comparison src/share/vm/opto/memnode.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ff5961f4c095
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 class MultiNode;
28 class PhaseCCP;
29 class PhaseTransform;
30
31 //------------------------------MemNode----------------------------------------
32 // Load or Store, possibly throwing a NULL pointer exception
33 class MemNode : public Node {
34 protected:
35 #ifdef ASSERT
36 const TypePtr* _adr_type; // What kind of memory is being addressed?
37 #endif
38 virtual uint size_of() const; // Size is bigger (ASSERT only)
39 public:
40 enum { Control, // When is it safe to do this load?
41 Memory, // Chunk of memory is being loaded from
42 Address, // Actually address, derived from base
43 ValueIn, // Value to store
44 OopStore // Preceeding oop store, only in StoreCM
45 };
46 protected:
47 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
48 : Node(c0,c1,c2 ) {
49 init_class_id(Class_Mem);
50 debug_only(_adr_type=at; adr_type();)
51 }
52 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
53 : Node(c0,c1,c2,c3) {
54 init_class_id(Class_Mem);
55 debug_only(_adr_type=at; adr_type();)
56 }
57 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
58 : Node(c0,c1,c2,c3,c4) {
59 init_class_id(Class_Mem);
60 debug_only(_adr_type=at; adr_type();)
61 }
62
63 // Helpers for the optimizer. Documented in memnode.cpp.
64 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
65 Node* p2, AllocateNode* a2,
66 PhaseTransform* phase);
67 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
68
69 public:
70 // This one should probably be a phase-specific function:
71 static bool detect_dominating_control(Node* dom, Node* sub);
72
73 // Is this Node a MemNode or some descendent? Default is YES.
74 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
75
76 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
77
78 // Shared code for Ideal methods:
79 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
80
81 // Helper function for adr_type() implementations.
82 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
83
84 // Raw access function, to allow copying of adr_type efficiently in
85 // product builds and retain the debug info for debug builds.
86 const TypePtr *raw_adr_type() const {
87 #ifdef ASSERT
88 return _adr_type;
89 #else
90 return 0;
91 #endif
92 }
93
94 // Map a load or store opcode to its corresponding store opcode.
95 // (Return -1 if unknown.)
96 virtual int store_Opcode() const { return -1; }
97
98 // What is the type of the value in memory? (T_VOID mean "unspecified".)
99 virtual BasicType memory_type() const = 0;
100 virtual int memory_size() const { return type2aelembytes[memory_type()]; }
101
102 // Search through memory states which precede this node (load or store).
103 // Look for an exact match for the address, with no intervening
104 // aliased stores.
105 Node* find_previous_store(PhaseTransform* phase);
106
107 // Can this node (load or store) accurately see a stored value in
108 // the given memory state? (The state may or may not be in(Memory).)
109 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
110
111 #ifndef PRODUCT
112 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
113 virtual void dump_spec(outputStream *st) const;
114 #endif
115 };
116
117 //------------------------------LoadNode---------------------------------------
118 // Load value; requires Memory and Address
119 class LoadNode : public MemNode {
120 protected:
121 virtual uint cmp( const Node &n ) const;
122 virtual uint size_of() const; // Size is bigger
123 const Type* const _type; // What kind of value is loaded?
124 public:
125
126 LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
127 : MemNode(c,mem,adr,at), _type(rt) {
128 init_class_id(Class_Load);
129 }
130
131 // Polymorphic factory method:
132 static LoadNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, BasicType bt );
133
134 virtual uint hash() const; // Check the type
135
136 // Handle algebraic identities here. If we have an identity, return the Node
137 // we are equivalent to. We look for Load of a Store.
138 virtual Node *Identity( PhaseTransform *phase );
139
140 // If the load is from Field memory and the pointer is non-null, we can
141 // zero out the control input.
142 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
143
144 // Compute a new Type for this node. Basically we just do the pre-check,
145 // then call the virtual add() to set the type.
146 virtual const Type *Value( PhaseTransform *phase ) const;
147
148 virtual uint ideal_reg() const;
149 virtual const Type *bottom_type() const;
150 // Following method is copied from TypeNode:
151 void set_type(const Type* t) {
152 assert(t != NULL, "sanity");
153 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
154 *(const Type**)&_type = t; // cast away const-ness
155 // If this node is in the hash table, make sure it doesn't need a rehash.
156 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
157 }
158 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
159
160 // Do not match memory edge
161 virtual uint match_edge(uint idx) const;
162
163 // Map a load opcode to its corresponding store opcode.
164 virtual int store_Opcode() const = 0;
165
166 #ifndef PRODUCT
167 virtual void dump_spec(outputStream *st) const;
168 #endif
169 protected:
170 const Type* load_array_final_field(const TypeKlassPtr *tkls,
171 ciKlass* klass) const;
172 };
173
174 //------------------------------LoadBNode--------------------------------------
175 // Load a byte (8bits signed) from memory
176 class LoadBNode : public LoadNode {
177 public:
178 LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
179 : LoadNode(c,mem,adr,at,ti) {}
180 virtual int Opcode() const;
181 virtual uint ideal_reg() const { return Op_RegI; }
182 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
183 virtual int store_Opcode() const { return Op_StoreB; }
184 virtual BasicType memory_type() const { return T_BYTE; }
185 };
186
187 //------------------------------LoadCNode--------------------------------------
188 // Load a char (16bits unsigned) from memory
189 class LoadCNode : public LoadNode {
190 public:
191 LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
192 : LoadNode(c,mem,adr,at,ti) {}
193 virtual int Opcode() const;
194 virtual uint ideal_reg() const { return Op_RegI; }
195 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
196 virtual int store_Opcode() const { return Op_StoreC; }
197 virtual BasicType memory_type() const { return T_CHAR; }
198 };
199
200 //------------------------------LoadINode--------------------------------------
201 // Load an integer from memory
202 class LoadINode : public LoadNode {
203 public:
204 LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
205 : LoadNode(c,mem,adr,at,ti) {}
206 virtual int Opcode() const;
207 virtual uint ideal_reg() const { return Op_RegI; }
208 virtual int store_Opcode() const { return Op_StoreI; }
209 virtual BasicType memory_type() const { return T_INT; }
210 };
211
212 //------------------------------LoadRangeNode----------------------------------
213 // Load an array length from the array
214 class LoadRangeNode : public LoadINode {
215 public:
216 LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
217 : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
218 virtual int Opcode() const;
219 virtual const Type *Value( PhaseTransform *phase ) const;
220 virtual Node *Identity( PhaseTransform *phase );
221 };
222
223 //------------------------------LoadLNode--------------------------------------
224 // Load a long from memory
225 class LoadLNode : public LoadNode {
226 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
227 virtual uint cmp( const Node &n ) const {
228 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
229 && LoadNode::cmp(n);
230 }
231 virtual uint size_of() const { return sizeof(*this); }
232 const bool _require_atomic_access; // is piecewise load forbidden?
233
234 public:
235 LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
236 const TypeLong *tl = TypeLong::LONG,
237 bool require_atomic_access = false )
238 : LoadNode(c,mem,adr,at,tl)
239 , _require_atomic_access(require_atomic_access)
240 {}
241 virtual int Opcode() const;
242 virtual uint ideal_reg() const { return Op_RegL; }
243 virtual int store_Opcode() const { return Op_StoreL; }
244 virtual BasicType memory_type() const { return T_LONG; }
245 bool require_atomic_access() { return _require_atomic_access; }
246 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
247 #ifndef PRODUCT
248 virtual void dump_spec(outputStream *st) const {
249 LoadNode::dump_spec(st);
250 if (_require_atomic_access) st->print(" Atomic!");
251 }
252 #endif
253 };
254
255 //------------------------------LoadL_unalignedNode----------------------------
256 // Load a long from unaligned memory
257 class LoadL_unalignedNode : public LoadLNode {
258 public:
259 LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
260 : LoadLNode(c,mem,adr,at) {}
261 virtual int Opcode() const;
262 };
263
264 //------------------------------LoadFNode--------------------------------------
265 // Load a float (64 bits) from memory
266 class LoadFNode : public LoadNode {
267 public:
268 LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
269 : LoadNode(c,mem,adr,at,t) {}
270 virtual int Opcode() const;
271 virtual uint ideal_reg() const { return Op_RegF; }
272 virtual int store_Opcode() const { return Op_StoreF; }
273 virtual BasicType memory_type() const { return T_FLOAT; }
274 };
275
276 //------------------------------LoadDNode--------------------------------------
277 // Load a double (64 bits) from memory
278 class LoadDNode : public LoadNode {
279 public:
280 LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
281 : LoadNode(c,mem,adr,at,t) {}
282 virtual int Opcode() const;
283 virtual uint ideal_reg() const { return Op_RegD; }
284 virtual int store_Opcode() const { return Op_StoreD; }
285 virtual BasicType memory_type() const { return T_DOUBLE; }
286 };
287
288 //------------------------------LoadD_unalignedNode----------------------------
289 // Load a double from unaligned memory
290 class LoadD_unalignedNode : public LoadDNode {
291 public:
292 LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
293 : LoadDNode(c,mem,adr,at) {}
294 virtual int Opcode() const;
295 };
296
297 //------------------------------LoadPNode--------------------------------------
298 // Load a pointer from memory (either object or array)
299 class LoadPNode : public LoadNode {
300 public:
301 LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
302 : LoadNode(c,mem,adr,at,t) {}
303 virtual int Opcode() const;
304 virtual uint ideal_reg() const { return Op_RegP; }
305 virtual int store_Opcode() const { return Op_StoreP; }
306 virtual BasicType memory_type() const { return T_ADDRESS; }
307 // depends_only_on_test is almost always true, and needs to be almost always
308 // true to enable key hoisting & commoning optimizations. However, for the
309 // special case of RawPtr loads from TLS top & end, the control edge carries
310 // the dependence preventing hoisting past a Safepoint instead of the memory
311 // edge. (An unfortunate consequence of having Safepoints not set Raw
312 // Memory; itself an unfortunate consequence of having Nodes which produce
313 // results (new raw memory state) inside of loops preventing all manner of
314 // other optimizations). Basically, it's ugly but so is the alternative.
315 // See comment in macro.cpp, around line 125 expand_allocate_common().
316 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
317 };
318
319 //------------------------------LoadKlassNode----------------------------------
320 // Load a Klass from an object
321 class LoadKlassNode : public LoadPNode {
322 public:
323 LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk = TypeKlassPtr::OBJECT )
324 : LoadPNode(c,mem,adr,at,tk) {}
325 virtual int Opcode() const;
326 virtual const Type *Value( PhaseTransform *phase ) const;
327 virtual Node *Identity( PhaseTransform *phase );
328 virtual bool depends_only_on_test() const { return true; }
329 };
330
331 //------------------------------LoadSNode--------------------------------------
332 // Load a short (16bits signed) from memory
333 class LoadSNode : public LoadNode {
334 public:
335 LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
336 : LoadNode(c,mem,adr,at,ti) {}
337 virtual int Opcode() const;
338 virtual uint ideal_reg() const { return Op_RegI; }
339 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
340 virtual int store_Opcode() const { return Op_StoreC; }
341 virtual BasicType memory_type() const { return T_SHORT; }
342 };
343
344 //------------------------------StoreNode--------------------------------------
345 // Store value; requires Store, Address and Value
346 class StoreNode : public MemNode {
347 protected:
348 virtual uint cmp( const Node &n ) const;
349 virtual bool depends_only_on_test() const { return false; }
350
351 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
352 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
353
354 public:
355 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
356 : MemNode(c,mem,adr,at,val) {
357 init_class_id(Class_Store);
358 }
359 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
360 : MemNode(c,mem,adr,at,val,oop_store) {
361 init_class_id(Class_Store);
362 }
363
364 // Polymorphic factory method:
365 static StoreNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, BasicType bt );
366
367 virtual uint hash() const; // Check the type
368
369 // If the store is to Field memory and the pointer is non-null, we can
370 // zero out the control input.
371 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
372
373 // Compute a new Type for this node. Basically we just do the pre-check,
374 // then call the virtual add() to set the type.
375 virtual const Type *Value( PhaseTransform *phase ) const;
376
377 // Check for identity function on memory (Load then Store at same address)
378 virtual Node *Identity( PhaseTransform *phase );
379
380 // Do not match memory edge
381 virtual uint match_edge(uint idx) const;
382
383 virtual const Type *bottom_type() const; // returns Type::MEMORY
384
385 // Map a store opcode to its corresponding own opcode, trivially.
386 virtual int store_Opcode() const { return Opcode(); }
387
388 // have all possible loads of the value stored been optimized away?
389 bool value_never_loaded(PhaseTransform *phase) const;
390 };
391
392 //------------------------------StoreBNode-------------------------------------
393 // Store byte to memory
394 class StoreBNode : public StoreNode {
395 public:
396 StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
397 virtual int Opcode() const;
398 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
399 virtual BasicType memory_type() const { return T_BYTE; }
400 };
401
402 //------------------------------StoreCNode-------------------------------------
403 // Store char/short to memory
404 class StoreCNode : public StoreNode {
405 public:
406 StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
407 virtual int Opcode() const;
408 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
409 virtual BasicType memory_type() const { return T_CHAR; }
410 };
411
412 //------------------------------StoreINode-------------------------------------
413 // Store int to memory
414 class StoreINode : public StoreNode {
415 public:
416 StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
417 virtual int Opcode() const;
418 virtual BasicType memory_type() const { return T_INT; }
419 };
420
421 //------------------------------StoreLNode-------------------------------------
422 // Store long to memory
423 class StoreLNode : public StoreNode {
424 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
425 virtual uint cmp( const Node &n ) const {
426 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
427 && StoreNode::cmp(n);
428 }
429 virtual uint size_of() const { return sizeof(*this); }
430 const bool _require_atomic_access; // is piecewise store forbidden?
431
432 public:
433 StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
434 bool require_atomic_access = false )
435 : StoreNode(c,mem,adr,at,val)
436 , _require_atomic_access(require_atomic_access)
437 {}
438 virtual int Opcode() const;
439 virtual BasicType memory_type() const { return T_LONG; }
440 bool require_atomic_access() { return _require_atomic_access; }
441 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
442 #ifndef PRODUCT
443 virtual void dump_spec(outputStream *st) const {
444 StoreNode::dump_spec(st);
445 if (_require_atomic_access) st->print(" Atomic!");
446 }
447 #endif
448 };
449
450 //------------------------------StoreFNode-------------------------------------
451 // Store float to memory
452 class StoreFNode : public StoreNode {
453 public:
454 StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
455 virtual int Opcode() const;
456 virtual BasicType memory_type() const { return T_FLOAT; }
457 };
458
459 //------------------------------StoreDNode-------------------------------------
460 // Store double to memory
461 class StoreDNode : public StoreNode {
462 public:
463 StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
464 virtual int Opcode() const;
465 virtual BasicType memory_type() const { return T_DOUBLE; }
466 };
467
468 //------------------------------StorePNode-------------------------------------
469 // Store pointer to memory
470 class StorePNode : public StoreNode {
471 public:
472 StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
473 virtual int Opcode() const;
474 virtual BasicType memory_type() const { return T_ADDRESS; }
475 };
476
477 //------------------------------StoreCMNode-----------------------------------
478 // Store card-mark byte to memory for CM
479 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
480 // Preceeding equivalent StoreCMs may be eliminated.
481 class StoreCMNode : public StoreNode {
482 public:
483 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) : StoreNode(c,mem,adr,at,val,oop_store) {}
484 virtual int Opcode() const;
485 virtual Node *Identity( PhaseTransform *phase );
486 virtual const Type *Value( PhaseTransform *phase ) const;
487 virtual BasicType memory_type() const { return T_VOID; } // unspecific
488 };
489
490 //------------------------------LoadPLockedNode---------------------------------
491 // Load-locked a pointer from memory (either object or array).
492 // On Sparc & Intel this is implemented as a normal pointer load.
493 // On PowerPC and friends it's a real load-locked.
494 class LoadPLockedNode : public LoadPNode {
495 public:
496 LoadPLockedNode( Node *c, Node *mem, Node *adr )
497 : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
498 virtual int Opcode() const;
499 virtual int store_Opcode() const { return Op_StorePConditional; }
500 virtual bool depends_only_on_test() const { return true; }
501 };
502
503 //------------------------------LoadLLockedNode---------------------------------
504 // Load-locked a pointer from memory (either object or array).
505 // On Sparc & Intel this is implemented as a normal long load.
506 class LoadLLockedNode : public LoadLNode {
507 public:
508 LoadLLockedNode( Node *c, Node *mem, Node *adr )
509 : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
510 virtual int Opcode() const;
511 virtual int store_Opcode() const { return Op_StoreLConditional; }
512 };
513
514 //------------------------------SCMemProjNode---------------------------------------
515 // This class defines a projection of the memory state of a store conditional node.
516 // These nodes return a value, but also update memory.
517 class SCMemProjNode : public ProjNode {
518 public:
519 enum {SCMEMPROJCON = (uint)-2};
520 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
521 virtual int Opcode() const;
522 virtual bool is_CFG() const { return false; }
523 virtual const Type *bottom_type() const {return Type::MEMORY;}
524 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
525 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
526 virtual const Type *Value( PhaseTransform *phase ) const;
527 #ifndef PRODUCT
528 virtual void dump_spec(outputStream *st) const {};
529 #endif
530 };
531
532 //------------------------------LoadStoreNode---------------------------
533 class LoadStoreNode : public Node {
534 public:
535 enum {
536 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
537 };
538 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
539 virtual bool depends_only_on_test() const { return false; }
540 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
541 virtual uint ideal_reg() const { return Op_RegI; }
542 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
543 };
544
545 //------------------------------StorePConditionalNode---------------------------
546 // Conditionally store pointer to memory, if no change since prior
547 // load-locked. Sets flags for success or failure of the store.
548 class StorePConditionalNode : public LoadStoreNode {
549 public:
550 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
551 virtual int Opcode() const;
552 // Produces flags
553 virtual uint ideal_reg() const { return Op_RegFlags; }
554 };
555
556 //------------------------------StoreLConditionalNode---------------------------
557 // Conditionally store long to memory, if no change since prior
558 // load-locked. Sets flags for success or failure of the store.
559 class StoreLConditionalNode : public LoadStoreNode {
560 public:
561 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
562 virtual int Opcode() const;
563 };
564
565
566 //------------------------------CompareAndSwapLNode---------------------------
567 class CompareAndSwapLNode : public LoadStoreNode {
568 public:
569 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
570 virtual int Opcode() const;
571 };
572
573
574 //------------------------------CompareAndSwapINode---------------------------
575 class CompareAndSwapINode : public LoadStoreNode {
576 public:
577 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
578 virtual int Opcode() const;
579 };
580
581
582 //------------------------------CompareAndSwapPNode---------------------------
583 class CompareAndSwapPNode : public LoadStoreNode {
584 public:
585 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
586 virtual int Opcode() const;
587 };
588
589 //------------------------------ClearArray-------------------------------------
590 class ClearArrayNode: public Node {
591 public:
592 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {}
593 virtual int Opcode() const;
594 virtual const Type *bottom_type() const { return Type::MEMORY; }
595 // ClearArray modifies array elements, and so affects only the
596 // array memory addressed by the bottom_type of its base address.
597 virtual const class TypePtr *adr_type() const;
598 virtual Node *Identity( PhaseTransform *phase );
599 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
600 virtual uint match_edge(uint idx) const;
601
602 // Clear the given area of an object or array.
603 // The start offset must always be aligned mod BytesPerInt.
604 // The end offset must always be aligned mod BytesPerLong.
605 // Return the new memory.
606 static Node* clear_memory(Node* control, Node* mem, Node* dest,
607 intptr_t start_offset,
608 intptr_t end_offset,
609 PhaseGVN* phase);
610 static Node* clear_memory(Node* control, Node* mem, Node* dest,
611 intptr_t start_offset,
612 Node* end_offset,
613 PhaseGVN* phase);
614 static Node* clear_memory(Node* control, Node* mem, Node* dest,
615 Node* start_offset,
616 Node* end_offset,
617 PhaseGVN* phase);
618 };
619
620 //------------------------------StrComp-------------------------------------
621 class StrCompNode: public Node {
622 public:
623 StrCompNode(Node *control,
624 Node* char_array_mem,
625 Node* value_mem,
626 Node* count_mem,
627 Node* offset_mem,
628 Node* s1, Node* s2): Node(control,
629 char_array_mem,
630 value_mem,
631 count_mem,
632 offset_mem,
633 s1, s2) {};
634 virtual int Opcode() const;
635 virtual bool depends_only_on_test() const { return false; }
636 virtual const Type* bottom_type() const { return TypeInt::INT; }
637 // a StrCompNode (conservatively) aliases with everything:
638 virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
639 virtual uint match_edge(uint idx) const;
640 virtual uint ideal_reg() const { return Op_RegI; }
641 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
642 };
643
644 //------------------------------MemBar-----------------------------------------
645 // There are different flavors of Memory Barriers to match the Java Memory
646 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
647 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
648 // volatile-load. Monitor-exit and volatile-store act as Release: no
649 // preceeding ref can be moved to after them. We insert a MemBar-Release
650 // before a FastUnlock or volatile-store. All volatiles need to be
651 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
652 // seperate it from any following volatile-load.
653 class MemBarNode: public MultiNode {
654 virtual uint hash() const ; // { return NO_HASH; }
655 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
656
657 virtual uint size_of() const { return sizeof(*this); }
658 // Memory type this node is serializing. Usually either rawptr or bottom.
659 const TypePtr* _adr_type;
660
661 public:
662 enum {
663 Precedent = TypeFunc::Parms // optional edge to force precedence
664 };
665 MemBarNode(Compile* C, int alias_idx, Node* precedent);
666 virtual int Opcode() const = 0;
667 virtual const class TypePtr *adr_type() const { return _adr_type; }
668 virtual const Type *Value( PhaseTransform *phase ) const;
669 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
670 virtual uint match_edge(uint idx) const { return 0; }
671 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
672 virtual Node *match( const ProjNode *proj, const Matcher *m );
673 // Factory method. Builds a wide or narrow membar.
674 // Optional 'precedent' becomes an extra edge if not null.
675 static MemBarNode* make(Compile* C, int opcode,
676 int alias_idx = Compile::AliasIdxBot,
677 Node* precedent = NULL);
678 };
679
680 // "Acquire" - no following ref can move before (but earlier refs can
681 // follow, like an early Load stalled in cache). Requires multi-cpu
682 // visibility. Inserted after a volatile load or FastLock.
683 class MemBarAcquireNode: public MemBarNode {
684 public:
685 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
686 : MemBarNode(C, alias_idx, precedent) {}
687 virtual int Opcode() const;
688 };
689
690 // "Release" - no earlier ref can move after (but later refs can move
691 // up, like a speculative pipelined cache-hitting Load). Requires
692 // multi-cpu visibility. Inserted before a volatile store or FastUnLock.
693 class MemBarReleaseNode: public MemBarNode {
694 public:
695 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
696 : MemBarNode(C, alias_idx, precedent) {}
697 virtual int Opcode() const;
698 };
699
700 // Ordering between a volatile store and a following volatile load.
701 // Requires multi-CPU visibility?
702 class MemBarVolatileNode: public MemBarNode {
703 public:
704 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
705 : MemBarNode(C, alias_idx, precedent) {}
706 virtual int Opcode() const;
707 };
708
709 // Ordering within the same CPU. Used to order unsafe memory references
710 // inside the compiler when we lack alias info. Not needed "outside" the
711 // compiler because the CPU does all the ordering for us.
712 class MemBarCPUOrderNode: public MemBarNode {
713 public:
714 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
715 : MemBarNode(C, alias_idx, precedent) {}
716 virtual int Opcode() const;
717 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
718 };
719
720 // Isolation of object setup after an AllocateNode and before next safepoint.
721 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
722 class InitializeNode: public MemBarNode {
723 friend class AllocateNode;
724
725 bool _is_complete;
726
727 public:
728 enum {
729 Control = TypeFunc::Control,
730 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
731 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
732 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
733 };
734
735 InitializeNode(Compile* C, int adr_type, Node* rawoop);
736 virtual int Opcode() const;
737 virtual uint size_of() const { return sizeof(*this); }
738 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
739 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
740
741 // Manage incoming memory edges via a MergeMem on in(Memory):
742 Node* memory(uint alias_idx);
743
744 // The raw memory edge coming directly from the Allocation.
745 // The contents of this memory are *always* all-zero-bits.
746 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
747
748 // Return the corresponding allocation for this initialization (or null if none).
749 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
750 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
751 AllocateNode* allocation();
752
753 // Anything other than zeroing in this init?
754 bool is_non_zero();
755
756 // An InitializeNode must completed before macro expansion is done.
757 // Completion requires that the AllocateNode must be followed by
758 // initialization of the new memory to zero, then to any initializers.
759 bool is_complete() { return _is_complete; }
760
761 // Mark complete. (Must not yet be complete.)
762 void set_complete(PhaseGVN* phase);
763
764 #ifdef ASSERT
765 // ensure all non-degenerate stores are ordered and non-overlapping
766 bool stores_are_sane(PhaseTransform* phase);
767 #endif //ASSERT
768
769 // See if this store can be captured; return offset where it initializes.
770 // Return 0 if the store cannot be moved (any sort of problem).
771 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
772
773 // Capture another store; reformat it to write my internal raw memory.
774 // Return the captured copy, else NULL if there is some sort of problem.
775 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
776
777 // Find captured store which corresponds to the range [start..start+size).
778 // Return my own memory projection (meaning the initial zero bits)
779 // if there is no such store. Return NULL if there is a problem.
780 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
781
782 // Called when the associated AllocateNode is expanded into CFG.
783 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
784 intptr_t header_size, Node* size_in_bytes,
785 PhaseGVN* phase);
786
787 private:
788 void remove_extra_zeroes();
789
790 // Find out where a captured store should be placed (or already is placed).
791 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
792 PhaseTransform* phase);
793
794 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
795
796 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
797
798 bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
799
800 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
801 PhaseGVN* phase);
802
803 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
804 };
805
806 //------------------------------MergeMem---------------------------------------
807 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
808 class MergeMemNode: public Node {
809 virtual uint hash() const ; // { return NO_HASH; }
810 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
811 friend class MergeMemStream;
812 MergeMemNode(Node* def); // clients use MergeMemNode::make
813
814 public:
815 // If the input is a whole memory state, clone it with all its slices intact.
816 // Otherwise, make a new memory state with just that base memory input.
817 // In either case, the result is a newly created MergeMem.
818 static MergeMemNode* make(Compile* C, Node* base_memory);
819
820 virtual int Opcode() const;
821 virtual Node *Identity( PhaseTransform *phase );
822 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
823 virtual uint ideal_reg() const { return NotAMachineReg; }
824 virtual uint match_edge(uint idx) const { return 0; }
825 virtual const RegMask &out_RegMask() const;
826 virtual const Type *bottom_type() const { return Type::MEMORY; }
827 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
828 // sparse accessors
829 // Fetch the previously stored "set_memory_at", or else the base memory.
830 // (Caller should clone it if it is a phi-nest.)
831 Node* memory_at(uint alias_idx) const;
832 // set the memory, regardless of its previous value
833 void set_memory_at(uint alias_idx, Node* n);
834 // the "base" is the memory that provides the non-finite support
835 Node* base_memory() const { return in(Compile::AliasIdxBot); }
836 // warning: setting the base can implicitly set any of the other slices too
837 void set_base_memory(Node* def);
838 // sentinel value which denotes a copy of the base memory:
839 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
840 static Node* make_empty_memory(); // where the sentinel comes from
841 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
842 // hook for the iterator, to perform any necessary setup
843 void iteration_setup(const MergeMemNode* other = NULL);
844 // push sentinels until I am at least as long as the other (semantic no-op)
845 void grow_to_match(const MergeMemNode* other);
846 bool verify_sparse() const PRODUCT_RETURN0;
847 #ifndef PRODUCT
848 virtual void dump_spec(outputStream *st) const;
849 #endif
850 };
851
852 class MergeMemStream : public StackObj {
853 private:
854 MergeMemNode* _mm;
855 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
856 Node* _mm_base; // loop-invariant base memory of _mm
857 int _idx;
858 int _cnt;
859 Node* _mem;
860 Node* _mem2;
861 int _cnt2;
862
863 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
864 // subsume_node will break sparseness at times, whenever a memory slice
865 // folds down to a copy of the base ("fat") memory. In such a case,
866 // the raw edge will update to base, although it should be top.
867 // This iterator will recognize either top or base_memory as an
868 // "empty" slice. See is_empty, is_empty2, and next below.
869 //
870 // The sparseness property is repaired in MergeMemNode::Ideal.
871 // As long as access to a MergeMem goes through this iterator
872 // or the memory_at accessor, flaws in the sparseness will
873 // never be observed.
874 //
875 // Also, iteration_setup repairs sparseness.
876 assert(mm->verify_sparse(), "please, no dups of base");
877 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
878
879 _mm = mm;
880 _mm_base = mm->base_memory();
881 _mm2 = mm2;
882 _cnt = mm->req();
883 _idx = Compile::AliasIdxBot-1; // start at the base memory
884 _mem = NULL;
885 _mem2 = NULL;
886 }
887
888 #ifdef ASSERT
889 Node* check_memory() const {
890 if (at_base_memory())
891 return _mm->base_memory();
892 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
893 return _mm->memory_at(_idx);
894 else
895 return _mm_base;
896 }
897 Node* check_memory2() const {
898 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
899 }
900 #endif
901
902 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
903 void assert_synch() const {
904 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
905 "no side-effects except through the stream");
906 }
907
908 public:
909
910 // expected usages:
911 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
912 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
913
914 // iterate over one merge
915 MergeMemStream(MergeMemNode* mm) {
916 mm->iteration_setup();
917 init(mm);
918 debug_only(_cnt2 = 999);
919 }
920 // iterate in parallel over two merges
921 // only iterates through non-empty elements of mm2
922 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
923 assert(mm2, "second argument must be a MergeMem also");
924 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
925 mm->iteration_setup(mm2);
926 init(mm, mm2);
927 _cnt2 = mm2->req();
928 }
929 #ifdef ASSERT
930 ~MergeMemStream() {
931 assert_synch();
932 }
933 #endif
934
935 MergeMemNode* all_memory() const {
936 return _mm;
937 }
938 Node* base_memory() const {
939 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
940 return _mm_base;
941 }
942 const MergeMemNode* all_memory2() const {
943 assert(_mm2 != NULL, "");
944 return _mm2;
945 }
946 bool at_base_memory() const {
947 return _idx == Compile::AliasIdxBot;
948 }
949 int alias_idx() const {
950 assert(_mem, "must call next 1st");
951 return _idx;
952 }
953
954 const TypePtr* adr_type() const {
955 return Compile::current()->get_adr_type(alias_idx());
956 }
957
958 const TypePtr* adr_type(Compile* C) const {
959 return C->get_adr_type(alias_idx());
960 }
961 bool is_empty() const {
962 assert(_mem, "must call next 1st");
963 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
964 return _mem->is_top();
965 }
966 bool is_empty2() const {
967 assert(_mem2, "must call next 1st");
968 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
969 return _mem2->is_top();
970 }
971 Node* memory() const {
972 assert(!is_empty(), "must not be empty");
973 assert_synch();
974 return _mem;
975 }
976 // get the current memory, regardless of empty or non-empty status
977 Node* force_memory() const {
978 assert(!is_empty() || !at_base_memory(), "");
979 // Use _mm_base to defend against updates to _mem->base_memory().
980 Node *mem = _mem->is_top() ? _mm_base : _mem;
981 assert(mem == check_memory(), "");
982 return mem;
983 }
984 Node* memory2() const {
985 assert(_mem2 == check_memory2(), "");
986 return _mem2;
987 }
988 void set_memory(Node* mem) {
989 if (at_base_memory()) {
990 // Note that this does not change the invariant _mm_base.
991 _mm->set_base_memory(mem);
992 } else {
993 _mm->set_memory_at(_idx, mem);
994 }
995 _mem = mem;
996 assert_synch();
997 }
998
999 // Recover from a side effect to the MergeMemNode.
1000 void set_memory() {
1001 _mem = _mm->in(_idx);
1002 }
1003
1004 bool next() { return next(false); }
1005 bool next2() { return next(true); }
1006
1007 bool next_non_empty() { return next_non_empty(false); }
1008 bool next_non_empty2() { return next_non_empty(true); }
1009 // next_non_empty2 can yield states where is_empty() is true
1010
1011 private:
1012 // find the next item, which might be empty
1013 bool next(bool have_mm2) {
1014 assert((_mm2 != NULL) == have_mm2, "use other next");
1015 assert_synch();
1016 if (++_idx < _cnt) {
1017 // Note: This iterator allows _mm to be non-sparse.
1018 // It behaves the same whether _mem is top or base_memory.
1019 _mem = _mm->in(_idx);
1020 if (have_mm2)
1021 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1022 return true;
1023 }
1024 return false;
1025 }
1026
1027 // find the next non-empty item
1028 bool next_non_empty(bool have_mm2) {
1029 while (next(have_mm2)) {
1030 if (!is_empty()) {
1031 // make sure _mem2 is filled in sensibly
1032 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
1033 return true;
1034 } else if (have_mm2 && !is_empty2()) {
1035 return true; // is_empty() == true
1036 }
1037 }
1038 return false;
1039 }
1040 };
1041
1042 //------------------------------Prefetch---------------------------------------
1043
1044 // Non-faulting prefetch load. Prefetch for many reads.
1045 class PrefetchReadNode : public Node {
1046 public:
1047 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1048 virtual int Opcode() const;
1049 virtual uint ideal_reg() const { return NotAMachineReg; }
1050 virtual uint match_edge(uint idx) const { return idx==2; }
1051 virtual const Type *bottom_type() const { return Type::ABIO; }
1052 };
1053
1054 // Non-faulting prefetch load. Prefetch for many reads & many writes.
1055 class PrefetchWriteNode : public Node {
1056 public:
1057 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1058 virtual int Opcode() const;
1059 virtual uint ideal_reg() const { return NotAMachineReg; }
1060 virtual uint match_edge(uint idx) const { return idx==2; }
1061 virtual const Type *bottom_type() const { return Type::ABIO; }
1062 };