comparison src/share/vm/opto/output.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 67914967a4b5
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_output.cpp.incl"
27
28 extern uint size_java_to_interp();
29 extern uint reloc_java_to_interp();
30 extern uint size_exception_handler();
31 extern uint size_deopt_handler();
32
33 #ifndef PRODUCT
34 #define DEBUG_ARG(x) , x
35 #else
36 #define DEBUG_ARG(x)
37 #endif
38
39 extern int emit_exception_handler(CodeBuffer &cbuf);
40 extern int emit_deopt_handler(CodeBuffer &cbuf);
41
42 //------------------------------Output-----------------------------------------
43 // Convert Nodes to instruction bits and pass off to the VM
44 void Compile::Output() {
45 // RootNode goes
46 assert( _cfg->_broot->_nodes.size() == 0, "" );
47
48 // Initialize the space for the BufferBlob used to find and verify
49 // instruction size in MachNode::emit_size()
50 init_scratch_buffer_blob();
51
52 // Make sure I can find the Start Node
53 Block_Array& bbs = _cfg->_bbs;
54 Block *entry = _cfg->_blocks[1];
55 Block *broot = _cfg->_broot;
56
57 const StartNode *start = entry->_nodes[0]->as_Start();
58
59 // Replace StartNode with prolog
60 MachPrologNode *prolog = new (this) MachPrologNode();
61 entry->_nodes.map( 0, prolog );
62 bbs.map( prolog->_idx, entry );
63 bbs.map( start->_idx, NULL ); // start is no longer in any block
64
65 // Virtual methods need an unverified entry point
66
67 if( is_osr_compilation() ) {
68 if( PoisonOSREntry ) {
69 // TODO: Should use a ShouldNotReachHereNode...
70 _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
71 }
72 } else {
73 if( _method && !_method->flags().is_static() ) {
74 // Insert unvalidated entry point
75 _cfg->insert( broot, 0, new (this) MachUEPNode() );
76 }
77
78 }
79
80
81 // Break before main entry point
82 if( (_method && _method->break_at_execute())
83 #ifndef PRODUCT
84 ||(OptoBreakpoint && is_method_compilation())
85 ||(OptoBreakpointOSR && is_osr_compilation())
86 ||(OptoBreakpointC2R && !_method)
87 #endif
88 ) {
89 // checking for _method means that OptoBreakpoint does not apply to
90 // runtime stubs or frame converters
91 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
92 }
93
94 // Insert epilogs before every return
95 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
96 Block *b = _cfg->_blocks[i];
97 if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
98 Node *m = b->end();
99 if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
100 MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
101 b->add_inst( epilog );
102 bbs.map(epilog->_idx, b);
103 //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
104 }
105 }
106 }
107
108 # ifdef ENABLE_ZAP_DEAD_LOCALS
109 if ( ZapDeadCompiledLocals ) Insert_zap_nodes();
110 # endif
111
112 ScheduleAndBundle();
113
114 #ifndef PRODUCT
115 if (trace_opto_output()) {
116 tty->print("\n---- After ScheduleAndBundle ----\n");
117 for (uint i = 0; i < _cfg->_num_blocks; i++) {
118 tty->print("\nBB#%03d:\n", i);
119 Block *bb = _cfg->_blocks[i];
120 for (uint j = 0; j < bb->_nodes.size(); j++) {
121 Node *n = bb->_nodes[j];
122 OptoReg::Name reg = _regalloc->get_reg_first(n);
123 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
124 n->dump();
125 }
126 }
127 }
128 #endif
129
130 if (failing()) return;
131
132 BuildOopMaps();
133
134 if (failing()) return;
135
136 Fill_buffer();
137 }
138
139 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
140 // Determine if we need to generate a stack overflow check.
141 // Do it if the method is not a stub function and
142 // has java calls or has frame size > vm_page_size/8.
143 return (stub_function() == NULL &&
144 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
145 }
146
147 bool Compile::need_register_stack_bang() const {
148 // Determine if we need to generate a register stack overflow check.
149 // This is only used on architectures which have split register
150 // and memory stacks (ie. IA64).
151 // Bang if the method is not a stub function and has java calls
152 return (stub_function() == NULL && has_java_calls());
153 }
154
155 # ifdef ENABLE_ZAP_DEAD_LOCALS
156
157
158 // In order to catch compiler oop-map bugs, we have implemented
159 // a debugging mode called ZapDeadCompilerLocals.
160 // This mode causes the compiler to insert a call to a runtime routine,
161 // "zap_dead_locals", right before each place in compiled code
162 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
163 // The runtime routine checks that locations mapped as oops are really
164 // oops, that locations mapped as values do not look like oops,
165 // and that locations mapped as dead are not used later
166 // (by zapping them to an invalid address).
167
168 int Compile::_CompiledZap_count = 0;
169
170 void Compile::Insert_zap_nodes() {
171 bool skip = false;
172
173
174 // Dink with static counts because code code without the extra
175 // runtime calls is MUCH faster for debugging purposes
176
177 if ( CompileZapFirst == 0 ) ; // nothing special
178 else if ( CompileZapFirst > CompiledZap_count() ) skip = true;
179 else if ( CompileZapFirst == CompiledZap_count() )
180 warning("starting zap compilation after skipping");
181
182 if ( CompileZapLast == -1 ) ; // nothing special
183 else if ( CompileZapLast < CompiledZap_count() ) skip = true;
184 else if ( CompileZapLast == CompiledZap_count() )
185 warning("about to compile last zap");
186
187 ++_CompiledZap_count; // counts skipped zaps, too
188
189 if ( skip ) return;
190
191
192 if ( _method == NULL )
193 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
194
195 // Insert call to zap runtime stub before every node with an oop map
196 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
197 Block *b = _cfg->_blocks[i];
198 for ( uint j = 0; j < b->_nodes.size(); ++j ) {
199 Node *n = b->_nodes[j];
200
201 // Determining if we should insert a zap-a-lot node in output.
202 // We do that for all nodes that has oopmap info, except for calls
203 // to allocation. Calls to allocation passes in the old top-of-eden pointer
204 // and expect the C code to reset it. Hence, there can be no safepoints between
205 // the inlined-allocation and the call to new_Java, etc.
206 // We also cannot zap monitor calls, as they must hold the microlock
207 // during the call to Zap, which also wants to grab the microlock.
208 bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
209 if ( insert ) { // it is MachSafePoint
210 if ( !n->is_MachCall() ) {
211 insert = false;
212 } else if ( n->is_MachCall() ) {
213 MachCallNode* call = n->as_MachCall();
214 if (call->entry_point() == OptoRuntime::new_instance_Java() ||
215 call->entry_point() == OptoRuntime::new_array_Java() ||
216 call->entry_point() == OptoRuntime::multianewarray2_Java() ||
217 call->entry_point() == OptoRuntime::multianewarray3_Java() ||
218 call->entry_point() == OptoRuntime::multianewarray4_Java() ||
219 call->entry_point() == OptoRuntime::multianewarray5_Java() ||
220 call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
221 call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
222 ) {
223 insert = false;
224 }
225 }
226 if (insert) {
227 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
228 b->_nodes.insert( j, zap );
229 _cfg->_bbs.map( zap->_idx, b );
230 ++j;
231 }
232 }
233 }
234 }
235 }
236
237
238 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
239 const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
240 CallStaticJavaNode* ideal_node =
241 new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
242 OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
243 "call zap dead locals stub", 0, TypePtr::BOTTOM);
244 // We need to copy the OopMap from the site we're zapping at.
245 // We have to make a copy, because the zap site might not be
246 // a call site, and zap_dead is a call site.
247 OopMap* clone = node_to_check->oop_map()->deep_copy();
248
249 // Add the cloned OopMap to the zap node
250 ideal_node->set_oop_map(clone);
251 return _matcher->match_sfpt(ideal_node);
252 }
253
254 //------------------------------is_node_getting_a_safepoint--------------------
255 bool Compile::is_node_getting_a_safepoint( Node* n) {
256 // This code duplicates the logic prior to the call of add_safepoint
257 // below in this file.
258 if( n->is_MachSafePoint() ) return true;
259 return false;
260 }
261
262 # endif // ENABLE_ZAP_DEAD_LOCALS
263
264 //------------------------------compute_loop_first_inst_sizes------------------
265 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
266 // of a loop. When aligning a loop we need to provide enough instructions
267 // in cpu's fetch buffer to feed decoders. The loop alignment could be
268 // avoided if we have enough instructions in fetch buffer at the head of a loop.
269 // By default, the size is set to 999999 by Block's constructor so that
270 // a loop will be aligned if the size is not reset here.
271 //
272 // Note: Mach instructions could contain several HW instructions
273 // so the size is estimated only.
274 //
275 void Compile::compute_loop_first_inst_sizes() {
276 // The next condition is used to gate the loop alignment optimization.
277 // Don't aligned a loop if there are enough instructions at the head of a loop
278 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
279 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
280 // equal to 11 bytes which is the largest address NOP instruction.
281 if( MaxLoopPad < OptoLoopAlignment-1 ) {
282 uint last_block = _cfg->_num_blocks-1;
283 for( uint i=1; i <= last_block; i++ ) {
284 Block *b = _cfg->_blocks[i];
285 // Check the first loop's block which requires an alignment.
286 if( b->head()->is_Loop() &&
287 b->code_alignment() > (uint)relocInfo::addr_unit() ) {
288 uint sum_size = 0;
289 uint inst_cnt = NumberOfLoopInstrToAlign;
290 inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
291 _regalloc);
292 // Check the next fallthrough block if first loop's block does not have
293 // enough instructions.
294 if( inst_cnt > 0 && i < last_block ) {
295 // First, check if the first loop's block contains whole loop.
296 // LoopNode::LoopBackControl == 2.
297 Block *bx = _cfg->_bbs[b->pred(2)->_idx];
298 // Skip connector blocks (with limit in case of irreducible loops).
299 int search_limit = 16;
300 while( bx->is_connector() && search_limit-- > 0) {
301 bx = _cfg->_bbs[bx->pred(1)->_idx];
302 }
303 if( bx != b ) { // loop body is in several blocks.
304 Block *nb = NULL;
305 while( inst_cnt > 0 && i < last_block && nb != bx &&
306 !_cfg->_blocks[i+1]->head()->is_Loop() ) {
307 i++;
308 nb = _cfg->_blocks[i];
309 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt,
310 _regalloc);
311 } // while( inst_cnt > 0 && i < last_block )
312 } // if( bx != b )
313 } // if( inst_cnt > 0 && i < last_block )
314 b->set_first_inst_size(sum_size);
315 } // f( b->head()->is_Loop() )
316 } // for( i <= last_block )
317 } // if( MaxLoopPad < OptoLoopAlignment-1 )
318 }
319
320 //----------------------Shorten_branches---------------------------------------
321 // The architecture description provides short branch variants for some long
322 // branch instructions. Replace eligible long branches with short branches.
323 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
324
325 // fill in the nop array for bundling computations
326 MachNode *_nop_list[Bundle::_nop_count];
327 Bundle::initialize_nops(_nop_list, this);
328
329 // ------------------
330 // Compute size of each block, method size, and relocation information size
331 uint *jmp_end = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
332 uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
333 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
334 blk_starts[0] = 0;
335
336 // Initialize the sizes to 0
337 code_size = 0; // Size in bytes of generated code
338 stub_size = 0; // Size in bytes of all stub entries
339 // Size in bytes of all relocation entries, including those in local stubs.
340 // Start with 2-bytes of reloc info for the unvalidated entry point
341 reloc_size = 1; // Number of relocation entries
342 const_size = 0; // size of fp constants in words
343
344 // Make three passes. The first computes pessimistic blk_starts,
345 // relative jmp_end, reloc_size and const_size information.
346 // The second performs short branch substitution using the pessimistic
347 // sizing. The third inserts nops where needed.
348
349 Node *nj; // tmp
350
351 // Step one, perform a pessimistic sizing pass.
352 uint i;
353 uint min_offset_from_last_call = 1; // init to a positive value
354 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
355 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
356 Block *b = _cfg->_blocks[i];
357
358 // Sum all instruction sizes to compute block size
359 uint last_inst = b->_nodes.size();
360 uint blk_size = 0;
361 for( uint j = 0; j<last_inst; j++ ) {
362 nj = b->_nodes[j];
363 uint inst_size = nj->size(_regalloc);
364 blk_size += inst_size;
365 // Handle machine instruction nodes
366 if( nj->is_Mach() ) {
367 MachNode *mach = nj->as_Mach();
368 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
369 reloc_size += mach->reloc();
370 const_size += mach->const_size();
371 if( mach->is_MachCall() ) {
372 MachCallNode *mcall = mach->as_MachCall();
373 // This destination address is NOT PC-relative
374
375 mcall->method_set((intptr_t)mcall->entry_point());
376
377 if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
378 stub_size += size_java_to_interp();
379 reloc_size += reloc_java_to_interp();
380 }
381 } else if (mach->is_MachSafePoint()) {
382 // If call/safepoint are adjacent, account for possible
383 // nop to disambiguate the two safepoints.
384 if (min_offset_from_last_call == 0) {
385 blk_size += nop_size;
386 }
387 }
388 }
389 min_offset_from_last_call += inst_size;
390 // Remember end of call offset
391 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
392 min_offset_from_last_call = 0;
393 }
394 }
395
396 // During short branch replacement, we store the relative (to blk_starts)
397 // end of jump in jmp_end, rather than the absolute end of jump. This
398 // is so that we do not need to recompute sizes of all nodes when we compute
399 // correct blk_starts in our next sizing pass.
400 jmp_end[i] = blk_size;
401 DEBUG_ONLY( jmp_target[i] = 0; )
402
403 // When the next block starts a loop, we may insert pad NOP
404 // instructions. Since we cannot know our future alignment,
405 // assume the worst.
406 if( i<_cfg->_num_blocks-1 ) {
407 Block *nb = _cfg->_blocks[i+1];
408 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
409 if( max_loop_pad > 0 ) {
410 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
411 blk_size += max_loop_pad;
412 }
413 }
414
415 // Save block size; update total method size
416 blk_starts[i+1] = blk_starts[i]+blk_size;
417 }
418
419 // Step two, replace eligible long jumps.
420
421 // Note: this will only get the long branches within short branch
422 // range. Another pass might detect more branches that became
423 // candidates because the shortening in the first pass exposed
424 // more opportunities. Unfortunately, this would require
425 // recomputing the starting and ending positions for the blocks
426 for( i=0; i<_cfg->_num_blocks; i++ ) {
427 Block *b = _cfg->_blocks[i];
428
429 int j;
430 // Find the branch; ignore trailing NOPs.
431 for( j = b->_nodes.size()-1; j>=0; j-- ) {
432 nj = b->_nodes[j];
433 if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
434 break;
435 }
436
437 if (j >= 0) {
438 if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
439 MachNode *mach = nj->as_Mach();
440 // This requires the TRUE branch target be in succs[0]
441 uint bnum = b->non_connector_successor(0)->_pre_order;
442 uintptr_t target = blk_starts[bnum];
443 if( mach->is_pc_relative() ) {
444 int offset = target-(blk_starts[i] + jmp_end[i]);
445 if (_matcher->is_short_branch_offset(offset)) {
446 // We've got a winner. Replace this branch.
447 MachNode *replacement = mach->short_branch_version(this);
448 b->_nodes.map(j, replacement);
449
450 // Update the jmp_end size to save time in our
451 // next pass.
452 jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
453 DEBUG_ONLY( jmp_target[i] = bnum; );
454 }
455 } else {
456 #ifndef PRODUCT
457 mach->dump(3);
458 #endif
459 Unimplemented();
460 }
461 }
462 }
463 }
464
465 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
466 // of a loop. It is used to determine the padding for loop alignment.
467 compute_loop_first_inst_sizes();
468
469 // Step 3, compute the offsets of all the labels
470 uint last_call_adr = max_uint;
471 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
472 // copy the offset of the beginning to the corresponding label
473 assert(labels[i].is_unused(), "cannot patch at this point");
474 labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
475
476 // insert padding for any instructions that need it
477 Block *b = _cfg->_blocks[i];
478 uint last_inst = b->_nodes.size();
479 uint adr = blk_starts[i];
480 for( uint j = 0; j<last_inst; j++ ) {
481 nj = b->_nodes[j];
482 if( nj->is_Mach() ) {
483 int padding = nj->as_Mach()->compute_padding(adr);
484 // If call/safepoint are adjacent insert a nop (5010568)
485 if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
486 adr == last_call_adr ) {
487 padding = nop_size;
488 }
489 if(padding > 0) {
490 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
491 int nops_cnt = padding / nop_size;
492 MachNode *nop = new (this) MachNopNode(nops_cnt);
493 b->_nodes.insert(j++, nop);
494 _cfg->_bbs.map( nop->_idx, b );
495 adr += padding;
496 last_inst++;
497 }
498 }
499 adr += nj->size(_regalloc);
500
501 // Remember end of call offset
502 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
503 last_call_adr = adr;
504 }
505 }
506
507 if ( i != _cfg->_num_blocks-1) {
508 // Get the size of the block
509 uint blk_size = adr - blk_starts[i];
510
511 // When the next block starts a loop, we may insert pad NOP
512 // instructions.
513 Block *nb = _cfg->_blocks[i+1];
514 int current_offset = blk_starts[i] + blk_size;
515 current_offset += nb->alignment_padding(current_offset);
516 // Save block size; update total method size
517 blk_starts[i+1] = current_offset;
518 }
519 }
520
521 #ifdef ASSERT
522 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
523 if( jmp_target[i] != 0 ) {
524 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
525 if (!_matcher->is_short_branch_offset(offset)) {
526 tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
527 }
528 assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
529 }
530 }
531 #endif
532
533 // ------------------
534 // Compute size for code buffer
535 code_size = blk_starts[i-1] + jmp_end[i-1];
536
537 // Relocation records
538 reloc_size += 1; // Relo entry for exception handler
539
540 // Adjust reloc_size to number of record of relocation info
541 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
542 // a relocation index.
543 // The CodeBuffer will expand the locs array if this estimate is too low.
544 reloc_size *= 10 / sizeof(relocInfo);
545
546 // Adjust const_size to number of bytes
547 const_size *= 2*jintSize; // both float and double take two words per entry
548
549 }
550
551 //------------------------------FillLocArray-----------------------------------
552 // Create a bit of debug info and append it to the array. The mapping is from
553 // Java local or expression stack to constant, register or stack-slot. For
554 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
555 // entry has been taken care of and caller should skip it).
556 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
557 // This should never have accepted Bad before
558 assert(OptoReg::is_valid(regnum), "location must be valid");
559 return (OptoReg::is_reg(regnum))
560 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
561 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
562 }
563
564 void Compile::FillLocArray( int idx, Node *local, GrowableArray<ScopeValue*> *array ) {
565 assert( local, "use _top instead of null" );
566 if (array->length() != idx) {
567 assert(array->length() == idx + 1, "Unexpected array count");
568 // Old functionality:
569 // return
570 // New functionality:
571 // Assert if the local is not top. In product mode let the new node
572 // override the old entry.
573 assert(local == top(), "LocArray collision");
574 if (local == top()) {
575 return;
576 }
577 array->pop();
578 }
579 const Type *t = local->bottom_type();
580
581 // Grab the register number for the local
582 OptoReg::Name regnum = _regalloc->get_reg_first(local);
583 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
584 // Record the double as two float registers.
585 // The register mask for such a value always specifies two adjacent
586 // float registers, with the lower register number even.
587 // Normally, the allocation of high and low words to these registers
588 // is irrelevant, because nearly all operations on register pairs
589 // (e.g., StoreD) treat them as a single unit.
590 // Here, we assume in addition that the words in these two registers
591 // stored "naturally" (by operations like StoreD and double stores
592 // within the interpreter) such that the lower-numbered register
593 // is written to the lower memory address. This may seem like
594 // a machine dependency, but it is not--it is a requirement on
595 // the author of the <arch>.ad file to ensure that, for every
596 // even/odd double-register pair to which a double may be allocated,
597 // the word in the even single-register is stored to the first
598 // memory word. (Note that register numbers are completely
599 // arbitrary, and are not tied to any machine-level encodings.)
600 #ifdef _LP64
601 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
602 array->append(new ConstantIntValue(0));
603 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
604 } else if ( t->base() == Type::Long ) {
605 array->append(new ConstantIntValue(0));
606 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
607 } else if ( t->base() == Type::RawPtr ) {
608 // jsr/ret return address which must be restored into a the full
609 // width 64-bit stack slot.
610 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
611 }
612 #else //_LP64
613 #ifdef SPARC
614 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
615 // For SPARC we have to swap high and low words for
616 // long values stored in a single-register (g0-g7).
617 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
618 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
619 } else
620 #endif //SPARC
621 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
622 // Repack the double/long as two jints.
623 // The convention the interpreter uses is that the second local
624 // holds the first raw word of the native double representation.
625 // This is actually reasonable, since locals and stack arrays
626 // grow downwards in all implementations.
627 // (If, on some machine, the interpreter's Java locals or stack
628 // were to grow upwards, the embedded doubles would be word-swapped.)
629 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
630 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
631 }
632 #endif //_LP64
633 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
634 OptoReg::is_reg(regnum) ) {
635 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
636 ? Location::float_in_dbl : Location::normal ));
637 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
638 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
639 ? Location::int_in_long : Location::normal ));
640 } else {
641 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
642 }
643 return;
644 }
645
646 // No register. It must be constant data.
647 switch (t->base()) {
648 case Type::Half: // Second half of a double
649 ShouldNotReachHere(); // Caller should skip 2nd halves
650 break;
651 case Type::AnyPtr:
652 array->append(new ConstantOopWriteValue(NULL));
653 break;
654 case Type::AryPtr:
655 case Type::InstPtr:
656 case Type::KlassPtr: // fall through
657 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
658 break;
659 case Type::Int:
660 array->append(new ConstantIntValue(t->is_int()->get_con()));
661 break;
662 case Type::RawPtr:
663 // A return address (T_ADDRESS).
664 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
665 #ifdef _LP64
666 // Must be restored to the full-width 64-bit stack slot.
667 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
668 #else
669 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
670 #endif
671 break;
672 case Type::FloatCon: {
673 float f = t->is_float_constant()->getf();
674 array->append(new ConstantIntValue(jint_cast(f)));
675 break;
676 }
677 case Type::DoubleCon: {
678 jdouble d = t->is_double_constant()->getd();
679 #ifdef _LP64
680 array->append(new ConstantIntValue(0));
681 array->append(new ConstantDoubleValue(d));
682 #else
683 // Repack the double as two jints.
684 // The convention the interpreter uses is that the second local
685 // holds the first raw word of the native double representation.
686 // This is actually reasonable, since locals and stack arrays
687 // grow downwards in all implementations.
688 // (If, on some machine, the interpreter's Java locals or stack
689 // were to grow upwards, the embedded doubles would be word-swapped.)
690 jint *dp = (jint*)&d;
691 array->append(new ConstantIntValue(dp[1]));
692 array->append(new ConstantIntValue(dp[0]));
693 #endif
694 break;
695 }
696 case Type::Long: {
697 jlong d = t->is_long()->get_con();
698 #ifdef _LP64
699 array->append(new ConstantIntValue(0));
700 array->append(new ConstantLongValue(d));
701 #else
702 // Repack the long as two jints.
703 // The convention the interpreter uses is that the second local
704 // holds the first raw word of the native double representation.
705 // This is actually reasonable, since locals and stack arrays
706 // grow downwards in all implementations.
707 // (If, on some machine, the interpreter's Java locals or stack
708 // were to grow upwards, the embedded doubles would be word-swapped.)
709 jint *dp = (jint*)&d;
710 array->append(new ConstantIntValue(dp[1]));
711 array->append(new ConstantIntValue(dp[0]));
712 #endif
713 break;
714 }
715 case Type::Top: // Add an illegal value here
716 array->append(new LocationValue(Location()));
717 break;
718 default:
719 ShouldNotReachHere();
720 break;
721 }
722 }
723
724 // Determine if this node starts a bundle
725 bool Compile::starts_bundle(const Node *n) const {
726 return (_node_bundling_limit > n->_idx &&
727 _node_bundling_base[n->_idx].starts_bundle());
728 }
729
730 //--------------------------Process_OopMap_Node--------------------------------
731 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
732
733 // Handle special safepoint nodes for synchronization
734 MachSafePointNode *sfn = mach->as_MachSafePoint();
735 MachCallNode *mcall;
736
737 #ifdef ENABLE_ZAP_DEAD_LOCALS
738 assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative");
739 #endif
740
741 int safepoint_pc_offset = current_offset;
742
743 // Add the safepoint in the DebugInfoRecorder
744 if( !mach->is_MachCall() ) {
745 mcall = NULL;
746 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
747 } else {
748 mcall = mach->as_MachCall();
749 safepoint_pc_offset += mcall->ret_addr_offset();
750 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
751 }
752
753 // Loop over the JVMState list to add scope information
754 // Do not skip safepoints with a NULL method, they need monitor info
755 JVMState* youngest_jvms = sfn->jvms();
756 int max_depth = youngest_jvms->depth();
757
758 // Visit scopes from oldest to youngest.
759 for (int depth = 1; depth <= max_depth; depth++) {
760 JVMState* jvms = youngest_jvms->of_depth(depth);
761 int idx;
762 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
763 // Safepoints that do not have method() set only provide oop-map and monitor info
764 // to support GC; these do not support deoptimization.
765 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
766 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
767 int num_mon = jvms->nof_monitors();
768 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
769 "JVMS local count must match that of the method");
770
771 // Add Local and Expression Stack Information
772
773 // Insert locals into the locarray
774 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
775 for( idx = 0; idx < num_locs; idx++ ) {
776 FillLocArray( idx, sfn->local(jvms, idx), locarray );
777 }
778
779 // Insert expression stack entries into the exparray
780 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
781 for( idx = 0; idx < num_exps; idx++ ) {
782 FillLocArray( idx, sfn->stack(jvms, idx), exparray );
783 }
784
785 // Add in mappings of the monitors
786 assert( !method ||
787 !method->is_synchronized() ||
788 method->is_native() ||
789 num_mon > 0 ||
790 !GenerateSynchronizationCode,
791 "monitors must always exist for synchronized methods");
792
793 // Build the growable array of ScopeValues for exp stack
794 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
795
796 // Loop over monitors and insert into array
797 for(idx = 0; idx < num_mon; idx++) {
798 // Grab the node that defines this monitor
799 Node* box_node;
800 Node* obj_node;
801 box_node = sfn->monitor_box(jvms, idx);
802 obj_node = sfn->monitor_obj(jvms, idx);
803
804 // Create ScopeValue for object
805 ScopeValue *scval = NULL;
806 if( !obj_node->is_Con() ) {
807 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
808 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
809 } else {
810 scval = new ConstantOopWriteValue(obj_node->bottom_type()->is_instptr()->const_oop()->encoding());
811 }
812
813 OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
814 monarray->append(new MonitorValue(scval, Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg))));
815 }
816
817 // Build first class objects to pass to scope
818 DebugToken *locvals = debug_info()->create_scope_values(locarray);
819 DebugToken *expvals = debug_info()->create_scope_values(exparray);
820 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
821
822 // Make method available for all Safepoints
823 ciMethod* scope_method = method ? method : _method;
824 // Describe the scope here
825 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
826 debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
827 } // End jvms loop
828
829 // Mark the end of the scope set.
830 debug_info()->end_safepoint(safepoint_pc_offset);
831 }
832
833
834
835 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
836 class NonSafepointEmitter {
837 Compile* C;
838 JVMState* _pending_jvms;
839 int _pending_offset;
840
841 void emit_non_safepoint();
842
843 public:
844 NonSafepointEmitter(Compile* compile) {
845 this->C = compile;
846 _pending_jvms = NULL;
847 _pending_offset = 0;
848 }
849
850 void observe_instruction(Node* n, int pc_offset) {
851 if (!C->debug_info()->recording_non_safepoints()) return;
852
853 Node_Notes* nn = C->node_notes_at(n->_idx);
854 if (nn == NULL || nn->jvms() == NULL) return;
855 if (_pending_jvms != NULL &&
856 _pending_jvms->same_calls_as(nn->jvms())) {
857 // Repeated JVMS? Stretch it up here.
858 _pending_offset = pc_offset;
859 } else {
860 if (_pending_jvms != NULL &&
861 _pending_offset < pc_offset) {
862 emit_non_safepoint();
863 }
864 _pending_jvms = NULL;
865 if (pc_offset > C->debug_info()->last_pc_offset()) {
866 // This is the only way _pending_jvms can become non-NULL:
867 _pending_jvms = nn->jvms();
868 _pending_offset = pc_offset;
869 }
870 }
871 }
872
873 // Stay out of the way of real safepoints:
874 void observe_safepoint(JVMState* jvms, int pc_offset) {
875 if (_pending_jvms != NULL &&
876 !_pending_jvms->same_calls_as(jvms) &&
877 _pending_offset < pc_offset) {
878 emit_non_safepoint();
879 }
880 _pending_jvms = NULL;
881 }
882
883 void flush_at_end() {
884 if (_pending_jvms != NULL) {
885 emit_non_safepoint();
886 }
887 _pending_jvms = NULL;
888 }
889 };
890
891 void NonSafepointEmitter::emit_non_safepoint() {
892 JVMState* youngest_jvms = _pending_jvms;
893 int pc_offset = _pending_offset;
894
895 // Clear it now:
896 _pending_jvms = NULL;
897
898 DebugInformationRecorder* debug_info = C->debug_info();
899 assert(debug_info->recording_non_safepoints(), "sanity");
900
901 debug_info->add_non_safepoint(pc_offset);
902 int max_depth = youngest_jvms->depth();
903
904 // Visit scopes from oldest to youngest.
905 for (int depth = 1; depth <= max_depth; depth++) {
906 JVMState* jvms = youngest_jvms->of_depth(depth);
907 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
908 debug_info->describe_scope(pc_offset, method, jvms->bci());
909 }
910
911 // Mark the end of the scope set.
912 debug_info->end_non_safepoint(pc_offset);
913 }
914
915
916
917 // helper for Fill_buffer bailout logic
918 static void turn_off_compiler(Compile* C) {
919 if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
920 // Do not turn off compilation if a single giant method has
921 // blown the code cache size.
922 C->record_failure("excessive request to CodeCache");
923 } else {
924 UseInterpreter = true;
925 UseCompiler = false;
926 AlwaysCompileLoopMethods = false;
927 C->record_failure("CodeCache is full");
928 warning("CodeCache is full. Compiling has been disabled");
929 }
930 }
931
932
933 //------------------------------Fill_buffer------------------------------------
934 void Compile::Fill_buffer() {
935
936 // Set the initially allocated size
937 int code_req = initial_code_capacity;
938 int locs_req = initial_locs_capacity;
939 int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
940 int const_req = initial_const_capacity;
941 bool labels_not_set = true;
942
943 int pad_req = NativeCall::instruction_size;
944 // The extra spacing after the code is necessary on some platforms.
945 // Sometimes we need to patch in a jump after the last instruction,
946 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
947
948 uint i;
949 // Compute the byte offset where we can store the deopt pc.
950 if (fixed_slots() != 0) {
951 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
952 }
953
954 // Compute prolog code size
955 _method_size = 0;
956 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
957 #ifdef IA64
958 if (save_argument_registers()) {
959 // 4815101: this is a stub with implicit and unknown precision fp args.
960 // The usual spill mechanism can only generate stfd's in this case, which
961 // doesn't work if the fp reg to spill contains a single-precision denorm.
962 // Instead, we hack around the normal spill mechanism using stfspill's and
963 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
964 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
965 //
966 // If we ever implement 16-byte 'registers' == stack slots, we can
967 // get rid of this hack and have SpillCopy generate stfspill/ldffill
968 // instead of stfd/stfs/ldfd/ldfs.
969 _frame_slots += 8*(16/BytesPerInt);
970 }
971 #endif
972 assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
973
974 // Create an array of unused labels, one for each basic block
975 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
976
977 for( i=0; i <= _cfg->_num_blocks; i++ ) {
978 blk_labels[i].init();
979 }
980
981 // If this machine supports different size branch offsets, then pre-compute
982 // the length of the blocks
983 if( _matcher->is_short_branch_offset(0) ) {
984 Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
985 labels_not_set = false;
986 }
987
988 // nmethod and CodeBuffer count stubs & constants as part of method's code.
989 int exception_handler_req = size_exception_handler();
990 int deopt_handler_req = size_deopt_handler();
991 exception_handler_req += MAX_stubs_size; // add marginal slop for handler
992 deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
993 stub_req += MAX_stubs_size; // ensure per-stub margin
994 code_req += MAX_inst_size; // ensure per-instruction margin
995 if (StressCodeBuffers)
996 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
997 int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
998 CodeBuffer* cb = code_buffer();
999 cb->initialize(total_req, locs_req);
1000
1001 // Have we run out of code space?
1002 if (cb->blob() == NULL) {
1003 turn_off_compiler(this);
1004 return;
1005 }
1006 // Configure the code buffer.
1007 cb->initialize_consts_size(const_req);
1008 cb->initialize_stubs_size(stub_req);
1009 cb->initialize_oop_recorder(env()->oop_recorder());
1010
1011 // fill in the nop array for bundling computations
1012 MachNode *_nop_list[Bundle::_nop_count];
1013 Bundle::initialize_nops(_nop_list, this);
1014
1015 // Create oopmap set.
1016 _oop_map_set = new OopMapSet();
1017
1018 // !!!!! This preserves old handling of oopmaps for now
1019 debug_info()->set_oopmaps(_oop_map_set);
1020
1021 // Count and start of implicit null check instructions
1022 uint inct_cnt = 0;
1023 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1024
1025 // Count and start of calls
1026 uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1027
1028 uint return_offset = 0;
1029 MachNode *nop = new (this) MachNopNode();
1030
1031 int previous_offset = 0;
1032 int current_offset = 0;
1033 int last_call_offset = -1;
1034
1035 // Create an array of unused labels, one for each basic block, if printing is enabled
1036 #ifndef PRODUCT
1037 int *node_offsets = NULL;
1038 uint node_offset_limit = unique();
1039
1040
1041 if ( print_assembly() )
1042 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1043 #endif
1044
1045 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
1046
1047 // ------------------
1048 // Now fill in the code buffer
1049 Node *delay_slot = NULL;
1050
1051 for( i=0; i < _cfg->_num_blocks; i++ ) {
1052 Block *b = _cfg->_blocks[i];
1053
1054 Node *head = b->head();
1055
1056 // If this block needs to start aligned (i.e, can be reached other
1057 // than by falling-thru from the previous block), then force the
1058 // start of a new bundle.
1059 if( Pipeline::requires_bundling() && starts_bundle(head) )
1060 cb->flush_bundle(true);
1061
1062 // Define the label at the beginning of the basic block
1063 if( labels_not_set )
1064 MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
1065
1066 else
1067 assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
1068 "label position does not match code offset" );
1069
1070 uint last_inst = b->_nodes.size();
1071
1072 // Emit block normally, except for last instruction.
1073 // Emit means "dump code bits into code buffer".
1074 for( uint j = 0; j<last_inst; j++ ) {
1075
1076 // Get the node
1077 Node* n = b->_nodes[j];
1078
1079 // See if delay slots are supported
1080 if (valid_bundle_info(n) &&
1081 node_bundling(n)->used_in_unconditional_delay()) {
1082 assert(delay_slot == NULL, "no use of delay slot node");
1083 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1084
1085 delay_slot = n;
1086 continue;
1087 }
1088
1089 // If this starts a new instruction group, then flush the current one
1090 // (but allow split bundles)
1091 if( Pipeline::requires_bundling() && starts_bundle(n) )
1092 cb->flush_bundle(false);
1093
1094 // The following logic is duplicated in the code ifdeffed for
1095 // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file. It
1096 // should be factored out. Or maybe dispersed to the nodes?
1097
1098 // Special handling for SafePoint/Call Nodes
1099 bool is_mcall = false;
1100 if( n->is_Mach() ) {
1101 MachNode *mach = n->as_Mach();
1102 is_mcall = n->is_MachCall();
1103 bool is_sfn = n->is_MachSafePoint();
1104
1105 // If this requires all previous instructions be flushed, then do so
1106 if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1107 cb->flush_bundle(true);
1108 current_offset = cb->code_size();
1109 }
1110
1111 // align the instruction if necessary
1112 int nop_size = nop->size(_regalloc);
1113 int padding = mach->compute_padding(current_offset);
1114 // Make sure safepoint node for polling is distinct from a call's
1115 // return by adding a nop if needed.
1116 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1117 padding = nop_size;
1118 }
1119 assert( labels_not_set || padding == 0, "instruction should already be aligned")
1120
1121 if(padding > 0) {
1122 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1123 int nops_cnt = padding / nop_size;
1124 MachNode *nop = new (this) MachNopNode(nops_cnt);
1125 b->_nodes.insert(j++, nop);
1126 last_inst++;
1127 _cfg->_bbs.map( nop->_idx, b );
1128 nop->emit(*cb, _regalloc);
1129 cb->flush_bundle(true);
1130 current_offset = cb->code_size();
1131 }
1132
1133 // Remember the start of the last call in a basic block
1134 if (is_mcall) {
1135 MachCallNode *mcall = mach->as_MachCall();
1136
1137 // This destination address is NOT PC-relative
1138 mcall->method_set((intptr_t)mcall->entry_point());
1139
1140 // Save the return address
1141 call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1142
1143 if (!mcall->is_safepoint_node()) {
1144 is_mcall = false;
1145 is_sfn = false;
1146 }
1147 }
1148
1149 // sfn will be valid whenever mcall is valid now because of inheritance
1150 if( is_sfn || is_mcall ) {
1151
1152 // Handle special safepoint nodes for synchronization
1153 if( !is_mcall ) {
1154 MachSafePointNode *sfn = mach->as_MachSafePoint();
1155 // !!!!! Stubs only need an oopmap right now, so bail out
1156 if( sfn->jvms()->method() == NULL) {
1157 // Write the oopmap directly to the code blob??!!
1158 # ifdef ENABLE_ZAP_DEAD_LOCALS
1159 assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive");
1160 # endif
1161 continue;
1162 }
1163 } // End synchronization
1164
1165 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1166 current_offset);
1167 Process_OopMap_Node(mach, current_offset);
1168 } // End if safepoint
1169
1170 // If this is a null check, then add the start of the previous instruction to the list
1171 else if( mach->is_MachNullCheck() ) {
1172 inct_starts[inct_cnt++] = previous_offset;
1173 }
1174
1175 // If this is a branch, then fill in the label with the target BB's label
1176 else if ( mach->is_Branch() ) {
1177
1178 if ( mach->ideal_Opcode() == Op_Jump ) {
1179 for (uint h = 0; h < b->_num_succs; h++ ) {
1180 Block* succs_block = b->_succs[h];
1181 for (uint j = 1; j < succs_block->num_preds(); j++) {
1182 Node* jpn = succs_block->pred(j);
1183 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1184 uint block_num = succs_block->non_connector()->_pre_order;
1185 Label *blkLabel = &blk_labels[block_num];
1186 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1187 }
1188 }
1189 }
1190 } else {
1191 // For Branchs
1192 // This requires the TRUE branch target be in succs[0]
1193 uint block_num = b->non_connector_successor(0)->_pre_order;
1194 mach->label_set( blk_labels[block_num], block_num );
1195 }
1196 }
1197
1198 #ifdef ASSERT
1199 // Check that oop-store preceeds the card-mark
1200 else if( mach->ideal_Opcode() == Op_StoreCM ) {
1201 uint storeCM_idx = j;
1202 Node *oop_store = mach->in(mach->_cnt); // First precedence edge
1203 assert( oop_store != NULL, "storeCM expects a precedence edge");
1204 uint i4;
1205 for( i4 = 0; i4 < last_inst; ++i4 ) {
1206 if( b->_nodes[i4] == oop_store ) break;
1207 }
1208 // Note: This test can provide a false failure if other precedence
1209 // edges have been added to the storeCMNode.
1210 assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1211 }
1212 #endif
1213
1214 else if( !n->is_Proj() ) {
1215 // Remember the begining of the previous instruction, in case
1216 // it's followed by a flag-kill and a null-check. Happens on
1217 // Intel all the time, with add-to-memory kind of opcodes.
1218 previous_offset = current_offset;
1219 }
1220 }
1221
1222 // Verify that there is sufficient space remaining
1223 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1224 if (cb->blob() == NULL) {
1225 turn_off_compiler(this);
1226 return;
1227 }
1228
1229 // Save the offset for the listing
1230 #ifndef PRODUCT
1231 if( node_offsets && n->_idx < node_offset_limit )
1232 node_offsets[n->_idx] = cb->code_size();
1233 #endif
1234
1235 // "Normal" instruction case
1236 n->emit(*cb, _regalloc);
1237 current_offset = cb->code_size();
1238 non_safepoints.observe_instruction(n, current_offset);
1239
1240 // mcall is last "call" that can be a safepoint
1241 // record it so we can see if a poll will directly follow it
1242 // in which case we'll need a pad to make the PcDesc sites unique
1243 // see 5010568. This can be slightly inaccurate but conservative
1244 // in the case that return address is not actually at current_offset.
1245 // This is a small price to pay.
1246
1247 if (is_mcall) {
1248 last_call_offset = current_offset;
1249 }
1250
1251 // See if this instruction has a delay slot
1252 if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1253 assert(delay_slot != NULL, "expecting delay slot node");
1254
1255 // Back up 1 instruction
1256 cb->set_code_end(
1257 cb->code_end()-Pipeline::instr_unit_size());
1258
1259 // Save the offset for the listing
1260 #ifndef PRODUCT
1261 if( node_offsets && delay_slot->_idx < node_offset_limit )
1262 node_offsets[delay_slot->_idx] = cb->code_size();
1263 #endif
1264
1265 // Support a SafePoint in the delay slot
1266 if( delay_slot->is_MachSafePoint() ) {
1267 MachNode *mach = delay_slot->as_Mach();
1268 // !!!!! Stubs only need an oopmap right now, so bail out
1269 if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1270 // Write the oopmap directly to the code blob??!!
1271 # ifdef ENABLE_ZAP_DEAD_LOCALS
1272 assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive");
1273 # endif
1274 delay_slot = NULL;
1275 continue;
1276 }
1277
1278 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1279 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1280 adjusted_offset);
1281 // Generate an OopMap entry
1282 Process_OopMap_Node(mach, adjusted_offset);
1283 }
1284
1285 // Insert the delay slot instruction
1286 delay_slot->emit(*cb, _regalloc);
1287
1288 // Don't reuse it
1289 delay_slot = NULL;
1290 }
1291
1292 } // End for all instructions in block
1293
1294 // If the next block _starts_ a loop, pad this block out to align
1295 // the loop start a little. Helps prevent pipe stalls at loop starts
1296 int nop_size = (new (this) MachNopNode())->size(_regalloc);
1297 if( i<_cfg->_num_blocks-1 ) {
1298 Block *nb = _cfg->_blocks[i+1];
1299 uint padding = nb->alignment_padding(current_offset);
1300 if( padding > 0 ) {
1301 MachNode *nop = new (this) MachNopNode(padding / nop_size);
1302 b->_nodes.insert( b->_nodes.size(), nop );
1303 _cfg->_bbs.map( nop->_idx, b );
1304 nop->emit(*cb, _regalloc);
1305 current_offset = cb->code_size();
1306 }
1307 }
1308
1309 } // End of for all blocks
1310
1311 non_safepoints.flush_at_end();
1312
1313 // Offset too large?
1314 if (failing()) return;
1315
1316 // Define a pseudo-label at the end of the code
1317 MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1318
1319 // Compute the size of the first block
1320 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1321
1322 assert(cb->code_size() < 500000, "method is unreasonably large");
1323
1324 // ------------------
1325
1326 #ifndef PRODUCT
1327 // Information on the size of the method, without the extraneous code
1328 Scheduling::increment_method_size(cb->code_size());
1329 #endif
1330
1331 // ------------------
1332 // Fill in exception table entries.
1333 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1334
1335 // Only java methods have exception handlers and deopt handlers
1336 if (_method) {
1337 // Emit the exception handler code.
1338 _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1339 // Emit the deopt handler code.
1340 _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1341 }
1342
1343 // One last check for failed CodeBuffer::expand:
1344 if (cb->blob() == NULL) {
1345 turn_off_compiler(this);
1346 return;
1347 }
1348
1349 #ifndef PRODUCT
1350 // Dump the assembly code, including basic-block numbers
1351 if (print_assembly()) {
1352 ttyLocker ttyl; // keep the following output all in one block
1353 if (!VMThread::should_terminate()) { // test this under the tty lock
1354 // This output goes directly to the tty, not the compiler log.
1355 // To enable tools to match it up with the compilation activity,
1356 // be sure to tag this tty output with the compile ID.
1357 if (xtty != NULL) {
1358 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1359 is_osr_compilation() ? " compile_kind='osr'" :
1360 "");
1361 }
1362 if (method() != NULL) {
1363 method()->print_oop();
1364 print_codes();
1365 }
1366 dump_asm(node_offsets, node_offset_limit);
1367 if (xtty != NULL) {
1368 xtty->tail("opto_assembly");
1369 }
1370 }
1371 }
1372 #endif
1373
1374 }
1375
1376 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1377 _inc_table.set_size(cnt);
1378
1379 uint inct_cnt = 0;
1380 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1381 Block *b = _cfg->_blocks[i];
1382 Node *n = NULL;
1383 int j;
1384
1385 // Find the branch; ignore trailing NOPs.
1386 for( j = b->_nodes.size()-1; j>=0; j-- ) {
1387 n = b->_nodes[j];
1388 if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1389 break;
1390 }
1391
1392 // If we didn't find anything, continue
1393 if( j < 0 ) continue;
1394
1395 // Compute ExceptionHandlerTable subtable entry and add it
1396 // (skip empty blocks)
1397 if( n->is_Catch() ) {
1398
1399 // Get the offset of the return from the call
1400 uint call_return = call_returns[b->_pre_order];
1401 #ifdef ASSERT
1402 assert( call_return > 0, "no call seen for this basic block" );
1403 while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1404 assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1405 #endif
1406 // last instruction is a CatchNode, find it's CatchProjNodes
1407 int nof_succs = b->_num_succs;
1408 // allocate space
1409 GrowableArray<intptr_t> handler_bcis(nof_succs);
1410 GrowableArray<intptr_t> handler_pcos(nof_succs);
1411 // iterate through all successors
1412 for (int j = 0; j < nof_succs; j++) {
1413 Block* s = b->_succs[j];
1414 bool found_p = false;
1415 for( uint k = 1; k < s->num_preds(); k++ ) {
1416 Node *pk = s->pred(k);
1417 if( pk->is_CatchProj() && pk->in(0) == n ) {
1418 const CatchProjNode* p = pk->as_CatchProj();
1419 found_p = true;
1420 // add the corresponding handler bci & pco information
1421 if( p->_con != CatchProjNode::fall_through_index ) {
1422 // p leads to an exception handler (and is not fall through)
1423 assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1424 // no duplicates, please
1425 if( !handler_bcis.contains(p->handler_bci()) ) {
1426 uint block_num = s->non_connector()->_pre_order;
1427 handler_bcis.append(p->handler_bci());
1428 handler_pcos.append(blk_labels[block_num].loc_pos());
1429 }
1430 }
1431 }
1432 }
1433 assert(found_p, "no matching predecessor found");
1434 // Note: Due to empty block removal, one block may have
1435 // several CatchProj inputs, from the same Catch.
1436 }
1437
1438 // Set the offset of the return from the call
1439 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1440 continue;
1441 }
1442
1443 // Handle implicit null exception table updates
1444 if( n->is_MachNullCheck() ) {
1445 uint block_num = b->non_connector_successor(0)->_pre_order;
1446 _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1447 continue;
1448 }
1449 } // End of for all blocks fill in exception table entries
1450 }
1451
1452 // Static Variables
1453 #ifndef PRODUCT
1454 uint Scheduling::_total_nop_size = 0;
1455 uint Scheduling::_total_method_size = 0;
1456 uint Scheduling::_total_branches = 0;
1457 uint Scheduling::_total_unconditional_delays = 0;
1458 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1459 #endif
1460
1461 // Initializer for class Scheduling
1462
1463 Scheduling::Scheduling(Arena *arena, Compile &compile)
1464 : _arena(arena),
1465 _cfg(compile.cfg()),
1466 _bbs(compile.cfg()->_bbs),
1467 _regalloc(compile.regalloc()),
1468 _reg_node(arena),
1469 _bundle_instr_count(0),
1470 _bundle_cycle_number(0),
1471 _scheduled(arena),
1472 _available(arena),
1473 _next_node(NULL),
1474 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1475 _pinch_free_list(arena)
1476 #ifndef PRODUCT
1477 , _branches(0)
1478 , _unconditional_delays(0)
1479 #endif
1480 {
1481 // Create a MachNopNode
1482 _nop = new (&compile) MachNopNode();
1483
1484 // Now that the nops are in the array, save the count
1485 // (but allow entries for the nops)
1486 _node_bundling_limit = compile.unique();
1487 uint node_max = _regalloc->node_regs_max_index();
1488
1489 compile.set_node_bundling_limit(_node_bundling_limit);
1490
1491 // This one is persistant within the Compile class
1492 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1493
1494 // Allocate space for fixed-size arrays
1495 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1496 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
1497 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1498
1499 // Clear the arrays
1500 memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1501 memset(_node_latency, 0, node_max * sizeof(unsigned short));
1502 memset(_uses, 0, node_max * sizeof(short));
1503 memset(_current_latency, 0, node_max * sizeof(unsigned short));
1504
1505 // Clear the bundling information
1506 memcpy(_bundle_use_elements,
1507 Pipeline_Use::elaborated_elements,
1508 sizeof(Pipeline_Use::elaborated_elements));
1509
1510 // Get the last node
1511 Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1512
1513 _next_node = bb->_nodes[bb->_nodes.size()-1];
1514 }
1515
1516 #ifndef PRODUCT
1517 // Scheduling destructor
1518 Scheduling::~Scheduling() {
1519 _total_branches += _branches;
1520 _total_unconditional_delays += _unconditional_delays;
1521 }
1522 #endif
1523
1524 // Step ahead "i" cycles
1525 void Scheduling::step(uint i) {
1526
1527 Bundle *bundle = node_bundling(_next_node);
1528 bundle->set_starts_bundle();
1529
1530 // Update the bundle record, but leave the flags information alone
1531 if (_bundle_instr_count > 0) {
1532 bundle->set_instr_count(_bundle_instr_count);
1533 bundle->set_resources_used(_bundle_use.resourcesUsed());
1534 }
1535
1536 // Update the state information
1537 _bundle_instr_count = 0;
1538 _bundle_cycle_number += i;
1539 _bundle_use.step(i);
1540 }
1541
1542 void Scheduling::step_and_clear() {
1543 Bundle *bundle = node_bundling(_next_node);
1544 bundle->set_starts_bundle();
1545
1546 // Update the bundle record
1547 if (_bundle_instr_count > 0) {
1548 bundle->set_instr_count(_bundle_instr_count);
1549 bundle->set_resources_used(_bundle_use.resourcesUsed());
1550
1551 _bundle_cycle_number += 1;
1552 }
1553
1554 // Clear the bundling information
1555 _bundle_instr_count = 0;
1556 _bundle_use.reset();
1557
1558 memcpy(_bundle_use_elements,
1559 Pipeline_Use::elaborated_elements,
1560 sizeof(Pipeline_Use::elaborated_elements));
1561 }
1562
1563 //------------------------------ScheduleAndBundle------------------------------
1564 // Perform instruction scheduling and bundling over the sequence of
1565 // instructions in backwards order.
1566 void Compile::ScheduleAndBundle() {
1567
1568 // Don't optimize this if it isn't a method
1569 if (!_method)
1570 return;
1571
1572 // Don't optimize this if scheduling is disabled
1573 if (!do_scheduling())
1574 return;
1575
1576 NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1577
1578 // Create a data structure for all the scheduling information
1579 Scheduling scheduling(Thread::current()->resource_area(), *this);
1580
1581 // Walk backwards over each basic block, computing the needed alignment
1582 // Walk over all the basic blocks
1583 scheduling.DoScheduling();
1584 }
1585
1586 //------------------------------ComputeLocalLatenciesForward-------------------
1587 // Compute the latency of all the instructions. This is fairly simple,
1588 // because we already have a legal ordering. Walk over the instructions
1589 // from first to last, and compute the latency of the instruction based
1590 // on the latency of the preceeding instruction(s).
1591 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1592 #ifndef PRODUCT
1593 if (_cfg->C->trace_opto_output())
1594 tty->print("# -> ComputeLocalLatenciesForward\n");
1595 #endif
1596
1597 // Walk over all the schedulable instructions
1598 for( uint j=_bb_start; j < _bb_end; j++ ) {
1599
1600 // This is a kludge, forcing all latency calculations to start at 1.
1601 // Used to allow latency 0 to force an instruction to the beginning
1602 // of the bb
1603 uint latency = 1;
1604 Node *use = bb->_nodes[j];
1605 uint nlen = use->len();
1606
1607 // Walk over all the inputs
1608 for ( uint k=0; k < nlen; k++ ) {
1609 Node *def = use->in(k);
1610 if (!def)
1611 continue;
1612
1613 uint l = _node_latency[def->_idx] + use->latency(k);
1614 if (latency < l)
1615 latency = l;
1616 }
1617
1618 _node_latency[use->_idx] = latency;
1619
1620 #ifndef PRODUCT
1621 if (_cfg->C->trace_opto_output()) {
1622 tty->print("# latency %4d: ", latency);
1623 use->dump();
1624 }
1625 #endif
1626 }
1627
1628 #ifndef PRODUCT
1629 if (_cfg->C->trace_opto_output())
1630 tty->print("# <- ComputeLocalLatenciesForward\n");
1631 #endif
1632
1633 } // end ComputeLocalLatenciesForward
1634
1635 // See if this node fits into the present instruction bundle
1636 bool Scheduling::NodeFitsInBundle(Node *n) {
1637 uint n_idx = n->_idx;
1638
1639 // If this is the unconditional delay instruction, then it fits
1640 if (n == _unconditional_delay_slot) {
1641 #ifndef PRODUCT
1642 if (_cfg->C->trace_opto_output())
1643 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1644 #endif
1645 return (true);
1646 }
1647
1648 // If the node cannot be scheduled this cycle, skip it
1649 if (_current_latency[n_idx] > _bundle_cycle_number) {
1650 #ifndef PRODUCT
1651 if (_cfg->C->trace_opto_output())
1652 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1653 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1654 #endif
1655 return (false);
1656 }
1657
1658 const Pipeline *node_pipeline = n->pipeline();
1659
1660 uint instruction_count = node_pipeline->instructionCount();
1661 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1662 instruction_count = 0;
1663 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1664 instruction_count++;
1665
1666 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1667 #ifndef PRODUCT
1668 if (_cfg->C->trace_opto_output())
1669 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1670 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1671 #endif
1672 return (false);
1673 }
1674
1675 // Don't allow non-machine nodes to be handled this way
1676 if (!n->is_Mach() && instruction_count == 0)
1677 return (false);
1678
1679 // See if there is any overlap
1680 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1681
1682 if (delay > 0) {
1683 #ifndef PRODUCT
1684 if (_cfg->C->trace_opto_output())
1685 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1686 #endif
1687 return false;
1688 }
1689
1690 #ifndef PRODUCT
1691 if (_cfg->C->trace_opto_output())
1692 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
1693 #endif
1694
1695 return true;
1696 }
1697
1698 Node * Scheduling::ChooseNodeToBundle() {
1699 uint siz = _available.size();
1700
1701 if (siz == 0) {
1702
1703 #ifndef PRODUCT
1704 if (_cfg->C->trace_opto_output())
1705 tty->print("# ChooseNodeToBundle: NULL\n");
1706 #endif
1707 return (NULL);
1708 }
1709
1710 // Fast path, if only 1 instruction in the bundle
1711 if (siz == 1) {
1712 #ifndef PRODUCT
1713 if (_cfg->C->trace_opto_output()) {
1714 tty->print("# ChooseNodeToBundle (only 1): ");
1715 _available[0]->dump();
1716 }
1717 #endif
1718 return (_available[0]);
1719 }
1720
1721 // Don't bother, if the bundle is already full
1722 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1723 for ( uint i = 0; i < siz; i++ ) {
1724 Node *n = _available[i];
1725
1726 // Skip projections, we'll handle them another way
1727 if (n->is_Proj())
1728 continue;
1729
1730 // This presupposed that instructions are inserted into the
1731 // available list in a legality order; i.e. instructions that
1732 // must be inserted first are at the head of the list
1733 if (NodeFitsInBundle(n)) {
1734 #ifndef PRODUCT
1735 if (_cfg->C->trace_opto_output()) {
1736 tty->print("# ChooseNodeToBundle: ");
1737 n->dump();
1738 }
1739 #endif
1740 return (n);
1741 }
1742 }
1743 }
1744
1745 // Nothing fits in this bundle, choose the highest priority
1746 #ifndef PRODUCT
1747 if (_cfg->C->trace_opto_output()) {
1748 tty->print("# ChooseNodeToBundle: ");
1749 _available[0]->dump();
1750 }
1751 #endif
1752
1753 return _available[0];
1754 }
1755
1756 //------------------------------AddNodeToAvailableList-------------------------
1757 void Scheduling::AddNodeToAvailableList(Node *n) {
1758 assert( !n->is_Proj(), "projections never directly made available" );
1759 #ifndef PRODUCT
1760 if (_cfg->C->trace_opto_output()) {
1761 tty->print("# AddNodeToAvailableList: ");
1762 n->dump();
1763 }
1764 #endif
1765
1766 int latency = _current_latency[n->_idx];
1767
1768 // Insert in latency order (insertion sort)
1769 uint i;
1770 for ( i=0; i < _available.size(); i++ )
1771 if (_current_latency[_available[i]->_idx] > latency)
1772 break;
1773
1774 // Special Check for compares following branches
1775 if( n->is_Mach() && _scheduled.size() > 0 ) {
1776 int op = n->as_Mach()->ideal_Opcode();
1777 Node *last = _scheduled[0];
1778 if( last->is_MachIf() && last->in(1) == n &&
1779 ( op == Op_CmpI ||
1780 op == Op_CmpU ||
1781 op == Op_CmpP ||
1782 op == Op_CmpF ||
1783 op == Op_CmpD ||
1784 op == Op_CmpL ) ) {
1785
1786 // Recalculate position, moving to front of same latency
1787 for ( i=0 ; i < _available.size(); i++ )
1788 if (_current_latency[_available[i]->_idx] >= latency)
1789 break;
1790 }
1791 }
1792
1793 // Insert the node in the available list
1794 _available.insert(i, n);
1795
1796 #ifndef PRODUCT
1797 if (_cfg->C->trace_opto_output())
1798 dump_available();
1799 #endif
1800 }
1801
1802 //------------------------------DecrementUseCounts-----------------------------
1803 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1804 for ( uint i=0; i < n->len(); i++ ) {
1805 Node *def = n->in(i);
1806 if (!def) continue;
1807 if( def->is_Proj() ) // If this is a machine projection, then
1808 def = def->in(0); // propagate usage thru to the base instruction
1809
1810 if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1811 continue;
1812
1813 // Compute the latency
1814 uint l = _bundle_cycle_number + n->latency(i);
1815 if (_current_latency[def->_idx] < l)
1816 _current_latency[def->_idx] = l;
1817
1818 // If this does not have uses then schedule it
1819 if ((--_uses[def->_idx]) == 0)
1820 AddNodeToAvailableList(def);
1821 }
1822 }
1823
1824 //------------------------------AddNodeToBundle--------------------------------
1825 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1826 #ifndef PRODUCT
1827 if (_cfg->C->trace_opto_output()) {
1828 tty->print("# AddNodeToBundle: ");
1829 n->dump();
1830 }
1831 #endif
1832
1833 // Remove this from the available list
1834 uint i;
1835 for (i = 0; i < _available.size(); i++)
1836 if (_available[i] == n)
1837 break;
1838 assert(i < _available.size(), "entry in _available list not found");
1839 _available.remove(i);
1840
1841 // See if this fits in the current bundle
1842 const Pipeline *node_pipeline = n->pipeline();
1843 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1844
1845 // Check for instructions to be placed in the delay slot. We
1846 // do this before we actually schedule the current instruction,
1847 // because the delay slot follows the current instruction.
1848 if (Pipeline::_branch_has_delay_slot &&
1849 node_pipeline->hasBranchDelay() &&
1850 !_unconditional_delay_slot) {
1851
1852 uint siz = _available.size();
1853
1854 // Conditional branches can support an instruction that
1855 // is unconditionally executed and not dependant by the
1856 // branch, OR a conditionally executed instruction if
1857 // the branch is taken. In practice, this means that
1858 // the first instruction at the branch target is
1859 // copied to the delay slot, and the branch goes to
1860 // the instruction after that at the branch target
1861 if ( n->is_Mach() && n->is_Branch() ) {
1862
1863 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
1864 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
1865
1866 #ifndef PRODUCT
1867 _branches++;
1868 #endif
1869
1870 // At least 1 instruction is on the available list
1871 // that is not dependant on the branch
1872 for (uint i = 0; i < siz; i++) {
1873 Node *d = _available[i];
1874 const Pipeline *avail_pipeline = d->pipeline();
1875
1876 // Don't allow safepoints in the branch shadow, that will
1877 // cause a number of difficulties
1878 if ( avail_pipeline->instructionCount() == 1 &&
1879 !avail_pipeline->hasMultipleBundles() &&
1880 !avail_pipeline->hasBranchDelay() &&
1881 Pipeline::instr_has_unit_size() &&
1882 d->size(_regalloc) == Pipeline::instr_unit_size() &&
1883 NodeFitsInBundle(d) &&
1884 !node_bundling(d)->used_in_delay()) {
1885
1886 if (d->is_Mach() && !d->is_MachSafePoint()) {
1887 // A node that fits in the delay slot was found, so we need to
1888 // set the appropriate bits in the bundle pipeline information so
1889 // that it correctly indicates resource usage. Later, when we
1890 // attempt to add this instruction to the bundle, we will skip
1891 // setting the resource usage.
1892 _unconditional_delay_slot = d;
1893 node_bundling(n)->set_use_unconditional_delay();
1894 node_bundling(d)->set_used_in_unconditional_delay();
1895 _bundle_use.add_usage(avail_pipeline->resourceUse());
1896 _current_latency[d->_idx] = _bundle_cycle_number;
1897 _next_node = d;
1898 ++_bundle_instr_count;
1899 #ifndef PRODUCT
1900 _unconditional_delays++;
1901 #endif
1902 break;
1903 }
1904 }
1905 }
1906 }
1907
1908 // No delay slot, add a nop to the usage
1909 if (!_unconditional_delay_slot) {
1910 // See if adding an instruction in the delay slot will overflow
1911 // the bundle.
1912 if (!NodeFitsInBundle(_nop)) {
1913 #ifndef PRODUCT
1914 if (_cfg->C->trace_opto_output())
1915 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
1916 #endif
1917 step(1);
1918 }
1919
1920 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
1921 _next_node = _nop;
1922 ++_bundle_instr_count;
1923 }
1924
1925 // See if the instruction in the delay slot requires a
1926 // step of the bundles
1927 if (!NodeFitsInBundle(n)) {
1928 #ifndef PRODUCT
1929 if (_cfg->C->trace_opto_output())
1930 tty->print("# *** STEP(branch won't fit) ***\n");
1931 #endif
1932 // Update the state information
1933 _bundle_instr_count = 0;
1934 _bundle_cycle_number += 1;
1935 _bundle_use.step(1);
1936 }
1937 }
1938
1939 // Get the number of instructions
1940 uint instruction_count = node_pipeline->instructionCount();
1941 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1942 instruction_count = 0;
1943
1944 // Compute the latency information
1945 uint delay = 0;
1946
1947 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
1948 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
1949 if (relative_latency < 0)
1950 relative_latency = 0;
1951
1952 delay = _bundle_use.full_latency(relative_latency, node_usage);
1953
1954 // Does not fit in this bundle, start a new one
1955 if (delay > 0) {
1956 step(delay);
1957
1958 #ifndef PRODUCT
1959 if (_cfg->C->trace_opto_output())
1960 tty->print("# *** STEP(%d) ***\n", delay);
1961 #endif
1962 }
1963 }
1964
1965 // If this was placed in the delay slot, ignore it
1966 if (n != _unconditional_delay_slot) {
1967
1968 if (delay == 0) {
1969 if (node_pipeline->hasMultipleBundles()) {
1970 #ifndef PRODUCT
1971 if (_cfg->C->trace_opto_output())
1972 tty->print("# *** STEP(multiple instructions) ***\n");
1973 #endif
1974 step(1);
1975 }
1976
1977 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
1978 #ifndef PRODUCT
1979 if (_cfg->C->trace_opto_output())
1980 tty->print("# *** STEP(%d >= %d instructions) ***\n",
1981 instruction_count + _bundle_instr_count,
1982 Pipeline::_max_instrs_per_cycle);
1983 #endif
1984 step(1);
1985 }
1986 }
1987
1988 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1989 _bundle_instr_count++;
1990
1991 // Set the node's latency
1992 _current_latency[n->_idx] = _bundle_cycle_number;
1993
1994 // Now merge the functional unit information
1995 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
1996 _bundle_use.add_usage(node_usage);
1997
1998 // Increment the number of instructions in this bundle
1999 _bundle_instr_count += instruction_count;
2000
2001 // Remember this node for later
2002 if (n->is_Mach())
2003 _next_node = n;
2004 }
2005
2006 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2007 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
2008 // 'Schedule' them (basically ignore in the schedule) but do not insert them
2009 // into the block. All other scheduled nodes get put in the schedule here.
2010 int op = n->Opcode();
2011 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2012 (op != Op_Node && // Not an unused antidepedence node and
2013 // not an unallocated boxlock
2014 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2015
2016 // Push any trailing projections
2017 if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2018 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2019 Node *foi = n->fast_out(i);
2020 if( foi->is_Proj() )
2021 _scheduled.push(foi);
2022 }
2023 }
2024
2025 // Put the instruction in the schedule list
2026 _scheduled.push(n);
2027 }
2028
2029 #ifndef PRODUCT
2030 if (_cfg->C->trace_opto_output())
2031 dump_available();
2032 #endif
2033
2034 // Walk all the definitions, decrementing use counts, and
2035 // if a definition has a 0 use count, place it in the available list.
2036 DecrementUseCounts(n,bb);
2037 }
2038
2039 //------------------------------ComputeUseCount--------------------------------
2040 // This method sets the use count within a basic block. We will ignore all
2041 // uses outside the current basic block. As we are doing a backwards walk,
2042 // any node we reach that has a use count of 0 may be scheduled. This also
2043 // avoids the problem of cyclic references from phi nodes, as long as phi
2044 // nodes are at the front of the basic block. This method also initializes
2045 // the available list to the set of instructions that have no uses within this
2046 // basic block.
2047 void Scheduling::ComputeUseCount(const Block *bb) {
2048 #ifndef PRODUCT
2049 if (_cfg->C->trace_opto_output())
2050 tty->print("# -> ComputeUseCount\n");
2051 #endif
2052
2053 // Clear the list of available and scheduled instructions, just in case
2054 _available.clear();
2055 _scheduled.clear();
2056
2057 // No delay slot specified
2058 _unconditional_delay_slot = NULL;
2059
2060 #ifdef ASSERT
2061 for( uint i=0; i < bb->_nodes.size(); i++ )
2062 assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2063 #endif
2064
2065 // Force the _uses count to never go to zero for unscheduable pieces
2066 // of the block
2067 for( uint k = 0; k < _bb_start; k++ )
2068 _uses[bb->_nodes[k]->_idx] = 1;
2069 for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2070 _uses[bb->_nodes[l]->_idx] = 1;
2071
2072 // Iterate backwards over the instructions in the block. Don't count the
2073 // branch projections at end or the block header instructions.
2074 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2075 Node *n = bb->_nodes[j];
2076 if( n->is_Proj() ) continue; // Projections handled another way
2077
2078 // Account for all uses
2079 for ( uint k = 0; k < n->len(); k++ ) {
2080 Node *inp = n->in(k);
2081 if (!inp) continue;
2082 assert(inp != n, "no cycles allowed" );
2083 if( _bbs[inp->_idx] == bb ) { // Block-local use?
2084 if( inp->is_Proj() ) // Skip through Proj's
2085 inp = inp->in(0);
2086 ++_uses[inp->_idx]; // Count 1 block-local use
2087 }
2088 }
2089
2090 // If this instruction has a 0 use count, then it is available
2091 if (!_uses[n->_idx]) {
2092 _current_latency[n->_idx] = _bundle_cycle_number;
2093 AddNodeToAvailableList(n);
2094 }
2095
2096 #ifndef PRODUCT
2097 if (_cfg->C->trace_opto_output()) {
2098 tty->print("# uses: %3d: ", _uses[n->_idx]);
2099 n->dump();
2100 }
2101 #endif
2102 }
2103
2104 #ifndef PRODUCT
2105 if (_cfg->C->trace_opto_output())
2106 tty->print("# <- ComputeUseCount\n");
2107 #endif
2108 }
2109
2110 // This routine performs scheduling on each basic block in reverse order,
2111 // using instruction latencies and taking into account function unit
2112 // availability.
2113 void Scheduling::DoScheduling() {
2114 #ifndef PRODUCT
2115 if (_cfg->C->trace_opto_output())
2116 tty->print("# -> DoScheduling\n");
2117 #endif
2118
2119 Block *succ_bb = NULL;
2120 Block *bb;
2121
2122 // Walk over all the basic blocks in reverse order
2123 for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2124 bb = _cfg->_blocks[i];
2125
2126 #ifndef PRODUCT
2127 if (_cfg->C->trace_opto_output()) {
2128 tty->print("# Schedule BB#%03d (initial)\n", i);
2129 for (uint j = 0; j < bb->_nodes.size(); j++)
2130 bb->_nodes[j]->dump();
2131 }
2132 #endif
2133
2134 // On the head node, skip processing
2135 if( bb == _cfg->_broot )
2136 continue;
2137
2138 // Skip empty, connector blocks
2139 if (bb->is_connector())
2140 continue;
2141
2142 // If the following block is not the sole successor of
2143 // this one, then reset the pipeline information
2144 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2145 #ifndef PRODUCT
2146 if (_cfg->C->trace_opto_output()) {
2147 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2148 _next_node->_idx, _bundle_instr_count);
2149 }
2150 #endif
2151 step_and_clear();
2152 }
2153
2154 // Leave untouched the starting instruction, any Phis, a CreateEx node
2155 // or Top. bb->_nodes[_bb_start] is the first schedulable instruction.
2156 _bb_end = bb->_nodes.size()-1;
2157 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2158 Node *n = bb->_nodes[_bb_start];
2159 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2160 // Also, MachIdealNodes do not get scheduled
2161 if( !n->is_Mach() ) continue; // Skip non-machine nodes
2162 MachNode *mach = n->as_Mach();
2163 int iop = mach->ideal_Opcode();
2164 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2165 if( iop == Op_Con ) continue; // Do not schedule Top
2166 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
2167 mach->pipeline() == MachNode::pipeline_class() &&
2168 !n->is_SpillCopy() ) // Breakpoints, Prolog, etc
2169 continue;
2170 break; // Funny loop structure to be sure...
2171 }
2172 // Compute last "interesting" instruction in block - last instruction we
2173 // might schedule. _bb_end points just after last schedulable inst. We
2174 // normally schedule conditional branches (despite them being forced last
2175 // in the block), because they have delay slots we can fill. Calls all
2176 // have their delay slots filled in the template expansions, so we don't
2177 // bother scheduling them.
2178 Node *last = bb->_nodes[_bb_end];
2179 if( last->is_Catch() ||
2180 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2181 // There must be a prior call. Skip it.
2182 while( !bb->_nodes[--_bb_end]->is_Call() ) {
2183 assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2184 }
2185 } else if( last->is_MachNullCheck() ) {
2186 // Backup so the last null-checked memory instruction is
2187 // outside the schedulable range. Skip over the nullcheck,
2188 // projection, and the memory nodes.
2189 Node *mem = last->in(1);
2190 do {
2191 _bb_end--;
2192 } while (mem != bb->_nodes[_bb_end]);
2193 } else {
2194 // Set _bb_end to point after last schedulable inst.
2195 _bb_end++;
2196 }
2197
2198 assert( _bb_start <= _bb_end, "inverted block ends" );
2199
2200 // Compute the register antidependencies for the basic block
2201 ComputeRegisterAntidependencies(bb);
2202 if (_cfg->C->failing()) return; // too many D-U pinch points
2203
2204 // Compute intra-bb latencies for the nodes
2205 ComputeLocalLatenciesForward(bb);
2206
2207 // Compute the usage within the block, and set the list of all nodes
2208 // in the block that have no uses within the block.
2209 ComputeUseCount(bb);
2210
2211 // Schedule the remaining instructions in the block
2212 while ( _available.size() > 0 ) {
2213 Node *n = ChooseNodeToBundle();
2214 AddNodeToBundle(n,bb);
2215 }
2216
2217 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2218 #ifdef ASSERT
2219 for( uint l = _bb_start; l < _bb_end; l++ ) {
2220 Node *n = bb->_nodes[l];
2221 uint m;
2222 for( m = 0; m < _bb_end-_bb_start; m++ )
2223 if( _scheduled[m] == n )
2224 break;
2225 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2226 }
2227 #endif
2228
2229 // Now copy the instructions (in reverse order) back to the block
2230 for ( uint k = _bb_start; k < _bb_end; k++ )
2231 bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2232
2233 #ifndef PRODUCT
2234 if (_cfg->C->trace_opto_output()) {
2235 tty->print("# Schedule BB#%03d (final)\n", i);
2236 uint current = 0;
2237 for (uint j = 0; j < bb->_nodes.size(); j++) {
2238 Node *n = bb->_nodes[j];
2239 if( valid_bundle_info(n) ) {
2240 Bundle *bundle = node_bundling(n);
2241 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2242 tty->print("*** Bundle: ");
2243 bundle->dump();
2244 }
2245 n->dump();
2246 }
2247 }
2248 }
2249 #endif
2250 #ifdef ASSERT
2251 verify_good_schedule(bb,"after block local scheduling");
2252 #endif
2253 }
2254
2255 #ifndef PRODUCT
2256 if (_cfg->C->trace_opto_output())
2257 tty->print("# <- DoScheduling\n");
2258 #endif
2259
2260 // Record final node-bundling array location
2261 _regalloc->C->set_node_bundling_base(_node_bundling_base);
2262
2263 } // end DoScheduling
2264
2265 //------------------------------verify_good_schedule---------------------------
2266 // Verify that no live-range used in the block is killed in the block by a
2267 // wrong DEF. This doesn't verify live-ranges that span blocks.
2268
2269 // Check for edge existence. Used to avoid adding redundant precedence edges.
2270 static bool edge_from_to( Node *from, Node *to ) {
2271 for( uint i=0; i<from->len(); i++ )
2272 if( from->in(i) == to )
2273 return true;
2274 return false;
2275 }
2276
2277 #ifdef ASSERT
2278 //------------------------------verify_do_def----------------------------------
2279 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2280 // Check for bad kills
2281 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2282 Node *prior_use = _reg_node[def];
2283 if( prior_use && !edge_from_to(prior_use,n) ) {
2284 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2285 n->dump();
2286 tty->print_cr("...");
2287 prior_use->dump();
2288 assert_msg(edge_from_to(prior_use,n),msg);
2289 }
2290 _reg_node.map(def,NULL); // Kill live USEs
2291 }
2292 }
2293
2294 //------------------------------verify_good_schedule---------------------------
2295 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2296
2297 // Zap to something reasonable for the verify code
2298 _reg_node.clear();
2299
2300 // Walk over the block backwards. Check to make sure each DEF doesn't
2301 // kill a live value (other than the one it's supposed to). Add each
2302 // USE to the live set.
2303 for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2304 Node *n = b->_nodes[i];
2305 int n_op = n->Opcode();
2306 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2307 // Fat-proj kills a slew of registers
2308 RegMask rm = n->out_RegMask();// Make local copy
2309 while( rm.is_NotEmpty() ) {
2310 OptoReg::Name kill = rm.find_first_elem();
2311 rm.Remove(kill);
2312 verify_do_def( n, kill, msg );
2313 }
2314 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2315 // Get DEF'd registers the normal way
2316 verify_do_def( n, _regalloc->get_reg_first(n), msg );
2317 verify_do_def( n, _regalloc->get_reg_second(n), msg );
2318 }
2319
2320 // Now make all USEs live
2321 for( uint i=1; i<n->req(); i++ ) {
2322 Node *def = n->in(i);
2323 assert(def != 0, "input edge required");
2324 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2325 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2326 if( OptoReg::is_valid(reg_lo) ) {
2327 assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
2328 _reg_node.map(reg_lo,n);
2329 }
2330 if( OptoReg::is_valid(reg_hi) ) {
2331 assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
2332 _reg_node.map(reg_hi,n);
2333 }
2334 }
2335
2336 }
2337
2338 // Zap to something reasonable for the Antidependence code
2339 _reg_node.clear();
2340 }
2341 #endif
2342
2343 // Conditionally add precedence edges. Avoid putting edges on Projs.
2344 static void add_prec_edge_from_to( Node *from, Node *to ) {
2345 if( from->is_Proj() ) { // Put precedence edge on Proj's input
2346 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2347 from = from->in(0);
2348 }
2349 if( from != to && // No cycles (for things like LD L0,[L0+4] )
2350 !edge_from_to( from, to ) ) // Avoid duplicate edge
2351 from->add_prec(to);
2352 }
2353
2354 //------------------------------anti_do_def------------------------------------
2355 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2356 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2357 return;
2358
2359 Node *pinch = _reg_node[def_reg]; // Get pinch point
2360 if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2361 is_def ) { // Check for a true def (not a kill)
2362 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2363 return;
2364 }
2365
2366 Node *kill = def; // Rename 'def' to more descriptive 'kill'
2367 debug_only( def = (Node*)0xdeadbeef; )
2368
2369 // After some number of kills there _may_ be a later def
2370 Node *later_def = NULL;
2371
2372 // Finding a kill requires a real pinch-point.
2373 // Check for not already having a pinch-point.
2374 // Pinch points are Op_Node's.
2375 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2376 later_def = pinch; // Must be def/kill as optimistic pinch-point
2377 if ( _pinch_free_list.size() > 0) {
2378 pinch = _pinch_free_list.pop();
2379 } else {
2380 pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2381 }
2382 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2383 _cfg->C->record_method_not_compilable("too many D-U pinch points");
2384 return;
2385 }
2386 _bbs.map(pinch->_idx,b); // Pretend it's valid in this block (lazy init)
2387 _reg_node.map(def_reg,pinch); // Record pinch-point
2388 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2389 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2390 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
2391 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2392 later_def = NULL; // and no later def
2393 }
2394 pinch->set_req(0,later_def); // Hook later def so we can find it
2395 } else { // Else have valid pinch point
2396 if( pinch->in(0) ) // If there is a later-def
2397 later_def = pinch->in(0); // Get it
2398 }
2399
2400 // Add output-dependence edge from later def to kill
2401 if( later_def ) // If there is some original def
2402 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2403
2404 // See if current kill is also a use, and so is forced to be the pinch-point.
2405 if( pinch->Opcode() == Op_Node ) {
2406 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2407 for( uint i=1; i<uses->req(); i++ ) {
2408 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2409 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2410 // Yes, found a use/kill pinch-point
2411 pinch->set_req(0,NULL); //
2412 pinch->replace_by(kill); // Move anti-dep edges up
2413 pinch = kill;
2414 _reg_node.map(def_reg,pinch);
2415 return;
2416 }
2417 }
2418 }
2419
2420 // Add edge from kill to pinch-point
2421 add_prec_edge_from_to(kill,pinch);
2422 }
2423
2424 //------------------------------anti_do_use------------------------------------
2425 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2426 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2427 return;
2428 Node *pinch = _reg_node[use_reg]; // Get pinch point
2429 // Check for no later def_reg/kill in block
2430 if( pinch && _bbs[pinch->_idx] == b &&
2431 // Use has to be block-local as well
2432 _bbs[use->_idx] == b ) {
2433 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2434 pinch->req() == 1 ) { // pinch not yet in block?
2435 pinch->del_req(0); // yank pointer to later-def, also set flag
2436 // Insert the pinch-point in the block just after the last use
2437 b->_nodes.insert(b->find_node(use)+1,pinch);
2438 _bb_end++; // Increase size scheduled region in block
2439 }
2440
2441 add_prec_edge_from_to(pinch,use);
2442 }
2443 }
2444
2445 //------------------------------ComputeRegisterAntidependences-----------------
2446 // We insert antidependences between the reads and following write of
2447 // allocated registers to prevent illegal code motion. Hopefully, the
2448 // number of added references should be fairly small, especially as we
2449 // are only adding references within the current basic block.
2450 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2451
2452 #ifdef ASSERT
2453 verify_good_schedule(b,"before block local scheduling");
2454 #endif
2455
2456 // A valid schedule, for each register independently, is an endless cycle
2457 // of: a def, then some uses (connected to the def by true dependencies),
2458 // then some kills (defs with no uses), finally the cycle repeats with a new
2459 // def. The uses are allowed to float relative to each other, as are the
2460 // kills. No use is allowed to slide past a kill (or def). This requires
2461 // antidependencies between all uses of a single def and all kills that
2462 // follow, up to the next def. More edges are redundant, because later defs
2463 // & kills are already serialized with true or antidependencies. To keep
2464 // the edge count down, we add a 'pinch point' node if there's more than
2465 // one use or more than one kill/def.
2466
2467 // We add dependencies in one bottom-up pass.
2468
2469 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2470
2471 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2472 // register. If not, we record the DEF/KILL in _reg_node, the
2473 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
2474 // "pinch point", a new Node that's in the graph but not in the block.
2475 // We put edges from the prior and current DEF/KILLs to the pinch point.
2476 // We put the pinch point in _reg_node. If there's already a pinch point
2477 // we merely add an edge from the current DEF/KILL to the pinch point.
2478
2479 // After doing the DEF/KILLs, we handle USEs. For each used register, we
2480 // put an edge from the pinch point to the USE.
2481
2482 // To be expedient, the _reg_node array is pre-allocated for the whole
2483 // compilation. _reg_node is lazily initialized; it either contains a NULL,
2484 // or a valid def/kill/pinch-point, or a leftover node from some prior
2485 // block. Leftover node from some prior block is treated like a NULL (no
2486 // prior def, so no anti-dependence needed). Valid def is distinguished by
2487 // it being in the current block.
2488 bool fat_proj_seen = false;
2489 uint last_safept = _bb_end-1;
2490 Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2491 Node* last_safept_node = end_node;
2492 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2493 Node *n = b->_nodes[i];
2494 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
2495 if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2496 // Fat-proj kills a slew of registers
2497 // This can add edges to 'n' and obscure whether or not it was a def,
2498 // hence the is_def flag.
2499 fat_proj_seen = true;
2500 RegMask rm = n->out_RegMask();// Make local copy
2501 while( rm.is_NotEmpty() ) {
2502 OptoReg::Name kill = rm.find_first_elem();
2503 rm.Remove(kill);
2504 anti_do_def( b, n, kill, is_def );
2505 }
2506 } else {
2507 // Get DEF'd registers the normal way
2508 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2509 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2510 }
2511
2512 // Check each register used by this instruction for a following DEF/KILL
2513 // that must occur afterward and requires an anti-dependence edge.
2514 for( uint j=0; j<n->req(); j++ ) {
2515 Node *def = n->in(j);
2516 if( def ) {
2517 assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2518 anti_do_use( b, n, _regalloc->get_reg_first(def) );
2519 anti_do_use( b, n, _regalloc->get_reg_second(def) );
2520 }
2521 }
2522 // Do not allow defs of new derived values to float above GC
2523 // points unless the base is definitely available at the GC point.
2524
2525 Node *m = b->_nodes[i];
2526
2527 // Add precedence edge from following safepoint to use of derived pointer
2528 if( last_safept_node != end_node &&
2529 m != last_safept_node) {
2530 for (uint k = 1; k < m->req(); k++) {
2531 const Type *t = m->in(k)->bottom_type();
2532 if( t->isa_oop_ptr() &&
2533 t->is_ptr()->offset() != 0 ) {
2534 last_safept_node->add_prec( m );
2535 break;
2536 }
2537 }
2538 }
2539
2540 if( n->jvms() ) { // Precedence edge from derived to safept
2541 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2542 if( b->_nodes[last_safept] != last_safept_node ) {
2543 last_safept = b->find_node(last_safept_node);
2544 }
2545 for( uint j=last_safept; j > i; j-- ) {
2546 Node *mach = b->_nodes[j];
2547 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2548 mach->add_prec( n );
2549 }
2550 last_safept = i;
2551 last_safept_node = m;
2552 }
2553 }
2554
2555 if (fat_proj_seen) {
2556 // Garbage collect pinch nodes that were not consumed.
2557 // They are usually created by a fat kill MachProj for a call.
2558 garbage_collect_pinch_nodes();
2559 }
2560 }
2561
2562 //------------------------------garbage_collect_pinch_nodes-------------------------------
2563
2564 // Garbage collect pinch nodes for reuse by other blocks.
2565 //
2566 // The block scheduler's insertion of anti-dependence
2567 // edges creates many pinch nodes when the block contains
2568 // 2 or more Calls. A pinch node is used to prevent a
2569 // combinatorial explosion of edges. If a set of kills for a
2570 // register is anti-dependent on a set of uses (or defs), rather
2571 // than adding an edge in the graph between each pair of kill
2572 // and use (or def), a pinch is inserted between them:
2573 //
2574 // use1 use2 use3
2575 // \ | /
2576 // \ | /
2577 // pinch
2578 // / | \
2579 // / | \
2580 // kill1 kill2 kill3
2581 //
2582 // One pinch node is created per register killed when
2583 // the second call is encountered during a backwards pass
2584 // over the block. Most of these pinch nodes are never
2585 // wired into the graph because the register is never
2586 // used or def'ed in the block.
2587 //
2588 void Scheduling::garbage_collect_pinch_nodes() {
2589 #ifndef PRODUCT
2590 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2591 #endif
2592 int trace_cnt = 0;
2593 for (uint k = 0; k < _reg_node.Size(); k++) {
2594 Node* pinch = _reg_node[k];
2595 if (pinch != NULL && pinch->Opcode() == Op_Node &&
2596 // no predecence input edges
2597 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2598 cleanup_pinch(pinch);
2599 _pinch_free_list.push(pinch);
2600 _reg_node.map(k, NULL);
2601 #ifndef PRODUCT
2602 if (_cfg->C->trace_opto_output()) {
2603 trace_cnt++;
2604 if (trace_cnt > 40) {
2605 tty->print("\n");
2606 trace_cnt = 0;
2607 }
2608 tty->print(" %d", pinch->_idx);
2609 }
2610 #endif
2611 }
2612 }
2613 #ifndef PRODUCT
2614 if (_cfg->C->trace_opto_output()) tty->print("\n");
2615 #endif
2616 }
2617
2618 // Clean up a pinch node for reuse.
2619 void Scheduling::cleanup_pinch( Node *pinch ) {
2620 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2621
2622 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2623 Node* use = pinch->last_out(i);
2624 uint uses_found = 0;
2625 for (uint j = use->req(); j < use->len(); j++) {
2626 if (use->in(j) == pinch) {
2627 use->rm_prec(j);
2628 uses_found++;
2629 }
2630 }
2631 assert(uses_found > 0, "must be a precedence edge");
2632 i -= uses_found; // we deleted 1 or more copies of this edge
2633 }
2634 // May have a later_def entry
2635 pinch->set_req(0, NULL);
2636 }
2637
2638 //------------------------------print_statistics-------------------------------
2639 #ifndef PRODUCT
2640
2641 void Scheduling::dump_available() const {
2642 tty->print("#Availist ");
2643 for (uint i = 0; i < _available.size(); i++)
2644 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2645 tty->cr();
2646 }
2647
2648 // Print Scheduling Statistics
2649 void Scheduling::print_statistics() {
2650 // Print the size added by nops for bundling
2651 tty->print("Nops added %d bytes to total of %d bytes",
2652 _total_nop_size, _total_method_size);
2653 if (_total_method_size > 0)
2654 tty->print(", for %.2f%%",
2655 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2656 tty->print("\n");
2657
2658 // Print the number of branch shadows filled
2659 if (Pipeline::_branch_has_delay_slot) {
2660 tty->print("Of %d branches, %d had unconditional delay slots filled",
2661 _total_branches, _total_unconditional_delays);
2662 if (_total_branches > 0)
2663 tty->print(", for %.2f%%",
2664 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2665 tty->print("\n");
2666 }
2667
2668 uint total_instructions = 0, total_bundles = 0;
2669
2670 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2671 uint bundle_count = _total_instructions_per_bundle[i];
2672 total_instructions += bundle_count * i;
2673 total_bundles += bundle_count;
2674 }
2675
2676 if (total_bundles > 0)
2677 tty->print("Average ILP (excluding nops) is %.2f\n",
2678 ((double)total_instructions) / ((double)total_bundles));
2679 }
2680 #endif