comparison src/share/vm/opto/node.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3288958bf319
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 // Optimization - Graph Style
28
29
30 class AbstractLockNode;
31 class AddNode;
32 class AddPNode;
33 class AliasInfo;
34 class AllocateArrayNode;
35 class AllocateNode;
36 class Block;
37 class Block_Array;
38 class BoolNode;
39 class BoxLockNode;
40 class CMoveNode;
41 class CallDynamicJavaNode;
42 class CallJavaNode;
43 class CallLeafNode;
44 class CallNode;
45 class CallRuntimeNode;
46 class CallStaticJavaNode;
47 class CatchNode;
48 class CatchProjNode;
49 class CheckCastPPNode;
50 class CmpNode;
51 class CodeBuffer;
52 class ConstraintCastNode;
53 class ConNode;
54 class CountedLoopNode;
55 class CountedLoopEndNode;
56 class FastLockNode;
57 class FastUnlockNode;
58 class IfNode;
59 class InitializeNode;
60 class JVMState;
61 class JumpNode;
62 class JumpProjNode;
63 class LoadNode;
64 class LoadStoreNode;
65 class LockNode;
66 class LoopNode;
67 class MachCallDynamicJavaNode;
68 class MachCallJavaNode;
69 class MachCallLeafNode;
70 class MachCallNode;
71 class MachCallRuntimeNode;
72 class MachCallStaticJavaNode;
73 class MachIfNode;
74 class MachNode;
75 class MachNullCheckNode;
76 class MachReturnNode;
77 class MachSafePointNode;
78 class MachSpillCopyNode;
79 class MachTempNode;
80 class Matcher;
81 class MemBarNode;
82 class MemNode;
83 class MergeMemNode;
84 class MulNode;
85 class MultiNode;
86 class MultiBranchNode;
87 class NeverBranchNode;
88 class Node;
89 class Node_Array;
90 class Node_List;
91 class Node_Stack;
92 class NullCheckNode;
93 class OopMap;
94 class PCTableNode;
95 class PhaseCCP;
96 class PhaseGVN;
97 class PhaseIterGVN;
98 class PhaseRegAlloc;
99 class PhaseTransform;
100 class PhaseValues;
101 class PhiNode;
102 class Pipeline;
103 class ProjNode;
104 class RegMask;
105 class RegionNode;
106 class RootNode;
107 class SafePointNode;
108 class StartNode;
109 class State;
110 class StoreNode;
111 class SubNode;
112 class Type;
113 class TypeNode;
114 class UnlockNode;
115 class VectorSet;
116 class IfTrueNode;
117 class IfFalseNode;
118 typedef void (*NFunc)(Node&,void*);
119 extern "C" {
120 typedef int (*C_sort_func_t)(const void *, const void *);
121 }
122
123 // The type of all node counts and indexes.
124 // It must hold at least 16 bits, but must also be fast to load and store.
125 // This type, if less than 32 bits, could limit the number of possible nodes.
126 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
127 typedef unsigned int node_idx_t;
128
129
130 #ifndef OPTO_DU_ITERATOR_ASSERT
131 #ifdef ASSERT
132 #define OPTO_DU_ITERATOR_ASSERT 1
133 #else
134 #define OPTO_DU_ITERATOR_ASSERT 0
135 #endif
136 #endif //OPTO_DU_ITERATOR_ASSERT
137
138 #if OPTO_DU_ITERATOR_ASSERT
139 class DUIterator;
140 class DUIterator_Fast;
141 class DUIterator_Last;
142 #else
143 typedef uint DUIterator;
144 typedef Node** DUIterator_Fast;
145 typedef Node** DUIterator_Last;
146 #endif
147
148 // Node Sentinel
149 #define NodeSentinel (Node*)-1
150
151 // Unknown count frequency
152 #define COUNT_UNKNOWN (-1.0f)
153
154 //------------------------------Node-------------------------------------------
155 // Nodes define actions in the program. They create values, which have types.
156 // They are both vertices in a directed graph and program primitives. Nodes
157 // are labeled; the label is the "opcode", the primitive function in the lambda
158 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
159 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
160 // the Node's function. These inputs also define a Type equation for the Node.
161 // Solving these Type equations amounts to doing dataflow analysis.
162 // Control and data are uniformly represented in the graph. Finally, Nodes
163 // have a unique dense integer index which is used to index into side arrays
164 // whenever I have phase-specific information.
165
166 class Node {
167 // Lots of restrictions on cloning Nodes
168 Node(const Node&); // not defined; linker error to use these
169 Node &operator=(const Node &rhs);
170
171 public:
172 friend class Compile;
173 #if OPTO_DU_ITERATOR_ASSERT
174 friend class DUIterator_Common;
175 friend class DUIterator;
176 friend class DUIterator_Fast;
177 friend class DUIterator_Last;
178 #endif
179
180 // Because Nodes come and go, I define an Arena of Node structures to pull
181 // from. This should allow fast access to node creation & deletion. This
182 // field is a local cache of a value defined in some "program fragment" for
183 // which these Nodes are just a part of.
184
185 // New Operator that takes a Compile pointer, this will eventually
186 // be the "new" New operator.
187 inline void* operator new( size_t x, Compile* C) {
188 Node* n = (Node*)C->node_arena()->Amalloc_D(x);
189 #ifdef ASSERT
190 n->_in = (Node**)n; // magic cookie for assertion check
191 #endif
192 n->_out = (Node**)C;
193 return (void*)n;
194 }
195
196 // New Operator that takes a Compile pointer, this will eventually
197 // be the "new" New operator.
198 inline void* operator new( size_t x, Compile* C, int y) {
199 Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
200 n->_in = (Node**)(((char*)n) + x);
201 #ifdef ASSERT
202 n->_in[y-1] = n; // magic cookie for assertion check
203 #endif
204 n->_out = (Node**)C;
205 return (void*)n;
206 }
207
208 // Delete is a NOP
209 void operator delete( void *ptr ) {}
210 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
211 void destruct();
212
213 // Create a new Node. Required is the number is of inputs required for
214 // semantic correctness.
215 Node( uint required );
216
217 // Create a new Node with given input edges.
218 // This version requires use of the "edge-count" new.
219 // E.g. new (C,3) FooNode( C, NULL, left, right );
220 Node( Node *n0 );
221 Node( Node *n0, Node *n1 );
222 Node( Node *n0, Node *n1, Node *n2 );
223 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
224 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
225 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
226 Node( Node *n0, Node *n1, Node *n2, Node *n3,
227 Node *n4, Node *n5, Node *n6 );
228
229 // Clone an inherited Node given only the base Node type.
230 Node* clone() const;
231
232 // Clone a Node, immediately supplying one or two new edges.
233 // The first and second arguments, if non-null, replace in(1) and in(2),
234 // respectively.
235 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
236 Node* nn = clone();
237 if (in1 != NULL) nn->set_req(1, in1);
238 if (in2 != NULL) nn->set_req(2, in2);
239 return nn;
240 }
241
242 private:
243 // Shared setup for the above constructors.
244 // Handles all interactions with Compile::current.
245 // Puts initial values in all Node fields except _idx.
246 // Returns the initial value for _idx, which cannot
247 // be initialized by assignment.
248 inline int Init(int req, Compile* C);
249
250 //----------------- input edge handling
251 protected:
252 friend class PhaseCFG; // Access to address of _in array elements
253 Node **_in; // Array of use-def references to Nodes
254 Node **_out; // Array of def-use references to Nodes
255
256 // Input edges are split into two catagories. Required edges are required
257 // for semantic correctness; order is important and NULLs are allowed.
258 // Precedence edges are used to help determine execution order and are
259 // added, e.g., for scheduling purposes. They are unordered and not
260 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
261 // are required, from _cnt to _max-1 are precedence edges.
262 node_idx_t _cnt; // Total number of required Node inputs.
263
264 node_idx_t _max; // Actual length of input array.
265
266 // Output edges are an unordered list of def-use edges which exactly
267 // correspond to required input edges which point from other nodes
268 // to this one. Thus the count of the output edges is the number of
269 // users of this node.
270 node_idx_t _outcnt; // Total number of Node outputs.
271
272 node_idx_t _outmax; // Actual length of output array.
273
274 // Grow the actual input array to the next larger power-of-2 bigger than len.
275 void grow( uint len );
276 // Grow the output array to the next larger power-of-2 bigger than len.
277 void out_grow( uint len );
278
279 public:
280 // Each Node is assigned a unique small/dense number. This number is used
281 // to index into auxiliary arrays of data and bitvectors.
282 // It is declared const to defend against inadvertant assignment,
283 // since it is used by clients as a naked field.
284 const node_idx_t _idx;
285
286 // Get the (read-only) number of input edges
287 uint req() const { return _cnt; }
288 uint len() const { return _max; }
289 // Get the (read-only) number of output edges
290 uint outcnt() const { return _outcnt; }
291
292 #if OPTO_DU_ITERATOR_ASSERT
293 // Iterate over the out-edges of this node. Deletions are illegal.
294 inline DUIterator outs() const;
295 // Use this when the out array might have changed to suppress asserts.
296 inline DUIterator& refresh_out_pos(DUIterator& i) const;
297 // Does the node have an out at this position? (Used for iteration.)
298 inline bool has_out(DUIterator& i) const;
299 inline Node* out(DUIterator& i) const;
300 // Iterate over the out-edges of this node. All changes are illegal.
301 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
302 inline Node* fast_out(DUIterator_Fast& i) const;
303 // Iterate over the out-edges of this node, deleting one at a time.
304 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
305 inline Node* last_out(DUIterator_Last& i) const;
306 // The inline bodies of all these methods are after the iterator definitions.
307 #else
308 // Iterate over the out-edges of this node. Deletions are illegal.
309 // This iteration uses integral indexes, to decouple from array reallocations.
310 DUIterator outs() const { return 0; }
311 // Use this when the out array might have changed to suppress asserts.
312 DUIterator refresh_out_pos(DUIterator i) const { return i; }
313
314 // Reference to the i'th output Node. Error if out of bounds.
315 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
316 // Does the node have an out at this position? (Used for iteration.)
317 bool has_out(DUIterator i) const { return i < _outcnt; }
318
319 // Iterate over the out-edges of this node. All changes are illegal.
320 // This iteration uses a pointer internal to the out array.
321 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
322 Node** out = _out;
323 // Assign a limit pointer to the reference argument:
324 max = out + (ptrdiff_t)_outcnt;
325 // Return the base pointer:
326 return out;
327 }
328 Node* fast_out(DUIterator_Fast i) const { return *i; }
329 // Iterate over the out-edges of this node, deleting one at a time.
330 // This iteration uses a pointer internal to the out array.
331 DUIterator_Last last_outs(DUIterator_Last& min) const {
332 Node** out = _out;
333 // Assign a limit pointer to the reference argument:
334 min = out;
335 // Return the pointer to the start of the iteration:
336 return out + (ptrdiff_t)_outcnt - 1;
337 }
338 Node* last_out(DUIterator_Last i) const { return *i; }
339 #endif
340
341 // Reference to the i'th input Node. Error if out of bounds.
342 Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
343 // Reference to the i'th output Node. Error if out of bounds.
344 // Use this accessor sparingly. We are going trying to use iterators instead.
345 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
346 // Return the unique out edge.
347 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
348 // Delete out edge at position 'i' by moving last out edge to position 'i'
349 void raw_del_out(uint i) {
350 assert(i < _outcnt,"oob");
351 assert(_outcnt > 0,"oob");
352 #if OPTO_DU_ITERATOR_ASSERT
353 // Record that a change happened here.
354 debug_only(_last_del = _out[i]; ++_del_tick);
355 #endif
356 _out[i] = _out[--_outcnt];
357 // Smash the old edge so it can't be used accidentally.
358 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
359 }
360
361 #ifdef ASSERT
362 bool is_dead() const;
363 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
364 #endif
365
366 // Set a required input edge, also updates corresponding output edge
367 void add_req( Node *n ); // Append a NEW required input
368 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
369 void del_req( uint idx ); // Delete required edge & compact
370 void ins_req( uint i, Node *n ); // Insert a NEW required input
371 void set_req( uint i, Node *n ) {
372 assert( is_not_dead(n), "can not use dead node");
373 assert( i < _cnt, "oob");
374 assert( !VerifyHashTableKeys || _hash_lock == 0,
375 "remove node from hash table before modifying it");
376 Node** p = &_in[i]; // cache this._in, across the del_out call
377 if (*p != NULL) (*p)->del_out((Node *)this);
378 (*p) = n;
379 if (n != NULL) n->add_out((Node *)this);
380 }
381 // Light version of set_req() to init inputs after node creation.
382 void init_req( uint i, Node *n ) {
383 assert( i == 0 && this == n ||
384 is_not_dead(n), "can not use dead node");
385 assert( i < _cnt, "oob");
386 assert( !VerifyHashTableKeys || _hash_lock == 0,
387 "remove node from hash table before modifying it");
388 assert( _in[i] == NULL, "sanity");
389 _in[i] = n;
390 if (n != NULL) n->add_out((Node *)this);
391 }
392 // Find first occurrence of n among my edges:
393 int find_edge(Node* n);
394 int replace_edge(Node* old, Node* neww);
395 // NULL out all inputs to eliminate incoming Def-Use edges.
396 // Return the number of edges between 'n' and 'this'
397 int disconnect_inputs(Node *n);
398
399 // Quickly, return true if and only if I am Compile::current()->top().
400 bool is_top() const {
401 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
402 return (_out == NULL);
403 }
404 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
405 void setup_is_top();
406
407 // Strip away casting. (It is depth-limited.)
408 Node* uncast() const;
409
410 private:
411 static Node* uncast_helper(const Node* n);
412
413 // Add an output edge to the end of the list
414 void add_out( Node *n ) {
415 if (is_top()) return;
416 if( _outcnt == _outmax ) out_grow(_outcnt);
417 _out[_outcnt++] = n;
418 }
419 // Delete an output edge
420 void del_out( Node *n ) {
421 if (is_top()) return;
422 Node** outp = &_out[_outcnt];
423 // Find and remove n
424 do {
425 assert(outp > _out, "Missing Def-Use edge");
426 } while (*--outp != n);
427 *outp = _out[--_outcnt];
428 // Smash the old edge so it can't be used accidentally.
429 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
430 // Record that a change happened here.
431 #if OPTO_DU_ITERATOR_ASSERT
432 debug_only(_last_del = n; ++_del_tick);
433 #endif
434 }
435
436 public:
437 // Globally replace this node by a given new node, updating all uses.
438 void replace_by(Node* new_node);
439 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
440 // Find the one non-null required input. RegionNode only
441 Node *nonnull_req() const;
442 // Add or remove precedence edges
443 void add_prec( Node *n );
444 void rm_prec( uint i );
445 void set_prec( uint i, Node *n ) {
446 assert( is_not_dead(n), "can not use dead node");
447 assert( i >= _cnt, "not a precedence edge");
448 if (_in[i] != NULL) _in[i]->del_out((Node *)this);
449 _in[i] = n;
450 if (n != NULL) n->add_out((Node *)this);
451 }
452 // Set this node's index, used by cisc_version to replace current node
453 void set_idx(uint new_idx) {
454 const node_idx_t* ref = &_idx;
455 *(node_idx_t*)ref = new_idx;
456 }
457 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
458 void swap_edges(uint i1, uint i2) {
459 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
460 // Def-Use info is unchanged
461 Node* n1 = in(i1);
462 Node* n2 = in(i2);
463 _in[i1] = n2;
464 _in[i2] = n1;
465 // If this node is in the hash table, make sure it doesn't need a rehash.
466 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
467 }
468
469 // Iterators over input Nodes for a Node X are written as:
470 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
471 // NOTE: Required edges can contain embedded NULL pointers.
472
473 //----------------- Other Node Properties
474
475 // Generate class id for some ideal nodes to avoid virtual query
476 // methods is_<Node>().
477 // Class id is the set of bits corresponded to the node class and all its
478 // super classes so that queries for super classes are also valid.
479 // Subclasses of the same super class have different assigned bit
480 // (the third parameter in the macro DEFINE_CLASS_ID).
481 // Classes with deeper hierarchy are declared first.
482 // Classes with the same hierarchy depth are sorted by usage frequency.
483 //
484 // The query method masks the bits to cut off bits of subclasses
485 // and then compare the result with the class id
486 // (see the macro DEFINE_CLASS_QUERY below).
487 //
488 // Class_MachCall=30, ClassMask_MachCall=31
489 // 12 8 4 0
490 // 0 0 0 0 0 0 0 0 1 1 1 1 0
491 // | | | |
492 // | | | Bit_Mach=2
493 // | | Bit_MachReturn=4
494 // | Bit_MachSafePoint=8
495 // Bit_MachCall=16
496 //
497 // Class_CountedLoop=56, ClassMask_CountedLoop=63
498 // 12 8 4 0
499 // 0 0 0 0 0 0 0 1 1 1 0 0 0
500 // | | |
501 // | | Bit_Region=8
502 // | Bit_Loop=16
503 // Bit_CountedLoop=32
504
505 #define DEFINE_CLASS_ID(cl, supcl, subn) \
506 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
507 Class_##cl = Class_##supcl + Bit_##cl , \
508 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
509
510 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
511 // so that it's values fits into 16 bits.
512 enum NodeClasses {
513 Bit_Node = 0x0000,
514 Class_Node = 0x0000,
515 ClassMask_Node = 0xFFFF,
516
517 DEFINE_CLASS_ID(Multi, Node, 0)
518 DEFINE_CLASS_ID(SafePoint, Multi, 0)
519 DEFINE_CLASS_ID(Call, SafePoint, 0)
520 DEFINE_CLASS_ID(CallJava, Call, 0)
521 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
522 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
523 DEFINE_CLASS_ID(CallRuntime, Call, 1)
524 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
525 DEFINE_CLASS_ID(Allocate, Call, 2)
526 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
527 DEFINE_CLASS_ID(AbstractLock, Call, 3)
528 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
529 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
530 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
531 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
532 DEFINE_CLASS_ID(Catch, PCTable, 0)
533 DEFINE_CLASS_ID(Jump, PCTable, 1)
534 DEFINE_CLASS_ID(If, MultiBranch, 1)
535 DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
536 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
537 DEFINE_CLASS_ID(Start, Multi, 2)
538 DEFINE_CLASS_ID(MemBar, Multi, 3)
539 DEFINE_CLASS_ID(Initialize, MemBar, 0)
540
541 DEFINE_CLASS_ID(Mach, Node, 1)
542 DEFINE_CLASS_ID(MachReturn, Mach, 0)
543 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
544 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
545 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
546 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
547 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
548 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
549 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
550 DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
551 DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
552 DEFINE_CLASS_ID(MachIf, Mach, 3)
553 DEFINE_CLASS_ID(MachTemp, Mach, 4)
554
555 DEFINE_CLASS_ID(Proj, Node, 2)
556 DEFINE_CLASS_ID(CatchProj, Proj, 0)
557 DEFINE_CLASS_ID(JumpProj, Proj, 1)
558 DEFINE_CLASS_ID(IfTrue, Proj, 2)
559 DEFINE_CLASS_ID(IfFalse, Proj, 3)
560
561 DEFINE_CLASS_ID(Region, Node, 3)
562 DEFINE_CLASS_ID(Loop, Region, 0)
563 DEFINE_CLASS_ID(Root, Loop, 0)
564 DEFINE_CLASS_ID(CountedLoop, Loop, 1)
565
566 DEFINE_CLASS_ID(Sub, Node, 4)
567 DEFINE_CLASS_ID(Cmp, Sub, 0)
568 DEFINE_CLASS_ID(FastLock, Cmp, 0)
569 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
570
571 DEFINE_CLASS_ID(Type, Node, 5)
572 DEFINE_CLASS_ID(Phi, Type, 0)
573 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
574 DEFINE_CLASS_ID(CheckCastPP, Type, 2)
575 DEFINE_CLASS_ID(CMove, Type, 3)
576
577 DEFINE_CLASS_ID(Mem, Node, 6)
578 DEFINE_CLASS_ID(Load, Mem, 0)
579 DEFINE_CLASS_ID(Store, Mem, 1)
580 DEFINE_CLASS_ID(LoadStore, Mem, 2)
581
582 DEFINE_CLASS_ID(MergeMem, Node, 7)
583 DEFINE_CLASS_ID(Bool, Node, 8)
584 DEFINE_CLASS_ID(AddP, Node, 9)
585 DEFINE_CLASS_ID(BoxLock, Node, 10)
586 DEFINE_CLASS_ID(Add, Node, 11)
587 DEFINE_CLASS_ID(Mul, Node, 12)
588
589 _max_classes = ClassMask_Mul
590 };
591 #undef DEFINE_CLASS_ID
592
593 // Flags are sorted by usage frequency.
594 enum NodeFlags {
595 Flag_is_Copy = 0x01, // should be first bit to avoid shift
596 Flag_is_Call = Flag_is_Copy << 1,
597 Flag_rematerialize = Flag_is_Call << 1,
598 Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
599 Flag_is_macro = Flag_needs_anti_dependence_check << 1,
600 Flag_is_Con = Flag_is_macro << 1,
601 Flag_is_cisc_alternate = Flag_is_Con << 1,
602 Flag_is_Branch = Flag_is_cisc_alternate << 1,
603 Flag_is_block_start = Flag_is_Branch << 1,
604 Flag_is_Goto = Flag_is_block_start << 1,
605 Flag_is_dead_loop_safe = Flag_is_Goto << 1,
606 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
607 Flag_is_safepoint_node = Flag_may_be_short_branch << 1,
608 Flag_is_pc_relative = Flag_is_safepoint_node << 1,
609 Flag_is_Vector = Flag_is_pc_relative << 1,
610 _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
611 };
612
613 private:
614 jushort _class_id;
615 jushort _flags;
616
617 protected:
618 // These methods should be called from constructors only.
619 void init_class_id(jushort c) {
620 assert(c <= _max_classes, "invalid node class");
621 _class_id = c; // cast out const
622 }
623 void init_flags(jushort fl) {
624 assert(fl <= _max_flags, "invalid node flag");
625 _flags |= fl;
626 }
627 void clear_flag(jushort fl) {
628 assert(fl <= _max_flags, "invalid node flag");
629 _flags &= ~fl;
630 }
631
632 public:
633 const jushort class_id() const { return _class_id; }
634
635 const jushort flags() const { return _flags; }
636
637 // Return a dense integer opcode number
638 virtual int Opcode() const;
639
640 // Virtual inherited Node size
641 virtual uint size_of() const;
642
643 // Other interesting Node properties
644
645 // Special case: is_Call() returns true for both CallNode and MachCallNode.
646 bool is_Call() const {
647 return (_flags & Flag_is_Call) != 0;
648 }
649
650 CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
651 assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
652 return (CallNode*)this;
653 }
654
655 #define DEFINE_CLASS_QUERY(type) \
656 bool is_##type() const { \
657 return ((_class_id & ClassMask_##type) == Class_##type); \
658 } \
659 type##Node *as_##type() const { \
660 assert(is_##type(), "invalid node class"); \
661 return (type##Node*)this; \
662 }
663
664 DEFINE_CLASS_QUERY(AbstractLock)
665 DEFINE_CLASS_QUERY(Add)
666 DEFINE_CLASS_QUERY(AddP)
667 DEFINE_CLASS_QUERY(Allocate)
668 DEFINE_CLASS_QUERY(AllocateArray)
669 DEFINE_CLASS_QUERY(Bool)
670 DEFINE_CLASS_QUERY(BoxLock)
671 DEFINE_CLASS_QUERY(CallDynamicJava)
672 DEFINE_CLASS_QUERY(CallJava)
673 DEFINE_CLASS_QUERY(CallLeaf)
674 DEFINE_CLASS_QUERY(CallRuntime)
675 DEFINE_CLASS_QUERY(CallStaticJava)
676 DEFINE_CLASS_QUERY(Catch)
677 DEFINE_CLASS_QUERY(CatchProj)
678 DEFINE_CLASS_QUERY(CheckCastPP)
679 DEFINE_CLASS_QUERY(ConstraintCast)
680 DEFINE_CLASS_QUERY(CMove)
681 DEFINE_CLASS_QUERY(Cmp)
682 DEFINE_CLASS_QUERY(CountedLoop)
683 DEFINE_CLASS_QUERY(CountedLoopEnd)
684 DEFINE_CLASS_QUERY(FastLock)
685 DEFINE_CLASS_QUERY(FastUnlock)
686 DEFINE_CLASS_QUERY(If)
687 DEFINE_CLASS_QUERY(IfFalse)
688 DEFINE_CLASS_QUERY(IfTrue)
689 DEFINE_CLASS_QUERY(Initialize)
690 DEFINE_CLASS_QUERY(Jump)
691 DEFINE_CLASS_QUERY(JumpProj)
692 DEFINE_CLASS_QUERY(Load)
693 DEFINE_CLASS_QUERY(LoadStore)
694 DEFINE_CLASS_QUERY(Lock)
695 DEFINE_CLASS_QUERY(Loop)
696 DEFINE_CLASS_QUERY(Mach)
697 DEFINE_CLASS_QUERY(MachCall)
698 DEFINE_CLASS_QUERY(MachCallDynamicJava)
699 DEFINE_CLASS_QUERY(MachCallJava)
700 DEFINE_CLASS_QUERY(MachCallLeaf)
701 DEFINE_CLASS_QUERY(MachCallRuntime)
702 DEFINE_CLASS_QUERY(MachCallStaticJava)
703 DEFINE_CLASS_QUERY(MachIf)
704 DEFINE_CLASS_QUERY(MachNullCheck)
705 DEFINE_CLASS_QUERY(MachReturn)
706 DEFINE_CLASS_QUERY(MachSafePoint)
707 DEFINE_CLASS_QUERY(MachSpillCopy)
708 DEFINE_CLASS_QUERY(MachTemp)
709 DEFINE_CLASS_QUERY(Mem)
710 DEFINE_CLASS_QUERY(MemBar)
711 DEFINE_CLASS_QUERY(MergeMem)
712 DEFINE_CLASS_QUERY(Mul)
713 DEFINE_CLASS_QUERY(Multi)
714 DEFINE_CLASS_QUERY(MultiBranch)
715 DEFINE_CLASS_QUERY(PCTable)
716 DEFINE_CLASS_QUERY(Phi)
717 DEFINE_CLASS_QUERY(Proj)
718 DEFINE_CLASS_QUERY(Region)
719 DEFINE_CLASS_QUERY(Root)
720 DEFINE_CLASS_QUERY(SafePoint)
721 DEFINE_CLASS_QUERY(Start)
722 DEFINE_CLASS_QUERY(Store)
723 DEFINE_CLASS_QUERY(Sub)
724 DEFINE_CLASS_QUERY(Type)
725 DEFINE_CLASS_QUERY(Unlock)
726
727 #undef DEFINE_CLASS_QUERY
728
729 // duplicate of is_MachSpillCopy()
730 bool is_SpillCopy () const {
731 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
732 }
733
734 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
735 bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
736 // The data node which is safe to leave in dead loop during IGVN optimization.
737 bool is_dead_loop_safe() const {
738 return is_Phi() || is_Proj() ||
739 (_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0;
740 }
741
742 // is_Copy() returns copied edge index (0 or 1)
743 uint is_Copy() const { return (_flags & Flag_is_Copy); }
744
745 virtual bool is_CFG() const { return false; }
746
747 // If this node is control-dependent on a test, can it be
748 // rerouted to a dominating equivalent test? This is usually
749 // true of non-CFG nodes, but can be false for operations which
750 // depend for their correct sequencing on more than one test.
751 // (In that case, hoisting to a dominating test may silently
752 // skip some other important test.)
753 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
754
755 // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
756 bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
757
758 // When building basic blocks, I need to have a notion of block beginning
759 // Nodes, next block selector Nodes (block enders), and next block
760 // projections. These calls need to work on their machine equivalents. The
761 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
762 bool is_block_start() const {
763 if ( is_Region() )
764 return this == (const Node*)in(0);
765 else
766 return (_flags & Flag_is_block_start) != 0;
767 }
768
769 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
770 // Goto and Return. This call also returns the block ending Node.
771 virtual const Node *is_block_proj() const;
772
773 // The node is a "macro" node which needs to be expanded before matching
774 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
775
776 // Value is a vector of primitive values
777 bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
778
779 //----------------- Optimization
780
781 // Get the worst-case Type output for this Node.
782 virtual const class Type *bottom_type() const;
783
784 // If we find a better type for a node, try to record it permanently.
785 // Return true if this node actually changed.
786 // Be sure to do the hash_delete game in the "rehash" variant.
787 void raise_bottom_type(const Type* new_type);
788
789 // Get the address type with which this node uses and/or defs memory,
790 // or NULL if none. The address type is conservatively wide.
791 // Returns non-null for calls, membars, loads, stores, etc.
792 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
793 virtual const class TypePtr *adr_type() const { return NULL; }
794
795 // Return an existing node which computes the same function as this node.
796 // The optimistic combined algorithm requires this to return a Node which
797 // is a small number of steps away (e.g., one of my inputs).
798 virtual Node *Identity( PhaseTransform *phase );
799
800 // Return the set of values this Node can take on at runtime.
801 virtual const Type *Value( PhaseTransform *phase ) const;
802
803 // Return a node which is more "ideal" than the current node.
804 // The invariants on this call are subtle. If in doubt, read the
805 // treatise in node.cpp above the default implemention AND TEST WITH
806 // +VerifyIterativeGVN!
807 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
808
809 // Some nodes have specific Ideal subgraph transformations only if they are
810 // unique users of specific nodes. Such nodes should be put on IGVN worklist
811 // for the transformations to happen.
812 bool has_special_unique_user() const;
813
814 protected:
815 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
816 public:
817
818 // Idealize graph, using DU info. Done after constant propagation
819 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
820
821 // See if there is valid pipeline info
822 static const Pipeline *pipeline_class();
823 virtual const Pipeline *pipeline() const;
824
825 // Compute the latency from the def to this instruction of the ith input node
826 uint latency(uint i);
827
828 // Hash & compare functions, for pessimistic value numbering
829
830 // If the hash function returns the special sentinel value NO_HASH,
831 // the node is guaranteed never to compare equal to any other node.
832 // If we accidently generate a hash with value NO_HASH the node
833 // won't go into the table and we'll lose a little optimization.
834 enum { NO_HASH = 0 };
835 virtual uint hash() const;
836 virtual uint cmp( const Node &n ) const;
837
838 // Operation appears to be iteratively computed (such as an induction variable)
839 // It is possible for this operation to return false for a loop-varying
840 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
841 bool is_iteratively_computed();
842
843 // Determine if a node is Counted loop induction variable.
844 // The method is defined in loopnode.cpp.
845 const Node* is_loop_iv() const;
846
847 // Return a node with opcode "opc" and same inputs as "this" if one can
848 // be found; Otherwise return NULL;
849 Node* find_similar(int opc);
850
851 // Return the unique control out if only one. Null if none or more than one.
852 Node* unique_ctrl_out();
853
854 //----------------- Code Generation
855
856 // Ideal register class for Matching. Zero means unmatched instruction
857 // (these are cloned instead of converted to machine nodes).
858 virtual uint ideal_reg() const;
859
860 static const uint NotAMachineReg; // must be > max. machine register
861
862 // Do we Match on this edge index or not? Generally false for Control
863 // and true for everything else. Weird for calls & returns.
864 virtual uint match_edge(uint idx) const;
865
866 // Register class output is returned in
867 virtual const RegMask &out_RegMask() const;
868 // Register class input is expected in
869 virtual const RegMask &in_RegMask(uint) const;
870 // Should we clone rather than spill this instruction?
871 bool rematerialize() const;
872
873 // Return JVM State Object if this Node carries debug info, or NULL otherwise
874 virtual JVMState* jvms() const;
875
876 // Print as assembly
877 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
878 // Emit bytes starting at parameter 'ptr'
879 // Bump 'ptr' by the number of output bytes
880 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
881 // Size of instruction in bytes
882 virtual uint size(PhaseRegAlloc *ra_) const;
883
884 // Convenience function to extract an integer constant from a node.
885 // If it is not an integer constant (either Con, CastII, or Mach),
886 // return value_if_unknown.
887 jint find_int_con(jint value_if_unknown) const {
888 const TypeInt* t = find_int_type();
889 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
890 }
891 // Return the constant, knowing it is an integer constant already
892 jint get_int() const {
893 const TypeInt* t = find_int_type();
894 guarantee(t != NULL, "must be con");
895 return t->get_con();
896 }
897 // Here's where the work is done. Can produce non-constant int types too.
898 const TypeInt* find_int_type() const;
899
900 // Same thing for long (and intptr_t, via type.hpp):
901 jlong get_long() const {
902 const TypeLong* t = find_long_type();
903 guarantee(t != NULL, "must be con");
904 return t->get_con();
905 }
906 jlong find_long_con(jint value_if_unknown) const {
907 const TypeLong* t = find_long_type();
908 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
909 }
910 const TypeLong* find_long_type() const;
911
912 // These guys are called by code generated by ADLC:
913 intptr_t get_ptr() const;
914 jdouble getd() const;
915 jfloat getf() const;
916
917 // Nodes which are pinned into basic blocks
918 virtual bool pinned() const { return false; }
919
920 // Nodes which use memory without consuming it, hence need antidependences
921 // More specifically, needs_anti_dependence_check returns true iff the node
922 // (a) does a load, and (b) does not perform a store (except perhaps to a
923 // stack slot or some other unaliased location).
924 bool needs_anti_dependence_check() const;
925
926 // Return which operand this instruction may cisc-spill. In other words,
927 // return operand position that can convert from reg to memory access
928 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
929 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
930
931 //----------------- Graph walking
932 public:
933 // Walk and apply member functions recursively.
934 // Supplied (this) pointer is root.
935 void walk(NFunc pre, NFunc post, void *env);
936 static void nop(Node &, void*); // Dummy empty function
937 static void packregion( Node &n, void* );
938 private:
939 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
940
941 //----------------- Printing, etc
942 public:
943 #ifndef PRODUCT
944 Node* find(int idx) const; // Search the graph for the given idx.
945 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
946 void dump() const; // Print this node,
947 void dump(int depth) const; // Print this node, recursively to depth d
948 void dump_ctrl(int depth) const; // Print control nodes, to depth d
949 virtual void dump_req() const; // Print required-edge info
950 virtual void dump_prec() const; // Print precedence-edge info
951 virtual void dump_out() const; // Print the output edge info
952 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
953 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
954 void verify() const; // Check Def-Use info for my subgraph
955 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
956
957 // This call defines a class-unique string used to identify class instances
958 virtual const char *Name() const;
959
960 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
961 // RegMask Print Functions
962 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
963 void dump_out_regmask() { out_RegMask().dump(); }
964 static int _in_dump_cnt;
965 static bool in_dump() { return _in_dump_cnt > 0; }
966 void fast_dump() const {
967 tty->print("%4d: %-17s", _idx, Name());
968 for (uint i = 0; i < len(); i++)
969 if (in(i))
970 tty->print(" %4d", in(i)->_idx);
971 else
972 tty->print(" NULL");
973 tty->print("\n");
974 }
975 #endif
976 #ifdef ASSERT
977 void verify_construction();
978 bool verify_jvms(const JVMState* jvms) const;
979 int _debug_idx; // Unique value assigned to every node.
980 int debug_idx() const { return _debug_idx; }
981 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
982
983 Node* _debug_orig; // Original version of this, if any.
984 Node* debug_orig() const { return _debug_orig; }
985 void set_debug_orig(Node* orig); // _debug_orig = orig
986
987 int _hash_lock; // Barrier to modifications of nodes in the hash table
988 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
989 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
990
991 static void init_NodeProperty();
992
993 #if OPTO_DU_ITERATOR_ASSERT
994 const Node* _last_del; // The last deleted node.
995 uint _del_tick; // Bumped when a deletion happens..
996 #endif
997 #endif
998 };
999
1000 //-----------------------------------------------------------------------------
1001 // Iterators over DU info, and associated Node functions.
1002
1003 #if OPTO_DU_ITERATOR_ASSERT
1004
1005 // Common code for assertion checking on DU iterators.
1006 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1007 #ifdef ASSERT
1008 protected:
1009 bool _vdui; // cached value of VerifyDUIterators
1010 const Node* _node; // the node containing the _out array
1011 uint _outcnt; // cached node->_outcnt
1012 uint _del_tick; // cached node->_del_tick
1013 Node* _last; // last value produced by the iterator
1014
1015 void sample(const Node* node); // used by c'tor to set up for verifies
1016 void verify(const Node* node, bool at_end_ok = false);
1017 void verify_resync();
1018 void reset(const DUIterator_Common& that);
1019
1020 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1021 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1022 #else
1023 #define I_VDUI_ONLY(i,x) { }
1024 #endif //ASSERT
1025 };
1026
1027 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
1028
1029 // Default DU iterator. Allows appends onto the out array.
1030 // Allows deletion from the out array only at the current point.
1031 // Usage:
1032 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
1033 // Node* y = x->out(i);
1034 // ...
1035 // }
1036 // Compiles in product mode to a unsigned integer index, which indexes
1037 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
1038 // also reloads x->_outcnt. If you delete, you must perform "--i" just
1039 // before continuing the loop. You must delete only the last-produced
1040 // edge. You must delete only a single copy of the last-produced edge,
1041 // or else you must delete all copies at once (the first time the edge
1042 // is produced by the iterator).
1043 class DUIterator : public DUIterator_Common {
1044 friend class Node;
1045
1046 // This is the index which provides the product-mode behavior.
1047 // Whatever the product-mode version of the system does to the
1048 // DUI index is done to this index. All other fields in
1049 // this class are used only for assertion checking.
1050 uint _idx;
1051
1052 #ifdef ASSERT
1053 uint _refresh_tick; // Records the refresh activity.
1054
1055 void sample(const Node* node); // Initialize _refresh_tick etc.
1056 void verify(const Node* node, bool at_end_ok = false);
1057 void verify_increment(); // Verify an increment operation.
1058 void verify_resync(); // Verify that we can back up over a deletion.
1059 void verify_finish(); // Verify that the loop terminated properly.
1060 void refresh(); // Resample verification info.
1061 void reset(const DUIterator& that); // Resample after assignment.
1062 #endif
1063
1064 DUIterator(const Node* node, int dummy_to_avoid_conversion)
1065 { _idx = 0; debug_only(sample(node)); }
1066
1067 public:
1068 // initialize to garbage; clear _vdui to disable asserts
1069 DUIterator()
1070 { /*initialize to garbage*/ debug_only(_vdui = false); }
1071
1072 void operator++(int dummy_to_specify_postfix_op)
1073 { _idx++; VDUI_ONLY(verify_increment()); }
1074
1075 void operator--()
1076 { VDUI_ONLY(verify_resync()); --_idx; }
1077
1078 ~DUIterator()
1079 { VDUI_ONLY(verify_finish()); }
1080
1081 void operator=(const DUIterator& that)
1082 { _idx = that._idx; debug_only(reset(that)); }
1083 };
1084
1085 DUIterator Node::outs() const
1086 { return DUIterator(this, 0); }
1087 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1088 { I_VDUI_ONLY(i, i.refresh()); return i; }
1089 bool Node::has_out(DUIterator& i) const
1090 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1091 Node* Node::out(DUIterator& i) const
1092 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
1093
1094
1095 // Faster DU iterator. Disallows insertions into the out array.
1096 // Allows deletion from the out array only at the current point.
1097 // Usage:
1098 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1099 // Node* y = x->fast_out(i);
1100 // ...
1101 // }
1102 // Compiles in product mode to raw Node** pointer arithmetic, with
1103 // no reloading of pointers from the original node x. If you delete,
1104 // you must perform "--i; --imax" just before continuing the loop.
1105 // If you delete multiple copies of the same edge, you must decrement
1106 // imax, but not i, multiple times: "--i, imax -= num_edges".
1107 class DUIterator_Fast : public DUIterator_Common {
1108 friend class Node;
1109 friend class DUIterator_Last;
1110
1111 // This is the pointer which provides the product-mode behavior.
1112 // Whatever the product-mode version of the system does to the
1113 // DUI pointer is done to this pointer. All other fields in
1114 // this class are used only for assertion checking.
1115 Node** _outp;
1116
1117 #ifdef ASSERT
1118 void verify(const Node* node, bool at_end_ok = false);
1119 void verify_limit();
1120 void verify_resync();
1121 void verify_relimit(uint n);
1122 void reset(const DUIterator_Fast& that);
1123 #endif
1124
1125 // Note: offset must be signed, since -1 is sometimes passed
1126 DUIterator_Fast(const Node* node, ptrdiff_t offset)
1127 { _outp = node->_out + offset; debug_only(sample(node)); }
1128
1129 public:
1130 // initialize to garbage; clear _vdui to disable asserts
1131 DUIterator_Fast()
1132 { /*initialize to garbage*/ debug_only(_vdui = false); }
1133
1134 void operator++(int dummy_to_specify_postfix_op)
1135 { _outp++; VDUI_ONLY(verify(_node, true)); }
1136
1137 void operator--()
1138 { VDUI_ONLY(verify_resync()); --_outp; }
1139
1140 void operator-=(uint n) // applied to the limit only
1141 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
1142
1143 bool operator<(DUIterator_Fast& limit) {
1144 I_VDUI_ONLY(*this, this->verify(_node, true));
1145 I_VDUI_ONLY(limit, limit.verify_limit());
1146 return _outp < limit._outp;
1147 }
1148
1149 void operator=(const DUIterator_Fast& that)
1150 { _outp = that._outp; debug_only(reset(that)); }
1151 };
1152
1153 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1154 // Assign a limit pointer to the reference argument:
1155 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1156 // Return the base pointer:
1157 return DUIterator_Fast(this, 0);
1158 }
1159 Node* Node::fast_out(DUIterator_Fast& i) const {
1160 I_VDUI_ONLY(i, i.verify(this));
1161 return debug_only(i._last=) *i._outp;
1162 }
1163
1164
1165 // Faster DU iterator. Requires each successive edge to be removed.
1166 // Does not allow insertion of any edges.
1167 // Usage:
1168 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1169 // Node* y = x->last_out(i);
1170 // ...
1171 // }
1172 // Compiles in product mode to raw Node** pointer arithmetic, with
1173 // no reloading of pointers from the original node x.
1174 class DUIterator_Last : private DUIterator_Fast {
1175 friend class Node;
1176
1177 #ifdef ASSERT
1178 void verify(const Node* node, bool at_end_ok = false);
1179 void verify_limit();
1180 void verify_step(uint num_edges);
1181 #endif
1182
1183 // Note: offset must be signed, since -1 is sometimes passed
1184 DUIterator_Last(const Node* node, ptrdiff_t offset)
1185 : DUIterator_Fast(node, offset) { }
1186
1187 void operator++(int dummy_to_specify_postfix_op) {} // do not use
1188 void operator<(int) {} // do not use
1189
1190 public:
1191 DUIterator_Last() { }
1192 // initialize to garbage
1193
1194 void operator--()
1195 { _outp--; VDUI_ONLY(verify_step(1)); }
1196
1197 void operator-=(uint n)
1198 { _outp -= n; VDUI_ONLY(verify_step(n)); }
1199
1200 bool operator>=(DUIterator_Last& limit) {
1201 I_VDUI_ONLY(*this, this->verify(_node, true));
1202 I_VDUI_ONLY(limit, limit.verify_limit());
1203 return _outp >= limit._outp;
1204 }
1205
1206 void operator=(const DUIterator_Last& that)
1207 { DUIterator_Fast::operator=(that); }
1208 };
1209
1210 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1211 // Assign a limit pointer to the reference argument:
1212 imin = DUIterator_Last(this, 0);
1213 // Return the initial pointer:
1214 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1215 }
1216 Node* Node::last_out(DUIterator_Last& i) const {
1217 I_VDUI_ONLY(i, i.verify(this));
1218 return debug_only(i._last=) *i._outp;
1219 }
1220
1221 #endif //OPTO_DU_ITERATOR_ASSERT
1222
1223 #undef I_VDUI_ONLY
1224 #undef VDUI_ONLY
1225
1226
1227 //-----------------------------------------------------------------------------
1228 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
1229 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1230 // Note that the constructor just zeros things, and since I use Arena
1231 // allocation I do not need a destructor to reclaim storage.
1232 class Node_Array : public ResourceObj {
1233 protected:
1234 Arena *_a; // Arena to allocate in
1235 uint _max;
1236 Node **_nodes;
1237 void grow( uint i ); // Grow array node to fit
1238 public:
1239 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1240 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1241 for( int i = 0; i < OptoNodeListSize; i++ ) {
1242 _nodes[i] = NULL;
1243 }
1244 }
1245
1246 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1247 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1248 { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1249 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1250 Node **adr() { return _nodes; }
1251 // Extend the mapping: index i maps to Node *n.
1252 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1253 void insert( uint i, Node *n );
1254 void remove( uint i ); // Remove, preserving order
1255 void sort( C_sort_func_t func);
1256 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
1257 void clear(); // Set all entries to NULL, keep storage
1258 uint Size() const { return _max; }
1259 void dump() const;
1260 };
1261
1262 class Node_List : public Node_Array {
1263 uint _cnt;
1264 public:
1265 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1266 Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1267 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1268 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1269 void push( Node *b ) { map(_cnt++,b); }
1270 void yank( Node *n ); // Find and remove
1271 Node *pop() { return _nodes[--_cnt]; }
1272 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1273 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1274 uint size() const { return _cnt; }
1275 void dump() const;
1276 };
1277
1278 //------------------------------Unique_Node_List-------------------------------
1279 class Unique_Node_List : public Node_List {
1280 VectorSet _in_worklist;
1281 uint _clock_index; // Index in list where to pop from next
1282 public:
1283 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1284 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1285
1286 void remove( Node *n );
1287 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1288 VectorSet &member_set(){ return _in_worklist; }
1289
1290 void push( Node *b ) {
1291 if( !_in_worklist.test_set(b->_idx) )
1292 Node_List::push(b);
1293 }
1294 Node *pop() {
1295 if( _clock_index >= size() ) _clock_index = 0;
1296 Node *b = at(_clock_index);
1297 map( _clock_index++, Node_List::pop());
1298 _in_worklist >>= b->_idx;
1299 return b;
1300 }
1301 Node *remove( uint i ) {
1302 Node *b = Node_List::at(i);
1303 _in_worklist >>= b->_idx;
1304 map(i,Node_List::pop());
1305 return b;
1306 }
1307 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1308 void clear() {
1309 _in_worklist.Clear(); // Discards storage but grows automatically
1310 Node_List::clear();
1311 _clock_index = 0;
1312 }
1313
1314 // Used after parsing to remove useless nodes before Iterative GVN
1315 void remove_useless_nodes(VectorSet &useful);
1316
1317 #ifndef PRODUCT
1318 void print_set() const { _in_worklist.print(); }
1319 #endif
1320 };
1321
1322 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1323 inline void Compile::record_for_igvn(Node* n) {
1324 _for_igvn->push(n);
1325 record_for_escape_analysis(n);
1326 }
1327
1328 //------------------------------Node_Stack-------------------------------------
1329 class Node_Stack {
1330 protected:
1331 struct INode {
1332 Node *node; // Processed node
1333 uint indx; // Index of next node's child
1334 };
1335 INode *_inode_top; // tos, stack grows up
1336 INode *_inode_max; // End of _inodes == _inodes + _max
1337 INode *_inodes; // Array storage for the stack
1338 Arena *_a; // Arena to allocate in
1339 void grow();
1340 public:
1341 Node_Stack(int size) {
1342 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1343 _a = Thread::current()->resource_area();
1344 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1345 _inode_max = _inodes + max;
1346 _inode_top = _inodes - 1; // stack is empty
1347 }
1348
1349 Node_Stack(Arena *a, int size) : _a(a) {
1350 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1351 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1352 _inode_max = _inodes + max;
1353 _inode_top = _inodes - 1; // stack is empty
1354 }
1355
1356 void pop() {
1357 assert(_inode_top >= _inodes, "node stack underflow");
1358 --_inode_top;
1359 }
1360 void push(Node *n, uint i) {
1361 ++_inode_top;
1362 if (_inode_top >= _inode_max) grow();
1363 INode *top = _inode_top; // optimization
1364 top->node = n;
1365 top->indx = i;
1366 }
1367 Node *node() const {
1368 return _inode_top->node;
1369 }
1370 Node* node_at(uint i) const {
1371 assert(_inodes + i <= _inode_top, "in range");
1372 return _inodes[i].node;
1373 }
1374 uint index() const {
1375 return _inode_top->indx;
1376 }
1377 void set_node(Node *n) {
1378 _inode_top->node = n;
1379 }
1380 void set_index(uint i) {
1381 _inode_top->indx = i;
1382 }
1383 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
1384 uint size() const { return (uint)pointer_delta(_inode_top, _inodes, sizeof(INode)) + 1; } // Current size
1385 bool is_nonempty() const { return (_inode_top >= _inodes); }
1386 bool is_empty() const { return (_inode_top < _inodes); }
1387 void clear() { _inode_top = _inodes - 1; } // retain storage
1388 };
1389
1390
1391 //-----------------------------Node_Notes--------------------------------------
1392 // Debugging or profiling annotations loosely and sparsely associated
1393 // with some nodes. See Compile::node_notes_at for the accessor.
1394 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1395 JVMState* _jvms;
1396
1397 public:
1398 Node_Notes(JVMState* jvms = NULL) {
1399 _jvms = jvms;
1400 }
1401
1402 JVMState* jvms() { return _jvms; }
1403 void set_jvms(JVMState* x) { _jvms = x; }
1404
1405 // True if there is nothing here.
1406 bool is_clear() {
1407 return (_jvms == NULL);
1408 }
1409
1410 // Make there be nothing here.
1411 void clear() {
1412 _jvms = NULL;
1413 }
1414
1415 // Make a new, clean node notes.
1416 static Node_Notes* make(Compile* C) {
1417 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1418 nn->clear();
1419 return nn;
1420 }
1421
1422 Node_Notes* clone(Compile* C) {
1423 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1424 (*nn) = (*this);
1425 return nn;
1426 }
1427
1428 // Absorb any information from source.
1429 bool update_from(Node_Notes* source) {
1430 bool changed = false;
1431 if (source != NULL) {
1432 if (source->jvms() != NULL) {
1433 set_jvms(source->jvms());
1434 changed = true;
1435 }
1436 }
1437 return changed;
1438 }
1439 };
1440
1441 // Inlined accessors for Compile::node_nodes that require the preceding class:
1442 inline Node_Notes*
1443 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1444 int idx, bool can_grow) {
1445 assert(idx >= 0, "oob");
1446 int block_idx = (idx >> _log2_node_notes_block_size);
1447 int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1448 if (grow_by >= 0) {
1449 if (!can_grow) return NULL;
1450 grow_node_notes(arr, grow_by + 1);
1451 }
1452 // (Every element of arr is a sub-array of length _node_notes_block_size.)
1453 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1454 }
1455
1456 inline bool
1457 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1458 if (value == NULL || value->is_clear())
1459 return false; // nothing to write => write nothing
1460 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1461 assert(loc != NULL, "");
1462 return loc->update_from(value);
1463 }
1464
1465
1466 //------------------------------TypeNode---------------------------------------
1467 // Node with a Type constant.
1468 class TypeNode : public Node {
1469 protected:
1470 virtual uint hash() const; // Check the type
1471 virtual uint cmp( const Node &n ) const;
1472 virtual uint size_of() const; // Size is bigger
1473 const Type* const _type;
1474 public:
1475 void set_type(const Type* t) {
1476 assert(t != NULL, "sanity");
1477 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1478 *(const Type**)&_type = t; // cast away const-ness
1479 // If this node is in the hash table, make sure it doesn't need a rehash.
1480 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1481 }
1482 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1483 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1484 init_class_id(Class_Type);
1485 }
1486 virtual const Type *Value( PhaseTransform *phase ) const;
1487 virtual const Type *bottom_type() const;
1488 virtual uint ideal_reg() const;
1489 #ifndef PRODUCT
1490 virtual void dump_spec(outputStream *st) const;
1491 #endif
1492 };