comparison src/share/vm/opto/escape.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children b789bcaf2dd9
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_escape.cpp.incl"
27
28 uint PointsToNode::edge_target(uint e) const {
29 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
30 return (_edges->at(e) >> EdgeShift);
31 }
32
33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
34 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
35 return (EdgeType) (_edges->at(e) & EdgeMask);
36 }
37
38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
39 uint v = (targIdx << EdgeShift) + ((uint) et);
40 if (_edges == NULL) {
41 Arena *a = Compile::current()->comp_arena();
42 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
43 }
44 _edges->append_if_missing(v);
45 }
46
47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
48 uint v = (targIdx << EdgeShift) + ((uint) et);
49
50 _edges->remove(v);
51 }
52
53 #ifndef PRODUCT
54 static char *node_type_names[] = {
55 "UnknownType",
56 "JavaObject",
57 "LocalVar",
58 "Field"
59 };
60
61 static char *esc_names[] = {
62 "UnknownEscape",
63 "NoEscape ",
64 "ArgEscape ",
65 "GlobalEscape "
66 };
67
68 static char *edge_type_suffix[] = {
69 "?", // UnknownEdge
70 "P", // PointsToEdge
71 "D", // DeferredEdge
72 "F" // FieldEdge
73 };
74
75 void PointsToNode::dump() const {
76 NodeType nt = node_type();
77 EscapeState es = escape_state();
78 tty->print("%s %s [[", node_type_names[(int) nt], esc_names[(int) es]);
79 for (uint i = 0; i < edge_count(); i++) {
80 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
81 }
82 tty->print("]] ");
83 if (_node == NULL)
84 tty->print_cr("<null>");
85 else
86 _node->dump();
87 }
88 #endif
89
90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
91 _collecting = true;
92 this->_compile = C;
93 const PointsToNode &dummy = PointsToNode();
94 _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), (int) INITIAL_NODE_COUNT, 0, dummy);
95 _phantom_object = C->top()->_idx;
96 PointsToNode *phn = ptnode_adr(_phantom_object);
97 phn->set_node_type(PointsToNode::JavaObject);
98 phn->set_escape_state(PointsToNode::GlobalEscape);
99 }
100
101 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
102 PointsToNode *f = ptnode_adr(from_i);
103 PointsToNode *t = ptnode_adr(to_i);
104
105 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
106 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
107 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
108 f->add_edge(to_i, PointsToNode::PointsToEdge);
109 }
110
111 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
112 PointsToNode *f = ptnode_adr(from_i);
113 PointsToNode *t = ptnode_adr(to_i);
114
115 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
116 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
117 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
118 // don't add a self-referential edge, this can occur during removal of
119 // deferred edges
120 if (from_i != to_i)
121 f->add_edge(to_i, PointsToNode::DeferredEdge);
122 }
123
124 int ConnectionGraph::type_to_offset(const Type *t) {
125 const TypePtr *t_ptr = t->isa_ptr();
126 assert(t_ptr != NULL, "must be a pointer type");
127 return t_ptr->offset();
128 }
129
130 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
131 PointsToNode *f = ptnode_adr(from_i);
132 PointsToNode *t = ptnode_adr(to_i);
133
134 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
135 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
136 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
137 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
138 t->set_offset(offset);
139
140 f->add_edge(to_i, PointsToNode::FieldEdge);
141 }
142
143 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
144 PointsToNode *npt = ptnode_adr(ni);
145 PointsToNode::EscapeState old_es = npt->escape_state();
146 if (es > old_es)
147 npt->set_escape_state(es);
148 }
149
150 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
151 uint idx = n->_idx;
152 PointsToNode::EscapeState es;
153
154 // If we are still collecting we don't know the answer yet
155 if (_collecting)
156 return PointsToNode::UnknownEscape;
157
158 // if the node was created after the escape computation, return
159 // UnknownEscape
160 if (idx >= (uint)_nodes->length())
161 return PointsToNode::UnknownEscape;
162
163 es = _nodes->at_grow(idx).escape_state();
164
165 // if we have already computed a value, return it
166 if (es != PointsToNode::UnknownEscape)
167 return es;
168
169 // compute max escape state of anything this node could point to
170 VectorSet ptset(Thread::current()->resource_area());
171 PointsTo(ptset, n, phase);
172 for( VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i ) {
173 uint pt = i.elem;
174 PointsToNode::EscapeState pes = _nodes->at(pt).escape_state();
175 if (pes > es)
176 es = pes;
177 }
178 // cache the computed escape state
179 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
180 _nodes->adr_at(idx)->set_escape_state(es);
181 return es;
182 }
183
184 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
185 VectorSet visited(Thread::current()->resource_area());
186 GrowableArray<uint> worklist;
187
188 n = skip_casts(n);
189 PointsToNode npt = _nodes->at_grow(n->_idx);
190
191 // If we have a JavaObject, return just that object
192 if (npt.node_type() == PointsToNode::JavaObject) {
193 ptset.set(n->_idx);
194 return;
195 }
196 // we may have a Phi which has not been processed
197 if (npt._node == NULL) {
198 assert(n->is_Phi(), "unprocessed node must be a Phi");
199 record_for_escape_analysis(n);
200 npt = _nodes->at(n->_idx);
201 }
202 worklist.push(n->_idx);
203 while(worklist.length() > 0) {
204 int ni = worklist.pop();
205 PointsToNode pn = _nodes->at_grow(ni);
206 if (!visited.test(ni)) {
207 visited.set(ni);
208
209 // ensure that all inputs of a Phi have been processed
210 if (_collecting && pn._node->is_Phi()) {
211 PhiNode *phi = pn._node->as_Phi();
212 process_phi_escape(phi, phase);
213 }
214
215 int edges_processed = 0;
216 for (uint e = 0; e < pn.edge_count(); e++) {
217 PointsToNode::EdgeType et = pn.edge_type(e);
218 if (et == PointsToNode::PointsToEdge) {
219 ptset.set(pn.edge_target(e));
220 edges_processed++;
221 } else if (et == PointsToNode::DeferredEdge) {
222 worklist.push(pn.edge_target(e));
223 edges_processed++;
224 }
225 }
226 if (edges_processed == 0) {
227 // no deferred or pointsto edges found. Assume the value was set outside
228 // this method. Add the phantom object to the pointsto set.
229 ptset.set(_phantom_object);
230 }
231 }
232 }
233 }
234
235 void ConnectionGraph::remove_deferred(uint ni) {
236 VectorSet visited(Thread::current()->resource_area());
237
238 uint i = 0;
239 PointsToNode *ptn = ptnode_adr(ni);
240
241 while(i < ptn->edge_count()) {
242 if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
243 i++;
244 } else {
245 uint t = ptn->edge_target(i);
246 PointsToNode *ptt = ptnode_adr(t);
247 ptn->remove_edge(t, PointsToNode::DeferredEdge);
248 if(!visited.test(t)) {
249 visited.set(t);
250 for (uint j = 0; j < ptt->edge_count(); j++) {
251 uint n1 = ptt->edge_target(j);
252 PointsToNode *pt1 = ptnode_adr(n1);
253 switch(ptt->edge_type(j)) {
254 case PointsToNode::PointsToEdge:
255 add_pointsto_edge(ni, n1);
256 break;
257 case PointsToNode::DeferredEdge:
258 add_deferred_edge(ni, n1);
259 break;
260 case PointsToNode::FieldEdge:
261 assert(false, "invalid connection graph");
262 break;
263 }
264 }
265 }
266 }
267 }
268 }
269
270
271 // Add an edge to node given by "to_i" from any field of adr_i whose offset
272 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
273 // a pointsto edge is added if it is a JavaObject
274
275 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
276 PointsToNode an = _nodes->at_grow(adr_i);
277 PointsToNode to = _nodes->at_grow(to_i);
278 bool deferred = (to.node_type() == PointsToNode::LocalVar);
279
280 for (uint fe = 0; fe < an.edge_count(); fe++) {
281 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
282 int fi = an.edge_target(fe);
283 PointsToNode pf = _nodes->at_grow(fi);
284 int po = pf.offset();
285 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
286 if (deferred)
287 add_deferred_edge(fi, to_i);
288 else
289 add_pointsto_edge(fi, to_i);
290 }
291 }
292 }
293
294 // Add a deferred edge from node given by "from_i" to any field of adr_i whose offset
295 // matches "offset"
296 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
297 PointsToNode an = _nodes->at_grow(adr_i);
298 for (uint fe = 0; fe < an.edge_count(); fe++) {
299 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
300 int fi = an.edge_target(fe);
301 PointsToNode pf = _nodes->at_grow(fi);
302 int po = pf.offset();
303 if (pf.edge_count() == 0) {
304 // we have not seen any stores to this field, assume it was set outside this method
305 add_pointsto_edge(fi, _phantom_object);
306 }
307 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
308 add_deferred_edge(from_i, fi);
309 }
310 }
311 }
312
313 //
314 // Search memory chain of "mem" to find a MemNode whose address
315 // is the specified alias index. Returns the MemNode found or the
316 // first non-MemNode encountered.
317 //
318 Node *ConnectionGraph::find_mem(Node *mem, int alias_idx, PhaseGVN *igvn) {
319 if (mem == NULL)
320 return mem;
321 while (mem->is_Mem()) {
322 const Type *at = igvn->type(mem->in(MemNode::Address));
323 if (at != Type::TOP) {
324 assert (at->isa_ptr() != NULL, "pointer type required.");
325 int idx = _compile->get_alias_index(at->is_ptr());
326 if (idx == alias_idx)
327 break;
328 }
329 mem = mem->in(MemNode::Memory);
330 }
331 return mem;
332 }
333
334 //
335 // Adjust the type and inputs of an AddP which computes the
336 // address of a field of an instance
337 //
338 void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
339 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
340 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
341 assert(t != NULL, "expecting oopptr");
342 assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
343 uint inst_id = base_t->instance_id();
344 assert(!t->is_instance() || t->instance_id() == inst_id,
345 "old type must be non-instance or match new type");
346 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
347 // ensure an alias index is allocated for the instance type
348 int alias_idx = _compile->get_alias_index(tinst);
349 igvn->set_type(addp, tinst);
350 // record the allocation in the node map
351 set_map(addp->_idx, get_map(base->_idx));
352 // if the Address input is not the appropriate instance type (due to intervening
353 // casts,) insert a cast
354 Node *adr = addp->in(AddPNode::Address);
355 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
356 if (atype->instance_id() != inst_id) {
357 assert(!atype->is_instance(), "no conflicting instances");
358 const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
359 Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
360 acast->set_req(0, adr->in(0));
361 igvn->set_type(acast, new_atype);
362 record_for_optimizer(acast);
363 Node *bcast = acast;
364 Node *abase = addp->in(AddPNode::Base);
365 if (abase != adr) {
366 bcast = new (_compile, 2) CastPPNode(abase, base_t);
367 bcast->set_req(0, abase->in(0));
368 igvn->set_type(bcast, base_t);
369 record_for_optimizer(bcast);
370 }
371 igvn->hash_delete(addp);
372 addp->set_req(AddPNode::Base, bcast);
373 addp->set_req(AddPNode::Address, acast);
374 igvn->hash_insert(addp);
375 record_for_optimizer(addp);
376 }
377 }
378
379 //
380 // Create a new version of orig_phi if necessary. Returns either the newly
381 // created phi or an existing phi. Sets create_new to indicate wheter a new
382 // phi was created. Cache the last newly created phi in the node map.
383 //
384 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
385 Compile *C = _compile;
386 new_created = false;
387 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
388 // nothing to do if orig_phi is bottom memory or matches alias_idx
389 if (phi_alias_idx == Compile::AliasIdxBot || phi_alias_idx == alias_idx) {
390 return orig_phi;
391 }
392 // have we already created a Phi for this alias index?
393 PhiNode *result = get_map_phi(orig_phi->_idx);
394 const TypePtr *atype = C->get_adr_type(alias_idx);
395 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
396 return result;
397 }
398
399 orig_phi_worklist.append_if_missing(orig_phi);
400 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
401 set_map_phi(orig_phi->_idx, result);
402 igvn->set_type(result, result->bottom_type());
403 record_for_optimizer(result);
404 new_created = true;
405 return result;
406 }
407
408 //
409 // Return a new version of Memory Phi "orig_phi" with the inputs having the
410 // specified alias index.
411 //
412 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
413
414 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
415 Compile *C = _compile;
416 bool new_phi_created;
417 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
418 if (!new_phi_created) {
419 return result;
420 }
421
422 GrowableArray<PhiNode *> phi_list;
423 GrowableArray<uint> cur_input;
424
425 PhiNode *phi = orig_phi;
426 uint idx = 1;
427 bool finished = false;
428 while(!finished) {
429 while (idx < phi->req()) {
430 Node *mem = find_mem(phi->in(idx), alias_idx, igvn);
431 if (mem != NULL && mem->is_Phi()) {
432 PhiNode *nphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
433 if (new_phi_created) {
434 // found an phi for which we created a new split, push current one on worklist and begin
435 // processing new one
436 phi_list.push(phi);
437 cur_input.push(idx);
438 phi = mem->as_Phi();
439 result = nphi;
440 idx = 1;
441 continue;
442 } else {
443 mem = nphi;
444 }
445 }
446 result->set_req(idx++, mem);
447 }
448 #ifdef ASSERT
449 // verify that the new Phi has an input for each input of the original
450 assert( phi->req() == result->req(), "must have same number of inputs.");
451 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
452 for (uint i = 1; i < phi->req(); i++) {
453 assert((phi->in(i) == NULL) == (result->in(i) == NULL), "inputs must correspond.");
454 }
455 #endif
456 // we have finished processing a Phi, see if there are any more to do
457 finished = (phi_list.length() == 0 );
458 if (!finished) {
459 phi = phi_list.pop();
460 idx = cur_input.pop();
461 PhiNode *prev_phi = get_map_phi(phi->_idx);
462 prev_phi->set_req(idx++, result);
463 result = prev_phi;
464 }
465 }
466 return result;
467 }
468
469 //
470 // Convert the types of unescaped object to instance types where possible,
471 // propagate the new type information through the graph, and update memory
472 // edges and MergeMem inputs to reflect the new type.
473 //
474 // We start with allocations (and calls which may be allocations) on alloc_worklist.
475 // The processing is done in 4 phases:
476 //
477 // Phase 1: Process possible allocations from alloc_worklist. Create instance
478 // types for the CheckCastPP for allocations where possible.
479 // Propagate the the new types through users as follows:
480 // casts and Phi: push users on alloc_worklist
481 // AddP: cast Base and Address inputs to the instance type
482 // push any AddP users on alloc_worklist and push any memnode
483 // users onto memnode_worklist.
484 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
485 // search the Memory chain for a store with the appropriate type
486 // address type. If a Phi is found, create a new version with
487 // the approriate memory slices from each of the Phi inputs.
488 // For stores, process the users as follows:
489 // MemNode: push on memnode_worklist
490 // MergeMem: push on mergemem_worklist
491 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
492 // moving the first node encountered of each instance type to the
493 // the input corresponding to its alias index.
494 // appropriate memory slice.
495 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
496 //
497 // In the following example, the CheckCastPP nodes are the cast of allocation
498 // results and the allocation of node 29 is unescaped and eligible to be an
499 // instance type.
500 //
501 // We start with:
502 //
503 // 7 Parm #memory
504 // 10 ConI "12"
505 // 19 CheckCastPP "Foo"
506 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
507 // 29 CheckCastPP "Foo"
508 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
509 //
510 // 40 StoreP 25 7 20 ... alias_index=4
511 // 50 StoreP 35 40 30 ... alias_index=4
512 // 60 StoreP 45 50 20 ... alias_index=4
513 // 70 LoadP _ 60 30 ... alias_index=4
514 // 80 Phi 75 50 60 Memory alias_index=4
515 // 90 LoadP _ 80 30 ... alias_index=4
516 // 100 LoadP _ 80 20 ... alias_index=4
517 //
518 //
519 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
520 // and creating a new alias index for node 30. This gives:
521 //
522 // 7 Parm #memory
523 // 10 ConI "12"
524 // 19 CheckCastPP "Foo"
525 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
526 // 29 CheckCastPP "Foo" iid=24
527 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
528 //
529 // 40 StoreP 25 7 20 ... alias_index=4
530 // 50 StoreP 35 40 30 ... alias_index=6
531 // 60 StoreP 45 50 20 ... alias_index=4
532 // 70 LoadP _ 60 30 ... alias_index=6
533 // 80 Phi 75 50 60 Memory alias_index=4
534 // 90 LoadP _ 80 30 ... alias_index=6
535 // 100 LoadP _ 80 20 ... alias_index=4
536 //
537 // In phase 2, new memory inputs are computed for the loads and stores,
538 // And a new version of the phi is created. In phase 4, the inputs to
539 // node 80 are updated and then the memory nodes are updated with the
540 // values computed in phase 2. This results in:
541 //
542 // 7 Parm #memory
543 // 10 ConI "12"
544 // 19 CheckCastPP "Foo"
545 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
546 // 29 CheckCastPP "Foo" iid=24
547 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
548 //
549 // 40 StoreP 25 7 20 ... alias_index=4
550 // 50 StoreP 35 7 30 ... alias_index=6
551 // 60 StoreP 45 40 20 ... alias_index=4
552 // 70 LoadP _ 50 30 ... alias_index=6
553 // 80 Phi 75 40 60 Memory alias_index=4
554 // 120 Phi 75 50 50 Memory alias_index=6
555 // 90 LoadP _ 120 30 ... alias_index=6
556 // 100 LoadP _ 80 20 ... alias_index=4
557 //
558 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
559 GrowableArray<Node *> memnode_worklist;
560 GrowableArray<Node *> mergemem_worklist;
561 GrowableArray<PhiNode *> orig_phis;
562 PhaseGVN *igvn = _compile->initial_gvn();
563 uint new_index_start = (uint) _compile->num_alias_types();
564 VectorSet visited(Thread::current()->resource_area());
565 VectorSet ptset(Thread::current()->resource_area());
566
567 // Phase 1: Process possible allocations from alloc_worklist. Create instance
568 // types for the CheckCastPP for allocations where possible.
569 while (alloc_worklist.length() != 0) {
570 Node *n = alloc_worklist.pop();
571 uint ni = n->_idx;
572 if (n->is_Call()) {
573 CallNode *alloc = n->as_Call();
574 // copy escape information to call node
575 PointsToNode ptn = _nodes->at(alloc->_idx);
576 PointsToNode::EscapeState es = escape_state(alloc, igvn);
577 alloc->_escape_state = es;
578 // find CheckCastPP of call return value
579 n = alloc->proj_out(TypeFunc::Parms);
580 if (n != NULL && n->outcnt() == 1) {
581 n = n->unique_out();
582 if (n->Opcode() != Op_CheckCastPP) {
583 continue;
584 }
585 } else {
586 continue;
587 }
588 // we have an allocation or call which returns a Java object, see if it is unescaped
589 if (es != PointsToNode::NoEscape || !ptn._unique_type) {
590 continue; // can't make a unique type
591 }
592 set_map(alloc->_idx, n);
593 set_map(n->_idx, alloc);
594 const TypeInstPtr *t = igvn->type(n)->isa_instptr();
595 // Unique types which are arrays are not currently supported.
596 // The check for AllocateArray is needed in case an array
597 // allocation is immediately cast to Object
598 if (t == NULL || alloc->is_AllocateArray())
599 continue; // not a TypeInstPtr
600 const TypeOopPtr *tinst = t->cast_to_instance(ni);
601 igvn->hash_delete(n);
602 igvn->set_type(n, tinst);
603 n->raise_bottom_type(tinst);
604 igvn->hash_insert(n);
605 } else if (n->is_AddP()) {
606 ptset.Clear();
607 PointsTo(ptset, n->in(AddPNode::Address), igvn);
608 assert(ptset.Size() == 1, "AddP address is unique");
609 Node *base = get_map(ptset.getelem());
610 split_AddP(n, base, igvn);
611 } else if (n->is_Phi() || n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
612 if (visited.test_set(n->_idx)) {
613 assert(n->is_Phi(), "loops only through Phi's");
614 continue; // already processed
615 }
616 ptset.Clear();
617 PointsTo(ptset, n, igvn);
618 if (ptset.Size() == 1) {
619 TypeNode *tn = n->as_Type();
620 Node *val = get_map(ptset.getelem());
621 const TypeInstPtr *val_t = igvn->type(val)->isa_instptr();;
622 assert(val_t != NULL && val_t->is_instance(), "instance type expected.");
623 const TypeInstPtr *tn_t = igvn->type(tn)->isa_instptr();;
624
625 if (tn_t != NULL && val_t->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
626 igvn->hash_delete(tn);
627 igvn->set_type(tn, val_t);
628 tn->set_type(val_t);
629 igvn->hash_insert(tn);
630 }
631 }
632 } else {
633 continue;
634 }
635 // push users on appropriate worklist
636 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
637 Node *use = n->fast_out(i);
638 if(use->is_Mem() && use->in(MemNode::Address) == n) {
639 memnode_worklist.push(use);
640 } else if (use->is_AddP() || use->is_Phi() || use->Opcode() == Op_CastPP || use->Opcode() == Op_CheckCastPP) {
641 alloc_worklist.push(use);
642 }
643 }
644
645 }
646 uint new_index_end = (uint) _compile->num_alias_types();
647
648 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
649 // compute new values for Memory inputs (the Memory inputs are not
650 // actually updated until phase 4.)
651 if (memnode_worklist.length() == 0)
652 return; // nothing to do
653
654
655 while (memnode_worklist.length() != 0) {
656 Node *n = memnode_worklist.pop();
657 if (n->is_Phi()) {
658 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
659 // we don't need to do anything, but the users must be pushed if we haven't processed
660 // this Phi before
661 if (visited.test_set(n->_idx))
662 continue;
663 } else {
664 assert(n->is_Mem(), "memory node required.");
665 Node *addr = n->in(MemNode::Address);
666 const Type *addr_t = igvn->type(addr);
667 if (addr_t == Type::TOP)
668 continue;
669 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
670 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
671 Node *mem = find_mem(n->in(MemNode::Memory), alias_idx, igvn);
672 if (mem->is_Phi()) {
673 mem = split_memory_phi(mem->as_Phi(), alias_idx, orig_phis, igvn);
674 }
675 if (mem != n->in(MemNode::Memory))
676 set_map(n->_idx, mem);
677 if (n->is_Load()) {
678 continue; // don't push users
679 } else if (n->is_LoadStore()) {
680 // get the memory projection
681 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
682 Node *use = n->fast_out(i);
683 if (use->Opcode() == Op_SCMemProj) {
684 n = use;
685 break;
686 }
687 }
688 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
689 }
690 }
691 // push user on appropriate worklist
692 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
693 Node *use = n->fast_out(i);
694 if (use->is_Phi()) {
695 memnode_worklist.push(use);
696 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
697 memnode_worklist.push(use);
698 } else if (use->is_MergeMem()) {
699 mergemem_worklist.push(use);
700 }
701 }
702 }
703
704 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
705 // moving the first node encountered of each instance type to the
706 // the input corresponding to its alias index.
707 while (mergemem_worklist.length() != 0) {
708 Node *n = mergemem_worklist.pop();
709 assert(n->is_MergeMem(), "MergeMem node required.");
710 MergeMemNode *nmm = n->as_MergeMem();
711 // Note: we don't want to use MergeMemStream here because we only want to
712 // scan inputs which exist at the start, not ones we add during processing
713 uint nslices = nmm->req();
714 igvn->hash_delete(nmm);
715 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
716 Node * mem = nmm->in(i);
717 Node * cur = NULL;
718 if (mem == NULL || mem->is_top())
719 continue;
720 while (mem->is_Mem()) {
721 const Type *at = igvn->type(mem->in(MemNode::Address));
722 if (at != Type::TOP) {
723 assert (at->isa_ptr() != NULL, "pointer type required.");
724 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
725 if (idx == i) {
726 if (cur == NULL)
727 cur = mem;
728 } else {
729 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
730 nmm->set_memory_at(idx, mem);
731 }
732 }
733 }
734 mem = mem->in(MemNode::Memory);
735 }
736 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
737 if (mem->is_Phi()) {
738 // We have encountered a Phi, we need to split the Phi for
739 // any instance of the current type if we haven't encountered
740 // a value of the instance along the chain.
741 for (uint ni = new_index_start; ni < new_index_end; ni++) {
742 if((uint)_compile->get_general_index(ni) == i) {
743 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
744 if (nmm->is_empty_memory(m)) {
745 nmm->set_memory_at(ni, split_memory_phi(mem->as_Phi(), ni, orig_phis, igvn));
746 }
747 }
748 }
749 }
750 }
751 igvn->hash_insert(nmm);
752 record_for_optimizer(nmm);
753 }
754
755 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes
756 //
757 // First update the inputs of any non-instance Phi's from
758 // which we split out an instance Phi. Note we don't have
759 // to recursively process Phi's encounted on the input memory
760 // chains as is done in split_memory_phi() since they will
761 // also be processed here.
762 while (orig_phis.length() != 0) {
763 PhiNode *phi = orig_phis.pop();
764 int alias_idx = _compile->get_alias_index(phi->adr_type());
765 igvn->hash_delete(phi);
766 for (uint i = 1; i < phi->req(); i++) {
767 Node *mem = phi->in(i);
768 Node *new_mem = find_mem(mem, alias_idx, igvn);
769 if (mem != new_mem) {
770 phi->set_req(i, new_mem);
771 }
772 }
773 igvn->hash_insert(phi);
774 record_for_optimizer(phi);
775 }
776
777 // Update the memory inputs of MemNodes with the value we computed
778 // in Phase 2.
779 for (int i = 0; i < _nodes->length(); i++) {
780 Node *nmem = get_map(i);
781 if (nmem != NULL) {
782 Node *n = _nodes->at(i)._node;
783 if (n != NULL && n->is_Mem()) {
784 igvn->hash_delete(n);
785 n->set_req(MemNode::Memory, nmem);
786 igvn->hash_insert(n);
787 record_for_optimizer(n);
788 }
789 }
790 }
791 }
792
793 void ConnectionGraph::compute_escape() {
794 GrowableArray<int> worklist;
795 GrowableArray<Node *> alloc_worklist;
796 VectorSet visited(Thread::current()->resource_area());
797 PhaseGVN *igvn = _compile->initial_gvn();
798
799 // process Phi nodes from the deferred list, they may not have
800 while(_deferred.size() > 0) {
801 Node * n = _deferred.pop();
802 PhiNode * phi = n->as_Phi();
803
804 process_phi_escape(phi, igvn);
805 }
806
807 VectorSet ptset(Thread::current()->resource_area());
808
809 // remove deferred edges from the graph and collect
810 // information we will need for type splitting
811 for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
812 PointsToNode * ptn = _nodes->adr_at(ni);
813 PointsToNode::NodeType nt = ptn->node_type();
814
815 if (nt == PointsToNode::UnknownType) {
816 continue; // not a node we are interested in
817 }
818 Node *n = ptn->_node;
819 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
820 remove_deferred(ni);
821 if (n->is_AddP()) {
822 // if this AddP computes an address which may point to more that one
823 // object, nothing the address points to can be a unique type.
824 Node *base = n->in(AddPNode::Base);
825 ptset.Clear();
826 PointsTo(ptset, base, igvn);
827 if (ptset.Size() > 1) {
828 for( VectorSetI j(&ptset); j.test(); ++j ) {
829 PointsToNode *ptaddr = _nodes->adr_at(j.elem);
830 ptaddr->_unique_type = false;
831 }
832 }
833 }
834 } else if (n->is_Call()) {
835 // initialize _escape_state of calls to GlobalEscape
836 n->as_Call()->_escape_state = PointsToNode::GlobalEscape;
837 // push call on alloc_worlist (alocations are calls)
838 // for processing by split_unique_types()
839 alloc_worklist.push(n);
840 }
841 }
842 // push all GlobalEscape nodes on the worklist
843 for (uint nj = 0; nj < (uint)_nodes->length(); nj++) {
844 if (_nodes->at(nj).escape_state() == PointsToNode::GlobalEscape) {
845 worklist.append(nj);
846 }
847 }
848 // mark all node reachable from GlobalEscape nodes
849 while(worklist.length() > 0) {
850 PointsToNode n = _nodes->at(worklist.pop());
851 for (uint ei = 0; ei < n.edge_count(); ei++) {
852 uint npi = n.edge_target(ei);
853 PointsToNode *np = ptnode_adr(npi);
854 if (np->escape_state() != PointsToNode::GlobalEscape) {
855 np->set_escape_state(PointsToNode::GlobalEscape);
856 worklist.append_if_missing(npi);
857 }
858 }
859 }
860
861 // push all ArgEscape nodes on the worklist
862 for (uint nk = 0; nk < (uint)_nodes->length(); nk++) {
863 if (_nodes->at(nk).escape_state() == PointsToNode::ArgEscape)
864 worklist.push(nk);
865 }
866 // mark all node reachable from ArgEscape nodes
867 while(worklist.length() > 0) {
868 PointsToNode n = _nodes->at(worklist.pop());
869
870 for (uint ei = 0; ei < n.edge_count(); ei++) {
871 uint npi = n.edge_target(ei);
872 PointsToNode *np = ptnode_adr(npi);
873 if (np->escape_state() != PointsToNode::ArgEscape) {
874 np->set_escape_state(PointsToNode::ArgEscape);
875 worklist.append_if_missing(npi);
876 }
877 }
878 }
879 _collecting = false;
880
881 // Now use the escape information to create unique types for
882 // unescaped objects
883 split_unique_types(alloc_worklist);
884 }
885
886 Node * ConnectionGraph::skip_casts(Node *n) {
887 while(n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
888 n = n->in(1);
889 }
890 return n;
891 }
892
893 void ConnectionGraph::process_phi_escape(PhiNode *phi, PhaseTransform *phase) {
894
895 if (phi->type()->isa_oopptr() == NULL)
896 return; // nothing to do if not an oop
897
898 PointsToNode *ptadr = ptnode_adr(phi->_idx);
899 int incount = phi->req();
900 int non_null_inputs = 0;
901
902 for (int i = 1; i < incount ; i++) {
903 if (phi->in(i) != NULL)
904 non_null_inputs++;
905 }
906 if (non_null_inputs == ptadr->_inputs_processed)
907 return; // no new inputs since the last time this node was processed,
908 // the current information is valid
909
910 ptadr->_inputs_processed = non_null_inputs; // prevent recursive processing of this node
911 for (int j = 1; j < incount ; j++) {
912 Node * n = phi->in(j);
913 if (n == NULL)
914 continue; // ignore NULL
915 n = skip_casts(n);
916 if (n->is_top() || n == phi)
917 continue; // ignore top or inputs which go back this node
918 int nopc = n->Opcode();
919 PointsToNode npt = _nodes->at(n->_idx);
920 if (_nodes->at(n->_idx).node_type() == PointsToNode::JavaObject) {
921 add_pointsto_edge(phi->_idx, n->_idx);
922 } else {
923 add_deferred_edge(phi->_idx, n->_idx);
924 }
925 }
926 }
927
928 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
929
930 _processed.set(call->_idx);
931 switch (call->Opcode()) {
932
933 // arguments to allocation and locking don't escape
934 case Op_Allocate:
935 case Op_AllocateArray:
936 case Op_Lock:
937 case Op_Unlock:
938 break;
939
940 case Op_CallStaticJava:
941 // For a static call, we know exactly what method is being called.
942 // Use bytecode estimator to record the call's escape affects
943 {
944 ciMethod *meth = call->as_CallJava()->method();
945 if (meth != NULL) {
946 const TypeTuple * d = call->tf()->domain();
947 BCEscapeAnalyzer call_analyzer(meth);
948 VectorSet ptset(Thread::current()->resource_area());
949 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
950 const Type* at = d->field_at(i);
951 int k = i - TypeFunc::Parms;
952
953 if (at->isa_oopptr() != NULL) {
954 Node *arg = skip_casts(call->in(i));
955
956 if (!call_analyzer.is_arg_stack(k)) {
957 // The argument global escapes, mark everything it could point to
958 ptset.Clear();
959 PointsTo(ptset, arg, phase);
960 for( VectorSetI j(&ptset); j.test(); ++j ) {
961 uint pt = j.elem;
962
963 set_escape_state(pt, PointsToNode::GlobalEscape);
964 }
965 } else if (!call_analyzer.is_arg_local(k)) {
966 // The argument itself doesn't escape, but any fields might
967 ptset.Clear();
968 PointsTo(ptset, arg, phase);
969 for( VectorSetI j(&ptset); j.test(); ++j ) {
970 uint pt = j.elem;
971 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
972 }
973 }
974 }
975 }
976 call_analyzer.copy_dependencies(C()->dependencies());
977 break;
978 }
979 // fall-through if not a Java method
980 }
981
982 default:
983 // Some other type of call, assume the worst case: all arguments
984 // globally escape.
985 {
986 // adjust escape state for outgoing arguments
987 const TypeTuple * d = call->tf()->domain();
988 VectorSet ptset(Thread::current()->resource_area());
989 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
990 const Type* at = d->field_at(i);
991
992 if (at->isa_oopptr() != NULL) {
993 Node *arg = skip_casts(call->in(i));
994 ptset.Clear();
995 PointsTo(ptset, arg, phase);
996 for( VectorSetI j(&ptset); j.test(); ++j ) {
997 uint pt = j.elem;
998
999 set_escape_state(pt, PointsToNode::GlobalEscape);
1000 }
1001 }
1002 }
1003 }
1004 }
1005 }
1006 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
1007 CallNode *call = resproj->in(0)->as_Call();
1008
1009 PointsToNode *ptadr = ptnode_adr(resproj->_idx);
1010
1011 ptadr->_node = resproj;
1012 ptadr->set_node_type(PointsToNode::LocalVar);
1013 set_escape_state(resproj->_idx, PointsToNode::UnknownEscape);
1014 _processed.set(resproj->_idx);
1015
1016 switch (call->Opcode()) {
1017 case Op_Allocate:
1018 {
1019 Node *k = call->in(AllocateNode::KlassNode);
1020 const TypeKlassPtr *kt;
1021 if (k->Opcode() == Op_LoadKlass) {
1022 kt = k->as_Load()->type()->isa_klassptr();
1023 } else {
1024 kt = k->as_Type()->type()->isa_klassptr();
1025 }
1026 assert(kt != NULL, "TypeKlassPtr required.");
1027 ciKlass* cik = kt->klass();
1028 ciInstanceKlass* ciik = cik->as_instance_klass();
1029
1030 PointsToNode *ptadr = ptnode_adr(call->_idx);
1031 ptadr->set_node_type(PointsToNode::JavaObject);
1032 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
1033 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
1034 add_pointsto_edge(resproj->_idx, _phantom_object);
1035 } else {
1036 set_escape_state(call->_idx, PointsToNode::NoEscape);
1037 add_pointsto_edge(resproj->_idx, call->_idx);
1038 }
1039 _processed.set(call->_idx);
1040 break;
1041 }
1042
1043 case Op_AllocateArray:
1044 {
1045 PointsToNode *ptadr = ptnode_adr(call->_idx);
1046 ptadr->set_node_type(PointsToNode::JavaObject);
1047 set_escape_state(call->_idx, PointsToNode::NoEscape);
1048 _processed.set(call->_idx);
1049 add_pointsto_edge(resproj->_idx, call->_idx);
1050 break;
1051 }
1052
1053 case Op_Lock:
1054 case Op_Unlock:
1055 break;
1056
1057 case Op_CallStaticJava:
1058 // For a static call, we know exactly what method is being called.
1059 // Use bytecode estimator to record whether the call's return value escapes
1060 {
1061 const TypeTuple *r = call->tf()->range();
1062 const Type* ret_type = NULL;
1063
1064 if (r->cnt() > TypeFunc::Parms)
1065 ret_type = r->field_at(TypeFunc::Parms);
1066
1067 // Note: we use isa_ptr() instead of isa_oopptr() here because the
1068 // _multianewarray functions return a TypeRawPtr.
1069 if (ret_type == NULL || ret_type->isa_ptr() == NULL)
1070 break; // doesn't return a pointer type
1071
1072 ciMethod *meth = call->as_CallJava()->method();
1073 if (meth == NULL) {
1074 // not a Java method, assume global escape
1075 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
1076 if (resproj != NULL)
1077 add_pointsto_edge(resproj->_idx, _phantom_object);
1078 } else {
1079 BCEscapeAnalyzer call_analyzer(meth);
1080 VectorSet ptset(Thread::current()->resource_area());
1081
1082 if (call_analyzer.is_return_local() && resproj != NULL) {
1083 // determine whether any arguments are returned
1084 const TypeTuple * d = call->tf()->domain();
1085 set_escape_state(call->_idx, PointsToNode::NoEscape);
1086 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1087 const Type* at = d->field_at(i);
1088
1089 if (at->isa_oopptr() != NULL) {
1090 Node *arg = skip_casts(call->in(i));
1091
1092 if (call_analyzer.is_arg_returned(i - TypeFunc::Parms)) {
1093 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
1094 if (arg_esp->node_type() == PointsToNode::JavaObject)
1095 add_pointsto_edge(resproj->_idx, arg->_idx);
1096 else
1097 add_deferred_edge(resproj->_idx, arg->_idx);
1098 arg_esp->_hidden_alias = true;
1099 }
1100 }
1101 }
1102 } else {
1103 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
1104 if (resproj != NULL)
1105 add_pointsto_edge(resproj->_idx, _phantom_object);
1106 }
1107 call_analyzer.copy_dependencies(C()->dependencies());
1108 }
1109 break;
1110 }
1111
1112 default:
1113 // Some other type of call, assume the worst case that the
1114 // returned value, if any, globally escapes.
1115 {
1116 const TypeTuple *r = call->tf()->range();
1117
1118 if (r->cnt() > TypeFunc::Parms) {
1119 const Type* ret_type = r->field_at(TypeFunc::Parms);
1120
1121 // Note: we use isa_ptr() instead of isa_oopptr() here because the
1122 // _multianewarray functions return a TypeRawPtr.
1123 if (ret_type->isa_ptr() != NULL) {
1124 PointsToNode *ptadr = ptnode_adr(call->_idx);
1125 ptadr->set_node_type(PointsToNode::JavaObject);
1126 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
1127 if (resproj != NULL)
1128 add_pointsto_edge(resproj->_idx, _phantom_object);
1129 }
1130 }
1131 }
1132 }
1133 }
1134
1135 void ConnectionGraph::record_for_escape_analysis(Node *n) {
1136 if (_collecting) {
1137 if (n->is_Phi()) {
1138 PhiNode *phi = n->as_Phi();
1139 const Type *pt = phi->type();
1140 if ((pt->isa_oopptr() != NULL) || pt == TypePtr::NULL_PTR) {
1141 PointsToNode *ptn = ptnode_adr(phi->_idx);
1142 ptn->set_node_type(PointsToNode::LocalVar);
1143 ptn->_node = n;
1144 _deferred.push(n);
1145 }
1146 }
1147 }
1148 }
1149
1150 void ConnectionGraph::record_escape_work(Node *n, PhaseTransform *phase) {
1151
1152 int opc = n->Opcode();
1153 PointsToNode *ptadr = ptnode_adr(n->_idx);
1154
1155 if (_processed.test(n->_idx))
1156 return;
1157
1158 ptadr->_node = n;
1159 if (n->is_Call()) {
1160 CallNode *call = n->as_Call();
1161 process_call_arguments(call, phase);
1162 return;
1163 }
1164
1165 switch (opc) {
1166 case Op_AddP:
1167 {
1168 Node *base = skip_casts(n->in(AddPNode::Base));
1169 ptadr->set_node_type(PointsToNode::Field);
1170
1171 // create a field edge to this node from everything adr could point to
1172 VectorSet ptset(Thread::current()->resource_area());
1173 PointsTo(ptset, base, phase);
1174 for( VectorSetI i(&ptset); i.test(); ++i ) {
1175 uint pt = i.elem;
1176 add_field_edge(pt, n->_idx, type_to_offset(phase->type(n)));
1177 }
1178 break;
1179 }
1180 case Op_Parm:
1181 {
1182 ProjNode *nproj = n->as_Proj();
1183 uint con = nproj->_con;
1184 if (con < TypeFunc::Parms)
1185 return;
1186 const Type *t = nproj->in(0)->as_Start()->_domain->field_at(con);
1187 if (t->isa_ptr() == NULL)
1188 return;
1189 ptadr->set_node_type(PointsToNode::JavaObject);
1190 if (t->isa_oopptr() != NULL) {
1191 set_escape_state(n->_idx, PointsToNode::ArgEscape);
1192 } else {
1193 // this must be the incoming state of an OSR compile, we have to assume anything
1194 // passed in globally escapes
1195 assert(_compile->is_osr_compilation(), "bad argument type for non-osr compilation");
1196 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
1197 }
1198 _processed.set(n->_idx);
1199 break;
1200 }
1201 case Op_Phi:
1202 {
1203 PhiNode *phi = n->as_Phi();
1204 if (phi->type()->isa_oopptr() == NULL)
1205 return; // nothing to do if not an oop
1206 ptadr->set_node_type(PointsToNode::LocalVar);
1207 process_phi_escape(phi, phase);
1208 break;
1209 }
1210 case Op_CreateEx:
1211 {
1212 // assume that all exception objects globally escape
1213 ptadr->set_node_type(PointsToNode::JavaObject);
1214 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
1215 _processed.set(n->_idx);
1216 break;
1217 }
1218 case Op_ConP:
1219 {
1220 const Type *t = phase->type(n);
1221 ptadr->set_node_type(PointsToNode::JavaObject);
1222 // assume all pointer constants globally escape except for null
1223 if (t == TypePtr::NULL_PTR)
1224 set_escape_state(n->_idx, PointsToNode::NoEscape);
1225 else
1226 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
1227 _processed.set(n->_idx);
1228 break;
1229 }
1230 case Op_LoadKlass:
1231 {
1232 ptadr->set_node_type(PointsToNode::JavaObject);
1233 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
1234 _processed.set(n->_idx);
1235 break;
1236 }
1237 case Op_LoadP:
1238 {
1239 const Type *t = phase->type(n);
1240 if (!t->isa_oopptr())
1241 return;
1242 ptadr->set_node_type(PointsToNode::LocalVar);
1243 set_escape_state(n->_idx, PointsToNode::UnknownEscape);
1244
1245 Node *adr = skip_casts(n->in(MemNode::Address));
1246 const Type *adr_type = phase->type(adr);
1247 Node *adr_base = skip_casts((adr->Opcode() == Op_AddP) ? adr->in(AddPNode::Base) : adr);
1248
1249 // For everything "adr" could point to, create a deferred edge from
1250 // this node to each field with the same offset as "adr_type"
1251 VectorSet ptset(Thread::current()->resource_area());
1252 PointsTo(ptset, adr_base, phase);
1253 // If ptset is empty, then this value must have been set outside
1254 // this method, so we add the phantom node
1255 if (ptset.Size() == 0)
1256 ptset.set(_phantom_object);
1257 for( VectorSetI i(&ptset); i.test(); ++i ) {
1258 uint pt = i.elem;
1259 add_deferred_edge_to_fields(n->_idx, pt, type_to_offset(adr_type));
1260 }
1261 break;
1262 }
1263 case Op_StoreP:
1264 case Op_StorePConditional:
1265 case Op_CompareAndSwapP:
1266 {
1267 Node *adr = n->in(MemNode::Address);
1268 Node *val = skip_casts(n->in(MemNode::ValueIn));
1269 const Type *adr_type = phase->type(adr);
1270 if (!adr_type->isa_oopptr())
1271 return;
1272
1273 assert(adr->Opcode() == Op_AddP, "expecting an AddP");
1274 Node *adr_base = adr->in(AddPNode::Base);
1275
1276 // For everything "adr_base" could point to, create a deferred edge to "val" from each field
1277 // with the same offset as "adr_type"
1278 VectorSet ptset(Thread::current()->resource_area());
1279 PointsTo(ptset, adr_base, phase);
1280 for( VectorSetI i(&ptset); i.test(); ++i ) {
1281 uint pt = i.elem;
1282 add_edge_from_fields(pt, val->_idx, type_to_offset(adr_type));
1283 }
1284 break;
1285 }
1286 case Op_Proj:
1287 {
1288 ProjNode *nproj = n->as_Proj();
1289 Node *n0 = nproj->in(0);
1290 // we are only interested in the result projection from a call
1291 if (nproj->_con == TypeFunc::Parms && n0->is_Call() ) {
1292 process_call_result(nproj, phase);
1293 }
1294
1295 break;
1296 }
1297 case Op_CastPP:
1298 case Op_CheckCastPP:
1299 {
1300 ptadr->set_node_type(PointsToNode::LocalVar);
1301 int ti = n->in(1)->_idx;
1302 if (_nodes->at(ti).node_type() == PointsToNode::JavaObject) {
1303 add_pointsto_edge(n->_idx, ti);
1304 } else {
1305 add_deferred_edge(n->_idx, ti);
1306 }
1307 break;
1308 }
1309 default:
1310 ;
1311 // nothing to do
1312 }
1313 }
1314
1315 void ConnectionGraph::record_escape(Node *n, PhaseTransform *phase) {
1316 if (_collecting)
1317 record_escape_work(n, phase);
1318 }
1319
1320 #ifndef PRODUCT
1321 void ConnectionGraph::dump() {
1322 PhaseGVN *igvn = _compile->initial_gvn();
1323 bool first = true;
1324
1325 for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
1326 PointsToNode *esp = _nodes->adr_at(ni);
1327 if (esp->node_type() == PointsToNode::UnknownType || esp->_node == NULL)
1328 continue;
1329 PointsToNode::EscapeState es = escape_state(esp->_node, igvn);
1330 if (es == PointsToNode::NoEscape || (Verbose &&
1331 (es != PointsToNode::UnknownEscape || esp->edge_count() != 0))) {
1332 // don't print null pointer node which almost every method has
1333 if (esp->_node->Opcode() != Op_ConP || igvn->type(esp->_node) != TypePtr::NULL_PTR) {
1334 if (first) {
1335 tty->print("======== Connection graph for ");
1336 C()->method()->print_short_name();
1337 tty->cr();
1338 first = false;
1339 }
1340 tty->print("%4d ", ni);
1341 esp->dump();
1342 }
1343 }
1344 }
1345 }
1346 #endif