comparison src/share/vm/opto/escape.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 99269dbf4ba8
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 //
26 // Adaptation for C2 of the escape analysis algorithm described in:
27 //
28 // [Choi99] Jong-Deok Shoi, Manish Gupta, Mauricio Seffano, Vugranam C. Sreedhar,
29 // Sam Midkiff, "Escape Analysis for Java", Procedings of ACM SIGPLAN
30 // OOPSLA Conference, November 1, 1999
31 //
32 // The flow-insensitive analysis described in the paper has been implemented.
33 //
34 // The analysis requires construction of a "connection graph" (CG) for the method being
35 // analyzed. The nodes of the connection graph are:
36 //
37 // - Java objects (JO)
38 // - Local variables (LV)
39 // - Fields of an object (OF), these also include array elements
40 //
41 // The CG contains 3 types of edges:
42 //
43 // - PointsTo (-P>) {LV,OF} to JO
44 // - Deferred (-D>) from {LV, OF} to {LV, OF}
45 // - Field (-F>) from JO to OF
46 //
47 // The following utility functions is used by the algorithm:
48 //
49 // PointsTo(n) - n is any CG node, it returns the set of JO that n could
50 // point to.
51 //
52 // The algorithm describes how to construct the connection graph in the following 4 cases:
53 //
54 // Case Edges Created
55 //
56 // (1) p = new T() LV -P> JO
57 // (2) p = q LV -D> LV
58 // (3) p.f = q JO -F> OF, OF -D> LV
59 // (4) p = q.f JO -F> OF, LV -D> OF
60 //
61 // In all these cases, p and q are local variables. For static field references, we can
62 // construct a local variable containing a reference to the static memory.
63 //
64 // C2 does not have local variables. However for the purposes of constructing
65 // the connection graph, the following IR nodes are treated as local variables:
66 // Phi (pointer values)
67 // LoadP
68 // Proj (value returned from callnodes including allocations)
69 // CheckCastPP
70 //
71 // The LoadP, Proj and CheckCastPP behave like variables assigned to only once. Only
72 // a Phi can have multiple assignments. Each input to a Phi is treated
73 // as an assignment to it.
74 //
75 // The following note types are JavaObject:
76 //
77 // top()
78 // Allocate
79 // AllocateArray
80 // Parm (for incoming arguments)
81 // CreateEx
82 // ConP
83 // LoadKlass
84 //
85 // AddP nodes are fields.
86 //
87 // After building the graph, a pass is made over the nodes, deleting deferred
88 // nodes and copying the edges from the target of the deferred edge to the
89 // source. This results in a graph with no deferred edges, only:
90 //
91 // LV -P> JO
92 // OF -P> JO
93 // JO -F> OF
94 //
95 // Then, for each node which is GlobalEscape, anything it could point to
96 // is marked GlobalEscape. Finally, for any node marked ArgEscape, anything
97 // it could point to is marked ArgEscape.
98 //
99
100 class Compile;
101 class Node;
102 class CallNode;
103 class PhiNode;
104 class PhaseTransform;
105 class Type;
106 class TypePtr;
107 class VectorSet;
108
109 class PointsToNode {
110 friend class ConnectionGraph;
111 public:
112 typedef enum {
113 UnknownType = 0,
114 JavaObject = 1,
115 LocalVar = 2,
116 Field = 3
117 } NodeType;
118
119 typedef enum {
120 UnknownEscape = 0,
121 NoEscape = 1,
122 ArgEscape = 2,
123 GlobalEscape = 3
124 } EscapeState;
125
126 typedef enum {
127 UnknownEdge = 0,
128 PointsToEdge = 1,
129 DeferredEdge = 2,
130 FieldEdge = 3
131 } EdgeType;
132
133 private:
134 enum {
135 EdgeMask = 3,
136 EdgeShift = 2,
137
138 INITIAL_EDGE_COUNT = 4
139 };
140
141 NodeType _type;
142 EscapeState _escape;
143 GrowableArray<uint>* _edges; // outgoing edges
144 int _offset; // for fields
145
146 bool _unique_type; // For allocated objects, this node may be a unique type
147 public:
148 Node* _node; // Ideal node corresponding to this PointsTo node
149 int _inputs_processed; // the number of Phi inputs that have been processed so far
150 bool _hidden_alias; // this node is an argument to a function which may return it
151 // creating a hidden alias
152
153
154 PointsToNode(): _offset(-1), _type(UnknownType), _escape(UnknownEscape), _edges(NULL), _node(NULL), _inputs_processed(0), _hidden_alias(false), _unique_type(true) {}
155
156 EscapeState escape_state() const { return _escape; }
157 NodeType node_type() const { return _type;}
158 int offset() { return _offset;}
159
160 void set_offset(int offs) { _offset = offs;}
161 void set_escape_state(EscapeState state) { _escape = state; }
162 void set_node_type(NodeType ntype) {
163 assert(_type == UnknownType || _type == ntype, "Can't change node type");
164 _type = ntype;
165 }
166
167 // count of outgoing edges
168 uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
169 // node index of target of outgoing edge "e"
170 uint edge_target(uint e) const;
171 // type of outgoing edge "e"
172 EdgeType edge_type(uint e) const;
173 // add a edge of the specified type pointing to the specified target
174 void add_edge(uint targIdx, EdgeType et);
175 // remove an edge of the specified type pointing to the specified target
176 void remove_edge(uint targIdx, EdgeType et);
177 #ifndef PRODUCT
178 void dump() const;
179 #endif
180
181 };
182
183 class ConnectionGraph: public ResourceObj {
184 private:
185 enum {
186 INITIAL_NODE_COUNT = 100 // initial size of _nodes array
187 };
188
189
190 GrowableArray<PointsToNode>* _nodes; // connection graph nodes Indexed by ideal
191 // node index
192 Unique_Node_List _deferred; // Phi's to be processed after parsing
193 VectorSet _processed; // records which nodes have been processed
194 bool _collecting; // indicates whether escape information is
195 // still being collected. If false, no new
196 // nodes will be processed
197 uint _phantom_object; // index of globally escaping object that
198 // pointer values loaded from a field which
199 // has not been set are assumed to point to
200 Compile * _compile; // Compile object for current compilation
201
202 // address of an element in _nodes. Used when the element is to be modified
203 PointsToNode *ptnode_adr(uint idx) {
204 if ((uint)_nodes->length() <= idx) {
205 // expand _nodes array
206 PointsToNode dummy = _nodes->at_grow(idx);
207 }
208 return _nodes->adr_at(idx);
209 }
210
211 // offset of a field reference
212 int type_to_offset(const Type *t);
213
214 // compute the escape state for arguments to a call
215 void process_call_arguments(CallNode *call, PhaseTransform *phase);
216
217 // compute the escape state for the return value of a call
218 void process_call_result(ProjNode *resproj, PhaseTransform *phase);
219
220 // compute the escape state of a Phi. This may be called multiple
221 // times as new inputs are added to the Phi.
222 void process_phi_escape(PhiNode *phi, PhaseTransform *phase);
223
224 // compute the escape state of an ideal node.
225 void record_escape_work(Node *n, PhaseTransform *phase);
226
227 // walk the connection graph starting at the node corresponding to "n" and
228 // add the index of everything it could point to, to "ptset". This may cause
229 // Phi's encountered to get (re)processed (which requires "phase".)
230 void PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase);
231
232 // Edge manipulation. The "from_i" and "to_i" arguments are the
233 // node indices of the source and destination of the edge
234 void add_pointsto_edge(uint from_i, uint to_i);
235 void add_deferred_edge(uint from_i, uint to_i);
236 void add_field_edge(uint from_i, uint to_i, int offs);
237
238
239 // Add an edge to node given by "to_i" from any field of adr_i whose offset
240 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
241 // a pointsto edge is added if it is a JavaObject
242 void add_edge_from_fields(uint adr, uint to_i, int offs);
243
244 // Add a deferred edge from node given by "from_i" to any field of adr_i whose offset
245 // matches "offset"
246 void add_deferred_edge_to_fields(uint from_i, uint adr, int offs);
247
248
249 // Remove outgoing deferred edges from the node referenced by "ni".
250 // Any outgoing edges from the target of the deferred edge are copied
251 // to "ni".
252 void remove_deferred(uint ni);
253
254 Node_Array _node_map; // used for bookeeping during type splitting
255 // Used for the following purposes:
256 // Memory Phi - most recent unique Phi split out
257 // from this Phi
258 // MemNode - new memory input for this node
259 // ChecCastPP - allocation that this is a cast of
260 // allocation - CheckCastPP of the allocation
261 void split_AddP(Node *addp, Node *base, PhaseGVN *igvn);
262 PhiNode *create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created);
263 PhiNode *split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn);
264 Node *find_mem(Node *mem, int alias_idx, PhaseGVN *igvn);
265 // Propagate unique types created for unescaped allocated objects
266 // through the graph
267 void split_unique_types(GrowableArray<Node *> &alloc_worklist);
268
269 // manage entries in _node_map
270 void set_map(int idx, Node *n) { _node_map.map(idx, n); }
271 void set_map_phi(int idx, PhiNode *p) { _node_map.map(idx, (Node *) p); }
272 Node *get_map(int idx) { return _node_map[idx]; }
273 PhiNode *get_map_phi(int idx) {
274 Node *phi = _node_map[idx];
275 return (phi == NULL) ? NULL : phi->as_Phi();
276 }
277
278 // Notify optimizer that a node has been modified
279 // Node: This assumes that escape analysis is run before
280 // PhaseIterGVN creation
281 void record_for_optimizer(Node *n) {
282 _compile->record_for_igvn(n);
283 }
284
285 // Set the escape state of a node
286 void set_escape_state(uint ni, PointsToNode::EscapeState es);
287
288 // bypass any casts and return the node they refer to
289 Node * skip_casts(Node *n);
290
291 // Get Compile object for current compilation.
292 Compile *C() const { return _compile; }
293
294 public:
295 ConnectionGraph(Compile *C);
296
297 // record a Phi for later processing.
298 void record_for_escape_analysis(Node *n);
299
300 // process a node and fill in its connection graph node
301 void record_escape(Node *n, PhaseTransform *phase);
302
303 // All nodes have been recorded, compute the escape information
304 void compute_escape();
305
306 // escape state of a node
307 PointsToNode::EscapeState escape_state(Node *n, PhaseTransform *phase);
308
309 bool hidden_alias(Node *n) {
310 if (_collecting)
311 return true;
312 PointsToNode ptn = _nodes->at_grow(n->_idx);
313 return (ptn.escape_state() != PointsToNode::NoEscape) || ptn._hidden_alias;
314 }
315
316 #ifndef PRODUCT
317 void dump();
318 #endif
319 };