comparison src/share/vm/opto/parse1.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children b789bcaf2dd9
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_parse1.cpp.incl"
27
28 // Static array so we can figure out which bytecodes stop us from compiling
29 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
30 // and eventually should be encapsulated in a proper class (gri 8/18/98).
31
32 int nodes_created = 0; int nodes_created_old = 0;
33 int methods_parsed = 0; int methods_parsed_old = 0;
34 int methods_seen = 0; int methods_seen_old = 0;
35
36 int explicit_null_checks_inserted = 0, explicit_null_checks_inserted_old = 0;
37 int explicit_null_checks_elided = 0, explicit_null_checks_elided_old = 0;
38 int all_null_checks_found = 0, implicit_null_checks = 0;
39 int implicit_null_throws = 0;
40
41 int parse_idx = 0;
42 size_t parse_arena = 0;
43 int reclaim_idx = 0;
44 int reclaim_in = 0;
45 int reclaim_node = 0;
46
47 #ifndef PRODUCT
48 bool Parse::BytecodeParseHistogram::_initialized = false;
49 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
50 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
51 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
52 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes];
53 #endif
54
55 //------------------------------print_statistics-------------------------------
56 #ifndef PRODUCT
57 void Parse::print_statistics() {
58 tty->print_cr("--- Compiler Statistics ---");
59 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed);
60 tty->print(" Nodes created: %d", nodes_created);
61 tty->cr();
62 if (methods_seen != methods_parsed)
63 tty->print_cr("Reasons for parse failures (NOT cumulative):");
64
65 if( explicit_null_checks_inserted )
66 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
67 if( all_null_checks_found )
68 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
69 (100*implicit_null_checks)/all_null_checks_found);
70 if( implicit_null_throws )
71 tty->print_cr("%d implicit null exceptions at runtime",
72 implicit_null_throws);
73
74 if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
75 BytecodeParseHistogram::print();
76 }
77 }
78 #endif
79
80 //------------------------------ON STACK REPLACEMENT---------------------------
81
82 // Construct a node which can be used to get incoming state for
83 // on stack replacement.
84 Node *Parse::fetch_interpreter_state(int index,
85 BasicType bt,
86 Node *local_addrs,
87 Node *local_addrs_base) {
88 Node *mem = memory(Compile::AliasIdxRaw);
89 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
90
91 // Very similar to LoadNode::make, except we handle un-aligned longs and
92 // doubles on Sparc. Intel can handle them just fine directly.
93 Node *l;
94 switch( bt ) { // Signature is flattened
95 case T_INT: l = new (C, 3) LoadINode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
96 case T_FLOAT: l = new (C, 3) LoadFNode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
97 case T_ADDRESS:
98 case T_OBJECT: l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
99 case T_LONG:
100 case T_DOUBLE: {
101 // Since arguments are in reverse order, the argument address 'adr'
102 // refers to the back half of the long/double. Recompute adr.
103 adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
104 if( Matcher::misaligned_doubles_ok ) {
105 l = (bt == T_DOUBLE)
106 ? (Node*)new (C, 3) LoadDNode( 0, mem, adr, TypeRawPtr::BOTTOM )
107 : (Node*)new (C, 3) LoadLNode( 0, mem, adr, TypeRawPtr::BOTTOM );
108 } else {
109 l = (bt == T_DOUBLE)
110 ? (Node*)new (C, 3) LoadD_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM )
111 : (Node*)new (C, 3) LoadL_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM );
112 }
113 break;
114 }
115 default: ShouldNotReachHere();
116 }
117 return _gvn.transform(l);
118 }
119
120 // Helper routine to prevent the interpreter from handing
121 // unexpected typestate to an OSR method.
122 // The Node l is a value newly dug out of the interpreter frame.
123 // The type is the type predicted by ciTypeFlow. Note that it is
124 // not a general type, but can only come from Type::get_typeflow_type.
125 // The safepoint is a map which will feed an uncommon trap.
126 Node* Parse::check_interpreter_type(Node* l, const Type* type,
127 SafePointNode* &bad_type_exit) {
128
129 const TypeOopPtr* tp = type->isa_oopptr();
130
131 // TypeFlow may assert null-ness if a type appears unloaded.
132 if (type == TypePtr::NULL_PTR ||
133 (tp != NULL && !tp->klass()->is_loaded())) {
134 // Value must be null, not a real oop.
135 Node* chk = _gvn.transform( new (C, 3) CmpPNode(l, null()) );
136 Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
137 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
138 set_control(_gvn.transform( new (C, 1) IfTrueNode(iff) ));
139 Node* bad_type = _gvn.transform( new (C, 1) IfFalseNode(iff) );
140 bad_type_exit->control()->add_req(bad_type);
141 l = null();
142 }
143
144 // Typeflow can also cut off paths from the CFG, based on
145 // types which appear unloaded, or call sites which appear unlinked.
146 // When paths are cut off, values at later merge points can rise
147 // toward more specific classes. Make sure these specific classes
148 // are still in effect.
149 if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
150 // TypeFlow asserted a specific object type. Value must have that type.
151 Node* bad_type_ctrl = NULL;
152 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
153 bad_type_exit->control()->add_req(bad_type_ctrl);
154 }
155
156 BasicType bt_l = _gvn.type(l)->basic_type();
157 BasicType bt_t = type->basic_type();
158 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
159 return l;
160 }
161
162 // Helper routine which sets up elements of the initial parser map when
163 // performing a parse for on stack replacement. Add values into map.
164 // The only parameter contains the address of a interpreter arguments.
165 void Parse::load_interpreter_state(Node* osr_buf) {
166 int index;
167 int max_locals = jvms()->loc_size();
168 int max_stack = jvms()->stk_size();
169
170
171 // Mismatch between method and jvms can occur since map briefly held
172 // an OSR entry state (which takes up one RawPtr word).
173 assert(max_locals == method()->max_locals(), "sanity");
174 assert(max_stack >= method()->max_stack(), "sanity");
175 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
176 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
177
178 // Find the start block.
179 Block* osr_block = start_block();
180 assert(osr_block->start() == osr_bci(), "sanity");
181
182 // Set initial BCI.
183 set_parse_bci(osr_block->start());
184
185 // Set initial stack depth.
186 set_sp(osr_block->start_sp());
187
188 // Check bailouts. We currently do not perform on stack replacement
189 // of loops in catch blocks or loops which branch with a non-empty stack.
190 if (sp() != 0) {
191 C->record_method_not_compilable("OSR starts with non-empty stack");
192 return;
193 }
194 // Do not OSR inside finally clauses:
195 if (osr_block->has_trap_at(osr_block->start())) {
196 C->record_method_not_compilable("OSR starts with an immediate trap");
197 return;
198 }
199
200 // Commute monitors from interpreter frame to compiler frame.
201 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
202 int mcnt = osr_block->flow()->monitor_count();
203 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
204 for (index = 0; index < mcnt; index++) {
205 // Make a BoxLockNode for the monitor.
206 Node *box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
207
208
209 // Displaced headers and locked objects are interleaved in the
210 // temp OSR buffer. We only copy the locked objects out here.
211 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
212 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
213 // Try and copy the displaced header to the BoxNode
214 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
215
216
217 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
218
219 // Build a bogus FastLockNode (no code will be generated) and push the
220 // monitor into our debug info.
221 const FastLockNode *flock = _gvn.transform(new (C, 3) FastLockNode( 0, lock_object, box ))->as_FastLock();
222 map()->push_monitor(flock);
223
224 // If the lock is our method synchronization lock, tuck it away in
225 // _sync_lock for return and rethrow exit paths.
226 if (index == 0 && method()->is_synchronized()) {
227 _synch_lock = flock;
228 }
229 }
230
231 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
232 if (!live_locals.is_valid()) {
233 // Degenerate or breakpointed method.
234 C->record_method_not_compilable("OSR in empty or breakpointed method");
235 return;
236 }
237
238 // Extract the needed locals from the interpreter frame.
239 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
240
241 // find all the locals that the interpreter thinks contain live oops
242 const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
243 for (index = 0; index < max_locals; index++) {
244
245 if (!live_locals.at(index)) {
246 continue;
247 }
248
249 const Type *type = osr_block->local_type_at(index);
250
251 if (type->isa_oopptr() != NULL) {
252
253 // 6403625: Verify that the interpreter oopMap thinks that the oop is live
254 // else we might load a stale oop if the MethodLiveness disagrees with the
255 // result of the interpreter. If the interpreter says it is dead we agree
256 // by making the value go to top.
257 //
258
259 if (!live_oops.at(index)) {
260 if (C->log() != NULL) {
261 C->log()->elem("OSR_mismatch local_index='%d'",index);
262 }
263 set_local(index, null());
264 // and ignore it for the loads
265 continue;
266 }
267 }
268
269 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
270 if (type == Type::TOP || type == Type::HALF) {
271 continue;
272 }
273 // If the type falls to bottom, then this must be a local that
274 // is mixing ints and oops or some such. Forcing it to top
275 // makes it go dead.
276 if (type == Type::BOTTOM) {
277 continue;
278 }
279 // Construct code to access the appropriate local.
280 Node *value = fetch_interpreter_state(index, type->basic_type(), locals_addr, osr_buf);
281 set_local(index, value);
282 }
283
284 // Extract the needed stack entries from the interpreter frame.
285 for (index = 0; index < sp(); index++) {
286 const Type *type = osr_block->stack_type_at(index);
287 if (type != Type::TOP) {
288 // Currently the compiler bails out when attempting to on stack replace
289 // at a bci with a non-empty stack. We should not reach here.
290 ShouldNotReachHere();
291 }
292 }
293
294 // End the OSR migration
295 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
296 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
297 "OSR_migration_end", TypeRawPtr::BOTTOM,
298 osr_buf);
299
300 // Now that the interpreter state is loaded, make sure it will match
301 // at execution time what the compiler is expecting now:
302 SafePointNode* bad_type_exit = clone_map();
303 bad_type_exit->set_control(new (C, 1) RegionNode(1));
304
305 for (index = 0; index < max_locals; index++) {
306 if (stopped()) break;
307 Node* l = local(index);
308 if (l->is_top()) continue; // nothing here
309 const Type *type = osr_block->local_type_at(index);
310 if (type->isa_oopptr() != NULL) {
311 if (!live_oops.at(index)) {
312 // skip type check for dead oops
313 continue;
314 }
315 }
316 set_local(index, check_interpreter_type(l, type, bad_type_exit));
317 }
318
319 for (index = 0; index < sp(); index++) {
320 if (stopped()) break;
321 Node* l = stack(index);
322 if (l->is_top()) continue; // nothing here
323 const Type *type = osr_block->stack_type_at(index);
324 set_stack(index, check_interpreter_type(l, type, bad_type_exit));
325 }
326
327 if (bad_type_exit->control()->req() > 1) {
328 // Build an uncommon trap here, if any inputs can be unexpected.
329 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
330 record_for_igvn(bad_type_exit->control());
331 SafePointNode* types_are_good = map();
332 set_map(bad_type_exit);
333 // The unexpected type happens because a new edge is active
334 // in the CFG, which typeflow had previously ignored.
335 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
336 // This x will be typed as Integer if notReached is not yet linked.
337 uncommon_trap(Deoptimization::Reason_unreached,
338 Deoptimization::Action_reinterpret);
339 set_map(types_are_good);
340 }
341 }
342
343 //------------------------------Parse------------------------------------------
344 // Main parser constructor.
345 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
346 : _exits(caller)
347 {
348 // Init some variables
349 _caller = caller;
350 _method = parse_method;
351 _expected_uses = expected_uses;
352 _depth = 1 + (caller->has_method() ? caller->depth() : 0);
353 _wrote_final = false;
354 _entry_bci = InvocationEntryBci;
355 _tf = NULL;
356 _block = NULL;
357 debug_only(_block_count = -1);
358 debug_only(_blocks = (Block*)-1);
359 #ifndef PRODUCT
360 if (PrintCompilation || PrintOpto) {
361 // Make sure I have an inline tree, so I can print messages about it.
362 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
363 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method, true);
364 }
365 _max_switch_depth = 0;
366 _est_switch_depth = 0;
367 #endif
368
369 _tf = TypeFunc::make(method());
370 _iter.reset_to_method(method());
371 _flow = method()->get_flow_analysis();
372 if (_flow->failing()) {
373 C->record_method_not_compilable_all_tiers(_flow->failure_reason());
374 }
375
376 if (_expected_uses <= 0) {
377 _prof_factor = 1;
378 } else {
379 float prof_total = parse_method->interpreter_invocation_count();
380 if (prof_total <= _expected_uses) {
381 _prof_factor = 1;
382 } else {
383 _prof_factor = _expected_uses / prof_total;
384 }
385 }
386
387 CompileLog* log = C->log();
388 if (log != NULL) {
389 log->begin_head("parse method='%d' uses='%g'",
390 log->identify(parse_method), expected_uses);
391 if (depth() == 1 && C->is_osr_compilation()) {
392 log->print(" osr_bci='%d'", C->entry_bci());
393 }
394 log->stamp();
395 log->end_head();
396 }
397
398 // Accumulate deoptimization counts.
399 // (The range_check and store_check counts are checked elsewhere.)
400 ciMethodData* md = method()->method_data();
401 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
402 uint md_count = md->trap_count(reason);
403 if (md_count != 0) {
404 if (md_count == md->trap_count_limit())
405 md_count += md->overflow_trap_count();
406 uint total_count = C->trap_count(reason);
407 uint old_count = total_count;
408 total_count += md_count;
409 // Saturate the add if it overflows.
410 if (total_count < old_count || total_count < md_count)
411 total_count = (uint)-1;
412 C->set_trap_count(reason, total_count);
413 if (log != NULL)
414 log->elem("observe trap='%s' count='%d' total='%d'",
415 Deoptimization::trap_reason_name(reason),
416 md_count, total_count);
417 }
418 }
419 // Accumulate total sum of decompilations, also.
420 C->set_decompile_count(C->decompile_count() + md->decompile_count());
421
422 _count_invocations = C->do_count_invocations();
423 _method_data_update = C->do_method_data_update();
424
425 if (log != NULL && method()->has_exception_handlers()) {
426 log->elem("observe that='has_exception_handlers'");
427 }
428
429 assert(method()->can_be_compiled(), "Can not parse this method, cutout earlier");
430 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
431
432 // Always register dependence if JVMTI is enabled, because
433 // either breakpoint setting or hotswapping of methods may
434 // cause deoptimization.
435 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
436 C->dependencies()->assert_evol_method(method());
437 }
438
439 methods_seen++;
440
441 // Do some special top-level things.
442 if (depth() == 1 && C->is_osr_compilation()) {
443 _entry_bci = C->entry_bci();
444 _flow = method()->get_osr_flow_analysis(osr_bci());
445 if (_flow->failing()) {
446 C->record_method_not_compilable(_flow->failure_reason());
447 #ifndef PRODUCT
448 if (PrintOpto && (Verbose || WizardMode)) {
449 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
450 if (Verbose) {
451 method()->print_oop();
452 method()->print_codes();
453 _flow->print();
454 }
455 }
456 #endif
457 }
458 _tf = C->tf(); // the OSR entry type is different
459 }
460
461 #ifdef ASSERT
462 if (depth() == 1) {
463 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
464 if (C->tf() != tf()) {
465 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
466 assert(C->env()->system_dictionary_modification_counter_changed(),
467 "Must invalidate if TypeFuncs differ");
468 }
469 } else {
470 assert(!this->is_osr_parse(), "no recursive OSR");
471 }
472 #endif
473
474 methods_parsed++;
475 #ifndef PRODUCT
476 // add method size here to guarantee that inlined methods are added too
477 if (TimeCompiler)
478 _total_bytes_compiled += method()->code_size();
479
480 show_parse_info();
481 #endif
482
483 if (failing()) {
484 if (log) log->done("parse");
485 return;
486 }
487
488 gvn().set_type(root(), root()->bottom_type());
489 gvn().transform(top());
490
491 // Import the results of the ciTypeFlow.
492 init_blocks();
493
494 // Merge point for all normal exits
495 build_exits();
496
497 // Setup the initial JVM state map.
498 SafePointNode* entry_map = create_entry_map();
499
500 // Check for bailouts during map initialization
501 if (failing() || entry_map == NULL) {
502 if (log) log->done("parse");
503 return;
504 }
505
506 Node_Notes* caller_nn = C->default_node_notes();
507 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
508 if (DebugInlinedCalls || depth() == 1) {
509 C->set_default_node_notes(make_node_notes(caller_nn));
510 }
511
512 if (is_osr_parse()) {
513 Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
514 entry_map->set_req(TypeFunc::Parms+0, top());
515 set_map(entry_map);
516 load_interpreter_state(osr_buf);
517 } else {
518 set_map(entry_map);
519 do_method_entry();
520 }
521
522 // Check for bailouts during method entry.
523 if (failing()) {
524 if (log) log->done("parse");
525 C->set_default_node_notes(caller_nn);
526 return;
527 }
528
529 entry_map = map(); // capture any changes performed by method setup code
530 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
531
532 // We begin parsing as if we have just encountered a jump to the
533 // method entry.
534 Block* entry_block = start_block();
535 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
536 set_map_clone(entry_map);
537 merge_common(entry_block, entry_block->next_path_num());
538
539 #ifndef PRODUCT
540 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
541 set_parse_histogram( parse_histogram_obj );
542 #endif
543
544 // Parse all the basic blocks.
545 do_all_blocks();
546
547 C->set_default_node_notes(caller_nn);
548
549 // Check for bailouts during conversion to graph
550 if (failing()) {
551 if (log) log->done("parse");
552 return;
553 }
554
555 // Fix up all exiting control flow.
556 set_map(entry_map);
557 do_exits();
558
559 // Collect a few more statistics.
560 parse_idx += C->unique();
561 parse_arena += C->node_arena()->used();
562
563 if (log) log->done("parse nodes='%d' memory='%d'",
564 C->unique(), C->node_arena()->used());
565 }
566
567 //---------------------------do_all_blocks-------------------------------------
568 void Parse::do_all_blocks() {
569 _blocks_merged = 0;
570 _blocks_parsed = 0;
571
572 int old_blocks_merged = -1;
573 int old_blocks_parsed = -1;
574
575 for (int tries = 0; ; tries++) {
576 visit_blocks();
577 if (failing()) return; // Check for bailout
578
579 // No need for a work list. The outer loop is hardly ever repeated.
580 // The following loop traverses the blocks in a reasonable pre-order,
581 // as produced by the ciTypeFlow pass.
582
583 // This loop can be taken more than once if there are two entries to
584 // a loop (irreduceable CFG), and the edge which ciTypeFlow chose
585 // as the first predecessor to the loop goes dead in the parser,
586 // due to parse-time optimization. (Could happen with obfuscated code.)
587
588 // Look for progress, or the lack of it:
589 if (_blocks_parsed == block_count()) {
590 // That's all, folks.
591 if (TraceOptoParse) {
592 tty->print_cr("All blocks parsed.");
593 }
594 break;
595 }
596
597 // How much work was done this time around?
598 int new_blocks_merged = _blocks_merged - old_blocks_merged;
599 int new_blocks_parsed = _blocks_parsed - old_blocks_parsed;
600 if (new_blocks_merged == 0) {
601 if (TraceOptoParse) {
602 tty->print_cr("All live blocks parsed; %d dead blocks.", block_count() - _blocks_parsed);
603 }
604 // No new blocks have become parseable. Some blocks are just dead.
605 break;
606 }
607 assert(new_blocks_parsed > 0, "must make progress");
608 assert(tries < block_count(), "the pre-order cannot be this bad!");
609
610 old_blocks_merged = _blocks_merged;
611 old_blocks_parsed = _blocks_parsed;
612 }
613
614 #ifndef PRODUCT
615 // Make sure there are no half-processed blocks remaining.
616 // Every remaining unprocessed block is dead and may be ignored now.
617 for (int po = 0; po < block_count(); po++) {
618 Block* block = pre_order_at(po);
619 if (!block->is_parsed()) {
620 if (TraceOptoParse) {
621 tty->print("Skipped dead block %d at bci:%d", po, block->start());
622 assert(!block->is_merged(), "no half-processed blocks");
623 }
624 }
625 }
626 #endif
627 }
628
629 //---------------------------visit_blocks--------------------------------------
630 void Parse::visit_blocks() {
631 // Walk over all blocks, parsing every one that has been reached (merged).
632 for (int po = 0; po < block_count(); po++) {
633 Block* block = pre_order_at(po);
634
635 if (block->is_parsed()) {
636 // Do not parse twice.
637 continue;
638 }
639
640 if (!block->is_merged()) {
641 // No state on this block. It had not yet been reached.
642 // Delay reaching it until later.
643 continue;
644 }
645
646 // Prepare to parse this block.
647 load_state_from(block);
648
649 if (stopped()) {
650 // Block is dead.
651 continue;
652 }
653
654 if (!block->is_ready() || block->is_handler()) {
655 // Not all preds have been parsed. We must build phis everywhere.
656 // (Note that dead locals do not get phis built, ever.)
657 ensure_phis_everywhere();
658
659 // Leave behind an undisturbed copy of the map, for future merges.
660 set_map(clone_map());
661 }
662
663 // Ready or not, parse the block.
664 do_one_block();
665
666 // Check for bailouts.
667 if (failing()) return;
668 }
669 }
670
671 //-------------------------------build_exits----------------------------------
672 // Build normal and exceptional exit merge points.
673 void Parse::build_exits() {
674 // make a clone of caller to prevent sharing of side-effects
675 _exits.set_map(_exits.clone_map());
676 _exits.clean_stack(_exits.sp());
677 _exits.sync_jvms();
678
679 RegionNode* region = new (C, 1) RegionNode(1);
680 record_for_igvn(region);
681 gvn().set_type_bottom(region);
682 _exits.set_control(region);
683
684 // Note: iophi and memphi are not transformed until do_exits.
685 Node* iophi = new (C, region->req()) PhiNode(region, Type::ABIO);
686 Node* memphi = new (C, region->req()) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
687 _exits.set_i_o(iophi);
688 _exits.set_all_memory(memphi);
689
690 // Add a return value to the exit state. (Do not push it yet.)
691 if (tf()->range()->cnt() > TypeFunc::Parms) {
692 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
693 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
694 // becomes loaded during the subsequent parsing, the loaded and unloaded
695 // types will not join when we transform and push in do_exits().
696 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
697 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
698 ret_type = TypeOopPtr::BOTTOM;
699 }
700 int ret_size = type2size[ret_type->basic_type()];
701 Node* ret_phi = new (C, region->req()) PhiNode(region, ret_type);
702 _exits.ensure_stack(ret_size);
703 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
704 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
705 _exits.set_argument(0, ret_phi); // here is where the parser finds it
706 // Note: ret_phi is not yet pushed, until do_exits.
707 }
708 }
709
710
711 //----------------------------build_start_state-------------------------------
712 // Construct a state which contains only the incoming arguments from an
713 // unknown caller. The method & bci will be NULL & InvocationEntryBci.
714 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
715 int arg_size = tf->domain()->cnt();
716 int max_size = MAX2(arg_size, (int)tf->range()->cnt());
717 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
718 SafePointNode* map = new (this, max_size) SafePointNode(max_size, NULL);
719 record_for_igvn(map);
720 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
721 Node_Notes* old_nn = default_node_notes();
722 if (old_nn != NULL && has_method()) {
723 Node_Notes* entry_nn = old_nn->clone(this);
724 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
725 entry_jvms->set_offsets(0);
726 entry_jvms->set_bci(entry_bci());
727 entry_nn->set_jvms(entry_jvms);
728 set_default_node_notes(entry_nn);
729 }
730 uint i;
731 for (i = 0; i < (uint)arg_size; i++) {
732 Node* parm = initial_gvn()->transform(new (this, 1) ParmNode(start, i));
733 map->init_req(i, parm);
734 // Record all these guys for later GVN.
735 record_for_igvn(parm);
736 }
737 for (; i < map->req(); i++) {
738 map->init_req(i, top());
739 }
740 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
741 set_default_node_notes(old_nn);
742 map->set_jvms(jvms);
743 jvms->set_map(map);
744 return jvms;
745 }
746
747 //-----------------------------make_node_notes---------------------------------
748 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
749 if (caller_nn == NULL) return NULL;
750 Node_Notes* nn = caller_nn->clone(C);
751 JVMState* caller_jvms = nn->jvms();
752 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
753 jvms->set_offsets(0);
754 jvms->set_bci(_entry_bci);
755 nn->set_jvms(jvms);
756 return nn;
757 }
758
759
760 //--------------------------return_values--------------------------------------
761 void Compile::return_values(JVMState* jvms) {
762 GraphKit kit(jvms);
763 Node* ret = new (this, TypeFunc::Parms) ReturnNode(TypeFunc::Parms,
764 kit.control(),
765 kit.i_o(),
766 kit.reset_memory(),
767 kit.frameptr(),
768 kit.returnadr());
769 // Add zero or 1 return values
770 int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
771 if (ret_size > 0) {
772 kit.inc_sp(-ret_size); // pop the return value(s)
773 kit.sync_jvms();
774 ret->add_req(kit.argument(0));
775 // Note: The second dummy edge is not needed by a ReturnNode.
776 }
777 // bind it to root
778 root()->add_req(ret);
779 record_for_igvn(ret);
780 initial_gvn()->transform_no_reclaim(ret);
781 }
782
783 //------------------------rethrow_exceptions-----------------------------------
784 // Bind all exception states in the list into a single RethrowNode.
785 void Compile::rethrow_exceptions(JVMState* jvms) {
786 GraphKit kit(jvms);
787 if (!kit.has_exceptions()) return; // nothing to generate
788 // Load my combined exception state into the kit, with all phis transformed:
789 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
790 Node* ex_oop = kit.use_exception_state(ex_map);
791 RethrowNode* exit = new (this, TypeFunc::Parms + 1) RethrowNode(kit.control(),
792 kit.i_o(), kit.reset_memory(),
793 kit.frameptr(), kit.returnadr(),
794 // like a return but with exception input
795 ex_oop);
796 // bind to root
797 root()->add_req(exit);
798 record_for_igvn(exit);
799 initial_gvn()->transform_no_reclaim(exit);
800 }
801
802 bool Parse::can_rerun_bytecode() {
803 switch (bc()) {
804 case Bytecodes::_ldc:
805 case Bytecodes::_ldc_w:
806 case Bytecodes::_ldc2_w:
807 case Bytecodes::_getfield:
808 case Bytecodes::_putfield:
809 case Bytecodes::_getstatic:
810 case Bytecodes::_putstatic:
811 case Bytecodes::_arraylength:
812 case Bytecodes::_baload:
813 case Bytecodes::_caload:
814 case Bytecodes::_iaload:
815 case Bytecodes::_saload:
816 case Bytecodes::_faload:
817 case Bytecodes::_aaload:
818 case Bytecodes::_laload:
819 case Bytecodes::_daload:
820 case Bytecodes::_bastore:
821 case Bytecodes::_castore:
822 case Bytecodes::_iastore:
823 case Bytecodes::_sastore:
824 case Bytecodes::_fastore:
825 case Bytecodes::_aastore:
826 case Bytecodes::_lastore:
827 case Bytecodes::_dastore:
828 case Bytecodes::_irem:
829 case Bytecodes::_idiv:
830 case Bytecodes::_lrem:
831 case Bytecodes::_ldiv:
832 case Bytecodes::_frem:
833 case Bytecodes::_fdiv:
834 case Bytecodes::_drem:
835 case Bytecodes::_ddiv:
836 case Bytecodes::_checkcast:
837 case Bytecodes::_instanceof:
838 case Bytecodes::_athrow:
839 case Bytecodes::_anewarray:
840 case Bytecodes::_newarray:
841 case Bytecodes::_multianewarray:
842 case Bytecodes::_new:
843 case Bytecodes::_monitorenter: // can re-run initial null check, only
844 case Bytecodes::_return:
845 return true;
846 break;
847
848 case Bytecodes::_invokestatic:
849 case Bytecodes::_invokespecial:
850 case Bytecodes::_invokevirtual:
851 case Bytecodes::_invokeinterface:
852 return false;
853 break;
854
855 default:
856 assert(false, "unexpected bytecode produced an exception");
857 return true;
858 }
859 }
860
861 //---------------------------do_exceptions-------------------------------------
862 // Process exceptions arising from the current bytecode.
863 // Send caught exceptions to the proper handler within this method.
864 // Unhandled exceptions feed into _exit.
865 void Parse::do_exceptions() {
866 if (!has_exceptions()) return;
867
868 if (failing()) {
869 // Pop them all off and throw them away.
870 while (pop_exception_state() != NULL) ;
871 return;
872 }
873
874 // Make sure we can classify this bytecode if we need to.
875 debug_only(can_rerun_bytecode());
876
877 PreserveJVMState pjvms(this, false);
878
879 SafePointNode* ex_map;
880 while ((ex_map = pop_exception_state()) != NULL) {
881 if (!method()->has_exception_handlers()) {
882 // Common case: Transfer control outward.
883 // Doing it this early allows the exceptions to common up
884 // even between adjacent method calls.
885 throw_to_exit(ex_map);
886 } else {
887 // Have to look at the exception first.
888 assert(stopped(), "catch_inline_exceptions trashes the map");
889 catch_inline_exceptions(ex_map);
890 stop_and_kill_map(); // we used up this exception state; kill it
891 }
892 }
893
894 // We now return to our regularly scheduled program:
895 }
896
897 //---------------------------throw_to_exit-------------------------------------
898 // Merge the given map into an exception exit from this method.
899 // The exception exit will handle any unlocking of receiver.
900 // The ex_oop must be saved within the ex_map, unlike merge_exception.
901 void Parse::throw_to_exit(SafePointNode* ex_map) {
902 // Pop the JVMS to (a copy of) the caller.
903 GraphKit caller;
904 caller.set_map_clone(_caller->map());
905 caller.set_bci(_caller->bci());
906 caller.set_sp(_caller->sp());
907 // Copy out the standard machine state:
908 for (uint i = 0; i < TypeFunc::Parms; i++) {
909 caller.map()->set_req(i, ex_map->in(i));
910 }
911 // ...and the exception:
912 Node* ex_oop = saved_ex_oop(ex_map);
913 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
914 // Finally, collect the new exception state in my exits:
915 _exits.add_exception_state(caller_ex_map);
916 }
917
918 //------------------------------do_exits---------------------------------------
919 void Parse::do_exits() {
920 set_parse_bci(InvocationEntryBci);
921
922 // Now peephole on the return bits
923 Node* region = _exits.control();
924 _exits.set_control(gvn().transform(region));
925
926 Node* iophi = _exits.i_o();
927 _exits.set_i_o(gvn().transform(iophi));
928
929 if (wrote_final()) {
930 // This method (which must be a constructor by the rules of Java)
931 // wrote a final. The effects of all initializations must be
932 // committed to memory before any code after the constructor
933 // publishes the reference to the newly constructor object.
934 // Rather than wait for the publication, we simply block the
935 // writes here. Rather than put a barrier on only those writes
936 // which are required to complete, we force all writes to complete.
937 //
938 // "All bets are off" unless the first publication occurs after a
939 // normal return from the constructor. We do not attempt to detect
940 // such unusual early publications. But no barrier is needed on
941 // exceptional returns, since they cannot publish normally.
942 //
943 _exits.insert_mem_bar(Op_MemBarRelease);
944 #ifndef PRODUCT
945 if (PrintOpto && (Verbose || WizardMode)) {
946 method()->print_name();
947 tty->print_cr(" writes finals and needs a memory barrier");
948 }
949 #endif
950 }
951
952 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
953 // transform each slice of the original memphi:
954 mms.set_memory(_gvn.transform(mms.memory()));
955 }
956
957 if (tf()->range()->cnt() > TypeFunc::Parms) {
958 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
959 Node* ret_phi = _gvn.transform( _exits.argument(0) );
960 assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
961 _exits.push_node(ret_type->basic_type(), ret_phi);
962 }
963
964 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
965
966 // Unlock along the exceptional paths.
967 // This is done late so that we can common up equivalent exceptions
968 // (e.g., null checks) arising from multiple points within this method.
969 // See GraphKit::add_exception_state, which performs the commoning.
970 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
971
972 // record exit from a method if compiled while Dtrace is turned on.
973 if (do_synch || DTraceMethodProbes) {
974 // First move the exception list out of _exits:
975 GraphKit kit(_exits.transfer_exceptions_into_jvms());
976 SafePointNode* normal_map = kit.map(); // keep this guy safe
977 // Now re-collect the exceptions into _exits:
978 SafePointNode* ex_map;
979 while ((ex_map = kit.pop_exception_state()) != NULL) {
980 Node* ex_oop = kit.use_exception_state(ex_map);
981 // Force the exiting JVM state to have this method at InvocationEntryBci.
982 // The exiting JVM state is otherwise a copy of the calling JVMS.
983 JVMState* caller = kit.jvms();
984 JVMState* ex_jvms = caller->clone_shallow(C);
985 ex_jvms->set_map(kit.clone_map());
986 ex_jvms->map()->set_jvms(ex_jvms);
987 ex_jvms->set_bci( InvocationEntryBci);
988 kit.set_jvms(ex_jvms);
989 if (do_synch) {
990 // Add on the synchronized-method box/object combo
991 kit.map()->push_monitor(_synch_lock);
992 // Unlock!
993 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
994 }
995 if (DTraceMethodProbes) {
996 kit.make_dtrace_method_exit(method());
997 }
998 // Done with exception-path processing.
999 ex_map = kit.make_exception_state(ex_oop);
1000 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1001 // Pop the last vestige of this method:
1002 ex_map->set_jvms(caller->clone_shallow(C));
1003 ex_map->jvms()->set_map(ex_map);
1004 _exits.push_exception_state(ex_map);
1005 }
1006 assert(_exits.map() == normal_map, "keep the same return state");
1007 }
1008
1009 {
1010 // Capture very early exceptions (receiver null checks) from caller JVMS
1011 GraphKit caller(_caller);
1012 SafePointNode* ex_map;
1013 while ((ex_map = caller.pop_exception_state()) != NULL) {
1014 _exits.add_exception_state(ex_map);
1015 }
1016 }
1017 }
1018
1019 //-----------------------------create_entry_map-------------------------------
1020 // Initialize our parser map to contain the types at method entry.
1021 // For OSR, the map contains a single RawPtr parameter.
1022 // Initial monitor locking for sync. methods is performed by do_method_entry.
1023 SafePointNode* Parse::create_entry_map() {
1024 // Check for really stupid bail-out cases.
1025 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1026 if (len >= 32760) {
1027 C->record_method_not_compilable_all_tiers("too many local variables");
1028 return NULL;
1029 }
1030
1031 // If this is an inlined method, we may have to do a receiver null check.
1032 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1033 GraphKit kit(_caller);
1034 kit.null_check_receiver(method());
1035 _caller = kit.transfer_exceptions_into_jvms();
1036 if (kit.stopped()) {
1037 _exits.add_exception_states_from(_caller);
1038 _exits.set_jvms(_caller);
1039 return NULL;
1040 }
1041 }
1042
1043 assert(method() != NULL, "parser must have a method");
1044
1045 // Create an initial safepoint to hold JVM state during parsing
1046 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1047 set_map(new (C, len) SafePointNode(len, jvms));
1048 jvms->set_map(map());
1049 record_for_igvn(map());
1050 assert(jvms->endoff() == len, "correct jvms sizing");
1051
1052 SafePointNode* inmap = _caller->map();
1053 assert(inmap != NULL, "must have inmap");
1054
1055 uint i;
1056
1057 // Pass thru the predefined input parameters.
1058 for (i = 0; i < TypeFunc::Parms; i++) {
1059 map()->init_req(i, inmap->in(i));
1060 }
1061
1062 if (depth() == 1) {
1063 assert(map()->memory()->Opcode() == Op_Parm, "");
1064 // Insert the memory aliasing node
1065 set_all_memory(reset_memory());
1066 }
1067 assert(merged_memory(), "");
1068
1069 // Now add the locals which are initially bound to arguments:
1070 uint arg_size = tf()->domain()->cnt();
1071 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1072 for (i = TypeFunc::Parms; i < arg_size; i++) {
1073 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1074 }
1075
1076 // Clear out the rest of the map (locals and stack)
1077 for (i = arg_size; i < len; i++) {
1078 map()->init_req(i, top());
1079 }
1080
1081 SafePointNode* entry_map = stop();
1082 return entry_map;
1083 }
1084
1085 //-----------------------------do_method_entry--------------------------------
1086 // Emit any code needed in the pseudo-block before BCI zero.
1087 // The main thing to do is lock the receiver of a synchronized method.
1088 void Parse::do_method_entry() {
1089 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1090 set_sp(0); // Java Stack Pointer
1091
1092 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1093
1094 if (DTraceMethodProbes) {
1095 make_dtrace_method_entry(method());
1096 }
1097
1098 // If the method is synchronized, we need to construct a lock node, attach
1099 // it to the Start node, and pin it there.
1100 if (method()->is_synchronized()) {
1101 // Insert a FastLockNode right after the Start which takes as arguments
1102 // the current thread pointer, the "this" pointer & the address of the
1103 // stack slot pair used for the lock. The "this" pointer is a projection
1104 // off the start node, but the locking spot has to be constructed by
1105 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1106 // becomes the second argument to the FastLockNode call. The
1107 // FastLockNode becomes the new control parent to pin it to the start.
1108
1109 // Setup Object Pointer
1110 Node *lock_obj = NULL;
1111 if(method()->is_static()) {
1112 ciInstance* mirror = _method->holder()->java_mirror();
1113 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1114 lock_obj = makecon(t_lock);
1115 } else { // Else pass the "this" pointer,
1116 lock_obj = local(0); // which is Parm0 from StartNode
1117 }
1118 // Clear out dead values from the debug info.
1119 kill_dead_locals();
1120 // Build the FastLockNode
1121 _synch_lock = shared_lock(lock_obj);
1122 }
1123
1124 if (depth() == 1) {
1125 increment_and_test_invocation_counter(Tier2CompileThreshold);
1126 }
1127 }
1128
1129 //------------------------------init_blocks------------------------------------
1130 // Initialize our parser map to contain the types/monitors at method entry.
1131 void Parse::init_blocks() {
1132 // Create the blocks.
1133 _block_count = flow()->block_count();
1134 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1135 Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1136
1137 int po;
1138
1139 // Initialize the structs.
1140 for (po = 0; po < block_count(); po++) {
1141 Block* block = pre_order_at(po);
1142 block->init_node(this, po);
1143 }
1144
1145 // Collect predecessor and successor information.
1146 for (po = 0; po < block_count(); po++) {
1147 Block* block = pre_order_at(po);
1148 block->init_graph(this);
1149 }
1150 }
1151
1152 //-------------------------------init_node-------------------------------------
1153 void Parse::Block::init_node(Parse* outer, int po) {
1154 _flow = outer->flow()->pre_order_at(po);
1155 _pred_count = 0;
1156 _preds_parsed = 0;
1157 _count = 0;
1158 assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1159 assert(!(is_merged() || is_parsed() || is_handler()), "sanity");
1160 assert(_live_locals.size() == 0, "sanity");
1161
1162 // entry point has additional predecessor
1163 if (flow()->is_start()) _pred_count++;
1164 assert(flow()->is_start() == (this == outer->start_block()), "");
1165 }
1166
1167 //-------------------------------init_graph------------------------------------
1168 void Parse::Block::init_graph(Parse* outer) {
1169 // Create the successor list for this parser block.
1170 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1171 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1172 int ns = tfs->length();
1173 int ne = tfe->length();
1174 _num_successors = ns;
1175 _all_successors = ns+ne;
1176 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1177 int p = 0;
1178 for (int i = 0; i < ns+ne; i++) {
1179 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1180 Block* block2 = outer->pre_order_at(tf2->pre_order());
1181 _successors[i] = block2;
1182
1183 // Accumulate pred info for the other block, too.
1184 if (i < ns) {
1185 block2->_pred_count++;
1186 } else {
1187 block2->_is_handler = true;
1188 }
1189
1190 #ifdef ASSERT
1191 // A block's successors must be distinguishable by BCI.
1192 // That is, no bytecode is allowed to branch to two different
1193 // clones of the same code location.
1194 for (int j = 0; j < i; j++) {
1195 Block* block1 = _successors[j];
1196 if (block1 == block2) continue; // duplicates are OK
1197 assert(block1->start() != block2->start(), "successors have unique bcis");
1198 }
1199 #endif
1200 }
1201
1202 // Note: We never call next_path_num along exception paths, so they
1203 // never get processed as "ready". Also, the input phis of exception
1204 // handlers get specially processed, so that
1205 }
1206
1207 //---------------------------successor_for_bci---------------------------------
1208 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1209 for (int i = 0; i < all_successors(); i++) {
1210 Block* block2 = successor_at(i);
1211 if (block2->start() == bci) return block2;
1212 }
1213 // We can actually reach here if ciTypeFlow traps out a block
1214 // due to an unloaded class, and concurrently with compilation the
1215 // class is then loaded, so that a later phase of the parser is
1216 // able to see more of the bytecode CFG. Or, the flow pass and
1217 // the parser can have a minor difference of opinion about executability
1218 // of bytecodes. For example, "obj.field = null" is executable even
1219 // if the field's type is an unloaded class; the flow pass used to
1220 // make a trap for such code.
1221 return NULL;
1222 }
1223
1224
1225 //-----------------------------stack_type_at-----------------------------------
1226 const Type* Parse::Block::stack_type_at(int i) const {
1227 return get_type(flow()->stack_type_at(i));
1228 }
1229
1230
1231 //-----------------------------local_type_at-----------------------------------
1232 const Type* Parse::Block::local_type_at(int i) const {
1233 // Make dead locals fall to bottom.
1234 if (_live_locals.size() == 0) {
1235 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1236 // This bitmap can be zero length if we saw a breakpoint.
1237 // In such cases, pretend they are all live.
1238 ((Block*)this)->_live_locals = live_locals;
1239 }
1240 if (_live_locals.size() > 0 && !_live_locals.at(i))
1241 return Type::BOTTOM;
1242
1243 return get_type(flow()->local_type_at(i));
1244 }
1245
1246
1247 #ifndef PRODUCT
1248
1249 //----------------------------name_for_bc--------------------------------------
1250 // helper method for BytecodeParseHistogram
1251 static const char* name_for_bc(int i) {
1252 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1253 }
1254
1255 //----------------------------BytecodeParseHistogram------------------------------------
1256 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1257 _parser = p;
1258 _compiler = c;
1259 if( ! _initialized ) { _initialized = true; reset(); }
1260 }
1261
1262 //----------------------------current_count------------------------------------
1263 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1264 switch( bph_type ) {
1265 case BPH_transforms: { return _parser->gvn().made_progress(); }
1266 case BPH_values: { return _parser->gvn().made_new_values(); }
1267 default: { ShouldNotReachHere(); return 0; }
1268 }
1269 }
1270
1271 //----------------------------initialized--------------------------------------
1272 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1273
1274 //----------------------------reset--------------------------------------------
1275 void Parse::BytecodeParseHistogram::reset() {
1276 int i = Bytecodes::number_of_codes;
1277 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1278 }
1279
1280 //----------------------------set_initial_state--------------------------------
1281 // Record info when starting to parse one bytecode
1282 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1283 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1284 _initial_bytecode = bc;
1285 _initial_node_count = _compiler->unique();
1286 _initial_transforms = current_count(BPH_transforms);
1287 _initial_values = current_count(BPH_values);
1288 }
1289 }
1290
1291 //----------------------------record_change--------------------------------
1292 // Record results of parsing one bytecode
1293 void Parse::BytecodeParseHistogram::record_change() {
1294 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1295 ++_bytecodes_parsed[_initial_bytecode];
1296 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1297 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1298 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values);
1299 }
1300 }
1301
1302
1303 //----------------------------print--------------------------------------------
1304 void Parse::BytecodeParseHistogram::print(float cutoff) {
1305 ResourceMark rm;
1306 // print profile
1307 int total = 0;
1308 int i = 0;
1309 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1310 int abs_sum = 0;
1311 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789
1312 tty->print_cr("Histogram of %d parsed bytecodes:", total);
1313 if( total == 0 ) { return; }
1314 tty->cr();
1315 tty->print_cr("absolute: count of compiled bytecodes of this type");
1316 tty->print_cr("relative: percentage contribution to compiled nodes");
1317 tty->print_cr("nodes : Average number of nodes constructed per bytecode");
1318 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)");
1319 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1320 tty->print_cr("values : Average number of node values improved per bytecode");
1321 tty->print_cr("name : Bytecode name");
1322 tty->cr();
1323 tty->print_cr(" absolute relative nodes rnodes transforms values name");
1324 tty->print_cr("----------------------------------------------------------------------");
1325 while (--i > 0) {
1326 int abs = _bytecodes_parsed[i];
1327 float rel = abs * 100.0F / total;
1328 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1329 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes;
1330 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1331 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i];
1332 if (cutoff <= rel) {
1333 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1334 abs_sum += abs;
1335 }
1336 }
1337 tty->print_cr("----------------------------------------------------------------------");
1338 float rel_sum = abs_sum * 100.0F / total;
1339 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1340 tty->print_cr("----------------------------------------------------------------------");
1341 tty->cr();
1342 }
1343 #endif
1344
1345 //----------------------------load_state_from----------------------------------
1346 // Load block/map/sp. But not do not touch iter/bci.
1347 void Parse::load_state_from(Block* block) {
1348 set_block(block);
1349 // load the block's JVM state:
1350 set_map(block->start_map());
1351 set_sp( block->start_sp());
1352 }
1353
1354
1355 //-----------------------------record_state------------------------------------
1356 void Parse::Block::record_state(Parse* p) {
1357 assert(!is_merged(), "can only record state once, on 1st inflow");
1358 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1359 set_start_map(p->stop());
1360 }
1361
1362
1363 //------------------------------do_one_block-----------------------------------
1364 void Parse::do_one_block() {
1365 if (TraceOptoParse) {
1366 Block *b = block();
1367 int ns = b->num_successors();
1368 int nt = b->all_successors();
1369
1370 tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1371 block()->pre_order(), block()->start(), block()->limit());
1372 for (int i = 0; i < nt; i++) {
1373 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->pre_order());
1374 }
1375 tty->print_cr("");
1376 }
1377
1378 assert(block()->is_merged(), "must be merged before being parsed");
1379 block()->mark_parsed();
1380 ++_blocks_parsed;
1381
1382 // Set iterator to start of block.
1383 iter().reset_to_bci(block()->start());
1384
1385 CompileLog* log = C->log();
1386
1387 // Parse bytecodes
1388 while (!stopped() && !failing()) {
1389 iter().next();
1390
1391 // Learn the current bci from the iterator:
1392 set_parse_bci(iter().cur_bci());
1393
1394 if (bci() == block()->limit()) {
1395 // Do not walk into the next block until directed by do_all_blocks.
1396 merge(bci());
1397 break;
1398 }
1399 assert(bci() < block()->limit(), "bci still in block");
1400
1401 if (log != NULL) {
1402 // Output an optional context marker, to help place actions
1403 // that occur during parsing of this BC. If there is no log
1404 // output until the next context string, this context string
1405 // will be silently ignored.
1406 log->context()->reset();
1407 log->context()->print_cr("<bc code='%d' bci='%d'/>", (int)bc(), bci());
1408 }
1409
1410 if (block()->has_trap_at(bci())) {
1411 // We must respect the flow pass's traps, because it will refuse
1412 // to produce successors for trapping blocks.
1413 int trap_index = block()->flow()->trap_index();
1414 assert(trap_index != 0, "trap index must be valid");
1415 uncommon_trap(trap_index);
1416 break;
1417 }
1418
1419 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1420
1421 #ifdef ASSERT
1422 int pre_bc_sp = sp();
1423 int inputs, depth;
1424 bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1425 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC");
1426 #endif //ASSERT
1427
1428 do_one_bytecode();
1429
1430 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, "correct depth prediction");
1431
1432 do_exceptions();
1433
1434 NOT_PRODUCT( parse_histogram()->record_change(); );
1435
1436 if (log != NULL) log->context()->reset(); // done w/ this one
1437
1438 // Fall into next bytecode. Each bytecode normally has 1 sequential
1439 // successor which is typically made ready by visiting this bytecode.
1440 // If the successor has several predecessors, then it is a merge
1441 // point, starts a new basic block, and is handled like other basic blocks.
1442 }
1443 }
1444
1445
1446 //------------------------------merge------------------------------------------
1447 void Parse::set_parse_bci(int bci) {
1448 set_bci(bci);
1449 Node_Notes* nn = C->default_node_notes();
1450 if (nn == NULL) return;
1451
1452 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1453 if (!DebugInlinedCalls && depth() > 1) {
1454 return;
1455 }
1456
1457 // Update the JVMS annotation, if present.
1458 JVMState* jvms = nn->jvms();
1459 if (jvms != NULL && jvms->bci() != bci) {
1460 // Update the JVMS.
1461 jvms = jvms->clone_shallow(C);
1462 jvms->set_bci(bci);
1463 nn->set_jvms(jvms);
1464 }
1465 }
1466
1467 //------------------------------merge------------------------------------------
1468 // Merge the current mapping into the basic block starting at bci
1469 void Parse::merge(int target_bci) {
1470 Block* target = successor_for_bci(target_bci);
1471 if (target == NULL) { handle_missing_successor(target_bci); return; }
1472 assert(!target->is_ready(), "our arrival must be expected");
1473 int pnum = target->next_path_num();
1474 merge_common(target, pnum);
1475 }
1476
1477 //-------------------------merge_new_path--------------------------------------
1478 // Merge the current mapping into the basic block, using a new path
1479 void Parse::merge_new_path(int target_bci) {
1480 Block* target = successor_for_bci(target_bci);
1481 if (target == NULL) { handle_missing_successor(target_bci); return; }
1482 assert(!target->is_ready(), "new path into frozen graph");
1483 int pnum = target->add_new_path();
1484 merge_common(target, pnum);
1485 }
1486
1487 //-------------------------merge_exception-------------------------------------
1488 // Merge the current mapping into the basic block starting at bci
1489 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1490 void Parse::merge_exception(int target_bci) {
1491 assert(sp() == 1, "must have only the throw exception on the stack");
1492 Block* target = successor_for_bci(target_bci);
1493 if (target == NULL) { handle_missing_successor(target_bci); return; }
1494 assert(target->is_handler(), "exceptions are handled by special blocks");
1495 int pnum = target->add_new_path();
1496 merge_common(target, pnum);
1497 }
1498
1499 //--------------------handle_missing_successor---------------------------------
1500 void Parse::handle_missing_successor(int target_bci) {
1501 #ifndef PRODUCT
1502 Block* b = block();
1503 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1504 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->pre_order(), trap_bci);
1505 #endif
1506 ShouldNotReachHere();
1507 }
1508
1509 //--------------------------merge_common---------------------------------------
1510 void Parse::merge_common(Parse::Block* target, int pnum) {
1511 if (TraceOptoParse) {
1512 tty->print("Merging state at block #%d bci:%d", target->pre_order(), target->start());
1513 }
1514
1515 // Zap extra stack slots to top
1516 assert(sp() == target->start_sp(), "");
1517 clean_stack(sp());
1518
1519 if (!target->is_merged()) { // No prior mapping at this bci
1520 if (TraceOptoParse) { tty->print(" with empty state"); }
1521
1522 // If this path is dead, do not bother capturing it as a merge.
1523 // It is "as if" we had 1 fewer predecessors from the beginning.
1524 if (stopped()) {
1525 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1526 return;
1527 }
1528
1529 // Record that a new block has been merged.
1530 ++_blocks_merged;
1531
1532 // Make a region if we know there are multiple or unpredictable inputs.
1533 // (Also, if this is a plain fall-through, we might see another region,
1534 // which must not be allowed into this block's map.)
1535 if (pnum > PhiNode::Input // Known multiple inputs.
1536 || target->is_handler() // These have unpredictable inputs.
1537 || control()->is_Region()) { // We must hide this guy.
1538 // Add a Region to start the new basic block. Phis will be added
1539 // later lazily.
1540 int edges = target->pred_count();
1541 if (edges < pnum) edges = pnum; // might be a new path!
1542 Node *r = new (C, edges+1) RegionNode(edges+1);
1543 gvn().set_type(r, Type::CONTROL);
1544 record_for_igvn(r);
1545 // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1546 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1547 r->init_req(pnum, control());
1548 set_control(r);
1549 }
1550
1551 // Convert the existing Parser mapping into a mapping at this bci.
1552 store_state_to(target);
1553 assert(target->is_merged(), "do not come here twice");
1554
1555 } else { // Prior mapping at this bci
1556 if (TraceOptoParse) { tty->print(" with previous state"); }
1557
1558 // We must not manufacture more phis if the target is already parsed.
1559 bool nophi = target->is_parsed();
1560
1561 SafePointNode* newin = map();// Hang on to incoming mapping
1562 Block* save_block = block(); // Hang on to incoming block;
1563 load_state_from(target); // Get prior mapping
1564
1565 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1566 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1567 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1568 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1569
1570 // Iterate over my current mapping and the old mapping.
1571 // Where different, insert Phi functions.
1572 // Use any existing Phi functions.
1573 assert(control()->is_Region(), "must be merging to a region");
1574 RegionNode* r = control()->as_Region();
1575
1576 // Compute where to merge into
1577 // Merge incoming control path
1578 r->set_req(pnum, newin->control());
1579
1580 if (pnum == 1) { // Last merge for this Region?
1581 _gvn.transform_no_reclaim(r);
1582 record_for_igvn(r);
1583 }
1584
1585 // Update all the non-control inputs to map:
1586 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1587 for (uint j = 1; j < newin->req(); j++) {
1588 Node* m = map()->in(j); // Current state of target.
1589 Node* n = newin->in(j); // Incoming change to target state.
1590 PhiNode* phi;
1591 if (m->is_Phi() && m->as_Phi()->region() == r)
1592 phi = m->as_Phi();
1593 else
1594 phi = NULL;
1595 if (m != n) { // Different; must merge
1596 switch (j) {
1597 // Frame pointer and Return Address never changes
1598 case TypeFunc::FramePtr:// Drop m, use the original value
1599 case TypeFunc::ReturnAdr:
1600 break;
1601 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1602 assert(phi == NULL, "the merge contains phis, not vice versa");
1603 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1604 continue;
1605 default: // All normal stuff
1606 if (phi == NULL) phi = ensure_phi(j, nophi);
1607 break;
1608 }
1609 }
1610 // At this point, n might be top if:
1611 // - there is no phi (because TypeFlow detected a conflict), or
1612 // - the corresponding control edges is top (a dead incoming path)
1613 // It is a bug if we create a phi which sees a garbage value on a live path.
1614
1615 if (phi != NULL) {
1616 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1617 assert(phi->region() == r, "");
1618 phi->set_req(pnum, n); // Then add 'n' to the merge
1619 if (pnum == PhiNode::Input) {
1620 // Last merge for this Phi.
1621 // So far, Phis have had a reasonable type from ciTypeFlow.
1622 // Now _gvn will join that with the meet of current inputs.
1623 // BOTTOM is never permissible here, 'cause pessimistically
1624 // Phis of pointers cannot lose the basic pointer type.
1625 debug_only(const Type* bt1 = phi->bottom_type());
1626 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1627 map()->set_req(j, _gvn.transform_no_reclaim(phi));
1628 debug_only(const Type* bt2 = phi->bottom_type());
1629 assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
1630 record_for_igvn(phi);
1631 }
1632 }
1633 } // End of for all values to be merged
1634
1635 if (pnum == PhiNode::Input &&
1636 !r->in(0)) { // The occasional useless Region
1637 assert(control() == r, "");
1638 set_control(r->nonnull_req());
1639 }
1640
1641 // newin has been subsumed into the lazy merge, and is now dead.
1642 set_block(save_block);
1643
1644 stop(); // done with this guy, for now
1645 }
1646
1647 if (TraceOptoParse) {
1648 tty->print_cr(" on path %d", pnum);
1649 }
1650
1651 // Done with this parser state.
1652 assert(stopped(), "");
1653 }
1654
1655
1656 //--------------------------merge_memory_edges---------------------------------
1657 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1658 // (nophi means we must not create phis, because we already parsed here)
1659 assert(n != NULL, "");
1660 // Merge the inputs to the MergeMems
1661 MergeMemNode* m = merged_memory();
1662
1663 assert(control()->is_Region(), "must be merging to a region");
1664 RegionNode* r = control()->as_Region();
1665
1666 PhiNode* base = NULL;
1667 MergeMemNode* remerge = NULL;
1668 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1669 Node *p = mms.force_memory();
1670 Node *q = mms.memory2();
1671 if (mms.is_empty() && nophi) {
1672 // Trouble: No new splits allowed after a loop body is parsed.
1673 // Instead, wire the new split into a MergeMem on the backedge.
1674 // The optimizer will sort it out, slicing the phi.
1675 if (remerge == NULL) {
1676 assert(base != NULL, "");
1677 assert(base->in(0) != NULL, "should not be xformed away");
1678 remerge = MergeMemNode::make(C, base->in(pnum));
1679 gvn().set_type(remerge, Type::MEMORY);
1680 base->set_req(pnum, remerge);
1681 }
1682 remerge->set_memory_at(mms.alias_idx(), q);
1683 continue;
1684 }
1685 assert(!q->is_MergeMem(), "");
1686 PhiNode* phi;
1687 if (p != q) {
1688 phi = ensure_memory_phi(mms.alias_idx(), nophi);
1689 } else {
1690 if (p->is_Phi() && p->as_Phi()->region() == r)
1691 phi = p->as_Phi();
1692 else
1693 phi = NULL;
1694 }
1695 // Insert q into local phi
1696 if (phi != NULL) {
1697 assert(phi->region() == r, "");
1698 p = phi;
1699 phi->set_req(pnum, q);
1700 if (mms.at_base_memory()) {
1701 base = phi; // delay transforming it
1702 } else if (pnum == 1) {
1703 record_for_igvn(phi);
1704 p = _gvn.transform_no_reclaim(phi);
1705 }
1706 mms.set_memory(p);// store back through the iterator
1707 }
1708 }
1709 // Transform base last, in case we must fiddle with remerging.
1710 if (base != NULL && pnum == 1) {
1711 record_for_igvn(base);
1712 m->set_base_memory( _gvn.transform_no_reclaim(base) );
1713 }
1714 }
1715
1716
1717 //------------------------ensure_phis_everywhere-------------------------------
1718 void Parse::ensure_phis_everywhere() {
1719 ensure_phi(TypeFunc::I_O);
1720
1721 // Ensure a phi on all currently known memories.
1722 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1723 ensure_memory_phi(mms.alias_idx());
1724 debug_only(mms.set_memory()); // keep the iterator happy
1725 }
1726
1727 // Note: This is our only chance to create phis for memory slices.
1728 // If we miss a slice that crops up later, it will have to be
1729 // merged into the base-memory phi that we are building here.
1730 // Later, the optimizer will comb out the knot, and build separate
1731 // phi-loops for each memory slice that matters.
1732
1733 // Monitors must nest nicely and not get confused amongst themselves.
1734 // Phi-ify everything up to the monitors, though.
1735 uint monoff = map()->jvms()->monoff();
1736 uint nof_monitors = map()->jvms()->nof_monitors();
1737
1738 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1739 for (uint i = TypeFunc::Parms; i < monoff; i++) {
1740 ensure_phi(i);
1741 }
1742 // Even monitors need Phis, though they are well-structured.
1743 // This is true for OSR methods, and also for the rare cases where
1744 // a monitor object is the subject of a replace_in_map operation.
1745 // See bugs 4426707 and 5043395.
1746 for (uint m = 0; m < nof_monitors; m++) {
1747 ensure_phi(map()->jvms()->monitor_obj_offset(m));
1748 }
1749 }
1750
1751
1752 //-----------------------------add_new_path------------------------------------
1753 // Add a previously unaccounted predecessor to this block.
1754 int Parse::Block::add_new_path() {
1755 // If there is no map, return the lowest unused path number.
1756 if (!is_merged()) return pred_count()+1; // there will be a map shortly
1757
1758 SafePointNode* map = start_map();
1759 if (!map->control()->is_Region())
1760 return pred_count()+1; // there may be a region some day
1761 RegionNode* r = map->control()->as_Region();
1762
1763 // Add new path to the region.
1764 uint pnum = r->req();
1765 r->add_req(NULL);
1766
1767 for (uint i = 1; i < map->req(); i++) {
1768 Node* n = map->in(i);
1769 if (i == TypeFunc::Memory) {
1770 // Ensure a phi on all currently known memories.
1771 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1772 Node* phi = mms.memory();
1773 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1774 assert(phi->req() == pnum, "must be same size as region");
1775 phi->add_req(NULL);
1776 }
1777 }
1778 } else {
1779 if (n->is_Phi() && n->as_Phi()->region() == r) {
1780 assert(n->req() == pnum, "must be same size as region");
1781 n->add_req(NULL);
1782 }
1783 }
1784 }
1785
1786 return pnum;
1787 }
1788
1789 //------------------------------ensure_phi-------------------------------------
1790 // Turn the idx'th entry of the current map into a Phi
1791 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1792 SafePointNode* map = this->map();
1793 Node* region = map->control();
1794 assert(region->is_Region(), "");
1795
1796 Node* o = map->in(idx);
1797 assert(o != NULL, "");
1798
1799 if (o == top()) return NULL; // TOP always merges into TOP
1800
1801 if (o->is_Phi() && o->as_Phi()->region() == region) {
1802 return o->as_Phi();
1803 }
1804
1805 // Now use a Phi here for merging
1806 assert(!nocreate, "Cannot build a phi for a block already parsed.");
1807 const JVMState* jvms = map->jvms();
1808 const Type* t;
1809 if (jvms->is_loc(idx)) {
1810 t = block()->local_type_at(idx - jvms->locoff());
1811 } else if (jvms->is_stk(idx)) {
1812 t = block()->stack_type_at(idx - jvms->stkoff());
1813 } else if (jvms->is_mon(idx)) {
1814 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1815 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1816 } else if ((uint)idx < TypeFunc::Parms) {
1817 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
1818 } else {
1819 assert(false, "no type information for this phi");
1820 }
1821
1822 // If the type falls to bottom, then this must be a local that
1823 // is mixing ints and oops or some such. Forcing it to top
1824 // makes it go dead.
1825 if (t == Type::BOTTOM) {
1826 map->set_req(idx, top());
1827 return NULL;
1828 }
1829
1830 // Do not create phis for top either.
1831 // A top on a non-null control flow must be an unused even after the.phi.
1832 if (t == Type::TOP || t == Type::HALF) {
1833 map->set_req(idx, top());
1834 return NULL;
1835 }
1836
1837 PhiNode* phi = PhiNode::make(region, o, t);
1838 gvn().set_type(phi, t);
1839 if (DoEscapeAnalysis) record_for_igvn(phi);
1840 map->set_req(idx, phi);
1841 return phi;
1842 }
1843
1844 //--------------------------ensure_memory_phi----------------------------------
1845 // Turn the idx'th slice of the current memory into a Phi
1846 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1847 MergeMemNode* mem = merged_memory();
1848 Node* region = control();
1849 assert(region->is_Region(), "");
1850
1851 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1852 assert(o != NULL && o != top(), "");
1853
1854 PhiNode* phi;
1855 if (o->is_Phi() && o->as_Phi()->region() == region) {
1856 phi = o->as_Phi();
1857 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1858 // clone the shared base memory phi to make a new memory split
1859 assert(!nocreate, "Cannot build a phi for a block already parsed.");
1860 const Type* t = phi->bottom_type();
1861 const TypePtr* adr_type = C->get_adr_type(idx);
1862 phi = phi->slice_memory(adr_type);
1863 gvn().set_type(phi, t);
1864 }
1865 return phi;
1866 }
1867
1868 // Now use a Phi here for merging
1869 assert(!nocreate, "Cannot build a phi for a block already parsed.");
1870 const Type* t = o->bottom_type();
1871 const TypePtr* adr_type = C->get_adr_type(idx);
1872 phi = PhiNode::make(region, o, t, adr_type);
1873 gvn().set_type(phi, t);
1874 if (idx == Compile::AliasIdxBot)
1875 mem->set_base_memory(phi);
1876 else
1877 mem->set_memory_at(idx, phi);
1878 return phi;
1879 }
1880
1881 //------------------------------call_register_finalizer-----------------------
1882 // Check the klass of the receiver and call register_finalizer if the
1883 // class need finalization.
1884 void Parse::call_register_finalizer() {
1885 Node* receiver = local(0);
1886 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1887 "must have non-null instance type");
1888
1889 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1890 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1891 // The type isn't known exactly so see if CHA tells us anything.
1892 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1893 if (!Dependencies::has_finalizable_subclass(ik)) {
1894 // No finalizable subclasses so skip the dynamic check.
1895 C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1896 return;
1897 }
1898 }
1899
1900 // Insert a dynamic test for whether the instance needs
1901 // finalization. In general this will fold up since the concrete
1902 // class is often visible so the access flags are constant.
1903 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1904 Node* klass = _gvn.transform(new (C, 3) LoadKlassNode(NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
1905
1906 Node* access_flags_addr = basic_plus_adr(klass, klass, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
1907 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
1908
1909 Node* mask = _gvn.transform(new (C, 3) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1910 Node* check = _gvn.transform(new (C, 3) CmpINode(mask, intcon(0)));
1911 Node* test = _gvn.transform(new (C, 2) BoolNode(check, BoolTest::ne));
1912
1913 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1914
1915 RegionNode* result_rgn = new (C, 3) RegionNode(3);
1916 record_for_igvn(result_rgn);
1917
1918 Node *skip_register = _gvn.transform(new (C, 1) IfFalseNode(iff));
1919 result_rgn->init_req(1, skip_register);
1920
1921 Node *needs_register = _gvn.transform(new (C, 1) IfTrueNode(iff));
1922 set_control(needs_register);
1923 if (stopped()) {
1924 // There is no slow path.
1925 result_rgn->init_req(2, top());
1926 } else {
1927 Node *call = make_runtime_call(RC_NO_LEAF,
1928 OptoRuntime::register_finalizer_Type(),
1929 OptoRuntime::register_finalizer_Java(),
1930 NULL, TypePtr::BOTTOM,
1931 receiver);
1932 make_slow_call_ex(call, env()->Throwable_klass(), true);
1933
1934 Node* fast_io = call->in(TypeFunc::I_O);
1935 Node* fast_mem = call->in(TypeFunc::Memory);
1936 // These two phis are pre-filled with copies of of the fast IO and Memory
1937 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
1938 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1939
1940 result_rgn->init_req(2, control());
1941 io_phi ->init_req(2, i_o());
1942 mem_phi ->init_req(2, reset_memory());
1943
1944 set_all_memory( _gvn.transform(mem_phi) );
1945 set_i_o( _gvn.transform(io_phi) );
1946 }
1947
1948 set_control( _gvn.transform(result_rgn) );
1949 }
1950
1951 //------------------------------return_current---------------------------------
1952 // Append current _map to _exit_return
1953 void Parse::return_current(Node* value) {
1954 if (RegisterFinalizersAtInit &&
1955 method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1956 call_register_finalizer();
1957 }
1958
1959 // Do not set_parse_bci, so that return goo is credited to the return insn.
1960 set_bci(InvocationEntryBci);
1961 if (method()->is_synchronized() && GenerateSynchronizationCode) {
1962 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1963 }
1964 if (DTraceMethodProbes) {
1965 make_dtrace_method_exit(method());
1966 }
1967 SafePointNode* exit_return = _exits.map();
1968 exit_return->in( TypeFunc::Control )->add_req( control() );
1969 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
1970 Node *mem = exit_return->in( TypeFunc::Memory );
1971 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
1972 if (mms.is_empty()) {
1973 // get a copy of the base memory, and patch just this one input
1974 const TypePtr* adr_type = mms.adr_type(C);
1975 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
1976 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
1977 gvn().set_type_bottom(phi);
1978 phi->del_req(phi->req()-1); // prepare to re-patch
1979 mms.set_memory(phi);
1980 }
1981 mms.memory()->add_req(mms.memory2());
1982 }
1983
1984 // frame pointer is always same, already captured
1985 if (value != NULL) {
1986 // If returning oops to an interface-return, there is a silent free
1987 // cast from oop to interface allowed by the Verifier. Make it explicit
1988 // here.
1989 Node* phi = _exits.argument(0);
1990 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
1991 if( tr && tr->klass()->is_loaded() &&
1992 tr->klass()->is_interface() ) {
1993 const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
1994 if (tp && tp->klass()->is_loaded() &&
1995 !tp->klass()->is_interface()) {
1996 // sharpen the type eagerly; this eases certain assert checking
1997 if (tp->higher_equal(TypeInstPtr::NOTNULL))
1998 tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
1999 value = _gvn.transform(new (C, 2) CheckCastPPNode(0,value,tr));
2000 }
2001 }
2002 phi->add_req(value);
2003 }
2004
2005 stop_and_kill_map(); // This CFG path dies here
2006 }
2007
2008
2009 //------------------------------add_safepoint----------------------------------
2010 void Parse::add_safepoint() {
2011 // See if we can avoid this safepoint. No need for a SafePoint immediately
2012 // after a Call (except Leaf Call) or another SafePoint.
2013 Node *proj = control();
2014 bool add_poll_param = SafePointNode::needs_polling_address_input();
2015 uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2016 if( proj->is_Proj() ) {
2017 Node *n0 = proj->in(0);
2018 if( n0->is_Catch() ) {
2019 n0 = n0->in(0)->in(0);
2020 assert( n0->is_Call(), "expect a call here" );
2021 }
2022 if( n0->is_Call() ) {
2023 if( n0->as_Call()->guaranteed_safepoint() )
2024 return;
2025 } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2026 return;
2027 }
2028 }
2029
2030 // Clear out dead values from the debug info.
2031 kill_dead_locals();
2032
2033 // Clone the JVM State
2034 SafePointNode *sfpnt = new (C, parms) SafePointNode(parms, NULL);
2035
2036 // Capture memory state BEFORE a SafePoint. Since we can block at a
2037 // SafePoint we need our GC state to be safe; i.e. we need all our current
2038 // write barriers (card marks) to not float down after the SafePoint so we
2039 // must read raw memory. Likewise we need all oop stores to match the card
2040 // marks. If deopt can happen, we need ALL stores (we need the correct JVM
2041 // state on a deopt).
2042
2043 // We do not need to WRITE the memory state after a SafePoint. The control
2044 // edge will keep card-marks and oop-stores from floating up from below a
2045 // SafePoint and our true dependency added here will keep them from floating
2046 // down below a SafePoint.
2047
2048 // Clone the current memory state
2049 Node* mem = MergeMemNode::make(C, map()->memory());
2050
2051 mem = _gvn.transform(mem);
2052
2053 // Pass control through the safepoint
2054 sfpnt->init_req(TypeFunc::Control , control());
2055 // Fix edges normally used by a call
2056 sfpnt->init_req(TypeFunc::I_O , top() );
2057 sfpnt->init_req(TypeFunc::Memory , mem );
2058 sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2059 sfpnt->init_req(TypeFunc::FramePtr , top() );
2060
2061 // Create a node for the polling address
2062 if( add_poll_param ) {
2063 Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2064 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2065 }
2066
2067 // Fix up the JVM State edges
2068 add_safepoint_edges(sfpnt);
2069 Node *transformed_sfpnt = _gvn.transform(sfpnt);
2070 set_control(transformed_sfpnt);
2071
2072 // Provide an edge from root to safepoint. This makes the safepoint
2073 // appear useful until the parse has completed.
2074 if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2075 assert(C->root() != NULL, "Expect parse is still valid");
2076 C->root()->add_prec(transformed_sfpnt);
2077 }
2078 }
2079
2080 #ifndef PRODUCT
2081 //------------------------show_parse_info--------------------------------------
2082 void Parse::show_parse_info() {
2083 InlineTree* ilt = NULL;
2084 if (C->ilt() != NULL) {
2085 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2086 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2087 }
2088 if (PrintCompilation && Verbose) {
2089 if (depth() == 1) {
2090 if( ilt->count_inlines() ) {
2091 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2092 ilt->count_inline_bcs());
2093 tty->cr();
2094 }
2095 } else {
2096 if (method()->is_synchronized()) tty->print("s");
2097 if (method()->has_exception_handlers()) tty->print("!");
2098 // Check this is not the final compiled version
2099 if (C->trap_can_recompile()) {
2100 tty->print("-");
2101 } else {
2102 tty->print(" ");
2103 }
2104 method()->print_short_name();
2105 if (is_osr_parse()) {
2106 tty->print(" @ %d", osr_bci());
2107 }
2108 tty->print(" (%d bytes)",method()->code_size());
2109 if (ilt->count_inlines()) {
2110 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2111 ilt->count_inline_bcs());
2112 }
2113 tty->cr();
2114 }
2115 }
2116 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2117 // Print that we succeeded; suppress this message on the first osr parse.
2118
2119 if (method()->is_synchronized()) tty->print("s");
2120 if (method()->has_exception_handlers()) tty->print("!");
2121 // Check this is not the final compiled version
2122 if (C->trap_can_recompile() && depth() == 1) {
2123 tty->print("-");
2124 } else {
2125 tty->print(" ");
2126 }
2127 if( depth() != 1 ) { tty->print(" "); } // missing compile count
2128 for (int i = 1; i < depth(); ++i) { tty->print(" "); }
2129 method()->print_short_name();
2130 if (is_osr_parse()) {
2131 tty->print(" @ %d", osr_bci());
2132 }
2133 if (ilt->caller_bci() != -1) {
2134 tty->print(" @ %d", ilt->caller_bci());
2135 }
2136 tty->print(" (%d bytes)",method()->code_size());
2137 if (ilt->count_inlines()) {
2138 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2139 ilt->count_inline_bcs());
2140 }
2141 tty->cr();
2142 }
2143 }
2144
2145
2146 //------------------------------dump-------------------------------------------
2147 // Dump information associated with the bytecodes of current _method
2148 void Parse::dump() {
2149 if( method() != NULL ) {
2150 // Iterate over bytecodes
2151 ciBytecodeStream iter(method());
2152 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2153 dump_bci( iter.cur_bci() );
2154 tty->cr();
2155 }
2156 }
2157 }
2158
2159 // Dump information associated with a byte code index, 'bci'
2160 void Parse::dump_bci(int bci) {
2161 // Output info on merge-points, cloning, and within _jsr..._ret
2162 // NYI
2163 tty->print(" bci:%d", bci);
2164 }
2165
2166 #endif