast_out(i);
879 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
880 _immutable_memory = p;
881 return _immutable_memory;
882 }
883 }
884 ShouldNotReachHere();
885 return NULL;
886 }
887
888 //----------------------set_cached_top_node------------------------------------
889 // Install the cached top node, and make sure Node::is_top works correctly.
890 void Compile::set_cached_top_node(Node* tn) {
891 if (tn != NULL) verify_top(tn);
892 Node* old_top = _top;
893 _top = tn;
894 // Calling Node::setup_is_top allows the nodes the chance to adjust
895 // their _out arrays.
896 if (_top != NULL) _top->setup_is_top();
897 if (old_top != NULL) old_top->setup_is_top();
898 assert(_top == NULL || top()->is_top(), "");
899 }
900
901 #ifndef PRODUCT
902 void Compile::verify_top(Node* tn) const {
903 if (tn != NULL) {
904 assert(tn->is_Con(), "top node must be a constant");
905 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
906 assert(tn->in(0) != NULL, "must have live top node");
907 }
908 }
909 #endif
910
911
912 ///-------------------Managing Per-Node Debug & Profile Info-------------------
913
914 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
915 guarantee(arr != NULL, "");
916 int num_blocks = arr->length();
917 if (grow_by < num_blocks) grow_by = num_blocks;
918 int num_notes = grow_by * _node_notes_block_size;
919 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
920 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
921 while (num_notes > 0) {
922 arr->append(notes);
923 notes += _node_notes_block_size;
924 num_notes -= _node_notes_block_size;
925 }
926 assert(num_notes == 0, "exact multiple, please");
927 }
928
929 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
930 if (source == NULL || dest == NULL) return false;
931
932 if (dest->is_Con())
933 return false; // Do not push debug info onto constants.
934
935 #ifdef ASSERT
936 // Leave a bread crumb trail pointing to the original node:
937 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
938 dest->set_debug_orig(source);
939 }
940 #endif
941
942 if (node_note_array() == NULL)
943 return false; // Not collecting any notes now.
944
945 // This is a copy onto a pre-existing node, which may already have notes.
946 // If both nodes have notes, do not overwrite any pre-existing notes.
947 Node_Notes* source_notes = node_notes_at(source->_idx);
948 if (source_notes == NULL || source_notes->is_clear()) return false;
949 Node_Notes* dest_notes = node_notes_at(dest->_idx);
950 if (dest_notes == NULL || dest_notes->is_clear()) {
951 return set_node_notes_at(dest->_idx, source_notes);
952 }
953
954 Node_Notes merged_notes = (*source_notes);
955 // The order of operations here ensures that dest notes will win...
956 merged_notes.update_from(dest_notes);
957 return set_node_notes_at(dest->_idx, &merged_notes);
958 }
959
960
961 //--------------------------allow_range_check_smearing-------------------------
962 // Gating condition for coalescing similar range checks.
963 // Sometimes we try 'speculatively' replacing a series of a range checks by a
964 // single covering check that is at least as strong as any of them.
965 // If the optimization succeeds, the simplified (strengthened) range check
966 // will always succeed. If it fails, we will deopt, and then give up
967 // on the optimization.
968 bool Compile::allow_range_check_smearing() const {
969 // If this method has already thrown a range-check,
970 // assume it was because we already tried range smearing
971 // and it failed.
972 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
973 return !already_trapped;
974 }
975
976
977 //------------------------------flatten_alias_type-----------------------------
978 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
979 int offset = tj->offset();
980 TypePtr::PTR ptr = tj->ptr();
981
982 // Process weird unsafe references.
983 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
984 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
985 tj = TypeOopPtr::BOTTOM;
986 ptr = tj->ptr();
987 offset = tj->offset();
988 }
989
990 // Array pointers need some flattening
991 const TypeAryPtr *ta = tj->isa_aryptr();
992 if( ta && _AliasLevel >= 2 ) {
993 // For arrays indexed by constant indices, we flatten the alias
994 // space to include all of the array body. Only the header, klass
995 // and array length can be accessed un-aliased.
996 if( offset != Type::OffsetBot ) {
997 if( ta->const_oop() ) { // methodDataOop or methodOop
998 offset = Type::OffsetBot; // Flatten constant access into array body
999 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
1000 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1001 // range is OK as-is.
1002 tj = ta = TypeAryPtr::RANGE;
1003 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1004 tj = TypeInstPtr::KLASS; // all klass loads look alike
1005 ta = TypeAryPtr::RANGE; // generic ignored junk
1006 ptr = TypePtr::BotPTR;
1007 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1008 tj = TypeInstPtr::MARK;
1009 ta = TypeAryPtr::RANGE; // generic ignored junk
1010 ptr = TypePtr::BotPTR;
1011 } else { // Random constant offset into array body
1012 offset = Type::OffsetBot; // Flatten constant access into array body
1013 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
1014 }
1015 }
1016 // Arrays of fixed size alias with arrays of unknown size.
1017 if (ta->size() != TypeInt::POS) {
1018 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1019 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset, ta->instance_id());
1020 }
1021 // Arrays of known objects become arrays of unknown objects.
1022 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1023 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1024 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset, ta->instance_id());
1025 }
1026 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1027 // cannot be distinguished by bytecode alone.
1028 if (ta->elem() == TypeInt::BOOL) {
1029 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1030 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1031 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset, ta->instance_id());
1032 }
1033 // During the 2nd round of IterGVN, NotNull castings are removed.
1034 // Make sure the Bottom and NotNull variants alias the same.
1035 // Also, make sure exact and non-exact variants alias the same.
1036 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1037 if (ta->const_oop()) {
1038 tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1039 } else {
1040 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1041 }
1042 }
1043 }
1044
1045 // Oop pointers need some flattening
1046 const TypeInstPtr *to = tj->isa_instptr();
1047 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1048 if( ptr == TypePtr::Constant ) {
1049 // No constant oop pointers (such as Strings); they alias with
1050 // unknown strings.
1051 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1052 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1053 // During the 2nd round of IterGVN, NotNull castings are removed.
1054 // Make sure the Bottom and NotNull variants alias the same.
1055 // Also, make sure exact and non-exact variants alias the same.
1056 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset, to->instance_id());
1057 }
1058 // Canonicalize the holder of this field
1059 ciInstanceKlass *k = to->klass()->as_instance_klass();
1060 if (offset >= 0 && offset < oopDesc::header_size() * wordSize) {
1061 // First handle header references such as a LoadKlassNode, even if the
1062 // object's klass is unloaded at compile time (4965979).
1063 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset, to->instance_id());
1064 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1065 to = NULL;
1066 tj = TypeOopPtr::BOTTOM;
1067 offset = tj->offset();
1068 } else {
1069 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1070 if (!k->equals(canonical_holder) || tj->offset() != offset) {
1071 tj = to = TypeInstPtr::make(TypePtr::BotPTR, canonical_holder, false, NULL, offset, to->instance_id());
1072 }
1073 }
1074 }
1075
1076 // Klass pointers to object array klasses need some flattening
1077 const TypeKlassPtr *tk = tj->isa_klassptr();
1078 if( tk ) {
1079 // If we are referencing a field within a Klass, we need
1080 // to assume the worst case of an Object. Both exact and
1081 // inexact types must flatten to the same alias class.
1082 // Since the flattened result for a klass is defined to be
1083 // precisely java.lang.Object, use a constant ptr.
1084 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1085
1086 tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1087 TypeKlassPtr::OBJECT->klass(),
1088 offset);
1089 }
1090
1091 ciKlass* klass = tk->klass();
1092 if( klass->is_obj_array_klass() ) {
1093 ciKlass* k = TypeAryPtr::OOPS->klass();
1094 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
1095 k = TypeInstPtr::BOTTOM->klass();
1096 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1097 }
1098
1099 // Check for precise loads from the primary supertype array and force them
1100 // to the supertype cache alias index. Check for generic array loads from
1101 // the primary supertype array and also force them to the supertype cache
1102 // alias index. Since the same load can reach both, we need to merge
1103 // these 2 disparate memories into the same alias class. Since the
1104 // primary supertype array is read-only, there's no chance of confusion
1105 // where we bypass an array load and an array store.
1106 uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1107 if( offset == Type::OffsetBot ||
1108 off2 < Klass::primary_super_limit()*wordSize ) {
1109 offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1110 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1111 }
1112 }
1113
1114 // Flatten all Raw pointers together.
1115 if (tj->base() == Type::RawPtr)
1116 tj = TypeRawPtr::BOTTOM;
1117
1118 if (tj->base() == Type::AnyPtr)
1119 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
1120
1121 // Flatten all to bottom for now
1122 switch( _AliasLevel ) {
1123 case 0:
1124 tj = TypePtr::BOTTOM;
1125 break;
1126 case 1: // Flatten to: oop, static, field or array
1127 switch (tj->base()) {
1128 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
1129 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
1130 case Type::AryPtr: // do not distinguish arrays at all
1131 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
1132 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1133 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
1134 default: ShouldNotReachHere();
1135 }
1136 break;
1137 case 2: // No collasping at level 2; keep all splits
1138 case 3: // No collasping at level 3; keep all splits
1139 break;
1140 default:
1141 Unimplemented();
1142 }
1143
1144 offset = tj->offset();
1145 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1146
1147 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1148 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1149 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1150 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1151 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1152 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1153 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
1154 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1155 assert( tj->ptr() != TypePtr::TopPTR &&
1156 tj->ptr() != TypePtr::AnyNull &&
1157 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1158 // assert( tj->ptr() != TypePtr::Constant ||
1159 // tj->base() == Type::RawPtr ||
1160 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
1161
1162 return tj;
1163 }
1164
1165 void Compile::AliasType::Init(int i, const TypePtr* at) {
1166 _index = i;
1167 _adr_type = at;
1168 _field = NULL;
1169 _is_rewritable = true; // default
1170 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1171 if (atoop != NULL && atoop->is_instance()) {
1172 const TypeOopPtr *gt = atoop->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
1173 _general_index = Compile::current()->get_alias_index(gt);
1174 } else {
1175 _general_index = 0;
1176 }
1177 }
1178
1179 //---------------------------------print_on------------------------------------
1180 #ifndef PRODUCT
1181 void Compile::AliasType::print_on(outputStream* st) {
1182 if (index() < 10)
1183 st->print("@ <%d> ", index());
1184 else st->print("@ <%d>", index());
1185 st->print(is_rewritable() ? " " : " RO");
1186 int offset = adr_type()->offset();
1187 if (offset == Type::OffsetBot)
1188 st->print(" +any");
1189 else st->print(" +%-3d", offset);
1190 st->print(" in ");
1191 adr_type()->dump_on(st);
1192 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1193 if (field() != NULL && tjp) {
1194 if (tjp->klass() != field()->holder() ||
1195 tjp->offset() != field()->offset_in_bytes()) {
1196 st->print(" != ");
1197 field()->print();
1198 st->print(" ***");
1199 }
1200 }
1201 }
1202
1203 void print_alias_types() {
1204 Compile* C = Compile::current();
1205 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1206 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1207 C->alias_type(idx)->print_on(tty);
1208 tty->cr();
1209 }
1210 }
1211 #endif
1212
1213
1214 //----------------------------probe_alias_cache--------------------------------
1215 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1216 intptr_t key = (intptr_t) adr_type;
1217 key ^= key >> logAliasCacheSize;
1218 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1219 }
1220
1221
1222 //-----------------------------grow_alias_types--------------------------------
1223 void Compile::grow_alias_types() {
1224 const int old_ats = _max_alias_types; // how many before?
1225 const int new_ats = old_ats; // how many more?
1226 const int grow_ats = old_ats+new_ats; // how many now?
1227 _max_alias_types = grow_ats;
1228 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1229 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1230 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1231 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
1232 }
1233
1234
1235 //--------------------------------find_alias_type------------------------------
1236 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1237 if (_AliasLevel == 0)
1238 return alias_type(AliasIdxBot);
1239
1240 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1241 if (ace->_adr_type == adr_type) {
1242 return alias_type(ace->_index);
1243 }
1244
1245 // Handle special cases.
1246 if (adr_type == NULL) return alias_type(AliasIdxTop);
1247 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
1248
1249 // Do it the slow way.
1250 const TypePtr* flat = flatten_alias_type(adr_type);
1251
1252 #ifdef ASSERT
1253 assert(flat == flatten_alias_type(flat), "idempotent");
1254 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
1255 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1256 const TypeOopPtr* foop = flat->is_oopptr();
1257 const TypePtr* xoop = foop->cast_to_exactness(!foop->klass_is_exact())->is_ptr();
1258 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1259 }
1260 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1261 #endif
1262
1263 int idx = AliasIdxTop;
1264 for (int i = 0; i < num_alias_types(); i++) {
1265 if (alias_type(i)->adr_type() == flat) {
1266 idx = i;
1267 break;
1268 }
1269 }
1270
1271 if (idx == AliasIdxTop) {
1272 if (no_create) return NULL;
1273 // Grow the array if necessary.
1274 if (_num_alias_types == _max_alias_types) grow_alias_types();
1275 // Add a new alias type.
1276 idx = _num_alias_types++;
1277 _alias_types[idx]->Init(idx, flat);
1278 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
1279 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
1280 if (flat->isa_instptr()) {
1281 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1282 && flat->is_instptr()->klass() == env()->Class_klass())
1283 alias_type(idx)->set_rewritable(false);
1284 }
1285 if (flat->isa_klassptr()) {
1286 if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1287 alias_type(idx)->set_rewritable(false);
1288 if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1289 alias_type(idx)->set_rewritable(false);
1290 if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1291 alias_type(idx)->set_rewritable(false);
1292 if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1293 alias_type(idx)->set_rewritable(false);
1294 }
1295 // %%% (We would like to finalize JavaThread::threadObj_offset(),
1296 // but the base pointer type is not distinctive enough to identify
1297 // references into JavaThread.)
1298
1299 // Check for final instance fields.
1300 const TypeInstPtr* tinst = flat->isa_instptr();
1301 if (tinst && tinst->offset() >= oopDesc::header_size() * wordSize) {
1302 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1303 ciField* field = k->get_field_by_offset(tinst->offset(), false);
1304 // Set field() and is_rewritable() attributes.
1305 if (field != NULL) alias_type(idx)->set_field(field);
1306 }
1307 const TypeKlassPtr* tklass = flat->isa_klassptr();
1308 // Check for final static fields.
1309 if (tklass && tklass->klass()->is_instance_klass()) {
1310 ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1311 ciField* field = k->get_field_by_offset(tklass->offset(), true);
1312 // Set field() and is_rewritable() attributes.
1313 if (field != NULL) alias_type(idx)->set_field(field);
1314 }
1315 }
1316
1317 // Fill the cache for next time.
1318 ace->_adr_type = adr_type;
1319 ace->_index = idx;
1320 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
1321
1322 // Might as well try to fill the cache for the flattened version, too.
1323 AliasCacheEntry* face = probe_alias_cache(flat);
1324 if (face->_adr_type == NULL) {
1325 face->_adr_type = flat;
1326 face->_index = idx;
1327 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1328 }
1329
1330 return alias_type(idx);
1331 }
1332
1333
1334 Compile::AliasType* Compile::alias_type(ciField* field) {
1335 const TypeOopPtr* t;
1336 if (field->is_static())
1337 t = TypeKlassPtr::make(field->holder());
1338 else
1339 t = TypeOopPtr::make_from_klass_raw(field->holder());
1340 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1341 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1342 return atp;
1343 }
1344
1345
1346 //------------------------------have_alias_type--------------------------------
1347 bool Compile::have_alias_type(const TypePtr* adr_type) {
1348 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1349 if (ace->_adr_type == adr_type) {
1350 return true;
1351 }
1352
1353 // Handle special cases.
1354 if (adr_type == NULL) return true;
1355 if (adr_type == TypePtr::BOTTOM) return true;
1356
1357 return find_alias_type(adr_type, true) != NULL;
1358 }
1359
1360 //-----------------------------must_alias--------------------------------------
1361 // True if all values of the given address type are in the given alias category.
1362 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1363 if (alias_idx == AliasIdxBot) return true; // the universal category
1364 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
1365 if (alias_idx == AliasIdxTop) return false; // the empty category
1366 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1367
1368 // the only remaining possible overlap is identity
1369 int adr_idx = get_alias_index(adr_type);
1370 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1371 assert(adr_idx == alias_idx ||
1372 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1373 && adr_type != TypeOopPtr::BOTTOM),
1374 "should not be testing for overlap with an unsafe pointer");
1375 return adr_idx == alias_idx;
1376 }
1377
1378 //------------------------------can_alias--------------------------------------
1379 // True if any values of the given address type are in the given alias category.
1380 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1381 if (alias_idx == AliasIdxTop) return false; // the empty category
1382 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
1383 if (alias_idx == AliasIdxBot) return true; // the universal category
1384 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
1385
1386 // the only remaining possible overlap is identity
1387 int adr_idx = get_alias_index(adr_type);
1388 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1389 return adr_idx == alias_idx;
1390 }
1391
1392
1393
1394 //---------------------------pop_warm_call-------------------------------------
1395 WarmCallInfo* Compile::pop_warm_call() {
1396 WarmCallInfo* wci = _warm_calls;
1397 if (wci != NULL) _warm_calls = wci->remove_from(wci);
1398 return wci;
1399 }
1400
1401 //----------------------------Inline_Warm--------------------------------------
1402 int Compile::Inline_Warm() {
1403 // If there is room, try to inline some more warm call sites.
1404 // %%% Do a graph index compaction pass when we think we're out of space?
1405 if (!InlineWarmCalls) return 0;
1406
1407 int calls_made_hot = 0;
1408 int room_to_grow = NodeCountInliningCutoff - unique();
1409 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1410 int amount_grown = 0;
1411 WarmCallInfo* call;
1412 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1413 int est_size = (int)call->size();
1414 if (est_size > (room_to_grow - amount_grown)) {
1415 // This one won't fit anyway. Get rid of it.
1416 call->make_cold();
1417 continue;
1418 }
1419 call->make_hot();
1420 calls_made_hot++;
1421 amount_grown += est_size;
1422 amount_to_grow -= est_size;
1423 }
1424
1425 if (calls_made_hot > 0) set_major_progress();
1426 return calls_made_hot;
1427 }
1428
1429
1430 //----------------------------Finish_Warm--------------------------------------
1431 void Compile::Finish_Warm() {
1432 if (!InlineWarmCalls) return;
1433 if (failing()) return;
1434 if (warm_calls() == NULL) return;
1435
1436 // Clean up loose ends, if we are out of space for inlining.
1437 WarmCallInfo* call;
1438 while ((call = pop_warm_call()) != NULL) {
1439 call->make_cold();
1440 }
1441 }
1442
1443
1444 //------------------------------Optimize---------------------------------------
1445 // Given a graph, optimize it.
1446 void Compile::Optimize() {
1447 TracePhase t1("optimizer", &_t_optimizer, true);
1448
1449 #ifndef PRODUCT
1450 if (env()->break_at_compile()) {
1451 BREAKPOINT;
1452 }
1453
1454 #endif
1455
1456 ResourceMark rm;
1457 int loop_opts_cnt;
1458
1459 NOT_PRODUCT( verify_graph_edges(); )
1460
1461 print_method("Start");
1462
1463 {
1464 // Iterative Global Value Numbering, including ideal transforms
1465 // Initialize IterGVN with types and values from parse-time GVN
1466 PhaseIterGVN igvn(initial_gvn());
1467 {
1468 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1469 igvn.optimize();
1470 }
1471
1472 print_method("Iter GVN 1", 2);
1473
1474 if (failing()) return;
1475
1476 // get rid of the connection graph since it's information is not
1477 // updated by optimizations
1478 _congraph = NULL;
1479
1480
1481 // Loop transforms on the ideal graph. Range Check Elimination,
1482 // peeling, unrolling, etc.
1483
1484 // Set loop opts counter
1485 loop_opts_cnt = num_loop_opts();
1486 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1487 {
1488 TracePhase t2("idealLoop", &_t_idealLoop, true);
1489 PhaseIdealLoop ideal_loop( igvn, NULL, true );
1490 loop_opts_cnt--;
1491 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1492 if (failing()) return;
1493 }
1494 // Loop opts pass if partial peeling occurred in previous pass
1495 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1496 TracePhase t3("idealLoop", &_t_idealLoop, true);
1497 PhaseIdealLoop ideal_loop( igvn, NULL, false );
1498 loop_opts_cnt--;
1499 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1500 if (failing()) return;
1501 }
1502 // Loop opts pass for loop-unrolling before CCP
1503 if(major_progress() && (loop_opts_cnt > 0)) {
1504 TracePhase t4("idealLoop", &_t_idealLoop, true);
1505 PhaseIdealLoop ideal_loop( igvn, NULL, false );
1506 loop_opts_cnt--;
1507 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1508 }
1509 }
1510 if (failing()) return;
1511
1512 // Conditional Constant Propagation;
1513 PhaseCCP ccp( &igvn );
1514 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1515 {
1516 TracePhase t2("ccp", &_t_ccp, true);
1517 ccp.do_transform();
1518 }
1519 print_method("PhaseCPP 1", 2);
1520
1521 assert( true, "Break here to ccp.dump_old2new_map()");
1522
1523 // Iterative Global Value Numbering, including ideal transforms
1524 {
1525 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1526 igvn = ccp;
1527 igvn.optimize();
1528 }
1529
1530 print_method("Iter GVN 2", 2);
1531
1532 if (failing()) return;
1533
1534 // Loop transforms on the ideal graph. Range Check Elimination,
1535 // peeling, unrolling, etc.
1536 if(loop_opts_cnt > 0) {
1537 debug_only( int cnt = 0; );
1538 while(major_progress() && (loop_opts_cnt > 0)) {
1539 TracePhase t2("idealLoop", &_t_idealLoop, true);
1540 assert( cnt++ < 40, "infinite cycle in loop optimization" );
1541 PhaseIdealLoop ideal_loop( igvn, NULL, true );
1542 loop_opts_cnt--;
1543 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1544 if (failing()) return;
1545 }
1546 }
1547 {
1548 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1549 PhaseMacroExpand mex(igvn);
1550 if (mex.expand_macro_nodes()) {
1551 assert(failing(), "must bail out w/ explicit message");
1552 return;
1553 }
1554 }
1555
1556 } // (End scope of igvn; run destructor if necessary for asserts.)
1557
1558 // A method with only infinite loops has no edges entering loops from root
1559 {
1560 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1561 if (final_graph_reshaping()) {
1562 assert(failing(), "must bail out w/ explicit message");
1563 return;
1564 }
1565 }
1566
1567 print_method("Optimize finished", 2);
1568 }
1569
1570
1571 //------------------------------Code_Gen---------------------------------------
1572 // Given a graph, generate code for it
1573 void Compile::Code_Gen() {
1574 if (failing()) return;
1575
1576 // Perform instruction selection. You might think we could reclaim Matcher
1577 // memory PDQ, but actually the Matcher is used in generating spill code.
1578 // Internals of the Matcher (including some VectorSets) must remain live
1579 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1580 // set a bit in reclaimed memory.
1581
1582 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1583 // nodes. Mapping is only valid at the root of each matched subtree.
1584 NOT_PRODUCT( verify_graph_edges(); )
1585
1586 Node_List proj_list;
1587 Matcher m(proj_list);
1588 _matcher = &m;
1589 {
1590 TracePhase t2("matcher", &_t_matcher, true);
1591 m.match();
1592 }
1593 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1594 // nodes. Mapping is only valid at the root of each matched subtree.
1595 NOT_PRODUCT( verify_graph_edges(); )
1596
1597 // If you have too many nodes, or if matching has failed, bail out
1598 check_node_count(0, "out of nodes matching instructions");
1599 if (failing()) return;
1600
1601 // Build a proper-looking CFG
1602 PhaseCFG cfg(node_arena(), root(), m);
1603 _cfg = &cfg;
1604 {
1605 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1606 cfg.Dominators();
1607 if (failing()) return;
1608
1609 NOT_PRODUCT( verify_graph_edges(); )
1610
1611 cfg.Estimate_Block_Frequency();
1612 cfg.GlobalCodeMotion(m,unique(),proj_list);
1613
1614 print_method("Global code motion", 2);
1615
1616 if (failing()) return;
1617 NOT_PRODUCT( verify_graph_edges(); )
1618
1619 debug_only( cfg.verify(); )
1620 }
1621 NOT_PRODUCT( verify_graph_edges(); )
1622
1623 PhaseChaitin regalloc(unique(),cfg,m);
1624 _regalloc = &regalloc;
1625 {
1626 TracePhase t2("regalloc", &_t_registerAllocation, true);
1627 // Perform any platform dependent preallocation actions. This is used,
1628 // for example, to avoid taking an implicit null pointer exception
1629 // using the frame pointer on win95.
1630 _regalloc->pd_preallocate_hook();
1631
1632 // Perform register allocation. After Chaitin, use-def chains are
1633 // no longer accurate (at spill code) and so must be ignored.
1634 // Node->LRG->reg mappings are still accurate.
1635 _regalloc->Register_Allocate();
1636
1637 // Bail out if the allocator builds too many nodes
1638 if (failing()) return;
1639 }
1640
1641 // Prior to register allocation we kept empty basic blocks in case the
1642 // the allocator needed a place to spill. After register allocation we
1643 // are not adding any new instructions. If any basic block is empty, we
1644 // can now safely remove it.
1645 {
1646 NOT_PRODUCT( TracePhase t2("removeEmpty", &_t_removeEmptyBlocks, TimeCompiler); )
1647 cfg.RemoveEmpty();
1648 }
1649
1650 // Perform any platform dependent postallocation verifications.
1651 debug_only( _regalloc->pd_postallocate_verify_hook(); )
1652
1653 // Apply peephole optimizations
1654 if( OptoPeephole ) {
1655 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1656 PhasePeephole peep( _regalloc, cfg);
1657 peep.do_transform();
1658 }
1659
1660 // Convert Nodes to instruction bits in a buffer
1661 {
1662 // %%%% workspace merge brought two timers together for one job
1663 TracePhase t2a("output", &_t_output, true);
1664 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1665 Output();
1666 }
1667
1668 print_method("End");
1669
1670 // He's dead, Jim.
1671 _cfg = (PhaseCFG*)0xdeadbeef;
1672 _regalloc = (PhaseChaitin*)0xdeadbeef;
1673 }
1674
1675
1676 //------------------------------dump_asm---------------------------------------
1677 // Dump formatted assembly
1678 #ifndef PRODUCT
1679 void Compile::dump_asm(int *pcs, uint pc_limit) {
1680 bool cut_short = false;
1681 tty->print_cr("#");
1682 tty->print("# "); _tf->dump(); tty->cr();
1683 tty->print_cr("#");
1684
1685 // For all blocks
1686 int pc = 0x0; // Program counter
1687 char starts_bundle = ' ';
1688 _regalloc->dump_frame();
1689
1690 Node *n = NULL;
1691 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1692 if (VMThread::should_terminate()) { cut_short = true; break; }
1693 Block *b = _cfg->_blocks[i];
1694 if (b->is_connector() && !Verbose) continue;
1695 n = b->_nodes[0];
1696 if (pcs && n->_idx < pc_limit)
1697 tty->print("%3.3x ", pcs[n->_idx]);
1698 else
1699 tty->print(" ");
1700 b->dump_head( &_cfg->_bbs );
1701 if (b->is_connector()) {
1702 tty->print_cr(" # Empty connector block");
1703 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1704 tty->print_cr(" # Block is sole successor of call");
1705 }
1706
1707 // For all instructions
1708 Node *delay = NULL;
1709 for( uint j = 0; j<b->_nodes.size(); j++ ) {
1710 if (VMThread::should_terminate()) { cut_short = true; break; }
1711 n = b->_nodes[j];
1712 if (valid_bundle_info(n)) {
1713 Bundle *bundle = node_bundling(n);
1714 if (bundle->used_in_unconditional_delay()) {
1715 delay = n;
1716 continue;
1717 }
1718 if (bundle->starts_bundle())
1719 starts_bundle = '+';
1720 }
1721
1722 if( !n->is_Region() && // Dont print in the Assembly
1723 !n->is_Phi() && // a few noisely useless nodes
1724 !n->is_Proj() &&
1725 !n->is_MachTemp() &&
1726 !n->is_Catch() && // Would be nice to print exception table targets
1727 !n->is_MergeMem() && // Not very interesting
1728 !n->is_top() && // Debug info table constants
1729 !(n->is_Con() && !n->is_Mach())// Debug info table constants
1730 ) {
1731 if (pcs && n->_idx < pc_limit)
1732 tty->print("%3.3x", pcs[n->_idx]);
1733 else
1734 tty->print(" ");
1735 tty->print(" %c ", starts_bundle);
1736 starts_bundle = ' ';
1737 tty->print("\t");
1738 n->format(_regalloc, tty);
1739 tty->cr();
1740 }
1741
1742 // If we have an instruction with a delay slot, and have seen a delay,
1743 // then back up and print it
1744 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1745 assert(delay != NULL, "no unconditional delay instruction");
1746 if (node_bundling(delay)->starts_bundle())
1747 starts_bundle = '+';
1748 if (pcs && n->_idx < pc_limit)
1749 tty->print("%3.3x", pcs[n->_idx]);
1750 else
1751 tty->print(" ");
1752 tty->print(" %c ", starts_bundle);
1753 starts_bundle = ' ';
1754 tty->print("\t");
1755 delay->format(_regalloc, tty);
1756 tty->print_cr("");
1757 delay = NULL;
1758 }
1759
1760 // Dump the exception table as well
1761 if( n->is_Catch() && (Verbose || WizardMode) ) {
1762 // Print the exception table for this offset
1763 _handler_table.print_subtable_for(pc);
1764 }
1765 }
1766
1767 if (pcs && n->_idx < pc_limit)
1768 tty->print_cr("%3.3x", pcs[n->_idx]);
1769 else
1770 tty->print_cr("");
1771
1772 assert(cut_short || delay == NULL, "no unconditional delay branch");
1773
1774 } // End of per-block dump
1775 tty->print_cr("");
1776
1777 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
1778 }
1779 #endif
1780
1781 //------------------------------Final_Reshape_Counts---------------------------
1782 // This class defines counters to help identify when a method
1783 // may/must be executed using hardware with only 24-bit precision.
1784 struct Final_Reshape_Counts : public StackObj {
1785 int _call_count; // count non-inlined 'common' calls
1786 int _float_count; // count float ops requiring 24-bit precision
1787 int _double_count; // count double ops requiring more precision
1788 int _java_call_count; // count non-inlined 'java' calls
1789 VectorSet _visited; // Visitation flags
1790 Node_List _tests; // Set of IfNodes & PCTableNodes
1791
1792 Final_Reshape_Counts() :
1793 _call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
1794 _visited( Thread::current()->resource_area() ) { }
1795
1796 void inc_call_count () { _call_count ++; }
1797 void inc_float_count () { _float_count ++; }
1798 void inc_double_count() { _double_count++; }
1799 void inc_java_call_count() { _java_call_count++; }
1800
1801 int get_call_count () const { return _call_count ; }
1802 int get_float_count () const { return _float_count ; }
1803 int get_double_count() const { return _double_count; }
1804 int get_java_call_count() const { return _java_call_count; }
1805 };
1806
1807 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1808 ciInstanceKlass *k = tp->klass()->as_instance_klass();
1809 // Make sure the offset goes inside the instance layout.
1810 return (uint)tp->offset() < (uint)(oopDesc::header_size() + k->nonstatic_field_size())*wordSize;
1811 // Note that OffsetBot and OffsetTop are very negative.
1812 }
1813
1814 //------------------------------final_graph_reshaping_impl----------------------
1815 // Implement items 1-5 from final_graph_reshaping below.
1816 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
1817
1818 uint nop = n->Opcode();
1819
1820 // Check for 2-input instruction with "last use" on right input.
1821 // Swap to left input. Implements item (2).
1822 if( n->req() == 3 && // two-input instruction
1823 n->in(1)->outcnt() > 1 && // left use is NOT a last use
1824 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1825 n->in(2)->outcnt() == 1 &&// right use IS a last use
1826 !n->in(2)->is_Con() ) { // right use is not a constant
1827 // Check for commutative opcode
1828 switch( nop ) {
1829 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
1830 case Op_MaxI: case Op_MinI:
1831 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
1832 case Op_AndL: case Op_XorL: case Op_OrL:
1833 case Op_AndI: case Op_XorI: case Op_OrI: {
1834 // Move "last use" input to left by swapping inputs
1835 n->swap_edges(1, 2);
1836 break;
1837 }
1838 default:
1839 break;
1840 }
1841 }
1842
1843 // Count FPU ops and common calls, implements item (3)
1844 switch( nop ) {
1845 // Count all float operations that may use FPU
1846 case Op_AddF:
1847 case Op_SubF:
1848 case Op_MulF:
1849 case Op_DivF:
1850 case Op_NegF:
1851 case Op_ModF:
1852 case Op_ConvI2F:
1853 case Op_ConF:
1854 case Op_CmpF:
1855 case Op_CmpF3:
1856 // case Op_ConvL2F: // longs are split into 32-bit halves
1857 fpu.inc_float_count();
1858 break;
1859
1860 case Op_ConvF2D:
1861 case Op_ConvD2F:
1862 fpu.inc_float_count();
1863 fpu.inc_double_count();
1864 break;
1865
1866 // Count all double operations that may use FPU
1867 case Op_AddD:
1868 case Op_SubD:
1869 case Op_MulD:
1870 case Op_DivD:
1871 case Op_NegD:
1872 case Op_ModD:
1873 case Op_ConvI2D:
1874 case Op_ConvD2I:
1875 // case Op_ConvL2D: // handled by leaf call
1876 // case Op_ConvD2L: // handled by leaf call
1877 case Op_ConD:
1878 case Op_CmpD:
1879 case Op_CmpD3:
1880 fpu.inc_double_count();
1881 break;
1882 case Op_Opaque1: // Remove Opaque Nodes before matching
1883 case Op_Opaque2: // Remove Opaque Nodes before matching
1884 n->replace_by(n->in(1));
1885 break;
1886 case Op_CallStaticJava:
1887 case Op_CallJava:
1888 case Op_CallDynamicJava:
1889 fpu.inc_java_call_count(); // Count java call site;
1890 case Op_CallRuntime:
1891 case Op_CallLeaf:
1892 case Op_CallLeafNoFP: {
1893 assert( n->is_Call(), "" );
1894 CallNode *call = n->as_Call();
1895 // Count call sites where the FP mode bit would have to be flipped.
1896 // Do not count uncommon runtime calls:
1897 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
1898 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
1899 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
1900 fpu.inc_call_count(); // Count the call site
1901 } else { // See if uncommon argument is shared
1902 Node *n = call->in(TypeFunc::Parms);
1903 int nop = n->Opcode();
1904 // Clone shared simple arguments to uncommon calls, item (1).
1905 if( n->outcnt() > 1 &&
1906 !n->is_Proj() &&
1907 nop != Op_CreateEx &&
1908 nop != Op_CheckCastPP &&
1909 !n->is_Mem() ) {
1910 Node *x = n->clone();
1911 call->set_req( TypeFunc::Parms, x );
1912 }
1913 }
1914 break;
1915 }
1916
1917 case Op_StoreD:
1918 case Op_LoadD:
1919 case Op_LoadD_unaligned:
1920 fpu.inc_double_count();
1921 goto handle_mem;
1922 case Op_StoreF:
1923 case Op_LoadF:
1924 fpu.inc_float_count();
1925 goto handle_mem;
1926
1927 case Op_StoreB:
1928 case Op_StoreC:
1929 case Op_StoreCM:
1930 case Op_StorePConditional:
1931 case Op_StoreI:
1932 case Op_StoreL:
1933 case Op_StoreLConditional:
1934 case Op_CompareAndSwapI:
1935 case Op_CompareAndSwapL:
1936 case Op_CompareAndSwapP:
1937 case Op_StoreP:
1938 case Op_LoadB:
1939 case Op_LoadC:
1940 case Op_LoadI:
1941 case Op_LoadKlass:
1942 case Op_LoadL:
1943 case Op_LoadL_unaligned:
1944 case Op_LoadPLocked:
1945 case Op_LoadLLocked:
1946 case Op_LoadP:
1947 case Op_LoadRange:
1948 case Op_LoadS: {
1949 handle_mem:
1950 #ifdef ASSERT
1951 if( VerifyOptoOopOffsets ) {
1952 assert( n->is_Mem(), "" );
1953 MemNode *mem = (MemNode*)n;
1954 // Check to see if address types have grounded out somehow.
1955 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
1956 assert( !tp || oop_offset_is_sane(tp), "" );
1957 }
1958 #endif
1959 break;
1960 }
1961 case Op_If:
1962 case Op_CountedLoopEnd:
1963 fpu._tests.push(n); // Collect CFG split points
1964 break;
1965
1966 case Op_AddP: { // Assert sane base pointers
1967 const Node *addp = n->in(AddPNode::Address);
1968 assert( !addp->is_AddP() ||
1969 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
1970 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
1971 "Base pointers must match" );
1972 break;
1973 }
1974
1975 case Op_ModI:
1976 if (UseDivMod) {
1977 // Check if a%b and a/b both exist
1978 Node* d = n->find_similar(Op_DivI);
1979 if (d) {
1980 // Replace them with a fused divmod if supported
1981 Compile* C = Compile::current();
1982 if (Matcher::has_match_rule(Op_DivModI)) {
1983 DivModINode* divmod = DivModINode::make(C, n);
1984 d->replace_by(divmod->div_proj());
1985 n->replace_by(divmod->mod_proj());
1986 } else {
1987 // replace a%b with a-((a/b)*b)
1988 Node* mult = new (C, 3) MulINode(d, d->in(2));
1989 Node* sub = new (C, 3) SubINode(d->in(1), mult);
1990 n->replace_by( sub );
1991 }
1992 }
1993 }
1994 break;
1995
1996 case Op_ModL:
1997 if (UseDivMod) {
1998 // Check if a%b and a/b both exist
1999 Node* d = n->find_similar(Op_DivL);
2000 if (d) {
2001 // Replace them with a fused divmod if supported
2002 Compile* C = Compile::current();
2003 if (Matcher::has_match_rule(Op_DivModL)) {
2004 DivModLNode* divmod = DivModLNode::make(C, n);
2005 d->replace_by(divmod->div_proj());
2006 n->replace_by(divmod->mod_proj());
2007 } else {
2008 // replace a%b with a-((a/b)*b)
2009 Node* mult = new (C, 3) MulLNode(d, d->in(2));
2010 Node* sub = new (C, 3) SubLNode(d->in(1), mult);
2011 n->replace_by( sub );
2012 }
2013 }
2014 }
2015 break;
2016
2017 case Op_Load16B:
2018 case Op_Load8B:
2019 case Op_Load4B:
2020 case Op_Load8S:
2021 case Op_Load4S:
2022 case Op_Load2S:
2023 case Op_Load8C:
2024 case Op_Load4C:
2025 case Op_Load2C:
2026 case Op_Load4I:
2027 case Op_Load2I:
2028 case Op_Load2L:
2029 case Op_Load4F:
2030 case Op_Load2F:
2031 case Op_Load2D:
2032 case Op_Store16B:
2033 case Op_Store8B:
2034 case Op_Store4B:
2035 case Op_Store8C:
2036 case Op_Store4C:
2037 case Op_Store2C:
2038 case Op_Store4I:
2039 case Op_Store2I:
2040 case Op_Store2L:
2041 case Op_Store4F:
2042 case Op_Store2F:
2043 case Op_Store2D:
2044 break;
2045
2046 case Op_PackB:
2047 case Op_PackS:
2048 case Op_PackC:
2049 case Op_PackI:
2050 case Op_PackF:
2051 case Op_PackL:
2052 case Op_PackD:
2053 if (n->req()-1 > 2) {
2054 // Replace many operand PackNodes with a binary tree for matching
2055 PackNode* p = (PackNode*) n;
2056 Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2057 n->replace_by(btp);
2058 }
2059 break;
2060 default:
2061 assert( !n->is_Call(), "" );
2062 assert( !n->is_Mem(), "" );
2063 if( n->is_If() || n->is_PCTable() )
2064 fpu._tests.push(n); // Collect CFG split points
2065 break;
2066 }
2067 }
2068
2069 //------------------------------final_graph_reshaping_walk---------------------
2070 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2071 // requires that the walk visits a node's inputs before visiting the node.
2072 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
2073 fpu._visited.set(root->_idx); // first, mark node as visited
2074 uint cnt = root->req();
2075 Node *n = root;
2076 uint i = 0;
2077 while (true) {
2078 if (i < cnt) {
2079 // Place all non-visited non-null inputs onto stack
2080 Node* m = n->in(i);
2081 ++i;
2082 if (m != NULL && !fpu._visited.test_set(m->_idx)) {
2083 cnt = m->req();
2084 nstack.push(n, i); // put on stack parent and next input's index
2085 n = m;
2086 i = 0;
2087 }
2088 } else {
2089 // Now do post-visit work
2090 final_graph_reshaping_impl( n, fpu );
2091 if (nstack.is_empty())
2092 break; // finished
2093 n = nstack.node(); // Get node from stack
2094 cnt = n->req();
2095 i = nstack.index();
2096 nstack.pop(); // Shift to the next node on stack
2097 }
2098 }
2099 }
2100
2101 //------------------------------final_graph_reshaping--------------------------
2102 // Final Graph Reshaping.
2103 //
2104 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2105 // and not commoned up and forced early. Must come after regular
2106 // optimizations to avoid GVN undoing the cloning. Clone constant
2107 // inputs to Loop Phis; these will be split by the allocator anyways.
2108 // Remove Opaque nodes.
2109 // (2) Move last-uses by commutative operations to the left input to encourage
2110 // Intel update-in-place two-address operations and better register usage
2111 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
2112 // calls canonicalizing them back.
2113 // (3) Count the number of double-precision FP ops, single-precision FP ops
2114 // and call sites. On Intel, we can get correct rounding either by
2115 // forcing singles to memory (requires extra stores and loads after each
2116 // FP bytecode) or we can set a rounding mode bit (requires setting and
2117 // clearing the mode bit around call sites). The mode bit is only used
2118 // if the relative frequency of single FP ops to calls is low enough.
2119 // This is a key transform for SPEC mpeg_audio.
2120 // (4) Detect infinite loops; blobs of code reachable from above but not
2121 // below. Several of the Code_Gen algorithms fail on such code shapes,
2122 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
2123 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
2124 // Detection is by looking for IfNodes where only 1 projection is
2125 // reachable from below or CatchNodes missing some targets.
2126 // (5) Assert for insane oop offsets in debug mode.
2127
2128 bool Compile::final_graph_reshaping() {
2129 // an infinite loop may have been eliminated by the optimizer,
2130 // in which case the graph will be empty.
2131 if (root()->req() == 1) {
2132 record_method_not_compilable("trivial infinite loop");
2133 return true;
2134 }
2135
2136 Final_Reshape_Counts fpu;
2137
2138 // Visit everybody reachable!
2139 // Allocate stack of size C->unique()/2 to avoid frequent realloc
2140 Node_Stack nstack(unique() >> 1);
2141 final_graph_reshaping_walk(nstack, root(), fpu);
2142
2143 // Check for unreachable (from below) code (i.e., infinite loops).
2144 for( uint i = 0; i < fpu._tests.size(); i++ ) {
2145 Node *n = fpu._tests[i];
2146 assert( n->is_PCTable() || n->is_If(), "either PCTables or IfNodes" );
2147 // Get number of CFG targets; 2 for IfNodes or _size for PCTables.
2148 // Note that PCTables include exception targets after calls.
2149 uint expected_kids = n->is_PCTable() ? n->as_PCTable()->_size : 2;
2150 if (n->outcnt() != expected_kids) {
2151 // Check for a few special cases. Rethrow Nodes never take the
2152 // 'fall-thru' path, so expected kids is 1 less.
2153 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2154 if (n->in(0)->in(0)->is_Call()) {
2155 CallNode *call = n->in(0)->in(0)->as_Call();
2156 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2157 expected_kids--; // Rethrow always has 1 less kid
2158 } else if (call->req() > TypeFunc::Parms &&
2159 call->is_CallDynamicJava()) {
2160 // Check for null receiver. In such case, the optimizer has
2161 // detected that the virtual call will always result in a null
2162 // pointer exception. The fall-through projection of this CatchNode
2163 // will not be populated.
2164 Node *arg0 = call->in(TypeFunc::Parms);
2165 if (arg0->is_Type() &&
2166 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2167 expected_kids--;
2168 }
2169 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2170 call->req() > TypeFunc::Parms+1 &&
2171 call->is_CallStaticJava()) {
2172 // Check for negative array length. In such case, the optimizer has
2173 // detected that the allocation attempt will always result in an
2174 // exception. There is no fall-through projection of this CatchNode .
2175 Node *arg1 = call->in(TypeFunc::Parms+1);
2176 if (arg1->is_Type() &&
2177 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2178 expected_kids--;
2179 }
2180 }
2181 }
2182 }
2183 // Recheck with a better notion of 'expected_kids'
2184 if (n->outcnt() != expected_kids) {
2185 record_method_not_compilable("malformed control flow");
2186 return true; // Not all targets reachable!
2187 }
2188 }
2189 // Check that I actually visited all kids. Unreached kids
2190 // must be infinite loops.
2191 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2192 if (!fpu._visited.test(n->fast_out(j)->_idx)) {
2193 record_method_not_compilable("infinite loop");
2194 return true; // Found unvisited kid; must be unreach
2195 }
2196 }
2197
2198 // If original bytecodes contained a mixture of floats and doubles
2199 // check if the optimizer has made it homogenous, item (3).
2200 if( Use24BitFPMode && Use24BitFP &&
2201 fpu.get_float_count() > 32 &&
2202 fpu.get_double_count() == 0 &&
2203 (10 * fpu.get_call_count() < fpu.get_float_count()) ) {
2204 set_24_bit_selection_and_mode( false, true );
2205 }
2206
2207 set_has_java_calls(fpu.get_java_call_count() > 0);
2208
2209 // No infinite loops, no reason to bail out.
2210 return false;
2211 }
2212
2213 //-----------------------------too_many_traps----------------------------------
2214 // Report if there are too many traps at the current method and bci.
2215 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2216 bool Compile::too_many_traps(ciMethod* method,
2217 int bci,
2218 Deoptimization::DeoptReason reason) {
2219 ciMethodData* md = method->method_data();
2220 if (md->is_empty()) {
2221 // Assume the trap has not occurred, or that it occurred only
2222 // because of a transient condition during start-up in the interpreter.
2223 return false;
2224 }
2225 if (md->has_trap_at(bci, reason) != 0) {
2226 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2227 // Also, if there are multiple reasons, or if there is no per-BCI record,
2228 // assume the worst.
2229 if (log())
2230 log()->elem("observe trap='%s' count='%d'",
2231 Deoptimization::trap_reason_name(reason),
2232 md->trap_count(reason));
2233 return true;
2234 } else {
2235 // Ignore method/bci and see if there have been too many globally.
2236 return too_many_traps(reason, md);
2237 }
2238 }
2239
2240 // Less-accurate variant which does not require a method and bci.
2241 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2242 ciMethodData* logmd) {
2243 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2244 // Too many traps globally.
2245 // Note that we use cumulative trap_count, not just md->trap_count.
2246 if (log()) {
2247 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2248 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2249 Deoptimization::trap_reason_name(reason),
2250 mcount, trap_count(reason));
2251 }
2252 return true;
2253 } else {
2254 // The coast is clear.
2255 return false;
2256 }
2257 }
2258
2259 //--------------------------too_many_recompiles--------------------------------
2260 // Report if there are too many recompiles at the current method and bci.
2261 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2262 // Is not eager to return true, since this will cause the compiler to use
2263 // Action_none for a trap point, to avoid too many recompilations.
2264 bool Compile::too_many_recompiles(ciMethod* method,
2265 int bci,
2266 Deoptimization::DeoptReason reason) {
2267 ciMethodData* md = method->method_data();
2268 if (md->is_empty()) {
2269 // Assume the trap has not occurred, or that it occurred only
2270 // because of a transient condition during start-up in the interpreter.
2271 return false;
2272 }
2273 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2274 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2275 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
2276 Deoptimization::DeoptReason per_bc_reason
2277 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2278 if ((per_bc_reason == Deoptimization::Reason_none
2279 || md->has_trap_at(bci, reason) != 0)
2280 // The trap frequency measure we care about is the recompile count:
2281 && md->trap_recompiled_at(bci)
2282 && md->overflow_recompile_count() >= bc_cutoff) {
2283 // Do not emit a trap here if it has already caused recompilations.
2284 // Also, if there are multiple reasons, or if there is no per-BCI record,
2285 // assume the worst.
2286 if (log())
2287 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2288 Deoptimization::trap_reason_name(reason),
2289 md->trap_count(reason),
2290 md->overflow_recompile_count());
2291 return true;
2292 } else if (trap_count(reason) != 0
2293 && decompile_count() >= m_cutoff) {
2294 // Too many recompiles globally, and we have seen this sort of trap.
2295 // Use cumulative decompile_count, not just md->decompile_count.
2296 if (log())
2297 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2298 Deoptimization::trap_reason_name(reason),
2299 md->trap_count(reason), trap_count(reason),
2300 md->decompile_count(), decompile_count());
2301 return true;
2302 } else {
2303 // The coast is clear.
2304 return false;
2305 }
2306 }
2307
2308
2309 #ifndef PRODUCT
2310 //------------------------------verify_graph_edges---------------------------
2311 // Walk the Graph and verify that there is a one-to-one correspondence
2312 // between Use-Def edges and Def-Use edges in the graph.
2313 void Compile::verify_graph_edges(bool no_dead_code) {
2314 if (VerifyGraphEdges) {
2315 ResourceArea *area = Thread::current()->resource_area();
2316 Unique_Node_List visited(area);
2317 // Call recursive graph walk to check edges
2318 _root->verify_edges(visited);
2319 if (no_dead_code) {
2320 // Now make sure that no visited node is used by an unvisited node.
2321 bool dead_nodes = 0;
2322 Unique_Node_List checked(area);
2323 while (visited.size() > 0) {
2324 Node* n = visited.pop();
2325 checked.push(n);
2326 for (uint i = 0; i < n->outcnt(); i++) {
2327 Node* use = n->raw_out(i);
2328 if (checked.member(use)) continue; // already checked
2329 if (visited.member(use)) continue; // already in the graph
2330 if (use->is_Con()) continue; // a dead ConNode is OK
2331 // At this point, we have found a dead node which is DU-reachable.
2332 if (dead_nodes++ == 0)
2333 tty->print_cr("*** Dead nodes reachable via DU edges:");
2334 use->dump(2);
2335 tty->print_cr("---");
2336 checked.push(use); // No repeats; pretend it is now checked.
2337 }
2338 }
2339 assert(dead_nodes == 0, "using nodes must be reachable from root");
2340 }
2341 }
2342 }
2343 #endif
2344
2345 // The Compile object keeps track of failure reasons separately from the ciEnv.
2346 // This is required because there is not quite a 1-1 relation between the
2347 // ciEnv and its compilation task and the Compile object. Note that one
2348 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2349 // to backtrack and retry without subsuming loads. Other than this backtracking
2350 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2351 // by the logic in C2Compiler.
2352 void Compile::record_failure(const char* reason) {
2353 if (log() != NULL) {
2354 log()->elem("failure reason='%s' phase='compile'", reason);
2355 }
2356 if (_failure_reason == NULL) {
2357 // Record the first failure reason.
2358 _failure_reason = reason;
2359 }
2360 _root = NULL; // flush the graph, too
2361 }
2362
2363 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2364 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2365 {
2366 if (dolog) {
2367 C = Compile::current();
2368 _log = C->log();
2369 } else {
2370 C = NULL;
2371 _log = NULL;
2372 }
2373 if (_log != NULL) {
2374 _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2375 _log->stamp();
2376 _log->end_head();
2377 }
2378 }
2379
2380 Compile::TracePhase::~TracePhase() {
2381 if (_log != NULL) {
2382 _log->done("phase nodes='%d'", C->unique());
2383 }
2384 }