comparison src/share/vm/opto/matcher.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 7793bd37a336
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 class Compile;
26 class Node;
27 class MachNode;
28 class MachTypeNode;
29 class MachOper;
30
31 //---------------------------Matcher-------------------------------------------
32 class Matcher : public PhaseTransform {
33 friend class VMStructs;
34 // Private arena of State objects
35 ResourceArea _states_arena;
36
37 VectorSet _visited; // Visit bits
38
39 // Used to control the Label pass
40 VectorSet _shared; // Shared Ideal Node
41 VectorSet _dontcare; // Nothing the matcher cares about
42
43 // Private methods which perform the actual matching and reduction
44 // Walks the label tree, generating machine nodes
45 MachNode *ReduceInst( State *s, int rule, Node *&mem);
46 void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
47 uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
48 void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
49
50 // If this node already matched using "rule", return the MachNode for it.
51 MachNode* find_shared_constant(Node* con, uint rule);
52
53 // Convert a dense opcode number to an expanded rule number
54 const int *_reduceOp;
55 const int *_leftOp;
56 const int *_rightOp;
57
58 // Map dense opcode number to info on when rule is swallowed constant.
59 const bool *_swallowed;
60
61 // Map dense rule number to determine if this is an instruction chain rule
62 const uint _begin_inst_chain_rule;
63 const uint _end_inst_chain_rule;
64
65 // We want to clone constants and possible CmpI-variants.
66 // If we do not clone CmpI, then we can have many instances of
67 // condition codes alive at once. This is OK on some chips and
68 // bad on others. Hence the machine-dependent table lookup.
69 const char *_must_clone;
70
71 // Find shared Nodes, or Nodes that otherwise are Matcher roots
72 void find_shared( Node *n );
73
74 // Debug and profile information for nodes in old space:
75 GrowableArray<Node_Notes*>* _old_node_note_array;
76
77 // Node labeling iterator for instruction selection
78 Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
79
80 Node *transform( Node *dummy );
81
82 Node_List &_proj_list; // For Machine nodes killing many values
83
84 Node_Array _shared_constants;
85
86 debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots
87
88 // Accessors for the inherited field PhaseTransform::_nodes:
89 void grow_new_node_array(uint idx_limit) {
90 _nodes.map(idx_limit-1, NULL);
91 }
92 bool has_new_node(const Node* n) const {
93 return _nodes.at(n->_idx) != NULL;
94 }
95 Node* new_node(const Node* n) const {
96 assert(has_new_node(n), "set before get");
97 return _nodes.at(n->_idx);
98 }
99 void set_new_node(const Node* n, Node *nn) {
100 assert(!has_new_node(n), "set only once");
101 _nodes.map(n->_idx, nn);
102 }
103
104 #ifdef ASSERT
105 // Make sure only new nodes are reachable from this node
106 void verify_new_nodes_only(Node* root);
107 #endif
108
109 public:
110 int LabelRootDepth;
111 static const int base2reg[]; // Map Types to machine register types
112 // Convert ideal machine register to a register mask for spill-loads
113 static const RegMask *idealreg2regmask[];
114 RegMask *idealreg2spillmask[_last_machine_leaf];
115 RegMask *idealreg2debugmask[_last_machine_leaf];
116 void init_spill_mask( Node *ret );
117 // Convert machine register number to register mask
118 static uint mreg2regmask_max;
119 static RegMask mreg2regmask[];
120 static RegMask STACK_ONLY_mask;
121
122 bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
123 void set_shared( Node *n ) { _shared.set(n->_idx); }
124 bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
125 void set_visited( Node *n ) { _visited.set(n->_idx); }
126 bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
127 void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
128
129 // Mode bit to tell DFA and expand rules whether we are running after
130 // (or during) register selection. Usually, the matcher runs before,
131 // but it will also get called to generate post-allocation spill code.
132 // In this situation, it is a deadly error to attempt to allocate more
133 // temporary registers.
134 bool _allocation_started;
135
136 // Machine register names
137 static const char *regName[];
138 // Machine register encodings
139 static const unsigned char _regEncode[];
140 // Machine Node names
141 const char **_ruleName;
142 // Rules that are cheaper to rematerialize than to spill
143 static const uint _begin_rematerialize;
144 static const uint _end_rematerialize;
145
146 // An array of chars, from 0 to _last_Mach_Reg.
147 // No Save = 'N' (for register windows)
148 // Save on Entry = 'E'
149 // Save on Call = 'C'
150 // Always Save = 'A' (same as SOE + SOC)
151 const char *_register_save_policy;
152 const char *_c_reg_save_policy;
153 // Convert a machine register to a machine register type, so-as to
154 // properly match spill code.
155 const int *_register_save_type;
156 // Maps from machine register to boolean; true if machine register can
157 // be holding a call argument in some signature.
158 static bool can_be_java_arg( int reg );
159 // Maps from machine register to boolean; true if machine register holds
160 // a spillable argument.
161 static bool is_spillable_arg( int reg );
162
163 // List of IfFalse or IfTrue Nodes that indicate a taken null test.
164 // List is valid in the post-matching space.
165 Node_List _null_check_tests;
166 void collect_null_checks( Node *proj );
167 void validate_null_checks( );
168
169 Matcher( Node_List &proj_list );
170
171 // Select instructions for entire method
172 void match( );
173 // Helper for match
174 OptoReg::Name warp_incoming_stk_arg( VMReg reg );
175
176 // Transform, then walk. Does implicit DCE while walking.
177 // Name changed from "transform" to avoid it being virtual.
178 Node *xform( Node *old_space_node, int Nodes );
179
180 // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
181 MachNode *match_tree( const Node *n );
182 MachNode *match_sfpt( SafePointNode *sfpt );
183 // Helper for match_sfpt
184 OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
185
186 // Initialize first stack mask and related masks.
187 void init_first_stack_mask();
188
189 // If we should save-on-entry this register
190 bool is_save_on_entry( int reg );
191
192 // Fixup the save-on-entry registers
193 void Fixup_Save_On_Entry( );
194
195 // --- Frame handling ---
196
197 // Register number of the stack slot corresponding to the incoming SP.
198 // Per the Big Picture in the AD file, it is:
199 // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
200 OptoReg::Name _old_SP;
201
202 // Register number of the stack slot corresponding to the highest incoming
203 // argument on the stack. Per the Big Picture in the AD file, it is:
204 // _old_SP + out_preserve_stack_slots + incoming argument size.
205 OptoReg::Name _in_arg_limit;
206
207 // Register number of the stack slot corresponding to the new SP.
208 // Per the Big Picture in the AD file, it is:
209 // _in_arg_limit + pad0
210 OptoReg::Name _new_SP;
211
212 // Register number of the stack slot corresponding to the highest outgoing
213 // argument on the stack. Per the Big Picture in the AD file, it is:
214 // _new_SP + max outgoing arguments of all calls
215 OptoReg::Name _out_arg_limit;
216
217 OptoRegPair *_parm_regs; // Array of machine registers per argument
218 RegMask *_calling_convention_mask; // Array of RegMasks per argument
219
220 // Does matcher support this ideal node?
221 static const bool has_match_rule(int opcode);
222 static const bool _hasMatchRule[_last_opcode];
223
224 // Used to determine if we have fast l2f conversion
225 // USII has it, USIII doesn't
226 static const bool convL2FSupported(void);
227
228 // Vector width in bytes
229 static const uint vector_width_in_bytes(void);
230
231 // Vector ideal reg
232 static const uint vector_ideal_reg(void);
233
234 // Used to determine a "low complexity" 64-bit constant. (Zero is simple.)
235 // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
236 // Depends on the details of 64-bit constant generation on the CPU.
237 static const bool isSimpleConstant64(jlong con);
238
239 // These calls are all generated by the ADLC
240
241 // TRUE - grows up, FALSE - grows down (Intel)
242 virtual bool stack_direction() const;
243
244 // Java-Java calling convention
245 // (what you use when Java calls Java)
246
247 // Alignment of stack in bytes, standard Intel word alignment is 4.
248 // Sparc probably wants at least double-word (8).
249 static uint stack_alignment_in_bytes();
250 // Alignment of stack, measured in stack slots.
251 // The size of stack slots is defined by VMRegImpl::stack_slot_size.
252 static uint stack_alignment_in_slots() {
253 return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
254 }
255
256 // Array mapping arguments to registers. Argument 0 is usually the 'this'
257 // pointer. Registers can include stack-slots and regular registers.
258 static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
259
260 // Convert a sig into a calling convention register layout
261 // and find interesting things about it.
262 static OptoReg::Name find_receiver( bool is_outgoing );
263 // Return address register. On Intel it is a stack-slot. On PowerPC
264 // it is the Link register. On Sparc it is r31?
265 virtual OptoReg::Name return_addr() const;
266 RegMask _return_addr_mask;
267 // Return value register. On Intel it is EAX. On Sparc i0/o0.
268 static OptoRegPair return_value(int ideal_reg, bool is_outgoing);
269 static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
270 RegMask _return_value_mask;
271 // Inline Cache Register
272 static OptoReg::Name inline_cache_reg();
273 static const RegMask &inline_cache_reg_mask();
274 static int inline_cache_reg_encode();
275
276 // Register for DIVI projection of divmodI
277 static RegMask divI_proj_mask();
278 // Register for MODI projection of divmodI
279 static RegMask modI_proj_mask();
280
281 // Register for DIVL projection of divmodL
282 static RegMask divL_proj_mask();
283 // Register for MODL projection of divmodL
284 static RegMask modL_proj_mask();
285
286 // Java-Interpreter calling convention
287 // (what you use when calling between compiled-Java and Interpreted-Java
288
289 // Number of callee-save + always-save registers
290 // Ignores frame pointer and "special" registers
291 static int number_of_saved_registers();
292
293 // The Method-klass-holder may be passed in the inline_cache_reg
294 // and then expanded into the inline_cache_reg and a method_oop register
295
296 static OptoReg::Name interpreter_method_oop_reg();
297 static const RegMask &interpreter_method_oop_reg_mask();
298 static int interpreter_method_oop_reg_encode();
299
300 static OptoReg::Name compiler_method_oop_reg();
301 static const RegMask &compiler_method_oop_reg_mask();
302 static int compiler_method_oop_reg_encode();
303
304 // Interpreter's Frame Pointer Register
305 static OptoReg::Name interpreter_frame_pointer_reg();
306 static const RegMask &interpreter_frame_pointer_reg_mask();
307
308 // Java-Native calling convention
309 // (what you use when intercalling between Java and C++ code)
310
311 // Array mapping arguments to registers. Argument 0 is usually the 'this'
312 // pointer. Registers can include stack-slots and regular registers.
313 static void c_calling_convention( BasicType*, VMRegPair *, uint );
314 // Frame pointer. The frame pointer is kept at the base of the stack
315 // and so is probably the stack pointer for most machines. On Intel
316 // it is ESP. On the PowerPC it is R1. On Sparc it is SP.
317 OptoReg::Name c_frame_pointer() const;
318 static RegMask c_frame_ptr_mask;
319
320 // !!!!! Special stuff for building ScopeDescs
321 virtual int regnum_to_fpu_offset(int regnum);
322
323 // Is this branch offset small enough to be addressed by a short branch?
324 bool is_short_branch_offset(int offset);
325
326 // Optional scaling for the parameter to the ClearArray/CopyArray node.
327 static const bool init_array_count_is_in_bytes;
328
329 // Threshold small size (in bytes) for a ClearArray/CopyArray node.
330 // Anything this size or smaller may get converted to discrete scalar stores.
331 static const int init_array_short_size;
332
333 // Should the Matcher clone shifts on addressing modes, expecting them to
334 // be subsumed into complex addressing expressions or compute them into
335 // registers? True for Intel but false for most RISCs
336 static const bool clone_shift_expressions;
337
338 // Is it better to copy float constants, or load them directly from memory?
339 // Intel can load a float constant from a direct address, requiring no
340 // extra registers. Most RISCs will have to materialize an address into a
341 // register first, so they may as well materialize the constant immediately.
342 static const bool rematerialize_float_constants;
343
344 // If CPU can load and store mis-aligned doubles directly then no fixup is
345 // needed. Else we split the double into 2 integer pieces and move it
346 // piece-by-piece. Only happens when passing doubles into C code or when
347 // calling i2c adapters as the Java calling convention forces doubles to be
348 // aligned.
349 static const bool misaligned_doubles_ok;
350
351 // Perform a platform dependent implicit null fixup. This is needed
352 // on windows95 to take care of some unusual register constraints.
353 void pd_implicit_null_fixup(MachNode *load, uint idx);
354
355 // Advertise here if the CPU requires explicit rounding operations
356 // to implement the UseStrictFP mode.
357 static const bool strict_fp_requires_explicit_rounding;
358
359 // Do floats take an entire double register or just half?
360 static const bool float_in_double;
361 // Do ints take an entire long register or just half?
362 static const bool int_in_long;
363
364 // This routine is run whenever a graph fails to match.
365 // If it returns, the compiler should bailout to interpreter without error.
366 // In non-product mode, SoftMatchFailure is false to detect non-canonical
367 // graphs. Print a message and exit.
368 static void soft_match_failure() {
369 if( SoftMatchFailure ) return;
370 else { fatal("SoftMatchFailure is not allowed except in product"); }
371 }
372
373 // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
374 // acting as an Acquire and thus we don't need an Acquire here. We
375 // retain the Node to act as a compiler ordering barrier.
376 static bool prior_fast_lock( const Node *acq );
377
378 // Used by the DFA in dfa_sparc.cpp. Check for a following
379 // FastUnLock acting as a Release and thus we don't need a Release
380 // here. We retain the Node to act as a compiler ordering barrier.
381 static bool post_fast_unlock( const Node *rel );
382
383 // Check for a following volatile memory barrier without an
384 // intervening load and thus we don't need a barrier here. We
385 // retain the Node to act as a compiler ordering barrier.
386 static bool post_store_load_barrier(const Node* mb);
387
388
389 #ifdef ASSERT
390 void dump_old2new_map(); // machine-independent to machine-dependent
391 #endif
392 };